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Pattern formation at the bicritical point of the Faraday instability
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We present measurements on parametrically driven surface Weaeslay wavegperformed in the vicinity

of a bicritical point in parameter space, where modes with harmonic and subharmonic time dependence
interact. The primary patterns are squares in the subharmonic and hexagons in the harmonic regime. If the
primary instability is harmonic we observe a hysteretic secondary transition from hexagons to squares without
a perceptible variation of the fundamental wavelength. The transition is understood in terms of a set of coupled
Landau equations and related to other canonical examples of phase transitions in nonlinear dissipative systems.
Moreover, the subharmonic-harmonic mode competition gives rise to a variety of new superlattice states. These
structures are interpreted as mediator modes involved in the transition between patterns of fourfold and sixfold
rotational symmetry.
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The Faraday experiment has nowadays become a model Within a cascade of secondary phase transitions superlat-
system for pattern formation in hydrodynamic systdrbs  tices are found to mediate between the two incompatible
Standing waves are generated on the liquid air interface isymmetry classes, of squares and hexagons. For instance a
response to a time periodic gravity modulation. Under typi-primary subharmonic pattern with quadratic surface tiling
cal laboratory conditions and assuming that the excitatiorexperiences a crossover to a hexagonal superlattice via two
acceleration is sinusoidal with(t) = go+asin{t these sur-  quadratic superlattic§$] with a prominent displacive char-
face waves oscillate with twice the period of the externalacter in one or two lateral directions. After passing a phase
drive [2]. This is a consequence of the parametric driveyith a hexagonal superlattice the transition process reaches a
mechanism and denoted here as subharmonicFaraday  re hexagonal pattern characterized by a single wavelength
resonance. Surface waves synchrontamonio with the 54 ggcillating in synchronous response to the external drive.
drive can be generated, too. They have been observed first by For several of the observed transitions we are able to pro-

adding a second frequency component to the excitation S'Yide explanations in terms of resonant amplitude equations

nal [3]. Later on, following a suggestion of Kumpd], har- %qr the governing spatial modes. The structure of these equa-
[

monic Faraday waves have also been excited with the usu is simolv based i q X
single frequency drivg5]. This, however, requires rather ex- ons IS Simply based on symmetry and resonance arguments.
In spite of their simplicity these equations provide an under-

treme (parameter conditions, namely thin fluid layers in X ; .
combination with drive frequencies lower than some threshStanding of many remarkable features of the superlattices, in

old f,. Increasingf=Q/(27) beyondf, lets the Faraday Particular their displacive character. This phenomenological
waves resonate with their usual subharmonic time deperfPProach is certainly facilitated by the small number of ex-
dence[6]. For operating frequencidsclose to the bicritical perimental control parameters. This is unlike earlier experi-
value f, the harmonic and subharmonic modes competeMments[14—16, which use a more complicated multiple fre-
Owing to the dispersion of surface waves different frequenguency drive or a viscoelastic fluid to drive the system into
cies imply different wavelengths. As a consequence nonthe bicritical situation. Thereby different kinds of superlat-
linear pattern formation is affected in a significant manneriices have been reported as well. But clearly, a larger number
In our experiments subharmonic modds-(f,) form square Of control parameters renders a theoretical understanding
patterns, harmonic modes$ < f,) hexagons. For the latter More unwieldy an(_j less intuitive. For the theoretical ap-
we observe a transition towards a square pattern at elevat@oach to superlattices see, e.g., R&f].
drive amplitude. This is similar to the canonical hexagon-line
transition in Rayleigh-Beard convection, which can be ob- I. EXPERIMENTAL SETUP
served if “non-Boussinesq” effects become significBnig].
A transition from hexagons to squares has been found only
recently in the Beard Marangoni instabilitf9—12). Figure 1 shows a schematic diagram of the experimental
The measurements presented here give a comprehensigetup. Its heart is a large displacement shaker (/67
account of our investigations on Faraday pattern selection ifsearing & Watson Electronics L{dconnectedd a 4 kW
the vicinity of the bicritical point. Thereby the interaction power amplifier. The shaker supplies a maximum force of
between harmonic and subharmonic modes of differen#670 N and a peak-to-peak elevationsgf,,= 54 mm. Such
wavelengths gives rise to new resonant phenomena: superla-arge displacement is necessary to obtain a sufficient accel-
tices with either fourfold or sixfold rotational invariance. erationa at lower driving frequencies. The drive signal for
Though superlattices are very common in solid state anthe power amplifier is synthesized by means of a digital-
surface physics, they have been found on macroscopic scalesalog card installed in a Pentium PC. The actual accelera-
only recently[6,13-16. tion of the container is measured with a piezoelectric device,

A. Vibration system and sample fluid
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- . LEDs period. It follows from geometrical optics that only surface
P Lrm elements with a certain steepness reflect light into the cam-
era.

For an evaluation of the spatial symmetry of the surface

B‘W deformationZ(x,y) we r_elled on a Fourier t_echnl_que. To that
end the recorded light intensityx,y) of a video image was

