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Pattern formation at the bicritical point of the Faraday instability
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We present measurements on parametrically driven surface waves~Faraday waves! performed in the vicinity
of a bicritical point in parameter space, where modes with harmonic and subharmonic time dependence
interact. The primary patterns are squares in the subharmonic and hexagons in the harmonic regime. If the
primary instability is harmonic we observe a hysteretic secondary transition from hexagons to squares without
a perceptible variation of the fundamental wavelength. The transition is understood in terms of a set of coupled
Landau equations and related to other canonical examples of phase transitions in nonlinear dissipative systems.
Moreover, the subharmonic-harmonic mode competition gives rise to a variety of new superlattice states. These
structures are interpreted as mediator modes involved in the transition between patterns of fourfold and sixfold
rotational symmetry.
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The Faraday experiment has nowadays become a m
system for pattern formation in hydrodynamic systems@1#.
Standing waves are generated on the liquid air interfac
response to a time periodic gravity modulation. Under ty
cal laboratory conditions and assuming that the excita
acceleration is sinusoidal withg(t)5g01a sinVt these sur-
face waves oscillate with twice the period of the exter
drive @2#. This is a consequence of the parametric dr
mechanism and denoted here as thesubharmonicFaraday
resonance. Surface waves synchronous~harmonic! with the
drive can be generated, too. They have been observed fir
adding a second frequency component to the excitation
nal @3#. Later on, following a suggestion of Kumar@4#, har-
monic Faraday waves have also been excited with the u
single frequency drive@5#. This, however, requires rather ex
treme ~parameter! conditions, namely thin fluid layers in
combination with drive frequencies lower than some thre
old f b . Increasingf 5V/(2p) beyond f b lets the Faraday
waves resonate with their usual subharmonic time dep
dence@6#. For operating frequenciesf close to the bicritical
value f b the harmonic and subharmonic modes compe
Owing to the dispersion of surface waves different frequ
cies imply different wavelengths. As a consequence n
linear pattern formation is affected in a significant mann
In our experiments subharmonic modes (f . f b) form square
patterns, harmonic modes (f , f b) hexagons. For the latte
we observe a transition towards a square pattern at elev
drive amplitude. This is similar to the canonical hexagon-l
transition in Rayleigh-Be´nard convection, which can be ob
served if ‘‘non-Boussinesq’’ effects become significant@7,8#.
A transition from hexagons to squares has been found o
recently in the Be´nard Marangoni instability@9–12#.

The measurements presented here give a comprehe
account of our investigations on Faraday pattern selectio
the vicinity of the bicritical point. Thereby the interactio
between harmonic and subharmonic modes of differ
wavelengths gives rise to new resonant phenomena: supe
tices with either fourfold or sixfold rotational invariance
Though superlattices are very common in solid state
surface physics, they have been found on macroscopic sc
only recently@6,13–16#.
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Within a cascade of secondary phase transitions supe
tices are found to mediate between the two incompat
symmetry classes, of squares and hexagons. For instan
primary subharmonic pattern with quadratic surface tili
experiences a crossover to a hexagonal superlattice via
quadratic superlattices@6# with a prominent displacive char
acter in one or two lateral directions. After passing a ph
with a hexagonal superlattice the transition process reach
pure hexagonal pattern characterized by a single wavele
and oscillating in synchronous response to the external dr

For several of the observed transitions we are able to p
vide explanations in terms of resonant amplitude equati
for the governing spatial modes. The structure of these eq
tions is simply based on symmetry and resonance argume
In spite of their simplicity these equations provide an und
standing of many remarkable features of the superlattices
particular their displacive character. This phenomenolog
approach is certainly facilitated by the small number of e
perimental control parameters. This is unlike earlier expe
ments@14–16#, which use a more complicated multiple fre
quency drive or a viscoelastic fluid to drive the system in
the bicritical situation. Thereby different kinds of superla
tices have been reported as well. But clearly, a larger num
of control parameters renders a theoretical understan
more unwieldy and less intuitive. For the theoretical a
proach to superlattices see, e.g., Ref.@17#.

I. EXPERIMENTAL SETUP

A. Vibration system and sample fluid

Figure 1 shows a schematic diagram of the experime
setup. Its heart is a large displacement shaker unit~V617
Gearing & Watson Electronics Ltd.! connected to a 4 kW
power amplifier. The shaker supplies a maximum force
4670 N and a peak-to-peak elevation ofsmax554 mm. Such
a large displacement is necessary to obtain a sufficient ac
erationa at lower driving frequencies. The drive signal fo
the power amplifier is synthesized by means of a digit
analog card installed in a Pentium PC. The actual accel
tion of the container is measured with a piezoelectric dev
©2003 The American Physical Society04-1
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the amplified signal of which is routed to the PC for da
acquisition. Since the characteristics of the shaker turned
to be rather nonlinear at operation frequencies belowf
5V/(2p),10 Hz a continuous control of the excitatio
signal was necessary. To guarantee a sinusoidal conta
accelerationa sinVt the recorded accelerometer signal w
decomposed into Fourier components. The parasitic hig
harmonics ofV were eliminated by admixing Fourier con
tributions with appropriate inverse phases to the excita
signal. Their amplitudes were determined by a proportio
control loop. That way the power spectrum of the accelero
eter signal is made monochromatic with a purity of 99%.

The cylindrical container for the sample liquid was m
chined out of aluminum and was anodized black. To av
pollution and temperature drifts within the fluid, the co
tainer was sealed with a glass plate. The inner containe
ameter wasd5290 mm, the depth 50 mm. Over a distan
of 12 mm from the edges of the container the depth conti
ously increased from zero to the bottom. This ‘‘soft bounda
condition’’ with an average angle of 30° helped to minimi
the generation of parasitic meniscus waves. A meniscus
der vertical vibration always emits waves with the frequen
f of the external drive. Since these waves have non vanis
amplitudes even at subcritical drive amplitudesa,ac they
blur the onset detection. The beachlike boundary fulfil
their purpose well, at least above 10 Hz.

