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The first and the second laws of thermodynamics form the constraints on the equations describing macro-
physical phenomena. It is argued in this paper that there are some additional universal constraints. These
constraints are caused by the Hamiltonian structure of microequations. Previously one feature of micromotion,
its reversibility, was used by Onsager to explain the observed reciprocity relations. Hamiltonian structure is
richer than reversibility and yields richer consequences. Some of these consequences are a nonlinear version of
Onsager’s relations, Hamiltonian structure of reversible equations of macrophysics, and quasi-Hamiltonian
structure of irreversible equations.
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[. INTRODUCTION (v) In any process of an isolated system, entropy does not
decrease,
It became common wisdom after Claus|d$ that macro-
world equations must obey the first and second laws of ther- ds
modynamics. Are these two universal laws of Nature the —=0. 1.3

only constraints which every macroscopic theory must obey? dt

An indication that there might be some additional universal

features of the macroworld stems from the wide experimen- Note that the work of external forcelA, and the heat

tal justifications of classical models of reversible processes iBupply,dQ, are zero for an isolated system and the equation

mechanics: all these models possess the Hamiltonian struef the first law of thermodynamicsiE=dA+dQ, is satis-

ture. The Hamiltonian structure reflects a very special way ofied automatically.

reciprocal interactions between various degrees of freedom. To describe the evolution of the system from some state to
Equations describing the irreversible processes also hawie equilibrium state, one has to set up the equationg(fr

a special structure. The first proposition of this kind wasand S(t) (E does not change To narrow the subject, we

made by Thompson for thermoelectric phenomena. Analyzfocus, following Onsager, only on the case of the local-in-

ing Thompson's observation and the similar facts gained inime dependence afy/dt anddSdt ony(t) andS(t). Then

other branches of physics, Onsager recogn{dhat any  the general evolution equations can be written in the form of

linear macroscopic theory of irreversible processes musi system of ordinary differential equations,
obey, in addition to the first and second laws of thermody-

namics, some reciprocal relations, and the origin of these _
relations is the reversibility of micromotion. y#=GHy,S), (1.4

To formulate the Onsager result in unambiguous terms,
consider an isolated macroscopic system characterized by a
finite number of macroscopic “kinematic” parameteys
=(y%, ... y™. The first and second laws of thermodynam-
ics state the following. Here and in what follows, Greek indices v,\ run through

(i) There are two additional characteristics of the systemyalues 1... m.
energyE and entropyS. The first two laws of thermodynamics do not put con-

(if) There is an equilibrium state in whidh, S, andy do  straints on the function&* andD, except that the dissipa-
not change; the system can stay in this state indefinitely. tion functionD must be positive, and the solutions of Egs.

(ii) The equilibrium values oE, S, andy are linked by  (1.4) and(1.5), y(t) andS(t), tend to the limit values linked
the relation by a known function(1.2) ast— . The question under con-

sideration is as follows: Are there other constraints for func-
E=E(SY); 1D {ionsG* andD?

In most cases, one can accept the hypothesis of local equi-
librium: Eq. (1.2) holds not only at equilibrium but also at
each instant in the path to equilibrium. Since the equilibrium

S=S(E,y). (1.2 properties of the system, expressed by the funatioB), are
supposed to be known, the local equilibrium hypothesis
The functionsE(S,y) or S(E,y) characterize the equilibrium makes entropy a known function gf One can say that the

S=D(y,S). (1.5

being solved with respect 1§ this relation can also be writ-
ten in the form

properties of the system. local equilibrium hypothesis eliminates one entry, the dissi-
(iv) In any process of an isolated systew{t), energy pation functionD, which can be expressed in terms &f
does not change. andF ,=dS(E,y)/ay*,
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D=G*F,=0. Reviewing the situation with nonlinear generalizations of
Onsager’s relations, Mazur wrote in 1988 “ ... Another
Summation over repeated indices is implied. Following theissue of interest has been whether a generalization existed of
tradition, we callG* andF , thermodynamic fluxes and ther- the Onsager reciprocity which would hold feonlinearlaws
modynamic forces, respectively. describing irreversible processes. At the first IUPAP Interna-
Further constraints depend on the typeyokariables. tional Conference on statistical mechanics, held in 1949 in
First, lety variables be “coordinate-type” variableghis  Florence, Casimir presented a paper ‘On some aspects of
term will be explained later in Sec.)llOnsager considered Onsager’ thegr... ' in which he remarks ... in its
the case of linear equations whét andF , are linear func-  present form Onsager’s theory applies only to equations of

tions ofy. [linear] type.’ Onsager, who was present, offered the follow-
Onsager showed that, due to reversibility of micromotion,ing comment, ‘Linear relations between rates of flow and
G* must be expressed in terms ef, by the relations driving forces are assumed in my derivation of reciprocal
relations. The possibilities of useful generalizations have not

G*=D""F,, (1.6)  been fully explored; none have been found so far.’ It would

o o _ seem that Onsager’s comment has retained its actuality to
where the dissipation coefficienf3“” are symmetric con-  thjs day.”
stants, It is argued in this paper that a nonlinear version of On-
sager’s relations has the form
DAY =D, (1.7) 9

m=DMV
Onsager’s relatioifl.7) is sometimes called the third law of GE=D™(F\)F, (110

thermodynamics. Perhaps it is reasonable to use this term f%th the symmetriq(in the absence of magnetic figldissi-
the issues concerning all constraints on macroequations thﬁ&tion coefficientd *
are in addition to those of the first and second laws. '

There were numerous attempts to generalize Onsager’s D“'(F,)=D""(F,). (1.12)
relations to nonlinear phenomena wh@éti are some nonlin-

ear functions of , . The most widely used is the proposition  Tpe functionD**F ,F, must be non-negative,
that there exists a scalar functidn(F ,) such that
D*"(F\)F,F,=0 foranyF,,
B F, (1.8 in order to comply with the second law of thermodynamics.

If D*" depend on magnetic field, Ed..11) is replaced by
If ® is a quadratic function®=3D*"F,F,, Eq. (1.8  amore complex relation discussed in Sec. V. The dissipation
transforms to EQS(]..G) and (17) Most models of con- coefficients may depend on the paramdier
tinuum mechanics are based on potential relatidn®. For It will be seen in Sec. Il that Eq$1.10 and(1.11) can be
example, such are the models of plasticity theory with a hopbtained from a little known paper by Kolmogord8].
mogeneous functio® of the first order. Potential relations Equations(1.10 and(1.11) are, to some extent, misleading:
(1.8 motivated various variational principles which, in turn, in fact, they do not put constraints on the functional depen-
are being used often as a basis for mathematical modelinggence ofG* on F, beyond the poinF,=0 (see Sec. IX
Relations(1.8) are very convenient for studying such is- Nevertheless, there are serious reasons to write this depen-
sues as thermodynamic stability or correctness of the correjence in the form1.10 and (1.11); they are discussed in
sponding mathematical problems. The question is, howevegec. |X.
whether Eq.(l.S) is “a universal law of Nature” or jUSt a Nonlinear Onsager’s relation6l.10 and (1.11) are a
matter of mathematical convenience. byproduct of consideration of the following questions: Mi-
Some doubts as to the validity of E(L.8) in general  cromotion possesses a much richer peculiarity than revers-
arose from the Onsager observation that @) holds true ipility; it is governed by equations with the Hamiltonian
only in the absence of magnetic field. If magnetic fisdds  structure. The Hamiltonian structure of microequations
presented, the coefficien3” are not necessarily symmet- should yield richer consequences than just reversibility. What

ric, and Eq.(1.7) must be replaced by the relation are the constraints on the macroequations caused by the
, , Hamiltonian structure of microequations? We show that no
DA*(m)=D"*(—m). (1.9 further constraints appear for the coordinate-typariables.