convoluted with a Gaussian window function and processed

glass plate ccelerometer NN | | A by a FFT algorithm. This yields the two-dimensional spatial
eating filament power spectrunP (k). To determine the wavelength of the
PT100 temperature controler patternP(k) was azimuthally averaged by integrating over
vibration exciter circles with constant radiuk|=k. The primary peak in the
resulting one-dimensional spectrum was fitted by a Gauss
) function the center of which determines the fundamental
FIG. 1 Sketch of the experimental setup. See text for further,ave number. Clearly, the resolution of this procedure is
explanation. limited by the number of wavelengths in the container. This
is especially the case for subharmonic Faraday waves where
the amplified signal of which is routed to the PC for datathe uncertainty ofAk/k is about 10%.
acquisition. Since the characteristics of the shaker turned out Due to the nonlinear relationship between the surface el-
to be rather nonlinear at operation frequencies befow evation{(x,y) and the recorded light intensity(x,y), the
=0/(2m)<10 Hz a continuous control of the excitation Power spectrum entails higher harmonics of the fundamental
signal was necessary. To guarantee a sinusoidal containgiave number, even if the surface profiféx,y) does not.
acceleratiora sinQt the recorded accelerometer signal wasThus the relation betweeifx,y) and{(x,y) is generally too
decomposed into Fourier components. The parasitic highegomplicated to allow a reconstruction of the surface profile.
harmonics ofQ) were eliminated by admixing Fourier con- Nevertheless for simple surface pattefsisch as squargsve
tributions with appropriate inverse phases to the excitatiofave solved this “inverse problem” by the following
signal. Their amplitudes were determined by a proportionamethod: Starting from an estimated surface profile composed
control loop. That way the power spectrum of the acceleromof a small number of spatial Fourier modes, the light distri-
eter signal is made monochromatic with a purity of 99%. bution of the expected video image was computed by means
The cylindrical container for the sample liquid was ma-Of a ray tracing algorithm. Then we adapted the mode am-
chined out of aluminum and was anodized black. To avoiddlitudes and their relative phases such as to optimize the
pollution and temperature drifts within the fluid, the con- agreement between the calculated and recorded video pic-
tainer was sealed with a glass plate. The inner container diure.
ameter wasl=290 mm, the depth 50 mm. Over a distance A reconstruction of the full time dependence of an oscil-
of 12 mm from the edges of the container the depth continulating surface wave pattern was not possible with our equip-
ously increased from zero to the bottom. This “soft boundaryment. Nevertheless, the electronic shutter of the camera pro-
condition” with an average angle of 30° helped to minimize vVides an easy and very sensitive technique to discriminate
the generation of parasitic meniscus waves. A meniscus urgubharmonic frequency components in an otherwise har-
der vertical vibration always emits waves with the frequencymonic time signal. This is because a harmonic time depen-
f of the external drive. Since these waves have non vanishingenceZ"(t) is invariant under the symmetry operatiomt
amplitudes even at subcritical drive amplitudesa, they 27/ implying a frequency spectrum of integer multiples
blur the onset detection. The beachlike boundary fulfilledof Q thus "(t)=2,,,e™?. In contrast the subharmonic
their purpose well, at least above 10 Hz. time signal transforms after one drive period &s-— /5
The probe fluid was a low viscosity silicon oibow  enforcing a Fourier representation in the form &i(t)
Corning 200 with the manufacturer specifications of kine- ==p{,€'l("" ¥ Thus by triggering the camera shutter
matic viscosity »=5x10 6 m?/s, surface tensionos  Wwith the drive frequency), video images with a harmonic
=0.0194 N/m, and densitp=920 kg/n? at our working time dependence appear stationary, while those with subhar-
temperatureT=25°C. A heating foil was mounted on the monic frequency contributions flicker due to a slight optical
outside of the container. By means of a temperature contro@Symmetry between heaps and hollow of the deformed sur-
ler the temperature measured by a PT-100 resigoed-  face. Note however, that this trigger technique does not allow
ded in the container boglyvas regulated by-0.1°C. to identify harmonic frequency components in an otherwise
subharmonic spectrum.

power amplifier

B. Visualization technique

. . . Il. THE ONSET OF THE FARADAY INSTABILITY
To visualize the surface profile we used a full frame CCD

camera(Hitachi KPF-]) situated above the fluid surface in It is well known that the stability problem of a free liquid
the center of a ring consisting of 120 LEDs. The ring had asurface under gravity modulatidfaraday instabilitycan be
radius of R=0.3 m and its distance from the fluid surface approximately mapped to that of a parametrically driven
wasL=1.50 m. The camera was synchronized to the excipendulum[18,2]. The primary resonance of which occurs at
tation signal with an exposure time of 1/256 of the drivetwice the period of the drivésubharmonic respongeHow-
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240 s. The onset amplitudg, was defined when the camera
detected the first light refleiFig. 3(@)]. To enhance the de-
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| Reaaaad 09020 tection sensitivity the surface was illuminated by a diffusive
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E 3o--CEmmmmRy Squales .. \pemmmmmmmn light source from the side rather than using the dark-field

2 technique described above. This is because the latter method

o 3.0- requires a minimum surface gradient 5 {(x,y)|=tana

= hexagons ~0.1 for the onset detection. We estimate the accuracy of

%_ ARy T T T T T n e e e our threshold determination by 0.5%.

g 26- Once a standing wave pattern had covered the whole sur-

et face the fundamental frequency of the surface oscillation was

§ 2.4 determined with the help of the electronic shutter of the

5 - a) vi_de_q camera. That way we located the transition poi_nt.at a
075 1.00 125 150 175 bicritical frequencyf,=6.5+0.1 Hz. After these prelimi-

nary measurements we switched back to the dark-field illu-
mination to proceed with the spatial pattern analysis. The
critical wave number:k*c‘ and k¢, respectively, were deter-
mined by Fourier transforming a surface image taken at a
______________ dropletejecton | {  driving strength ofs=(a—a./a;)~0.03 [Fig. 3b)]. The

e mmmmeooof2X2(VI) N ] operating prescriptiok,=k(e~0.03) for the determination
o AYSLY) . (S of the critical wave number is motivated by the fact that we

transient

-------------------- {!é'i('lfz'i;'z'r}{r}{'(ili were unable to detect any change of the wave nurkider