The probe fluid was a low viscosity silicon oil~Dow
Corning 200! with the manufacturer specifications of kin
matic viscosity n5531026 m2/s, surface tensions
50.0194 N/m, and densityr5920 kg/m3 at our working
temperatureT525 °C. A heating foil was mounted on th
outside of the container. By means of a temperature con
ler the temperature measured by a PT-100 resistor~embed-
ded in the container body! was regulated by60.1 °C.

B. Visualization technique

To visualize the surface profile we used a full frame CC
camera~Hitachi KPF-1! situated above the fluid surface
the center of a ring consisting of 120 LEDs. The ring had
radius of R50.3 m and its distance from the fluid surfac
was L51.50 m. The camera was synchronized to the ex
tation signal with an exposure time of 1/256 of the dri

FIG. 1. Sketch of the experimental setup. See text for furt
explanation.
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period. It follows from geometrical optics that only surfac
elements with a certain steepness reflect light into the c
era.

For an evaluation of the spatial symmetry of the surfa
deformationz(x,y) we relied on a Fourier technique. To th
end the recorded light intensityI (x,y) of a video image was
convoluted with a Gaussian window function and proces
by a FFT algorithm. This yields the two-dimensional spat
power spectrumP(k). To determine the wavelength of th
patternP(k) was azimuthally averaged by integrating ov
circles with constant radiusuku5k. The primary peak in the
resulting one-dimensional spectrum was fitted by a Ga
function the center of which determines the fundamen
wave number. Clearly, the resolution of this procedure
limited by the number of wavelengths in the container. T
is especially the case for subharmonic Faraday waves w
the uncertainty ofDk/k is about 10%.

Due to the nonlinear relationship between the surface
evationz(x,y) and the recorded light intensityI (x,y), the
power spectrum entails higher harmonics of the fundame
wave number, even if the surface profilez(x,y) does not.
Thus the relation betweenI (x,y) andz(x,y) is generally too
complicated to allow a reconstruction of the surface profi
Nevertheless for simple surface patterns~such as squares! we
have solved this ‘‘inverse problem’’ by the following
method: Starting from an estimated surface profile compo
of a small number of spatial Fourier modes, the light dis
bution of the expected video image was computed by me
of a ray tracing algorithm. Then we adapted the mode a
plitudes and their relative phases such as to optimize
agreement between the calculated and recorded video
ture.

A reconstruction of the full time dependence of an osc
lating surface wave pattern was not possible with our equ
ment. Nevertheless, the electronic shutter of the camera
vides an easy and very sensitive technique to discrimin
subharmonic frequency components in an otherwise h
monic time signal. This is because a harmonic time dep
dencezh(t) is invariant under the symmetry operationt→t
12p/V implying a frequency spectrum of integer multiple
of V thus zh(t)5(nzneinVt. In contrast the subharmoni
time signal transforms after one drive period aszs→2zs

enforcing a Fourier representation in the form ofzs(t)
5(nznei [(n11/2)Vt] . Thus by triggering the camera shutt
with the drive frequencyV, video images with a harmonic
time dependence appear stationary, while those with sub
monic frequency contributions flicker due to a slight optic
asymmetry between heaps and hollow of the deformed
face. Note however, that this trigger technique does not al
to identify harmonic frequency components in an otherw
subharmonic spectrum.

II. THE ONSET OF THE FARADAY INSTABILITY

It is well known that the stability problem of a free liqui
surface under gravity modulation~Faraday instability! can be
approximately mapped to that of a parametrically driv
pendulum@18,2#. The primary resonance of which occurs
twice the period of the drive~subharmonic response!. How-

r
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PATTERN FORMATION AT THE BICRITICAL POINT . . . PHYSICAL REVIEW E 68, 066204 ~2003!
ever, as first pointed out by Kumar@4# the Faraday instability
may also appear in synchronous resonance with the exte
drive, usually denoted as theharmonicresponse. The condi
tions under which the harmonic resonance preempts the
harmonic one have been worked out in detail by Cerda
Tirapegui@19# and Müller et al. @5# revealing that low filling
levels in combination with small drive frequencies are n
essary. In the present experiment we choose a fill heigh
h50.7 mm, which is—at the operation frequencies of 6, f
,8 Hz—comparable to the viscous penetration depthk
5A2n/V'0.5 mm. For the fluid parameters at hand a line
stability analysis of the flat surface state~according to the
method of Kumar and Tuckermann@20#, which assumes a
laterally infinite system! reveals the location of the bicritica
point at a drive frequency off b56.3 Hz. Figure 2 shows
neutral stability diagrams~drive amplitudea vs wave num-
ber k) for both situationsf , f b and f . f b .

Experimentally the critical accelerationac ~absolute mini-
mum of the neutral stability diagram! has been determine
by setting up the system at a constant frequency and ram
a quasistatically in steps of 0.2% suspended by intervals

FIG. 2. Neutral stability curvesa(k) computed for the param
eters of the sample fluid at a drive frequency~a! f 56.25 Hz, f b

and~b! f 57.25 Hz. f b . In ~a! the primary resonance is harmoni
in ~b! it is subharmonic. Regions where the flat surface state
unstable are shaded. Horizontal lines denote the thresholds for
ondary and higher order transitions shown in Fig. 4.
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240 s. The onset amplitudeac was defined when the camer
detected the first light reflex@Fig. 3~a!#. To enhance the de
tection sensitivity the surface was illuminated by a diffusi
light source from the side rather than using the dark-fi
technique described above. This is because the latter me
requires a minimum surface gradient ofu¹z(x,y)u5tana
'0.1 for the onset detection. We estimate the accuracy
our threshold determination by 0.5%.