. o However, ify variables are canonical, i.e., if they are some of
Obviously, if D" depend omm, Eq.(1.8) does not hold even  yhq coordinates and momenta of the underlying Hamiltonian
in the linear case. system, then the equations take a special quasi-Hamiltonian

The consequences of reversibility of micromotion for ¢J. .. thare exist an effective Hamiltoni S.v) and dis-
nonlinear phenomena have been studied by Stratan&jch sipat.ive coefficient®**(S,y) such that Her(S,Y)

He obtained a series of constraints in a quite general setting
and did not find a confirmation of E¢L.8). He noted that all Y
attempts to prove Eq.1.8) failed. Moreover, there are ex- diﬂzwuvaHeff(S’y) _ D¥(Sy) dHeil(S)y)
amples when Eq(1.8) does not hold. dt ay” T(Sy) ay”

. (112
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IHer(S)Y) Liouville’s equation and established the relation between the
TS (1.13 dissipative coefficients and a correlation of thermodynamic
fluxes in equilibrium.

Another line of thought stemmed from an observation that
dS D*”(S)y) dHi(S)y) dHex(S,y) Onsager’s reasoning can be put on mathematical grounds if
at T2(Sy) oy ay" : (1.14 one assumes that macrodynamics is a Markov process gov-

' erned by linear ordinary stochastic differential equations
[3,13]. Time reversibility yields then Onsager’s reciprocal
Here w*"” is a constant antisymmetric tensor defining therelations. The criterion of reversibility for Markov’s continu-
Hamiltonian structurgfor exact definition, see Eq2.18],  ous processes in the nonlinear case was obtained by Kolmog-
andT is temperature. orov[8] and, in a slightly generalized form, by Yagldr¥].

The origin of the link between microequations and mac-Stratanovicl6] studied the consequences of reversibility for
roequationS was fiI‘St reVeaIed by BOltzmaI’]n: the t|me Scalg‘]e genera' Markov noncontinuous and non_Markov stochas_
of macrovariables is much bigger than that of micrqvari-tiC processes.
ables. One can say that macroequations can be obtained by A attempt to take into account the Hamiltonian structure
the eI|m|nfc1t|on of fast variables from_ m|croequat_|ons. Ther-of microdynamics was made 5] for the case of canonical
modynamlcs 'S, a theory c_)f slow variables for mlc_rodynam-slow variables. It was suggested that, at equilibrium, the
ics. Boltzmann's observation enabled Hel$ to derive the probability flux of Markov’s process coincides with that of

laws of equilibrium thermodynamics from Hamiltonian me- the underlying ergodic Hamiltonian system. It turns out that

chanics(a modern exposition of Hertz's results, including the - . . o
case of low-dimensional systems, can be found in Chap. 1 otpe probability flux hypothesis selects a quasi-Hamiltonian

[10]). Hertz's paper made it clear that the reason why théor,m. of equations of the slow eV0|Ut!°ﬂ'12' gnd (1.'14)'
laws of equilibrium thermodynamics are true is the Hamil-Originally, these equations were obtained 15] in a differ-
tonian structure of microequations. ent equivalent forn{2.30. _ ,
Note that the term “Hamiltonian structure” is unambigu- ~ 1h€ &ims of this paper are as follows: to derive a nonlin-
ous if the phase space of the dynamical model of microworl@@r version of Onsager’s relation for coordinate-typeari-
has been fixed; otherwise any system of ordinary differentiafbles(1.10 and(1.11); to justify the probability flux hypoth-
equations can be put in Hamiltonian folisee Appendix A esis for canonical variables by asymptotic analysis of
The choice of the phase space and the Hamiltonian is detekiouville’s equation; to obtain the corresponding conse-
mined by physics of the phenomena under consideration. quences for constitutive equations of solids and dynamical
One may wonder whether the Hamiltonian structure ofequations for defects in a crystal lattice; and to extend the
microdynamics is necessary to observe the classical equilitresults for interacting systems with one noncanonical slow
rium thermodynamics on the macrolevel. This issue is disvariable—energy—and to conduct a limited transition to
cussed in Appendix A under some assumptions which do natontinuum theory to obtain the equations of nonlinear heat
seem physically constraining. It turns out that microdynamicconductivity.
equations may have slightly more general structure than the Restraining the consideration by isolated systems does not
standard Hamiltonian equations and still yield the laws ofaffect the results on the structure of the governing equations
equilibrium thermodynamics. for local-in-space systems: for such systems, isolation means
Hertz considered the classid@ongquantummicroworld,  just a special choice of the boundary conditions.
as we will do throughout this paper. The quantum nature of Note that the limit transition to continuum theory is a
the microworld affects the macroscopic laws, and a consisnontrivial issue. The general form of continuum equations
tent theory should start from the laws of quantum mechanicxzompatible with the Hamiltonian structure of microequations
We assume, however, that in the transition mienmacro  has yet to be established. Some observation on the structure
there is a level of description at which classical Hamiltonianof equations used in continuum mechanics can be found in
mechanics provides an adequate picture of microdynamic$26,27. It remains to be seen whether the Hamiltonian struc-
Such an assumption restricts the range of admissible valuegre of microequations imposes additional constraints.
of macroparameters. The above-discussed special structure of macroequations
There was a long and difficult way to recognize that thepertains to the case when the system has two characteristic
laws of irreversible nonequilibrium thermodynamics do notwell-separated time scales, namely fast time and slow time.
contradict the underlying reversible Hamiltonian dynamicsElimination of the fast variables yields classical thermody-
(see, e.g., the revieWll] and pp. 77-79 of10]). A clear  namics, which we will call also “primary thermodynamics.”
understanding of how the laws of nonequilibrium thermody-There are situations with three well-separated time scales. In
namics may be obtained from Hamiltonian mechanics wasuch cases, the system is characterized by three types of
achieved by Kubd4,5] (see also Zwanzi§l12]). Kubo con- variables: fastest, intermediate-fast, and slow. Elimination of
sidered a special case of open systems, the driven systemsthe fastest variables yields the equations for the intermediate-
parameter of a Hamiltonian system, says changed slowly fast and slow variables. The corresponding laws are the laws
in a given wayy(t), and one wonders how the force causingof primary thermodynamics. Equations of primary thermody-
this change depends wfft). In the linear case, Kubo found namics possess the special structure discussed above. Elimi-
this dependence explicitly from an asymptotic analysis ofnation of the intermediate-fast variables from the equations
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of primary thermodynamics gives the equations for the slowinstantt,, f(t,y|ty,Yo), also satisfies Eq2.1). This indi-