17N T T e X pemgie) ] varyinge (see als¢21]). The experimental results far, and

------------------------------------ k. as well the bicritical frequenci, are found to be in good
squares (I) agreement with the theoretical predictions. For the critical
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acceleration the discrepancy is less than 2%. Here the uncer-
24] ] tainty is mainly due to errors in the determination of the
' b small fill heighth. For larger values ofi the agreement im-
22 ) i proves up to 1%. For the critical wave number the discrep-
0.75 1.00 1.25 1.50 1.78 ancy between theory and experiment is better than 4% in the
wave number k (units of k%) harmonic case but it increases up to 10% on the subharmonic

regime. This is due to the spatial resolution, which becomes
FIG. 2. Neutral stability curvea(k) computed for the param- worse at larger wavelength.
eters of the sample fluid at a drive frequen@y f=6.25 Hxf, Owing to the abrupt change of the response frequency at
and(b) f=7.25 Hz>f. In (&) the primary resonance is harmonic; f=f, the wave number shows a discontinuous jufspe

in (b) it is subharmonic. Regions where the flat surface state iFig. 3(b)]. The empiric ratio of the wave numbersfat f,, is
unstable are shaded. Horizontal lines denote the thresholds for sefund to be

ondary and higher order transitions shown in Fig. 4.
kh
ever, as first pointed out by Kump4] the Faraday instability —z =1.58+0.15, 1
may also appear in synchronous resonance with the external ke expt
drive, usually denoted as thwrmonicresponse. The condi-
tions under which the harmonic resonance preempts the sub* agreement with the prediction of the linear stability theory
harmonic one have been worked out in detail by Cerda anﬁ'@/kihheo,: 1.59. The latter can be approximated by the
Tirapegui[19] and Muler et al.[5] revealing that low filling  (nonviscous finite depth dispersion relation yielding
levels in combination with small drive frequencies are neck"/k®yis,=1.81.
essary. In the present experiment we choose a fill height of We finally checked if the correlation length= 27/ 5k
h=0.7 mm, which is—at the operation frequencies &f%6  would not exceed the container diameték is the band-
<8 Hz—comparable to the viscous penetration depth width of the unstable modes, given by the shaded region in
=2v/Q~0.5 mm. For the fluid parameters at hand a linearFig. 2. ¢ diverges fore—0 and for sufficient smalk the
stability analysis of the flat surface staf@ccording to the correlation length remains always larger than the container
method of Kumar and Tuckermanf0], which assumes a diameter and the pattern is largely determined by the con-
laterally infinite systemreveals the location of the bicritical tainer symmetry[28]. However, in our experiments the
point at a drive frequency of,=6.3 Hz. Figure 2 shows damping from the bottom is sufficiently strong and the band-
neutral stability diagram&drive amplitudea vs wave num-  width of the unstable modes already yields:at0.01 a cor-
berk) for both situationd <f, and f>f,. relation length shorter than the container diameter. All re-
Experimentally the critical accelerati@y (absolute mini-  maining influences of the container symmetry on the pattern
mum of the neutral stability diagranihas been determined dynamics observed in our experiments is thus to attribute to
by setting up the system at a constant frequency and rampirgy different aspect ratio, the ratio of the container size to the
a quasistatically in steps of 0.2% suspended by intervals ovavelength.
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FIG. 3. (a) Critical amplitudea, and(b) critical wave numbek, for the onset of the Faraday instability drawn as a function of the drive
frequencyf. The bicritical pointf =f,, is located where the harmoni€¢< f,) and subharmonicf¢>f,) thresholds intersect. Symbols mark
experimental data points; lines mark the theoretical results for a laterally infinite fluid layer. Circles and dotted lines refer to the harmonic
response, and squares and solid lines to the subharmonic one.

lll. OVERVIEW OF THE PHASE DIAGRAM cess the final stationary surface pattern is a quadrati@ 2

The phase diagram shown in Fig. 4 has been obtained gyperlatnce(regmn VII). Regardless of whether the response
. . L . iS s or h, the surface finally breaks up and droplets are
various constant driving frequencies=Q/(27) while

ramping the driving amplitude frone=—-0.01 up toe ejected(region VIl £=0.15-0.25).

=0.25 in steps ofAe=—0.002. After each increment the

ramp was suspended for 240 s to give the system time t0 |y PATTERN FORMATION CLOSE ABOVE ONSET

relax. Then a photo or—in the case of time dependent pat- OF THE FARADAY INSTABILITY

terns a video film—of the surface state was taken. At the

point where a new spatial or temporal mode appeared or an Close to the harmonic onsef<f,) hexagons are the

existing one died out, the actual acceleration was defined g¥eferred primary surface pattejfiig. 5a), region VJ; how-

the transition boundary to a new “phase.” At the maximum ever, forf>f,, squares are stabl&ig. %a), region Il]. Wag-

acceleration amplitude the ramp was reversed to check for amer, Muler and Knorr[6] (see Fig. 3 thereinhave shown

eventual hysteresis. that even for smalt the wave profile is rather anharmonic.
In Sec. IV we describe in detail the type of primary pat-

terns, which appear near onset of the Faraday instability.

Second- and higher-order transitions towards more compli-

cated structures are dealt with in Secs. V and VI. Thereby

two representative experimental runs will be described in The appearance of hexagons at the “harmonic side” of

detail, the first was taken dt=6.25 Hz f,, and a second at the bicritical point follows from a triple wave vector reso-

f=7.25 Hz>f},. nance. A normal form for the surface deformation profile is
In the former case the primary pattern exhibits a harmoni@iven by

time dependence, which turns out to be quite robust as it

A. Theoretical model for the primary hexagonal pattern
at f<fb

iky -r
persists over the whole investigatedramp. The primary _ H € Hn
) i . {riH=|> e p 1 FCC.
spatial surface wave structure starts with an ideal hexagonal m | Sye'"Sm
symmetry(region V), which then transforms into a pattern of . not
squaregregion VI) ase is raised. This transition is hyster- > e'" for h response
etic, its global aspects can be understood in terms of a simple Xn? ¢n e (120t for 5 response.

model of six coupled amplitude equations.