Once a standing wave pattern had covered the whole
face the fundamental frequency of the surface oscillation w
determined with the help of the electronic shutter of t
video camera. That way we located the transition point a
bicritical frequency f b56.560.1 Hz. After these prelimi-
nary measurements we switched back to the dark-field i
mination to proceed with the spatial pattern analysis. T
critical wave numberskc

h and kc
s, respectively, were deter

mined by Fourier transforming a surface image taken a
driving strength of«5(a2ac /ac)'0.03 @Fig. 3~b!#. The
operating prescriptionkc5k(«'0.03) for the determination
of the critical wave number is motivated by the fact that w
were unable to detect any change of the wave numberk by
varying« ~see also@21#!. The experimental results forac and
kc as well the bicritical frequencyf b are found to be in good
agreement with the theoretical predictions. For the criti
acceleration the discrepancy is less than 2%. Here the un
tainty is mainly due to errors in the determination of t
small fill heighth. For larger values ofh the agreement im-
proves up to 1%. For the critical wave number the discr
ancy between theory and experiment is better than 4% in
harmonic case but it increases up to 10% on the subharm
regime. This is due to the spatial resolution, which becom
worse at larger wavelength.

Owing to the abrupt change of the response frequenc
f 5 f b the wave number shows a discontinuous jump@see
Fig. 3~b!#. The empiric ratio of the wave numbers atf 5 f b is
found to be

kc
h

kc
sU

expt

51.5860.15, ~1!

in agreement with the prediction of the linear stability theo
kc

h/kc
su theor51.59. The latter can be approximated by t

~nonviscous! finite depth dispersion relation yieldin
kh/ksudisp51.81.

We finally checked if the correlation lengthj52p/dk
would not exceed the container diameter.dk is the band-
width of the unstable modes, given by the shaded region
Fig. 2. j diverges fore→0 and for sufficient smalle the
correlation length remains always larger than the conta
diameter and the pattern is largely determined by the c
tainer symmetry@28#. However, in our experiments th
damping from the bottom is sufficiently strong and the ban
width of the unstable modes already yields at«50.01 a cor-
relation length shorter than the container diameter. All
maining influences of the container symmetry on the patt
dynamics observed in our experiments is thus to attribute
a different aspect ratio, the ratio of the container size to
wavelength.
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ec-
4-3



rive
k
armonic
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FIG. 3. ~a! Critical amplitudeac and~b! critical wave numberkc for the onset of the Faraday instability drawn as a function of the d
frequencyf. The bicritical pointf 5 f b is located where the harmonic (f , f b) and subharmonic (f . f b) thresholds intersect. Symbols mar
experimental data points; lines mark the theoretical results for a laterally infinite fluid layer. Circles and dotted lines refer to the h
response, and squares and solid lines to the subharmonic one.
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III. OVERVIEW OF THE PHASE DIAGRAM

The phase diagram shown in Fig. 4 has been obtaine
various constant driving frequenciesf 5V/(2p) while
ramping the driving amplitude from«520.01 up to «
50.25 in steps ofD«520.002. After each increment th
ramp was suspended for 240 s to give the system tim
relax. Then a photo or—in the case of time dependent
terns a video film—of the surface state was taken. At
point where a new spatial or temporal mode appeared o
existing one died out, the actual acceleration was define
the transition boundary to a new ‘‘phase.’’ At the maximu
acceleration amplitude the ramp was reversed to check fo
eventual hysteresis.

In Sec. IV we describe in detail the type of primary pa
terns, which appear near onset of the Faraday instab
Second- and higher-order transitions towards more com
cated structures are dealt with in Secs. V and VI. Ther
two representative experimental runs will be described
detail, the first was taken atf 56.25 Hz, f b and a second a
f 57.25 Hz. f b .

In the former case the primary pattern exhibits a harmo
time dependence, which turns out to be quite robust a
persists over the whole investigated« ramp. The primary
spatial surface wave structure starts with an ideal hexag
symmetry~region V!, which then transforms into a pattern o
squares~region VI! as « is raised. This transition is hyste
etic, its global aspects can be understood in terms of a sim
model of six coupled amplitude equations.

In the second run atf . f b the primary surface patter
consists of subharmonically oscillating squares~region II!.
On increasing the drive strength« the interaction with the
neighboring harmonic Faraday instability leads to the
pearance of a quadraticA23A2 superlattice with a displa
cive character in one and/or two lateral directions~regions
IIIa and IIIb, respectively!. Displacive means that rows o
wave crests are shifted to each other. After crossing a ph
region of nonstationary patterns with a slow time dep
dence the system enters a hexagonalA33A3 superlattice
~region IV!. Mediated by a second local reconstruction p
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cess the final stationary surface pattern is a quadratic 232
superlattice~region VII!. Regardless of whether the respon
is s or h, the surface finally breaks up and droplets a
ejected~region VIII, «.0.15–0.25).

IV. PATTERN FORMATION CLOSE ABOVE ONSET
OF THE FARADAY INSTABILITY

Close to the harmonic onset (f , f b) hexagons are the
preferred primary surface pattern@Fig. 5~a!, region V#; how-
ever, for f . f b squares are stable@Fig. 9~a!, region II#. Wag-
ner, Müller and Knorr @6# ~see Fig. 3 therein! have shown
that even for small« the wave profile is rather anharmonic

A. Theoretical model for the primary hexagonal pattern
at fËf b

The appearance of hexagons at the ‘‘harmonic side’’
the bicritical point follows from a triple wave vector reso
nance. A normal form for the surface deformation profile
given by

z~r ,t !5F(
m

H HmeikHm
•r

SmeikSm
•r J 1c.c.G

3 (
n52`

1`

znH einVt for h response

ei (n11/2)Vt for s response.
~2!