variables. The theory of slow variables can be called “seccates thaty(t) may be considered as a stationary Markov

ondary thermodynamics” or “thermodynamics of attractors” stochastic process obeying some ordinary stochastic differ-

because the existence of attractors is a characteristic featueatial equations,

of the equations of primary thermodynamics. An important

example is a turbulent motion of fluids. The fastest time is a dy* "

characteristic time of molecule collisions. Primary thermody- i ~Fy+aayws, (2.2)

namics brings the Navier-Stokes equations. These equations

have two characteristic times, namely the characteristic tim

of the change of velocity at a space point and the character-

istic time of the change of average flow parametsish as

Reynolds’ stressesTurbulence theory, which studies the av-

eraged characteristics of the flow, is, in fact, thermodynamic

of attractors of Navier-Stokes equations. Thermodynamics of

attractors is at an embryonic stage. A brief account of it is EH— /it EU,L 90" DHY L. 2.3

given in Sec. X. 279 gyv’ 2 '
The paper composition is as follows: In the next section,

we review the consequences of reversibility of Markov's pro-  The diffusion coefficient®** are very smal[the scale of

cesses, formulate a nonlinear version of Onsager’s relationgmallness is established by Eg.32 below]. Therefore, ac-

briefly discuss the probability flux hypothesis, and outlinecording to Eq(2.1), f(t,y) in the first st approximation is thé

the derivation of the quasi-Hamiltonian structure from thef tion. f(t S t h t uti fth
probability flux hypothesis. In Secs. 111-V, the validity of the Ourg::nl(;)rr; d(lffgr)ent|z§lleqyu(a2[|)or¥; erey( ) is a solution of the

probability flux hypothesis is justified by the asymptotic
analysis of Liouville’s equation. The quasi-Hamiltonian dve
structure is used to establish a general form of constitutive y =VA(y). (2.4)
equations for solids in Sec. VI. Nonlinear heat conductivity dt

is considered in Sec. VII. The quasi-Hamiltonian structure

for dynamics of defects in solids is obtained in Sec. VIIIl. The Equations(2.4) hold true also for the average value of
features of the nonlinear version of Onsager's relationy”, [y*f(t,y)dy, in the first approximation. This can be
(1.10 and (1.11) are discussed in Sec. IX. Secondary ther-obtained by averaging Ed2.2). In addition, one can find
modynamics is reviewed in Sec. X. This is followed by afrom the averaged equatid@.2) the corrections to the right-
discussion of the term “Hamiltonian structure” and a de- hand side of Eq(2.4). They turn out to be of the order
scription of microdynamic equations which are compatibleD " d*V#/dy”ay*.

with equilibrium thermodynamics in Appendix A, and some  Equationg2.4) for the average values gfare exact in the

Wherew? (a=1,...s, s=m) are some independent white
noises. There is a I|nk betweétt, oy andV#,D#”. The link
depends on the sense of time denvatlve in &92). If Eq.
§2.2) is understood in Stratanovich’s sense, then

auxiliary estimates in Appendix B. linear case whev* are linear functions off and D#” are
constants. Markov’s character of macrovariables has been
Il. EVOLUTION TO EQUILIBRIUM AS A STOCHASTIC observed in many physical systefis].
PROCESS

. B. Reversibility of Markov’s process
A. Markov’s stochastic process

with fast degrees of freedom, and thus they can be consi ity function of the procesg(t): probability of the event that

ered as some random variables. Denote macroparameters tl; beslr(:lr;glgls tsigr?i?;allo\?mmtg orf)gi]r?tpyoznytl,iswhggg a(1|t2)fo
y*, u=1,... mand their probability density at instahby ) iy
f(t,y). It will be derived in the subsequent sections that F(t1,y1:t2,y2) AV1AV2, AV) andAV, being the volumes

under some assumptions, the functiott.y) obeys the 'of the vicinities. It is seen from the definition that, for any
Fokker-Planck equation processf(ty,Y1:t2,Y,) is a symmetric function,

. . . Denote byf(ty,y1;t5, the two-point probability den-
Macroparameters are always fluctuating due to mteracuo{i-& Yi(t1,y1itz,Y2) point p y

f(ty,y1it2,y2) =f(ta,y2it1,y1). (2.9
sty o (t1.y1it2,y2) =f(ta, Y25ty
at +07y_ﬂ_ ’ A stochastic process is called reversible if the two-point
probability density possesses the following property: for any
of btz
=VH(y)f=D*"(y) —, (2.0
ay” f(tyy1ita,y2) =f(t2,y1it1,y2). (2.6

where J* is the probability flux andD*” are the diffusion In accordance with Eg(2.5), the definition of reversibility
coefficients. The diffusion coefficients are symmetiix;” can be also written as

=D"#, and positiveD*"x,x,=0 for anyx, . The probabil-

ity density ofy under condition thay takes the valug, at f(ty,y1:t2,y2) =T(t1,y2;t0,Y1). (2.7
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The two-point probability densit§(t;,y;;t»,y,) can be ex- wherec is a normalizing constant.

pressed in terms of the conditional probability; ,y,|t,,Y5) Einstein’s formula has an asymptotic character: it is valid
by the relation in the limit of an infinite number of fast degrees of freedom.
Regarding the derivation of Einstein's formula “from me-

f(t1,y1:t2,Y2) = (11, 1]tz y2) F(t2,y2). chanics” and its generalization for a finite number of fast

. . _ . degrees of freedom, s¢&8,10.
In terms of the conditional probability, the reversibility

condition(2.7) takes the form
D. Nonlinear Onsager relations

f(te,yalta,y2) F(t2,y2) = f(te,Yaltz,y) f(t2,y0). Combining Kolmogorov’'s criterion of reversibility with

Einstein’s formula(2.12), we arrive at the expression for the

Assume that there is an equilibrium state with an equilibriumdrift in terms of diffusion coefficients and entropy,

distribution f,(y), and the stochastic process is stationary, S
thus the conditional probabilitf(t,,y,|t,,y,) depends only VE=DH(y)

. 2.1
on the time shiftt=t;—t,: f(t;,y1|t2,Y2) =F(t,y1]Y2). ay” 213
Then reversibility of the stochastic procest equilibrium
accordlng to Eq(2.8), means that the conditional probability Thus, the evolution equations fgrtake the form
must satisfy the equation
f(t,y1]y2) fo(y2) =F(1,y2ly1) fu(ye). (2.9 dy* P

. _ _ o - Py —. (2.14

Equation (2.9) puts some strong constraints on the admis- ay

sible values of drifts\V#, and diffusion coefficientsD*”.