In the second run af>f, the primary surface pattern
consists of subharmonically oscillating squaresgion lI). Here r=(x,y) is the horizontal coordinate, the lateral
On increasing the drive strengththe interaction with the wave vectorsky and ks , with |ky [=k" and [ks [=k®
neighboring harmonic Faraday instability leads to the apcomposing the spatial pattern and thge are the temporal
pearance of a quadrati¢2x \2 superlattice with a displa- Fourier coefficients determined by the linear stability prob-
cive character in one and/or two lateral directignsgions lem. Feeding? and a similar ansatz for the hydrodynamic
llla and lllb, respectively. Displacive means that rows of velocity field into an arbitrary quadratic nonlinearity results
wave crests are shifted to each other. After crossing a phase a frequency spectrum of integral multiples@f whether
region of nonstationary patterns with a slow time depen-or notS or H are considered. Thus quadratic nonlinearities
dence the system enters a hexagotialx \/3 superlattice are able to resonate witharmoniclinear eigenmodes, but
(region 1V). Mediated by a second local reconstruction pro-not with subharmonicones. Clearly, spatial resonance must
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B. Theoretical model for the primary square pattern at f>f,

Understanding the pattern selection process at the subhar-

VI h squares k- g ——fe ] . ; =K ; ) > -

- VYV ”‘*‘ﬁV/ monic side of the bicritical point is more complicated. Since
32p '\' /:5“43"*‘\"”/\,; the frequency spectrum of the subharmonic Faraday response
V4VI h hexagons + h squares ﬂ:w/“;“"‘ﬁ consists of half integer multiples df any triple of linear

S unstable modes is prevented from resonating. Thus nonlinear

driving amplitude a (units of g)

w
o
‘1\

llib sh+h 2 X 2 ¢2mm

pattern selection is dominated by a mechanism where the

llla sheh 42 X 2 p2mg linear unstable modes resonate with their higher harmonics.
28 " B S Unlike triad resonances, which operate exclusively at an in-
\'\._\ 11 sh squares teraction angle ob=120°, these resonances are less selec-
g tive as they work at arbitrary angle& This fact is also
26F I fat surfacs T~ reflected by the corresponding system of amplitude equa-
L 2 L L 2 tions. Taking a set oN standing waves with wave numbers
600 625 650 675 700 725 750 ks at length|ks|=kg but arbitrary relative orientation, the
driving frequency f (Hz) respective mode amplitud&s are governed by the following

evolution equations:
FIG. 4. Phase diagram of the observed patterns obtained by

quasistatically ramping the driving force. The symbols mark the

observed transition points between the different patterns; the lines
are guides for the eyes. The spatial ordering of the patterns is indi-
cated by roman numerals, the arabic letterand h denote the . )
character of the time dependence being either purely subharmoni¥ith @i being the angle betweek, ij- Usually the par-

or harmonic. Thes+ h label indicates patterns formed by a interac- ticipating modes are taken to be equidistant on the circle
tion of subharmonic and harmonic modes. The thick line separate|5ksi| =k, thus 6;;.,=2m/N. In this caseN indicates the

harmonic from subharmonic argl-h regions. I: flat surface; II: type of symmetry of the pattern, nameN~=1 lines, N=2
subharmonically oscillating squargsigs. 9a) and db)]; Illa: V2 squaresN=3 triangles or hexagons, ... As outlined in
X /2 superlattice p2mFigs. 9c) and 9d)J; I1lb: V2X 2 super-  pots (9925 the question of what is the most preferred

lattice c2mm[Figs. 9e) and 9f)]; within the subregion above the . P “ "
dotted line the pattern is time dependent and disordésed Fig. symmetry is reduced to minimizing the *free energy

12); IV: J§>< \/§ superlattice(only for f<6.9 Hz stationary, Fig. N 1 N

13); V: harmonically oscillating hexagor&ig. 5@)]; VI: harmoni- F=— +Z '(6:S]2s |2 5
cally oscillating square$Fig. 5(d)]; VII: 2 X2 superlattice(Fig. 8;1 Sl 2 i,jzl (8 SIS) ®)
14); VIII: local instability and droplet ejection.

N
at$=sa—glr<ei,->|sj|za, (4)

with respect toN at givenI'(6). For low viscosity fluid
be granted as well. The requiremefity |= |k |=|ky.| layers of infinite depth the coupling functidi(6) was first
i ) Lt z s evaluated by Zhang and\ais in 1997[24], who found that
=k, along with the resonance cond|t|m1+ kH2+ kH3—0 a ]

pattern of square symmetry is the most preferred one at

enforce a mutual angle of 120° between the wave vectorgjye frequencies beyonéi~50 Hz. At lower frequencies
implying the he_xagonal symmgtry. The evolution equationspamerns with a degree of rotational symmetryNip 7 (qua-
for the respective mode amplitudés,,H,,Hs are of the  gjperiodig are likely to occur. These predictions were found
following structure: to be in good agreement with experimef@§—2§. In Ref.
[28] the considerations above are even extended to the case
of finite fill heights and it was found that square patterns
dominate also at lower drive frequencies in agreement with
their own experiments and also with ours.

dH1=eH+ BHH;—[|H4|2+T(120°)(|H,|?
+[H3|?)H;. ©)

Therebyg is a second order coupling coefficient dngp) is

the cubic cross coupling coefficient, which depends on the
angle between the interacting modes. Moreover, the stars de-
note complex conjugation. The corresponding equations for
H, andH, follow by permutation of the indices. The term of  In this section we investigate the crossover from the pri-
cubic order is crucial for saturation. A linear stability analy- mary hexagonal structurgegion V in Fig. 4 to the square

sis of the finite amplitude stationary solutidii,|=|H,|  pattern of region VI of the harmonic regime. Throughout the
=|H;| noted in Ref[8] yields a backwards bifurcation out whole bifurcation cascade the time dependence is purely har-
of the trivial solutionH;=0. This reflects a hysteretic tran- monic without perceptible subharmonic frequency contribu-
sition from the undisturbed flat surface to a pattern of hexations. The results described below were obtained by ramping
gons. However, we were unable to resolve any hysteresithe drive amplitude: = —0.01 up toe =0.165 while keeping