Here r5(x,y) is the horizontal coordinate, the later
wave vectorskHm

and kSm
, with ukHm

u5kh and ukSm
u5ks

composing the spatial pattern and thezn are the temporal
Fourier coefficients determined by the linear stability pro
lem. Feedingz and a similar ansatz for the hydrodynam
velocity field into an arbitrary quadratic nonlinearity resu
in a frequency spectrum of integral multiples ofV, whether
or not S or H are considered. Thus quadratic nonlinearit
are able to resonate withharmonic linear eigenmodes, bu
not with subharmonicones. Clearly, spatial resonance mu
4-4
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PATTERN FORMATION AT THE BICRITICAL POINT . . . PHYSICAL REVIEW E 68, 066204 ~2003!
be granted as well. The requirementukH1
u5ukH2

u5ukH3
u

5kc
h along with the resonance conditionkH1

1kH2
1kH3

50
enforce a mutual angle of 120° between the wave vec
implying the hexagonal symmetry. The evolution equatio
for the respective mode amplitudesH1 ,H2 ,H3 are of the
following structure:

] tH15«H11bH2
!H3

!2@ uH1u21G~120°!~ uH2u2

1uH3u2!#H1 . ~3!

Therebyb is a second order coupling coefficient andG(u) is
the cubic cross coupling coefficient, which depends on
angle between the interacting modes. Moreover, the stars
note complex conjugation. The corresponding equations
H1 andH2 follow by permutation of the indices. The term o
cubic order is crucial for saturation. A linear stability anal
sis of the finite amplitude stationary solutionuH1u5uH2u
5uH3u noted in Ref.@8# yields a backwards bifurcation ou
of the trivial solutionHi50. This reflects a hysteretic tran
sition from the undisturbed flat surface to a pattern of he
gons. However, we were unable to resolve any hyster
because of small amplitude~harmonically oscillating! menis-
cus waves emitted from the rim of the container.

FIG. 4. Phase diagram of the observed patterns obtained
quasistatically ramping the driving force. The symbols mark
observed transition points between the different patterns; the l
are guides for the eyes. The spatial ordering of the patterns is
cated by roman numerals, the arabic letterss and h denote the
character of the time dependence being either purely subharm
or harmonic. Thes1h label indicates patterns formed by a intera
tion of subharmonic and harmonic modes. The thick line separ
harmonic from subharmonic ands1h regions. I: flat surface; II:
subharmonically oscillating squares@Figs. 9~a! and 9~b!#; IIIa: A2
3A2 superlattice p2mg@Figs. 9~c! and 9~d!#; IIIb: A23A2 super-
lattice c2mm@Figs. 9~e! and 9~f!#; within the subregion above th
dotted line the pattern is time dependent and disordered~see Fig.
12!; IV: A33A3 superlattice~only for f ,6.9 Hz stationary, Fig.
13!; V: harmonically oscillating hexagons@Fig. 5~a!#; VI: harmoni-
cally oscillating squares@Fig. 5~d!#; VII: 2 32 superlattice~Fig.
14!; VIII: local instability and droplet ejection.
06620
rs
s

e
e-

or

-
is

B. Theoretical model for the primary square pattern at fÌf b

Understanding the pattern selection process at the sub
monic side of the bicritical point is more complicated. Sin
the frequency spectrum of the subharmonic Faraday resp
consists of half integer multiples off, any triple of linear
unstable modes is prevented from resonating. Thus nonlin
pattern selection is dominated by a mechanism where
linear unstable modes resonate with their higher harmon
Unlike triad resonances, which operate exclusively at an
teraction angle ofu5120°, these resonances are less se
tive as they work at arbitrary anglesu. This fact is also
reflected by the corresponding system of amplitude eq
tions. Taking a set ofN standing waves with wave numbe
kSi

at lengthukSi
u5kc

s but arbitrary relative orientation, the

respective mode amplitudesSi are governed by the following
evolution equations:

] tSi5«Si2(
j 51

N

G~u i j !uSj u2Si , ~4!

with u i j being the angle betweenkSi
, kSj

. Usually the par-
ticipating modes are taken to be equidistant on the cir
ukSi

u5kc
s , thus u i ,i 1152p/N. In this caseN indicates the

type of symmetry of the pattern, namelyN51 lines,N52
squares,N53 triangles or hexagons,. . . . As outlined in
Refs. @22–25# the question of what is the most preferre
symmetry is reduced to minimizing the ‘‘free energy’’

F52«(
i 51

N

uSi u1
1

2 (
i , j 51

N

G~u i j !uSi u2uSj u2 ~5!

with respect toN at given G(u). For low viscosity fluid
layers of infinite depth the coupling functionG(u) was first
evaluated by Zhang and Vin˜als in 1997@24#, who found that
a pattern of square symmetry is the most preferred on
drive frequencies beyondf '50 Hz. At lower frequencies
patterns with a degree of rotational symmetry upN57 ~qua-
siperiodic! are likely to occur. These predictions were foun
to be in good agreement with experiments@26–28#. In Ref.
@28# the considerations above are even extended to the
of finite fill heights and it was found that square patter
dominate also at lower drive frequencies in agreement w
their own experiments and also with ours.