These constraints were first found by Kolmogorov in 1937 416 we dropped the bar frognsince the actual values gf

[8]: in order for Eqg.(2.9 to be true, it is necessary and deviate only slightly from the average values.

sgffi_cien_t that probability fluxJ* vanishes on the equilibrium Entropy is proportional to a large number, the number of

distribution, fast degrees of freedom. Therefore, the right-hand side of Eq.
(2.14 may be finite even thougbh*” are small.

JH=\Ef, — Dwaf_wzo’ (2.10 Entropy grows according to the equation
ay”
or, equivalently, dSE.y) :D,uV(y)&_S ‘98_ (2.19
dt ay* gy
alnf,,
Vi =D . (2.10) )
ay” If entropy has the only point of maximum, then the system
. . ) ) goes to this point.
Kolmogorov obtained Eq(2.1) in a slightly different form Thermodynamic fluxes and thermodynamic forces in the
linked to the technicalities of his proof. case under consideration are the drift compongfitand the

Revers|b|||ty cond|_t|or(2_6) is written for the case Wheyl  (grivatives of entropy, respectively. In the linear approxima-
variables are coordinate-type variables, i.e., they do nofion whenD#* are constants an§ is a quadratic function,
change sign for a reversed process. If some ofthariables  gqs (2.13 coincide with Onsager’s statement. Thus, it is
are velocity-type variables, i.e., they change sign for a regensiple to consider Eq2.13 as a nonlinear version of On-
versed process, then E@.6) must be changed accordingly sager’s relations. The Fokker-Planck equati@id) moti-
to incorporate the sign change. The constraints imposed byaies the term “diffusion coefficients” foD** while the
such a modified reversibility condition on drifts and diffusion entropy equatior(2.15 justifies the term “dissipation coef-
coefficients were obtained by Yaglon{14]. Later, ficients.” We use both terms fdd** depending on the con-

Kolmogorov-Yaglom relations were rediscovered in a NUM-ey¢ This duality is the essence of fluctuation-dissipation
ber of papergsee[17]). Condition(2.6) is sometimes called theorem.

the detailed balance.

C. Einstein’s formula E. Ergodic Hamiltonian systems and the probability flux

) ) ) ] hypothesis
Lety be slow variables of an ergodic Hamiltonian system.

The system is isolated and has enefyThermodynamic Now let the dynamics of the system be governed by
properties of the system are characterized by entropjtamiltonian equations, and the slow variablese some
S(E,y). Probability distribution ofy variables at equilib- Variables of these equations. In this case, we calythari-

rium, f..(y), is given by Einstein’s formula, ables canonical variables. Denote the fast variables of the
system byx=(x%, ... x?") and the Hamiltonian by (x,y).
f..(y)=ceEY), (2.12  We identify the firsth coordinates of point with generalized

066126-5



V. L. BERDICHEVSKY

coordinates of the system=(q?, ....,q"), and the lash
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In index notation they take a shorter form,

coordinates with generalized momenfe=(p4, - - - .pPn)- dx JH
Similarly, y=(Q%, ....Q", Py---Py), 2M=m. The i (2.16
Hamiltonian equations are dt ax)
dg oH dp dH dy* IH
—=—, —=—— = MV , (2.17
dt oJp’ dt aq dt ay”
d_Q: H d_P: _oH where Latin indices,j, ..., runthrough values 1 .. ,n,
dt 9P’ dt aQ’ and ", w*” are constant antisymmetric tensors:
|
wl=1 if i<n, j=i+n; o'=-1if j<n, i=j+n; =0 otherwise; (2.18
o*’=1 if usM, v=p+M; o*’=-1Iif v=<sM, u=v+M; o*’=0 otherwise.
|
We assume that in thex{y)-phase space the ;urfa_cc_as of oH of gH of
H(x,y)=E are compact and bound the regions with finite o g — wy - —=0. (2.22
volumeT (E), ax! ax ay” ay*

F(E):f O(E—H(x,y))dxdy. (2.19

0(E) is the step functiond(E)=1 for E>0 and6(E)=0
for E<0. In thex-phase space, for each fixggdthe surfaces

H(x,y)=E are compact and bound the regions with a finite

volumeT'(E,y),

F(E,y)zj O(E—H(x,y))dx. (2.20

Motion of the system(2.16 and (2.17) is assumed to be
ergodic on the energy surfacés(x,y)=E in (X,y)-phase
space. For each fixeg motion of the systen(2.16) is also
assumed ergodic on the energy surfadééx,y)=E in
x-phase space. Denote entropy of the systghi6 by
S(E,y). One can shoy9] that

S(E,y)=InT(E,y).

Besides, Einstein’s formulé2.12 holds true(in the limit of
largen) [10,18.

In what follows, it is convenient to use instead of Eq.
(2.12 the exact formuld10,1§

1 9 sEw
Te(E) 9E

= —1 eS(EY),

f(e0,y)=

(2.21

where T=gJS/JE is the absolute temperature artt(E)
=dI'(E)/dE.

The probability densityf (t,x,y) of (Xx,y) variables obeys
Liouville’s equation,

Integrating this equation ovet one obtains the equation for
the probability density of variables,f(t,y),

aJ+

of(t,
( y)+—=0, f(ty)=
ayH

ot

J f(t,x,y)dx,

JH
J“=J oM’ —1F(1,x,y)dx. (2.23
ay”

The probability density at equilibriunf(c0,X,y), is equal to
constx S(E—H(x,y)). The probability flux at equilibrium,
can be found explicitly 15],

ﬁeS(E:y)

(2.249
ay”

Let the evolution ofy variables to equilibrium be modeled
as a Markov stochastic continuous process. Then the prob-
ability density function ofy variables, f(t,y), obeys the
Fokker-Planck equation

J M
+ éxy_/»l«\](M): 0,

af(t,y)
ot

(2.295

af(ty)
Jf‘M)=V“f(t,y)—D”VT.