V. SECONDARY AND HIGHER ORDER TRANSITIONS
AT f<f,

A. Hexagon-square transition

because of small amplitudbarmonically oscillatingmenis-
cus waves emitted from the rim of the container.

the frequencyf =6.25 Hz fixed(see Fig. . The transition is
connected with a strong hysteresis giving an overlap between
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FIG. 6. (a) Surface area covered with squards related to
surface area of squares and hexagdgsas function of the drive
strengthe at the frequencyf=6.25 Hz. (b) The autocorrelation
function C(¢$=90°) of the power spectr®(k) on the circle (k
|=k). Upright (reversedl triangles refer to the upwardglown-
wardg amplitude ramp.

two of the participating modes. Figurdép presents an en-
larged subrange of Fig(B) depicting “pentalines.” This is a
row of pentadefectéunit cells with five neighbopsending in
heptadefectsunit cells with seven neighborsStrengthening
the drive makes the domain walls invade the areas of hex-
agonal symmetry with new quadratic cells being generated
along the penta lines.

To quantify the hysteresis of the hexagonal quadratic re-
construction we applied two different techniques, one in real
space and the other in Fourier space. In the former case the
number of unit cells with four neighbotd, and those with
six neighbors4g was counted. The result of this procedure is
shown in Fig. 6a). It reveals a hysteresis loop extending
from £ =0.05+0.01 up toe =0.15+0.01. The obvious stair-

FIG. 5. Photographs of the fluid surface as obtained by rampingase behavior reflects the discretization ofkhalues due to

the drive amplitudes at f=6.25 Hz. The field of view is 26

the finite size of the container. For different runs the steps do

%26 cm and in the corners of the pictures the container boundary igot occur at the same values.

visible. In (a) and(d) circles mark the nuclei at which the transition

process is initiated(e) is an enlarged sector db) with marked
pentalines and hepta defects.

The second method for evaluating the square-vs-hexagon
surface coverage follows an approach given in [R&f]. We
Fourier transformed the full surface picture and evaluated the
power spectrunP (k) =P(k,¢) at |k|=k. as a function of

the wo ideal StI‘UCtur(I-','S. Sﬁgce thle Iaterr?l ispect '(Mru" the azimuthal angleé>. We then computed the azimuthal auto
tainer size over wavelengtis not large the hexagonal pat- coelationC( ) as follows:

tern adapts to an azimuthal symmetry. This affects the defect
dynamic of the pattern and thereby also the transition pro-
cess. Starting the ramp at the hexagonal structure, a rear-
rangement of the pattern sets in, initiated by six nuclei of
local quadratic order as indicated by the circles in Fig).5
The size of these patches increases witfFig. 5b)]. Con-
versely, starting at elevatedwith the perfect square pattern
and ramping downwards generates four nuclei of local hexThat way a pattern with quadratic symmetry leads to a peak
agonal ordefFig. 5(d)]. Along the domain boundaries be- at ¢=90° and 180°, while a hexagonal pattern produces
tween the patches penta-hepta defects occur. This kind @haxima at¢=60°, 120° and 180°.

defect is very common in 2D hexagonal patterns. Experi- Figure 7 illustrates howC(¢) develops with the drive
mental[8,29] and theoretical30] investigations reveal that a amplitude, both at increasing and decreasingn order to
penta-hepta defect can be formed by a phase defect amowggmpare with the cell counting methddee Fig. €] the

fowp<kc,¢)P<kc,¢+¢'>d¢'
C(g)= _ . ®
IR
0
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FIG. 8. Phase diagram of an amplitude scanf at7.25 Hz.
Time dependent transient means an uncorrelated pafégnl12),
quasistationary indicates a pattern of an almost per{&x 3
superlatticelcompare Fig. 1Bwith a slow defect dynamic.

FIG. 7. Azimuthal autocorrelatio8( ¢) derived from the power
spectraP (k) at the wave numbdk| =k as a function of the drive
amplitudee for ramping up and down.

valueC(¢=90°) is plotted versus in Fig. 6(b). Regarding

the width of the hysteresis loop, the two methods agreg,iys Rosensweig instability However, unlike our measure-
within a few percent with each other. ments, all of the aforementioned experiments with a hexagon

An important feature of the above phase transition is thg, . are transition exhibit a considerable nonlinear wave

—1he \Withi
con_stancy of the wave nunlbfP((.)s)—kC. Within the ex- number variatiork(e) up to 10%, which rules out a descrip-
perimental resolution aAk/k==19% no dependency of the iy tormg of space independent amplitude equations of

msvetinu?]%eér?vm C?nUI(Ijit bg dretr?cteqr:‘ri]rc?ugr}outrtt?e lvvrhoile the type given above. Our experiments allow for a descrip-
estigate € ampiitude range. This I ot particular sig9+;,, i, erms of Landau equations and a model set of quan-

nificance as it allows to describe the global aspects of the, .. . ) .
L . . . itative experimental data regarding the phase boundaries
phase transition in terms of a simple model as given in the . . : . .
now exist. This provides the opportunity for an explicit com-

next section. . i . . ;
parison with a more detailed theoretical analysis.
B. Comparison with theory