V. SECONDARY AND HIGHER ORDER TRANSITIONS
AT fËf b

A. Hexagon-square transition

In this section we investigate the crossover from the p
mary hexagonal structure~region V in Fig. 4! to the square
pattern of region VI of the harmonic regime. Throughout t
whole bifurcation cascade the time dependence is purely
monic without perceptible subharmonic frequency contrib
tions. The results described below were obtained by ramp
the drive amplitude«520.01 up to«50.165 while keeping
the frequencyf 56.25 Hz fixed~see Fig. 5!. The transition is
connected with a strong hysteresis giving an overlap betw
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WAGNER, MÜLLER, AND KNORR PHYSICAL REVIEW E68, 066204 ~2003!
the two ideal structures. Since the lateral aspect ratio~con-
tainer size over wavelength! is not large the hexagonal pa
tern adapts to an azimuthal symmetry. This affects the de
dynamic of the pattern and thereby also the transition p
cess. Starting the« ramp at the hexagonal structure, a re
rangement of the pattern sets in, initiated by six nuclei
local quadratic order as indicated by the circles in Fig. 5~a!.
The size of these patches increases with« @Fig. 5~b!#. Con-
versely, starting at elevated« with the perfect square patter
and ramping downwards generates four nuclei of local h
agonal order@Fig. 5~d!#. Along the domain boundaries be
tween the patches penta-hepta defects occur. This kin
defect is very common in 2D hexagonal patterns. Exp
mental@8,29# and theoretical@30# investigations reveal that
penta-hepta defect can be formed by a phase defect am

FIG. 5. Photographs of the fluid surface as obtained by ramp
the drive amplitude« at f 56.25 Hz. The field of view is 26
326 cm and in the corners of the pictures the container bounda
visible. In ~a! and~d! circles mark the nuclei at which the transitio
process is initiated.~e! is an enlarged sector of~b! with marked
pentalines and hepta defects.
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two of the participating modes. Figure 5~e! presents an en
larged subrange of Fig. 5~b! depicting ‘‘pentalines.’’ This is a
row of pentadefects~unit cells with five neighbors! ending in
heptadefects~unit cells with seven neighbors!. Strengthening
the drive makes the domain walls invade the areas of h
agonal symmetry with new quadratic cells being genera
along the penta lines.

To quantify the hysteresis of the hexagonal quadratic
construction we applied two different techniques, one in r
space and the other in Fourier space. In the former case
number of unit cells with four neighborsA4 and those with
six neighborsA6 was counted. The result of this procedure
shown in Fig. 6~a!. It reveals a hysteresis loop extendin
from «50.0560.01 up to«50.1560.01. The obvious stair-
case behavior reflects the discretization of thek values due to
the finite size of the container. For different runs the steps
not occur at the same« values.

The second method for evaluating the square-vs-hexa
surface coverage follows an approach given in Ref.@27#. We
Fourier transformed the full surface picture and evaluated
power spectrumP(k)5P(k,f) at uku5kc as a function of
the azimuthal anglef. We then computed the azimuthal au
correlationC(f) as follows:

C~f!5

E
0

p

P~kc ,f!P~kc ,f1f8!df8

E
0

p

@P~kc ,f8!#2df8

. ~6!

That way a pattern with quadratic symmetry leads to a p
at f590° and 180°, while a hexagonal pattern produc
maxima atf560°, 120° and 180°.

Figure 7 illustrates howC(f) develops with the drive
amplitude, both at increasing and decreasing«. In order to
compare with the cell counting method@see Fig. 6~a!# the

g

is

FIG. 6. ~a! Surface area covered with squaresA4 related to
surface area of squares and hexagonsA6 as function of the drive
strength« at the frequencyf 56.25 Hz. ~b! The autocorrelation
function C(f590°) of the power spectraP(k) on the circle (uk
u5kc). Upright ~reversed! triangles refer to the upwards~down-
wards! amplitude ramp.
4-6



re

th

e
le
ig
th
th

a
c
-
s
on
so

b

es
at

-

re

h
pa
s

e
od

m
e
po
io

-

-
gon
ave
-
of

rip-
an-
ries
-

ow
the

VI D
ime

ing

va-

is-

t
al

e-
e of

the

Hz
s
e
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valueC(f590°) is plotted versus« in Fig. 6~b!. Regarding
the width of the hysteresis loop, the two methods ag
within a few percent with each other.

An important feature of the above phase transition is
constancy of the wave numberkh(«)5kc

h : Within the ex-
perimental resolution ofDk/k561% no dependency of th
wave number on« could be detected throughout the who
investigated drive amplitude range. This is of particular s
nificance as it allows to describe the global aspects of
phase transition in terms of a simple model as given in
next section.

B. Comparison with theory

It was outlined in Sec. IV that the hexagonal symmetry
small« is a consequence of a three wave resonance, refle
by the second order term in Eq.~3!. However, upon increas
ing the control parameter« the term of cubic order become
increasingly important, thus finally enforcing the transiti
towards squares. A minimal model that allows stationary
lutions in form of squares and hexagons~and also lines!
along with a linear stability analysis of these solutions can
found, e.g., in an analysis by Regnier@31#. This model is an
extension of Eq.~3! as it relies on six independent mod
k i ( i 51, . . . ,6) rather than only three. Regnier finds th
hexagons become unstable for a certain«.eH . By way of
contrast, for a critical value of«,eS squares become un
stable.

It is tempting to attribute the bistable square-hexagon
gion in the theoretical bifurcation diagram between«S,«
,«H to the hysteretic region depicted in Figs. 5~b! and 5~c!.
Note, however, that the observed transition runs throug
reconstruction via penta-hepta defects, the complicated s
dependence of which goes beyond the scope of the pre
model.