Here we add indexM) to the probability flux of Markov’s
process to distinguish it from the probability flux in the in-
tegrated Liouville equatiof2.23. Since the original Hamil-
tonian system is autonomous, the stochastic process must be
stationary. Therefore/# andD#” are the functions of only

and do not depend on time.
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Function f(t,y) is the same in the integrated Liouville
equation(2.23 and the Fokker-Planck equati¢®.25. Thus,
divergences of the probability fluxed ande‘M) must coin-
cide,

Wy _ 93*
ay+ ayH

We accept a stronger conditigthe probability flux hy-
pothesig: at equilibrium

(2.26

From EQq.(2.26) and the expressions for probability fluxes of
Markov’s procesg2.25 and Hamiltonian syster(2.24), we
have

oy =3~

S S

» e ou J e ; J
—— DM =" e>.
T ay* I'eT Ie(E) gy”
(2.27
Taking into account that
g e e[4S 14T 05

and that the last term in Eq2.28 can be neglected com-
pared with the preceding orisince entropysis proportional
to a large number of fast degrees of freedom, 2vhile
temperaturel does not depend on), one finds from Egs.
(2.27 and (2.28 the drift

(2.29

PHYSICAL REVIEW @B, 066126 (2003

largen, the first term on the right-hand side of EQ.30 is
finite. The second term is in the order of the first on®#”
are small,

DAV~T. (2.32

Various components dD*” have different dimensions, and,
in a particular problem(2.32) is to be rectified depending on
the physical meaning of coordinatgs

F. Effective Hamiltonian

Let the Hamiltonian of the system have the form
H(X,y)=H(y)+Ho(X,y).

Denote byS, the entropy of the “fast” Hamiltonian system
with Hamiltonian Hy(X,y) and fixed values ofy. Motion
occurs on the energy surfackg(x,y)=U = const. Entropy
Sy is a function ofU andy, Sy=Sy(U,y). It is easy to find
that entropy of the system with Hamiltoni&h(x,y),S(E,y),

is (see, e.g[10,18))

S(E,y)=So(E—Ho(y),y),

E being the total energy of the system.
For a fixed values of function Sp(U,y), U is a function
of y and S determined from the equation

(2.33

So(U,y)=S. (2.39
Denote this function byJ(S,y). It obeys the identity
Sy(U(S)y),y)=S foranyS andy. (2.35

Differentiating Eq.(2.395 with respect taS andy, we have

9Sp(U,y) dU(S)y) 1
aU s

The corresponding equations describing the evolution of the

system to equilibrium are

IS(E,y)

14

dy“_
dt

— o' T +DH(y)

IS(E,y)

Equations(2.30 augmented by the definition of temperature

1 S(Ey)

T 9E

(2.31

form a closed system of equations.

The system of Equation®.30 has quite a special form.
It involves two “entries”: equilibrium entropys(E,y), and a
symmetric tensor of diffusion coefficientdD#"(y). To
specify the system, one has to prescribe functi8(is,y)
and D#”(y). The symmetry of tensoD*” is caused by

Markov’s nature of the process. Onsager’s relations are hid-
den in the assumption on Markov’'s character of the process

and the probability flux hypothesis.

Note that temperaturd@ is small compared to the total
energy of the syster: T~E/n, the total energy being con-
sidered finite. Entropy is proportional ta Therefore, for

ISp(U,y) dU(S,y) N IS(U,y) _

(2.39

If one setsU in EqQ. (2.34) to be equal t&E—Hg(y), thenS
coincides with the total entropy. Since, from Eg.33),

ISo
U

9SS 1

U=E—Hy(y) JE T

Egs.(2.36 take the form

JU(Sy)
s

MU(SY) _ _ISUY)
ay* ay+

(2.37

U=E—Hy(y)

We define the effective HamiltoniaH 4(S,y) by the for-
mula

Her(S,y)=Ho(y) +U(S)y). (2.39
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For derivative of the effective Hamiltonian with respectyto af(1,x,y) COH(x,y) af(t,X,Y)
at a fixed value of entropy, we have from E(®.33, (2.37), LSNP ! ' i'
and(2.39 ot axd X
dH(x,y) of(t,x.y)
PHer(SY) _ Holy) | 9U(Sy) e e @D
ay* ay* ay*
The equilibrium state of the ergodic Hamiltonian system cor-
_ IHo(y) T ISo(U,y) responds to the steady solution
m "
% N uzengy) 1
fo(XY) = 5= SE—H(X,)). (3.2
1 ISEHoy).) Te(E)
ay* We expect that functiofi(t,x,y) tends to function3.2) as
SE t—oo if initially y have some prescribed valugg
— _T’9 ( ,y). =(yg, - - . .yd) while x have equilibrium distribution:
ay*

1
Besides, in accordance with E@.37), fOxy)= Te(E,Yo) S(E=H(xYo)d(y=Yo). (33

IHer(S,Y) where 8(y—Yo)=3(y'~yp)- - 8(y"—yg) and I'g(E.y)
T:T' =JI'(E,y)/dE. Obviously, the normalization condition for
probability densityf(t,x,y) is satisfied at the initial instant,

In terms of derivatives of the effective Hamiltonian, the 1
evolution equation$2.30 take the form(1.12). For a given f f(0x,y)dxdy= mf S(E—H(x,y0))dx
effective Hamiltonian and given diffusion coefficients, Eqgs. (E:Yo

(1.12 are not closed: they involve an unknown function 1 J
S(t). The additional equation fd8(t) can be obtained either “TeEyo) a_Ef O(E—H(X,yo))dx
from Eq.(2.30 or from the condition that the total energy of B\=J0
the systemH4(S,y), is conserved. This yields Eql.14). 1 d
Equations(1.12—(1.14) form a closed system of equations. = m EF(E’Yo)

We call the form of Eqs(1.12—(1.14), or the equivalent
Egs. (2.30, quasi-Hamiltonian because these equations be- =1.

come Hamiltonian if the diffusion coefficients are zero.

Deviations from the standard Hamiltonian form areWe use the  abbreviations dx=dx*---dx", dy
caused by the dependence of the effective Hamiltonian ordy*- - -dy™. The normalization condition is maintained in
entropy, the determination of entropy from the additionalthe course of motion since for any solution of Liouville’s
equation (1.14, and by the dissipative term equation, as follows from Eq3.1),

T ID#"gH 4/ ay” in Eq. (1.12.

Our next goal is to justify Markov's character of slow d -
variables, the probability flux hypothesi®.26), and the Ej f(t.x.y)dxdy=0.
guasi-Hamiltonian form of equations for slow variables by
asymptotic analysis of Liouville’s equations. Evolution of the initial distribution(3.3) to the equilib-

rium distribution(3.2) should be understood in a weak sense
which mimics a coarse graining. This is a subject for sepa-
rate consideration. We describe here only the formal proce-
dure. Note, however, that the convergencef(f,x,y) to
f..(x,y) may take place only for systems with some mixing

Consider the Hamiltonian syste(®.16) and(2.17). Vari- properties. This is in contrast to the relations of equilibrium
ablesy are assumed to be slow compared to variaklésle  thermodynamics, which require only ergodicity.
do not introduce a small time parameter explicitly since we So, our task is to find the asymptotics of the solution of
focus only on the first approximation and do not constructLiouville’s equation(3.1) with initial conditions(3.3) assum-
the full asymptotic expansion. We s#&tl/dx' in the order of  ing that the last term in Eq3.1) is small. In fact, we aim to
unity and assume thatH/dy* are much smaller than find the governing equation for the probability density func-
aHIax'. tion of y variables,