It was outlined in Sec. IV that the hexagonal symmetry at
smalle is a consequence of a three wave resonance, reflecte
by the second order term in E(B). However, upon increas- . :
ing the control parameter the term of cubic order becomes In the same way as In the'precedlng parggraph we now
increasingly important, thus finally enforcing the transition (UM 1o the bifurcation scenario at the opposite side of the
towards squares. A minimal model that allows stationary soPicritical point at f>f,. An amplitude ramp taken at
lutions in form of squares and hexagotend also lines '=7.25 Hz serves as a representa}tlve example. Section \/I D
along with a linear stability analysis of these solutions can bdS an exception, where the focus is on the frequency regime
found, e.g., in an analysis by Regn[&]. This model is an 6.6 Hz<f<6.9 Hz.
extension of Eq(3) as it relies on six independent modes An overview of the transition behavior dt=7.25 Hz is
ki (i=1,...,6) rather than only three. Regnier finds that given by Figs. 8 and 9. Starting from subharmonic oscillating
hexagons become unstable for a certaine,. By way of  squaregregion Il, Fig. 9a)] a transition to a quadrati¢2
contrast, for a critical value of <eg squares become un- x./2 superlattice with a displacement of neighboring eleva-
stable. tion maxima in the laterat direction[region llla, Fig. 9c)]

_Itis tempting to attribute the bistable square-hexagon retakes place. The next pattern is agaig2x 2 superlattice
gion in the theoretical bifurcation diagram betweeg<e  of the original square lattice but this time it exhibits a dis-
<&y to the hysteretic region depicted in Figgbband S¢).  pjacement in bothx andy direction[region Ilb, Fig. 9e)].

Note, however, that the observed transition runs through @+ear 4 time dependent transiefstee Fig. 12 for a snapshot
reconstruction via penta-hepta defects, the complicated spaggig pattern transforms into a “quasistationary” hexagonal

dependence of which goes beyond the scope of the preseg{gx J3 superlattice(region IV, Fig. 13. By “quasistation-

model. ry” we indicate that the pattern is slightly disturbed by de-

We mention that a discussion of a transition betwee hich ind | ime d d h le of
hexagons and lines in terms of the above three mode mod&fCts: Which induce a slow time dependence on the scale o

(3) has been given earlier in the context of Rayleighn@el ~ Minutes. Further raising the drive amplitude at f
convection[7,8]. Thereby the phase transition results from = 7-25 Hz makes the quadratic symmetry reappear in the
non-Boussinesq effects induced by a strong applied temper#arm of a 2x2 superlatticéregion VII, Fig. 14. Performing
ture gradient. In the last decade, several authors repotie same amplitude ramp at a lower frequency of 6.6 Hz
Benard-Marangoni experiments, which show a transition<f<6.9 Hz the\/3x \3 superlattice directly reduces to its
from hexagons to squard9-11]. A similar transition is underlying pure hexagonal tiling. This last transition will be
found in Ref.[32] on the surface instability of magnetic lig- discussed in Sec. VID.

a/l. SECONDARY AND HIGHER TRANSITIONS AT f>f,
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FIG. 10. Particle model of théa) \2x 2 p2mg and(b) 2
X /2 c2mm superlattice. Also marked are the mirfioy and glide

(g) planes.

the direction+ (ks +ks,). This is shown by the arrows in
Fig. 9a). The resulting patterfphase region lllais depicted

in Fig. 9c). The displacement is accompanied by the simul-
taneous appearance of the modes, ky,, andkp in the
power spectrumsee Fig. @)]. Due to the approximate
equality |kH1|=|kH2|:k2 these modes are only slightly
damped. In contrasltle| is significantly smaller thakg and

kL‘. Therefore the mod®, is strongly damped. Its mission
is to act as a mediator mode, enabling the resonance between
S and H modes according to the geometrical ruIt«izﬁ1

=(ks,+kp,) andky,=(ks,+kp ). This implies thatkp
must be associated with a subharmonic time dependence.
Moreover, it follows from k7/k$=1.58 that [kp,|=0.71

~1/\/2, which leads to the commensurate relationsitt'b@
:%(ksl+ ksz) for the new fundamental wave vector. The

corresponding elementary céfiee Fig. 1(a)] is rotated by

45° relative to the original quadratic grid, and the basic

wavelength is enlarged by a factor ¢&. We therefore de-

note this pattern as g2x 2 superlattic§more precisely,

(V2% 2)R45 or \2x 2 p2mg in the nomenclature of
FIG. 9. A 10<10 cm sector of the photographs of the fluid space group theorfsee Ref[38])]. It turns out that the dis-

surface and a quadratic sectéranging from —1280 m! to  placive character of the superlattice is inherent in the phase

1280 m 1) of the contour plot representation of the correspondinginformation carried by the participating modes. Barring

Fourier spectra of the complete surface areb=a7.25 Hz.(a),(b):  higher spatial harmonics the space dependence of the surface

£=0.03, region II, pattern of squareg),(d): e=0.07, region llla,  deformation shown in Fig. 9 can be expressed as

J2x 2 superlattice p2mg with a displacive characteiidirec-

tion; (e),(f): £=0.142x /2, region IlIb, superlattice c2mm with 2

a displacive character ir andy direction. The dotted lines and f(r):,z Sicogks I+ ¢s)+D;cogkp, - I+ ép,)

arrows on the left pictures indicate the directions in which the rows =1

and columns of elevation maxima are displaced on the image be- 2

low. (g) Minimal set of Fourier modes that are necessary to generate + 2 H,cogky -1+ ¢y ). (7)

the observed surface states. i=1 ' '

Equation(7) is a special case of the spatial part of EB).
with D, as an additional variable for a specific Fourier am-
The bifurcation sequence starts at the primary ideal patplitude for a better structuring. By means of the ray tracing
tern of subharmonically oscillating squarg®gion Il and technique outlined in Sec. | B we can now simulate the video
Figs. 9a) and 9b)] composed of the two fundamental wave image associated witl(r) and adapt it to the empiric result.
vectorsksl and ksz. Increasing the drive strengthbeyond  Taking bs,= ¢s,=0 (by a proper choice of the origirour

0.05 displaces every other column of elevation maxima irinvestigation reveals that the displacement visible in Fig.