We mention that a discussion of a transition betwe
hexagons and lines in terms of the above three mode m
~3! has been given earlier in the context of Rayleigh-Be´nard
convection@7,8#. Thereby the phase transition results fro
non-Boussinesq effects induced by a strong applied temp
ture gradient. In the last decade, several authors re
Bénard-Marangoni experiments, which show a transit
from hexagons to squares@9–11#. A similar transition is
found in Ref.@32# on the surface instability of magnetic liq

FIG. 7. Azimuthal autocorrelationC(f) derived from the power
spectraP(k) at the wave numberuku5kc as a function of the drive
amplitude« for ramping up and down.
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uids ~Rosensweig instability!. However, unlike our measure
ments, all of the aforementioned experiments with a hexa
to square transition exhibit a considerable nonlinear w
number variationk(«) up to 10%, which rules out a descrip
tion in terms of space independent amplitude equations
the type given above. Our experiments allow for a desc
tion in terms of Landau equations and a model set of qu
titative experimental data regarding the phase bounda
now exist. This provides the opportunity for an explicit com
parison with a more detailed theoretical analysis.

VI. SECONDARY AND HIGHER TRANSITIONS AT fÌf b

In the same way as in the preceding paragraph we n
turn to the bifurcation scenario at the opposite side of
bicritical point at f . f b . An amplitude ramp taken atf
57.25 Hz serves as a representative example. Section
is an exception, where the focus is on the frequency reg
6.6 Hz, f ,6.9 Hz.

An overview of the transition behavior atf 57.25 Hz is
given by Figs. 8 and 9. Starting from subharmonic oscillat
squares@region II, Fig. 9~a!# a transition to a quadraticA2
3A2 superlattice with a displacement of neighboring ele
tion maxima in the lateralx direction@region IIIa, Fig. 9~c!#
takes place. The next pattern is again aA23A2 superlattice
of the original square lattice but this time it exhibits a d
placement in bothx andy direction @region IIIb, Fig. 9~e!#.
After a time dependent transient~see Fig. 12 for a snapsho!
this pattern transforms into a ‘‘quasistationary’’ hexagon
A33A3 superlattice~region IV, Fig. 13!. By ‘‘quasistation-
ary’’ we indicate that the pattern is slightly disturbed by d
fects, which induce a slow time dependence on the scal
minutes. Further raising the drive amplitude« at f
57.25 Hz makes the quadratic symmetry reappear in
form of a 232 superlattice~region VII, Fig. 14!. Performing
the same amplitude ramp at a lower frequency of 6.6
, f ,6.9 Hz theA33A3 superlattice directly reduces to it
underlying pure hexagonal tiling. This last transition will b
discussed in Sec. VI D.

FIG. 8. Phase diagram of an amplitude scan atf 57.25 Hz.
Time dependent transient means an uncorrelated pattern~Fig. 12!,
quasistationary indicates a pattern of an almost perfectA33A3
superlattice~compare Fig. 13! with a slow defect dynamic.
4-7
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A. The quadratic A2ÃA2 superlattice

The bifurcation sequence starts at the primary ideal p
tern of subharmonically oscillating squares@region II and
Figs. 9~a! and 9~b!# composed of the two fundamental wav
vectorskS1

andkS2
. Increasing the drive strength« beyond

0.05 displaces every other column of elevation maxima

FIG. 9. A 10310 cm sector of the photographs of the flu
surface and a quadratic sector~ranging from 21280 m21 to
1280 m21) of the contour plot representation of the correspond
Fourier spectra of the complete surface area atf 57.25 Hz. ~a!,~b!:
«50.03, region II, pattern of squares;~c!,~d!: «50.07, region IIIa,
A23A2 superlattice p2mg with a displacive character inx direc-
tion; ~e!,~f!: «50.14A23A2, region IIIb, superlattice c2mm with
a displacive character inx and y direction. The dotted lines and
arrows on the left pictures indicate the directions in which the ro
and columns of elevation maxima are displaced on the image
low. ~g! Minimal set of Fourier modes that are necessary to gene
the observed surface states.
06620
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the direction6(kS1
1kS2

). This is shown by the arrows in
Fig. 9~a!. The resulting pattern~phase region IIIa! is depicted
in Fig. 9~c!. The displacement is accompanied by the sim
taneous appearance of the modeskH1

, kH2
, andkD1

in the
power spectrum@see Fig. 9~d!#. Due to the approximate
equality ukH1

u5ukH2
u.kc

h these modes are only slightl

damped. In contrast,ukD1
u is significantly smaller thankc

s and

kc
h . Therefore the modeD1 is strongly damped. Its mission

is to act as a mediator mode, enabling the resonance betw
S and H modes according to the geometrical ruleskH1

5(kS1
1kD1

) and kH2
5(kS2

1kD1
). This implies thatkD1

must be associated with a subharmonic time depende
Moreover, it follows from kc

h/kc
s.1.58 that ukD1

u50.71

.1/A2, which leads to the commensurate relationshipkD1

. 1
2 (kS1

1kS2
) for the new fundamental wave vector. Th

corresponding elementary cell@see Fig. 10~a!# is rotated by
45° relative to the original quadratic grid, and the ba
wavelength is enlarged by a factor ofA2. We therefore de-
note this pattern as aA23A2 superlattice@more precisely,
(A23A2)R45 or A23A2 p2mg in the nomenclature of
space group theory~see Ref.@38#!#. It turns out that the dis-
placive character of the superlattice is inherent in the ph
information carried by the participating modes. Barrin
higher spatial harmonics the space dependence of the su
deformation shown in Fig. 9 can be expressed as

z~r !5(
i 51

2

Sicos~kSi
•r1fSi

!1D1cos~kD1
•r1fD1

!

1(
i 51

2

Hicos~kHi
•r1fHi

!. ~7!