The system of ordinary differential equatiofis16) and
(2.17 is equivalent to the partial differential equation of the
first order, Liouville, equation,

IIl. ASYMPTOTIC ANALYSIS OF LIOUVILLE'S
EQUATION IN THE CASE OF CANONICAL SLOW
VARIABLES

f(t,y):f f(t,x,y)dx. (3.9
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A general form of such an equation follows from integrationIndeed, in terms ofP(t,y) and®’, the probability flux can

of Liouville’s equation ovelx, be written as
af(tyy) =~ 93 oH
+—=0, (3.5 M= MVJ — S(E—
ot Py JHr=w e S(E—H(x,y))dxd(t,y)

where the probability flux is JIH
+w“”f a—ﬁ(E—H(x,y))CI)’dx. (3.195
yV

oH
J"=w’”f —Vf(t,x,y)dx. (3.6
ay Since

We use asymptotic reasonings to lidk and f(t,y).

Due to ergodicity, the Hamiltonian system has the only ﬁé(E—H(x y))dxz_f aG(E—H(x,y))dX
ay”

integralH(x,y)=E. Thus, it is worthwhile to make a change ay”

of unknown function in Liouville’s equation,
J

f(t.x,y)=8E—H(Xy)P(t,XY). (37 T f O(E—H(x,y))dx
At the initial instant,®(t,X,y) obeys the condition T (E.y)
DIOXY) = By~ Yo). (3.9 %
I'e(E\yo)
SIS(EY)
Denote by®d(t,y) the average value @b over the energy - P

surface

we have for the average value 6H/dy” over the energy
d(ty)= JCD(t,x,y) 5(E—H(x,y))dx/jé(E—H(x,y))dx surface

=;f d(t,%,y) S(E—H(x,y))dx. (3.9 " =f ﬁa(E_H(X,y))dX/J5(E_H(X'y))dx
Te(E,y) ' : v ay"

ay
Without loss of generality, the functioh(t,x,y) can be pre- L (E,y) / oI'(E,y)
sented in the form =—
ay” JE
D(t,x,y)=P(t,y)+P'(t,X,y), 3.1
(t.X,y)=P(t,y) +P'(t,X,y) (3.10  4SEy) [ ISEy)
where®’(t,x,y) satisfy the constraint = oy JE (3.19
f O’ (t,x,y) S(E—H(x,y))dx=0. (3.11) Equation(3.13 follows from Eqgs.(3.15, (3.16, and(3.14).
If we find @' in terms of the probability density of slow

variablesf (t,y) and, using Eq(3.13, express)* in terms of
f(t,y), Eq. (3.5 will control the evolution off (t,y).

To find @', we assume tha®’ is small compared with
d(t,y) and we use Liouville's equation to determide’.

Function®(t,y) is linked to the probability density func-
tion of y variables by a simple relation following from Eqgs.
(3.7 and(3.9),

f(t,y)=D(t,y)[e(E,Y). (3.12  Then we will check tha®’ obtained from this assumption is
small indeed.
Let us show that, in terms df(t,y) and®’, the probability To write Liouville’s equation in terms of functiod’,
flux takes a simple form first we have to eliminate the degeneracy contained in for-

mula (3.7): for given f(t,x,y), function®(t,x,y) may con-
L] oH , , , tain an arbitrary dependence Hf(x,y) which is nulled by
=0k <F> f(ty)+o* J’ H,6(E—H(x,y))®'dx, the factor S(E—H(x,y)). To do that, we introduce in
y (3.13 x-phase space some curvilinear coordinaté$(x), «
=1,...,22—1, andh=H(X,y). Note that functiong“(x)
where(dH/dy*) are the average values @fl/dy* over the  do not depend og. Dynamics in{* variables is governed by

energy surface anH’, are the fluctuations ofH/dy*, the equations
H | oH dge 9LU(x) i H(Xy)
H' = — . (3.19 —=0v%¢y), v¢= — @' —.
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Liouville’s equation for functionf(t,Z,h,y) takes the
form

af(t,Z,hy) of
—_— v —

dH of —o
ot e '

= (3.19
ay”’ ay”

+ o

We see that the derivative with respect Hodisappeared.
Now we can rectify formuld3.7) requiring that functiord
in (£,h,y) variables does not depend an

f(t,4,h,y)=6(E-h)®(t,{)y). (3.18

This establishes a one-to-one correspondence betivesed
D.

Note thatf(t,Z,h,y) is not a probability density of and
y: the latter includes the Jacobia({,h,y) of the transfor-
mation (¢,h)—X,

dx=A(¢,h,y)dzdh.
Hered/=d/t---dz?" L.

Probability density of {,y) variables isfA. To write Li-
ouville’s equation in terms of A, we note the identities

P P ( oH )
—(v*A)=0, —| o’ A|=0. (3.19
d y

ay”
We have from EQs(3.17) and(3.19
J d J JH
—fA+ —(*fA)+ —| o*"—FA |=0. (3.20
&t aga &ya &yl/

Plugging Eq.(3.18 in Eq. (3.20), we obtain the equation for
(D(t’g!y)l

J J
S PLLy)A+ a_ga(v O (t,4,y)A)

P ( oH )
+ 0"’ —®(t,Ly)A | =0 (3.2D)
ay

&yV v

and, from EQq.(3.8), the initial condition

1
‘I)(O.éf,Y):mﬂy—yo)- (3.22

Again, due to identitie$3.19, Eqg. (3.21) can be written
also as

LY | ILLY)

H ad(1.Ly)
v,
ot e

ay” ay*

(3.23

In terms of { variables, some previous formulas take a

simple form,

f(t,y)=f (t,Z,y)AdS,

PHYSICAL REVIEW E68, 066126 (2003

dH dH
=] —Ad Ad¢,
<ay”> f ay” Z/J’ ¢
FE(E)=fA(§,E,y)d§dy, Fe(E.y)=JA(£.E,y)d§.
dH
JH= M f py

—V<I)(t,§,y)Ad§bf
f d
= M

H aH
—Adgdb(t,y)+wf“’j —d'(t,{,y)Ad¢
ay” ay”

JH
:w“y<_>f(t’y>+w“" f HY,®'(L¢y)AdZ. (329
ay” '

MeasureA(Z,h,y)d¢ has the sense of the invariant measure
on the energy surfaces iaphase space.