A. The quadratic y2X 2 superlattice
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4 T T T T T T T known; their evaluation would require a rather complicated
nonlinear analysis. A formal proof is still missing if a de-
..MQQ”Q scription in terms of amplitude equations is justified at all,
/ gua¥ 'ﬂlI-lgiu taking the elevated driving strengéhin our experiments into
3r -'i 1 account. However, the patterns consisting of well-defined
® Fourier components and the surprisingly good agreement be-
tween the predicted and measured prominent spatial phases
render the following analysis very instructive. For the sake
J of simplicity, we limit our discussion to th2x \2p2mg
/i superlattice. The generalization to the more symmetfc
o X \/2c2mm pattern is straightforward.
Ty *'I/ 1 Assuming that the amplitudes of the primary square pat-
tern have settled at some finite val8e=S,+ 0 the leading
4 5 6 7 8 9 10 1 12 order behavior of the remaining modes is governed by the
following set of equations:

.
[ ]
[ |

Integr. Int. [D, | [arb. units]
N
| L
)

FIG. 11. Integrated intensity of tH2, peak(circles and theD, dD1=epD1+ up(SiH1+SHo) + xS 5,01,

peak (squares in the power spectrum as a function of the drive
amplitudee. The error bars mark the standard derivation resulting
from five succeeding runs.

dH1=eyH1+upSDy, (8)

dH=eyHo+ upSD;.

9(b) can only be reproduced if the spatial phages, én,,  Thereby s,<0 and £,<0 are the coefficients of linear
and ¢H2 adopt values close te /2. The associated surface damping of theH andD modes, respectively, while,, 1 and
pattern exhibits a 180° rotational symmetry. xs are nonlinear coupling coefficients associated with the
By increasing the drive further th¢2x 2 p2mg super-  triad wave vector resonance.
lattice undergoes a transition which restores the fourfold Although the model equation®) are linear inD andH
symmetry. Similar to the above described shift of th@-  and thus saturation is not implied, the appearing nonlineari-
umnsof elevation maxima, it is now additionally threws ~ ties are phase selective. By writing the complex amplitudes
which experience a displacement in the directior{ks ~ in the formA;=[A;|exp(g,) with again ¢s, = ¢s, taken to
—ks,) [indicated by the arrows in Fig.(§]. In Fig. 11 we  be zero(choice of space origirthe imaginary part of Eq8)
measured the amount of symmetry restoration by comparin§i€!ds the phase dynamics

the spectral power associated with; and D,. Beyonde _ . .
. . h = — + —
=9% the transition is complete. The resulting so cal& %o, ’“D|SHH|/|D|[SW¢H1 ¢o,) +SiN(du, = ¢p,)]

X /2 c2mm superlatticg see Fig. 1(b)] is depicted in Fig. + xd SI%sin(—2¢p),
9(e) and associated with the phase space region lllb. In Fou- !
rier space this transition is carried by the additional modes _ ; _
ki, ki, andkp, as shown in Fig. §). Extending the sur- S, = el DI [SI/Hsin(go, = b)), ©
face representation equatidn) by these additional compo- dubry. = | DIISIIHISIN . — )
tPH, ™ MH D, Hy/ -

nents and using it to reperform the ray tracing image
analysis vyields the phase im‘ormatiomsDi (i=1,2)

=y, (i=1,... A=l
We mention that they2x 2 c2mm superlattice state

The fix points of these equations are

was not observed in an earlier measurement on a liquid of ¢Hi:¢’Di:mE (10
higher viscosityf6]. Thereby this structure is preempted by a
transition to a hexagonal symmetry. with m being an integer. By inspection one finds that the

solution with everm leads to a square pattern wiimplitude
modulationwhile oddm gives rise to the observed displace-
ment (phase modulation Which one is stable, depends on
The experimental investigations outlined in the previousthe numeric values of the coefficients. From the experimental
section reveal that the prominent displacive character of theata we conclude that,, = ¢p = 7/2 is the solution appli-
V2% \/2 superlattices is associated with the phase informagaple to the present exﬁerimént.
tion carried by the spatial Fourier modes. In what follows, a
minimal model is constructed, which is able to explain the
experimentally measured phases. It is important to point out
that thestructureof these equations just relies on symmetry ~ Upon further increase of the driving force &t 7.25 Hz
and resonance argumenigiad wave vector resonanges the quadraticy/2 X \2c2mm superlattice transforms into a
The numerical valuesof the appearing coefficients are not “quasistationary” hexagonal superlattidgegion IV, com-

B. Theoretical model for the displacive phase

C. The hexagonaly3X 3 superlattice
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FIG. 12. Snapshot of the fluid surface as obtainedfat
=7.25 Hz ande =0.17. The field of view is 2826 cm. The pat-
tern is strongly time dependent and spatially uncorrelated.

spectra of the complete surface areafat7.25 Hz ande=0.24
(region VII).