Equation~7! is a special case of the spatial part of Eq.~2!
with D1 as an additional variable for a specific Fourier a
plitude for a better structuring. By means of the ray traci
technique outlined in Sec. I B we can now simulate the vid
image associated withz(r ) and adapt it to the empiric resul
Taking fS1

5fS2
50 ~by a proper choice of the origin! our

investigation reveals that the displacement visible in F

g

s
e-
te

FIG. 10. Particle model of the~a! A23A2 p2mg and~b! A2
3A2 c2mm superlattice. Also marked are the mirror~m! and glide
~g! planes.
4-8
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9~b! can only be reproduced if the spatial phasesfD1
, fH1

,

andfH2
adopt values close to5p/2. The associated surfac

pattern exhibits a 180° rotational symmetry.
By increasing the drive further theA23A2 p2mg super-

lattice undergoes a transition which restores the fourf
symmetry. Similar to the above described shift of thecol-
umnsof elevation maxima, it is now additionally therows,
which experience a displacement in the direction6(kS1

2kS2
) @indicated by the arrows in Fig. 9~c!#. In Fig. 11 we

measured the amount of symmetry restoration by compa
the spectral power associated withD1 and D2. Beyond«
.9% the transition is complete. The resulting so calledA2
3A2 c2mm superlattice@see Fig. 10~b!# is depicted in Fig.
9~e! and associated with the phase space region IIIb. In F
rier space this transition is carried by the additional mo
kH3

, kH4
and kD2

as shown in Fig. 9~f!. Extending the sur-
face representation equation~7! by these additional compo
nents and using it to reperform the ray tracing ima
analysis yields the phase informationfDi

( i 51,2)

5fHi
( i 51, . . . ,4)5p/2.

We mention that theA23A2 c2mm superlattice state
was not observed in an earlier measurement on a liquid
higher viscosity@6#. Thereby this structure is preempted by
transition to a hexagonal symmetry.

B. Theoretical model for the displacive phase

The experimental investigations outlined in the previo
section reveal that the prominent displacive character of
A23A2 superlattices is associated with the phase inform
tion carried by the spatial Fourier modes. In what follows
minimal model is constructed, which is able to explain t
experimentally measured phases. It is important to point
that thestructureof these equations just relies on symme
and resonance arguments~triad wave vector resonances!.
The numerical valuesof the appearing coefficients are n

FIG. 11. Integrated intensity of theD1 peak~circles! and theD2

peak ~squares! in the power spectrum as a function of the dri
amplitude«. The error bars mark the standard derivation result
from five succeeding runs.
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known; their evaluation would require a rather complicat
nonlinear analysis. A formal proof is still missing if a de
scription in terms of amplitude equations is justified at a
taking the elevated driving strengthe in our experiments into
account. However, the patterns consisting of well-defin
Fourier components and the surprisingly good agreement
tween the predicted and measured prominent spatial ph
render the following analysis very instructive. For the sa
of simplicity, we limit our discussion to theA23A2p2mg
superlattice. The generalization to the more symmetricA2
3A2c2mm pattern is straightforward.

Assuming that the amplitudes of the primary square p
tern have settled at some finite valueS15S2Þ0 the leading
order behavior of the remaining modes is governed by
following set of equations:

] tD15«DD11mD~S1
!H11S2

!H2!1xSS1S2D1
! ,

] tH15«HH11mHS1D1 , ~8!

] tH25«HH21mHS2D1 .

Thereby «H,0 and «D!0 are the coefficients of linea
damping of theH andD modes, respectively, whilemD,H and
xS are nonlinear coupling coefficients associated with
triad wave vector resonance.

Although the model equations~8! are linear inD and H
and thus saturation is not implied, the appearing nonline
ties are phase selective. By writing the complex amplitud
in the form Ai5uAi uexp(fAi

) with againfS15fS2 taken to
be zero~choice of space origin! the imaginary part of Eq.~8!
yields the phase dynamics

] tfD1
5mDuSuuHu/uDu@sin~fH1

2fD1
!1sin~fH2

2fD1
!#

1xSuSu2sin~22fD1
!,

] tfH1
5mHuDuuSu/uHusin~fD1

2fH1
!, ~9!

] tfH2
5mHuDuuSu/uHusin~fD1

2fH2
!.

The fix points of these equations are

fHi
5fDi

5m
p

2
~10!

with m being an integer. By inspection one finds that t
solution with evenm leads to a square pattern withamplitude
modulationwhile oddm gives rise to the observed displac
ment ~phase modulation!. Which one is stable, depends o
the numeric values of the coefficients. From the experime
data we conclude thatfHi

5fDi
5p/2 is the solution appli-

cable to the present experiment.

C. The hexagonalA3ÃA3 superlattice

Upon further increase of the driving force atf 57.25 Hz
the quadraticA23A2c2mm superlattice transforms into
‘‘quasistationary’’ hexagonal superlattice~region IV, com-

g

4-9
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WAGNER, MÜLLER, AND KNORR PHYSICAL REVIEW E68, 066204 ~2003!
pare Fig. 13! after passing a region of transient time depe
dent ~Fig. 12! with squares, hexagons and disordered p
terns appearing at the same value of«. The term
‘‘quasistationary’’ is to indicate that the pattern is affected
defects on a slow time scale of minutes. The power spect
shown in Fig. 13~b! reveals that the structure is composed
a set of three harmonic modesH j and three subharmoni
modesSj . The angles between the wave vectors of the th
H modes is 120° and so is the angle of theS modes. TheH
pattern is rotated by 30° and locked in phase with respec
the S pattern, the ratiokh /ks is 1.73.A3. Therefore the
pattern is denoted as aA33A3 superlattice. We mention a
earlier investigation on a more viscous fluid ofn510 cS~cf.
@6#!: Thereby the transition from the quadraticA2
3A2 p2mg to the hexagonalA33A3 superlattice took
place in a more correlated manner via stacking faults w
the A23A2 c2mm state could not be observed.

FIG. 12. Snapshot of the fluid surface as obtained af
57.25 Hz and«50.17. The field of view is 26326 cm. The pat-
tern is strongly time dependent and spatially uncorrelated.