We seek a solution of Ed3.23 of the form®d=®d(t,y)
+d'(t,Z,y). Let us impose orb(t,y) the initial condition

1
d(t,y)= =——=—=5(y—VYo). 3.2
(t.y) T=(E.yo) (Y—Yo) (3.29
Thend’(t,Z,y) is zero at the initial instant,
®'(0,L,y)=0. (3.2

Function®d’(t,{,y) satisfies the equation

od’ a&q)’ v dH 9D(ty) JP(t,y)
- — v —
ot Pl gy’ ay* ot
dH 9P’
—w* . (3.27
ay” ay*

Let us show that Eq(3.27) can be written as

PP JD(t,y) oH oD’

— 4 =—w""H’, — ot —

o 78 Coayn " ay*
! J f H ®'Ad/|. (3.29

FE(E!y) (7y’u Y . -

Indeed, from Eqgs(3.5), (3.12, (3.13, and(3.16),

ad(t,y)

T (Ey)
at @

ay”

d
Te(Ey)+—| - D
E( ,y)+ay#{ (ty)

=0. (3.29

+J w*"H',®' AdZ

The second term can be transformed to
— "l (E,y)/ay" oD (t,y)] oy*.

Therefore, due to Eq3.16),
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(’y)

yl‘

gety)  JaH\abty) 1 4 , R
a ' <ay > ayH Ie(E)y) gy~ UtLy)= fowﬂ HL Gt EY ) — 2
(3.34

X #'H' AL, .
f @y d¢ (3.39 Plugging Eq(3.34) in Eq.(3.24), we find the probability flux

Plugging Eq.(3.30 in Eq. (3.27), we obtain Eq(3.28).
Note that the average value of the right-hand side of Eq. B h? ﬁ f(t,y)
(3.28 over ¢ (with the weightA) is zero: vanishing of the v

integral of the first term follows from a definition dﬂ’ﬂ

(3.14) while mtegral of the last two terms vanishes due to the _ #Kf , N (Rt
dH P’ <9(1>(t y) ~
f o™’ Ad¢ dtAd¢
ay” ay* ay”
Ad¢ 9 oH IH to o ad(Ly) .
‘ f '—®'Ad¢ =w’”< —> f(t,y)—f K#(t,5y)—— —Te(Ey)dt,
Te(Eyy) ay* ay” ay 0 ay
d oH (3.3
:f —( [0 ladd )dg"
ay* ay” where
_ i WV H d'Ad¢ K’”(?,ti)’)
ayH ay”
:O_ K ] ')\ X 14915 1 FE(E,y)
Let us assume that the last two terms on the right-hand (3.36
side of Eq.(3.28 are much smaller than the first one. Then
we arrive at the initial value problem or
00" 0P vy IPLY) / gH t gInT
Tt P T et T 2H0Ly)=0. J“=w‘“’<;>f(t,Y)+JOK“V(T,t;Y)f(Nt,Y)dT e
(3.31) y y
We will find &’ from this problem and then, in Appendix B, _ fIK,W(T t_y)&f(t,y) di (3.37)
check under which conditions such simplification makes 0 v v ' '

sense.
To write the solution of Eq(3.31) in an explicit form, we

rr(E ot i ot > t<t.
introduce a system of ordinary differential equations, Note thatk™(t,tiy) are defined both fot>t andt<t. If

K“*(t,t;y) decay ag—t increases so fast th#t**~0 for
§“ t—t>r7, 7 is the correlation time, ané(t,y) do not change

dt vi(LY). (332 appreciably on the times of order then
This system determines the mapping of valueg at some
instantt’,{’ to the values at instartt Jh= ( Wt H +DH* M) f(t,y)
o ay” ay”
YT 07X(t’t 'g ’y) a
~prry LY = (3.3
The last argument in Eq$3.33 emphasizes the depen- ay

dence of the mapping on parametgrén Eq. (3.33, t' may
be either less than or greater tharnn the latter case, the where
mapping is determined by the differential equatidBs33

) , e ¢ B ot B B
with the final condition DAY(y)= K“”(t,t;y)dtzf Kev(T,ty) T,
0 — o0

X,y —¢ i tet =0, (3.39

The solution of the problert8.31) can be written in terms
of mapping(3.33 as SincedH/dy"= —TaSIdy” and
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JInTe(Ey) 1 g% K#¥(7)
oy TegEay” , A(LH)d¢!
= ok f HL (-~ md DHAL) —F - (45
1 9 £
=e S— —(e5%) . . . .
Se gy The right-hand side of Eq4.5) is K"*(—7), as claimed.

Additional symmetry properties may be warranted if mi-
B cromotion is reversible. That means the following. Denote by
- S_E SySet (9_yVSE (p,q) the generalized momenta and coordinates of micromo-
tion, x=(p,q), and byx* the pointx* =(—p,q). If
9SS 14T

&yv_ ? &yl”

H(x,y)=H(x*,y) (4.6)

and the phase flow moves a pointo the pointx,, then, as
the probability flux(3.38 coincides with Eqs(2.25 and s easy to check, for the same time interval it moves also the
(2.29 if one identifiesD#" in Egs.(2.25 and(2.29 with the  pointx* to the pointx*. In terms of mapping4.1), it can be
tensor(3.39. The latter can be done if tensbr*” (3.39 is  \ritten as
symmetric and positive. Symmetry features of tenBdr”’
are considered in the next section. L=x(1,0) = F=x(7,0F) or {F=x(—1,(*) or

IV. SYMMETRY OF DIFFUSION COEFFICIENTS AND X (r,0)=x(—1,0), 4.7
REVERSIBILITY OF MOTION
where and ¢, are ¢ coordinates of the points andx;.

Consider mapping Ed:3.33 in more detail. First, since This property yields the symmetry of tensét”(7):

Egs. (3.32 are autonomous, mapping depends only on the
differencer=t—t’, and KH(1)=K""(7). (4.9

{=x(1,4"). (4D Indeed, from Eq.(4.6), dH/dy*|,=JIH/dy*|~. Choosing
also coordinateg in such a way that\ (£)dZ=A(Z*)dZ*,
For brevity, we drop the dependence of all functions onwe have
parameters/ in the formulas of this section; it can be re-
stored in the final relations. , . , , A(2)d?
Time shift 7 in Eq. (4.1) can be positive and negative. The K*"(7)=0" o f H,K(QV)H,A(X(T{))F—E
inverse mapping is

A(g)d
) @2 —orsor [ HIOHA O (men S
TensorK#” (3.36 depends onr=t—t. It enters in all :w,ukwv)\j H,’K(DH,’A()((—r,z*))A(Iéj)Edg

relations at negative values oft<t). Nevertheless, it is
convenient to consider formulé8.36 as the definition of A(Z*)de*
K#” for positive values ofr as well. Then the following :w‘“‘wva’ H(COHA (= 70— —
property of K4 holds: E
=K“"(—1). (4.9
K#(r)=K""(—1). 4.3
Formula(4.9) follows from Egs.(4.9) and(4.3). In con-
Indeed, trast to Eq.(4.8), formula (4.3) is universal, it does not de-
pend on the symmetry properties of the Hamiltonian.