At higher & values the further development of th&8
X {3 superlattice depends on the drive frequency: At
6.6 Hz<f<6.9 Hz, where the superlattice is perfectly sta-
tionary and almost free of defects, the amplitude of the sub-

pare Fig. 13 after passing a region of transient time depen-narmonic components of the structure continuously become
dent (Fig. 12 with squares, hexagons and disordered patSmaller until the hexagonal base pattern with a pure synchro-
terns appearing at the same value of The term NOUS time dependence remajnsgion V, compare Fig.(@)].
“quasistationary” is to indicate that the pattern is affected by This transition is slightly hystereticAz=0.01-0.02) and
defects on a slow time scale of minutes. The power spectrur@@n be localized accurately by means of the triggering tech-
shown in Fig. 18) reveals that the structure is composed ofhique described in Sec. I. We come back to this crossover in

a set of three harmonic modés; and three subharmonic S€c- VID, in order to present a theoretical model.
e Atdrive frequencies larger thai~6.9 Hz (for concrete-

modesS; . The angles between the wave vectors of the thre

H modes is 120° and so is the angle of ®ienodes. TheH

pattern is rotated by 30° and locked in phase with respect t

the S pattern, the ratiok,/ks is 1.73=/3. Therefore the

pattern is denoted as 3 X /3 superlattice. We mention an

earlier investigation on a more viscous fluidwof 10 cS(cf.
[6]): Thereby the transition from the quadratig2
X \2 p2mg to the hexagonaly3x 3 superlattice took

place in a more correlated manner via stacking faults whil

the \2x 2 c2mm state could not be observed.

H & H
& S 1 k. |
2 S2 8
= H3
L]
[ ] o - S3 4
- L ]

€

ness let us return to our run &t=7.25 Hz) the hexagonal
0/§>< V3 superstructure transforms into &2 superlattice
(region IV — VII) thereby restoring the quadratic symmetry.
The crossover takes place via a spatially weakly correlated
transient, being subjected to a strong temporal dynamic. The
corresponding pattern looks similar to the surface state
shown in Fig. 12. In its final state the subharmonic and the
harmonic wave vectoliss iy are aligned with each othgFig.
14(b)]. With kh~k2 but kS~ 0.8k the resulting length ratio

ky /kg is about 2.

D. Theoretical model for the 3X /3
superlattice-to-hexagon transition

A model of amplitude equations for thé8x \/3 superlat-
tice (region 1V) can be easily constructed similar to E8§).
Again the spatial phases are of most interest, because they
determine the detailed appearance of the pattern. For the un-
derlying harmonic hexagonal structure with amplitudés
=|Hi|expG<I>Hi) one finds by analyzing terms of quadratic
order either<I>H=2]-3¢Hj=0 or 7, corresponding respec-
tively to “up” or “down” hexagons. For Faraday waves this

FIG. 13. An 8<8 cm sector of the photographs of the fluid gjstinction is not significant because the surface oscillation

surface and a quadratic sectdranging from —760 m ! to

periodically switches between these two possible states.

760 m 1) of the corresponding gray density plot representation OfSpIitting the subharmonic mode amplitudes also into modu-

the Fourier spectra of the complete surface arefe=e8.65 Hz and

£=0.05. This photograph has been obtained by using a diffusiv
light source mounted off axis instead of the standard visualization

technique. In that way the character of the hexagaf@k /3 su-
perlattice(region V) appears to be more pronoundedmpare Fig.
4(e) in Wagner(2000].

lus and phase and assuming without loss of generality that

e¢H1=¢H2=O, one finds in quadratic orderqbsl=¢>32

=¢s,. In order to determine that value it is necessary to

proceed with the amplitude expansion up to the quintic order,
yielding
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evolves with onset of the harmonic branch into/ax 2
superlattice with a displacive character in first one and with
where n is an integer and with the parametrizati®hs ncreasing drive strength in two perpendicular directions.
=E]3¢sj=3¢s,- Following the usual nomenclature the pat- And the transition to the hexagonal harmonical oscillating
tern with oddn is a triangular superlattice, as its rotational phase develops via @3 \/3 superlattice.

symmetry is threefold. For evemthe superlattice exhibits a  Superlattices are rather common in 2D solid state physics,
sixfold symmetry(cf. [33]). Since a sixfold symmetry center and a comparison is therefore instructive. The transition from
can be easily identified in Fig. 13, we conclude tha even 4 simple hexagonal lattice to @3 /3 superstructure has

in our experiment. We point out that an example of/&  peen observed for instance in monolayers GCIE; ad-

X /3 with third order rotational symmetryn(is odd has  sorhed on graphitg86]. The transition from the subharmonic

recently been observed by Bt al. [34] (see also Ref35)). g aqratic base pattern to@x (2 superiattice with a dis-

placive character in one directiorpZmg, region llla is
VIl. CONCLUSIONS analogous to the reconstruction of the cléa@0) surface of

We have presented a comprehensive investigation on Fa¥¥ (=tungsten) crystal$37]. Here the surface atoms are
aday wave pattern formation in the vicinity of a bicritical displaced in exactly the same way as the elevation maxima
situation. In contrast to many other experiments we used &f the surface profile in the present study. Most interestingly,
single frequency drive and the bicritical situation was ob-the surface of W crystals obeys a transition ta/2x y2
tained by working at low frequencies with a thin layer of superlattices with a displacive character in two directions
liquid. The use of a single driving frequency limits the ex- (c2mm, identical to our pattern in region Il}bin the pres-
ternal parameters and the theoretical analysis remains sinence of hydrogen atoms.
pler. Nevertheless, the interaction of the modes with har- We were also able to provide for the first time a pattern
monic and subharmonic time dependence lead to a variety débrming system, which undergoes a hexagon-to-square tran-
new superlattice states. This kind of structure acts as a mesition without a simultaneous change of the fundamental
diator during the transition process between two incompatwavelength. This is in contrast to earlier observations on the
ible space groupgsquares and hexagon3Ne developed Benard-Marangoni system, which showed considerable wave
several sets of amplitude equations to model the observemumber variations during the transition process. The accom-
phase transitions. Special attention is devoted to the phaggnying description in terms of well-defined spatial Fourier
information carried by the participating modes, which is re-modes makes the phase transition very fundamental and
sponsible for the remarkable displacive feature of one of thédentifies the underlying pattern selection mechanism to
superlattices. The primary subharmonic square patterawitch from a triad to a four-wave vector resonance.

d=nm/2, (11)
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