FIG. 13. An 838 cm sector of the photographs of the flu
surface and a quadratic sector~ranging from 2760 m21 to
760 m21) of the corresponding gray density plot representation
the Fourier spectra of the complete surface area atf 56.65 Hz and
«50.05. This photograph has been obtained by using a diffu
light source mounted off axis instead of the standard visualiza
technique. In that way the character of the hexagonalA33A3 su-
perlattice~region IV! appears to be more pronounced@compare Fig.
4~e! in Wagner~2000!#.
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At higher « values the further development of theA3
3A3 superlattice depends on the drive frequency:
6.6 Hz, f ,6.9 Hz, where the superlattice is perfectly st
tionary and almost free of defects, the amplitude of the s
harmonic components of the structure continuously beco
smaller until the hexagonal base pattern with a pure sync
nous time dependence remains@region V, compare Fig. 5~a!#.
This transition is slightly hysteretic (D«.0.01–0.02) and
can be localized accurately by means of the triggering te
nique described in Sec. I. We come back to this crossove
Sec. VI D, in order to present a theoretical model.

At drive frequencies larger thanf '6.9 Hz ~for concrete-
ness let us return to our run atf 57.25 Hz) the hexagona
A33A3 superstructure transforms into a 232 superlattice
~region IV→ VII ! thereby restoring the quadratic symmetr
The crossover takes place via a spatially weakly correla
transient, being subjected to a strong temporal dynamic.
corresponding pattern looks similar to the surface st
shown in Fig. 12. In its final state the subharmonic and
harmonic wave vectorskS,H are aligned with each other@Fig.
14~b!#. With kh'kc

h but ks'0.8kc
s the resulting length ratio

kH /kS is about 2.

D. Theoretical model for the A3ÃA3
superlattice-to-hexagon transition

A model of amplitude equations for theA33A3 superlat-
tice ~region IV! can be easily constructed similar to Eq.~8!.
Again the spatial phases are of most interest, because
determine the detailed appearance of the pattern. For the
derlying harmonic hexagonal structure with amplitudesHi
5uHi uexp(iFHi

) one finds by analyzing terms of quadrat

order eitherFH5( j
3fH j

50 or p, corresponding respec
tively to ‘‘up’’ or ‘‘down’’ hexagons. For Faraday waves thi
distinction is not significant because the surface oscillat
periodically switches between these two possible sta
Splitting the subharmonic mode amplitudes also into mo
lus and phase and assuming without loss of generality
fH1

5fH2
50, one finds in quadratic orderfS1

5fS2

5fS3
. In order to determine that value it is necessary

proceed with the amplitude expansion up to the quintic ord
yielding

f

e
n

FIG. 14. An 838 cm sector of the quadratic 232 superlattice
and a quadratic sector~ranging from21080 m21 to 1080 m21) of
the corresponding gray density plot representation of the Fou
spectra of the complete surface area atf 57.25 Hz and«50.24
~region VII!.
4-10
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FS5np/2, ~11!

where n is an integer and with the parametrizationFS

5( j
3fSj

53fSi
. Following the usual nomenclature the pa

tern with oddn is a triangular superlattice, as its rotation
symmetry is threefold. For evenn the superlattice exhibits a
sixfold symmetry~cf. @33#!. Since a sixfold symmetry cente
can be easily identified in Fig. 13, we conclude thatn is even
in our experiment. We point out that an example of aA3
3A3 with third order rotational symmetry (n is odd! has
recently been observed by Piet al. @34# ~see also Ref.@35#!.

VII. CONCLUSIONS

We have presented a comprehensive investigation on
aday wave pattern formation in the vicinity of a bicritic
situation. In contrast to many other experiments we use
single frequency drive and the bicritical situation was o
tained by working at low frequencies with a thin layer
liquid. The use of a single driving frequency limits the e
ternal parameters and the theoretical analysis remains
pler. Nevertheless, the interaction of the modes with h
monic and subharmonic time dependence lead to a varie
new superlattice states. This kind of structure acts as a
diator during the transition process between two incomp
ible space groups~squares and hexagons!. We developed
several sets of amplitude equations to model the obse
phase transitions. Special attention is devoted to the ph
information carried by the participating modes, which is
sponsible for the remarkable displacive feature of one of
superlattices. The primary subharmonic square pat
ui

-

r,

y

06620
l

ar-

a
-

m-
r-
of
e-
t-

ed
se
-
e
rn

evolves with onset of the harmonic branch into aA23A2
superlattice with a displacive character in first one and w
increasing drive strength in two perpendicular directio
And the transition to the hexagonal harmonical oscillati
phase develops via aA33A3 superlattice.

Superlattices are rather common in 2D solid state phys
and a comparison is therefore instructive. The transition fr
a simple hexagonal lattice to aA33A3 superstructure ha
been observed for instance in monolayers of C2ClF5 ad-
sorbed on graphite@36#. The transition from the subharmoni
quadratic base pattern to aA23A2 superlattice with a dis-
placive character in one direction (p2mg, region IIIa! is
analogous to the reconstruction of the clean~100! surface of
W (5tungsten) crystals@37#. Here the surface atoms ar
displaced in exactly the same way as the elevation max
of the surface profile in the present study. Most interesting
the surface of W crystals obeys a transition to aA23A2
superlattices with a displacive character in two directio
(c2mm, identical to our pattern in region IIIb! in the pres-
ence of hydrogen atoms.

We were also able to provide for the first time a patte
forming system, which undergoes a hexagon-to-square t
sition without a simultaneous change of the fundamen
wavelength. This is in contrast to earlier observations on
Bénard-Marangoni system, which showed considerable w
number variations during the transition process. The acc
panying description in terms of well-defined spatial Four
modes makes the phase transition very fundamental
identifies the underlying pattern selection mechanism
switch from a triad to a four-wave vector resonance.
D
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