A(Q)d¢ In the presence of magnetic fieldh, relation(4.6) must
K“”(T)=w"“w“f H(OH\K(mO)—F— be modified,
E

(4.9

H(x,y,m)=H(x*,y,—m), (4.10

Let us change the variable of integratigrby ¢’ = x(7,{).

Due to Eq.(3.19, measure\ (£)d{ is conserved by the flow and, as is easy to check, E@.9) is replaced by

(332, therefore K/.LV( T,m): K,LLV(_ T,— m) (411)
A(Hd{=A(¢")d{' . Thus, from Eqgs(4.11) and(4.3), we have
Using also that = y(—7,{’), we have K**(r,m)=K""(7,—m). (4.12
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Symmetry ofK*” yields the symmetry of the diffusion co- conste¥). In the typical cases when derivativesdf"” are
efficients. in the order ofD#”, the third term can be neglected.

V. DYNAMICS OF SLOW VARIABLES AS A MARKOV VI. CONSTITUTIVE EQUATIONS FOR SOLIDS

PROCESS . . . . .
In this section, we use the quasi-Hamiltonian structure of

Approximation of the probability flux3.37 by the ex- macroequations to establish a general form of the constitu-
pression(3.38 yields the equation for probability density of tive equations for solids. We are going to show that, if

y variables f(t,y), stresseso=(0'), i,j=1,2,3, depend on strains=(ej;)

; ) s s and strain rateé=(éij) only, then the general form of such
of(t, J J J i
(ty L9 (—wf“’T + DA )f(t,y) a dependence is
ot ayﬂ ayV ayV
oij=—T—(97](U'8ij)+ED”k'(T £,8)e (6.1)
af(t,y) deij T AL ‘
DM | = (5.2

ay where 7(U,¢) is the equilibrium entropy per unit volume

. » . and the viscosity tensoBi¥' has the symmetry of elastic
If D*” is a positive symmetric tensor, then E§.1) may moduli tensor y D y y

be interpreted as a Fokker-Planck equation for a Markov

processy(t). D'kl = plikl = plitk = pkliJ (6.2
If D#¥ are not symmetric, as may be the case in the pres-
ence of magnetic field, such an interpretation of Efl) The dissipative part of the constitutive equations is obvi-

fails. However, one can make the following transformation:ously not potential. Consider, for example, the case of iso-
let us presenD*” as a sum of its symmetric pa® (", and  tropic body,
its antisymmetric partD[#*], o . o
DKg, =A(e,e) 8 ef+B(e,e)el.
D#*=DW) 4+ plrl (D =pw)  plurl= _plval),
Let us assume that the coefficie®sB depend only on the

and use the identity first two invariants of the strain rate tenser1:=s'|§ ande,
" =3e;;e'). Then one can easily check that potentiality takes
i( Dlxvl If(ty) _ b Jf(t.y) place if and only if
ay* ay” ay* ay” 3 JB
o ol a8, &M Ge,
=— . f(ty)|.
ay"\ ay No reasons are seen why this condition might be satisfied in

the general case.

To obtain Egs(6.1) and(6.2), consider a piece of solid
deformed homogeneously. At the boundary of this piece the
stresseso" are applied. Microscopically this means that
there is a force acting on the boundary particles of the form
a'nja, wheres" are constants depending on tinrg, are

Then Eq.(5.1) can be written in the form

af(ty) @ S
+—|| —*T— +D*
a gyr ay” ay’  ay”

S oDl
v

(av) af(t,y) the components of the unit normal vector to the boundary,
xf(t,y)—-D ay" - (5.2) and « is the surface area per one particle. The Hamiltonian
of the system has the form
We see thay variables can be interpreted as a Markov pro-
cess with the coefficients (“*) and the drift H=H(x)— aazw a'In;Gia) (6.3
(1]
VHE=— M'T IS + D~ S _ b _ (5.3  Whereq;(, are the coordinates of trath particle andV is
ay” ay” ay” the boundary olV. We define the strain tensor as
The difference from the case of symmetric diffusion coeffi- _@ > 1 . 6.4
cients is in the second term, where the nonsymmetric coeffi- FITIV] oSy 2 SUEIORRULTON ©4

cients stand, and in the additional third term. Since diffusion

coefficientsD*” are in the order off, andSis proportional  where|V| is the specimen volume.

to the number of degrees of freedom, the contribution of the One can make a change of variables in the Hamiltonian
third term in Eq.(5.3) is small unless the derivative &f#] system choosing the components of the strain te(&dy as

with respect toy brings a large factor. For example, one some of the coordinates of the system. Denote the corre-
cannot rule out a dependend@!**! on y of the form  sponding momenta b"!. We assume that;; and P are
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the only slow coordinates of the system and denote all othewhereD#” is a symmetric positive kernel
coordinates by. The Hamiltonian can be written in the form

T ._ D#¥(£,6')=D (&' 8), 7.3
H=§|ijk|P|JP +H0(X,8)_O'”8ij|V|. (65)

If [V|—0, the momenta and the coefficieritg, have the f DMV(§,§’)@M(§)¢V(§’)d3fd3§,20 (7.9
orders Pl ~&;;|V||V|#3, I;~|V| "% The possibility of

separating the inertia of homogeneous deformation may be

established, for example, by Kunin's quasicontinuum techfor any ¢ ,(£).

nique [19]. Denote bySy(U,e) the entropy of the system The kernel might be a functional of the temperature field.
with HamiltonianHq(x, ) and the value of energy, and by  In the case of local dependence of heat flyk only on

n the entropy per unit volumeS,/|V|=n(U/|V|,e). Then  temperature and temperature gradient,

the entropy of the system under consideration is

VI i pkl o ] " J
S=|V|n| |V| E_§|V| Lk PP P+ olejj e |- q“=D* (§,T,VT)§—§V? (7.9
(6.6
Equations(2.30 take the form with a symmetric positive tens®*"(£,T,VT).
: " Derivation of Egs.(7.1)—(7.5 involves a number of as-
&ij = lij P~ sumptions formulated below as some necessary notations are
1 introduced.

pii= [ gy 727 IV[+ =DM P™.  (6.7)

(98”' T mn

A. Hamiltonian system

For |V|—0 andej; finite, P~ |V|* and the left-hand side  Let us haveN subsystems and let, be generalized mo-
of Eq. (6.7) can be neglected. Then E@.7) transforms to menta and coordinates of theath subsystem, a

Eq.(6.1). Symmetry properties dd'*' follow fromthe sym- =1 ... N; x,=(x%, ... x2"). The dimension ok,-phase
metry properties 0D#" in Eq. (2.30. space may change from one subsystem to another, but we do
not emphasize this in the notation. There is no mass ex-
VII. HEAT CONDUCTIVITY change between subsystems, and each subsystem consists of

. . _ . the same particles all the time. The Hamiltonian of the sys-
The simplest example of a noncanonical variable is €Ntem is taken in the form

ergy. Energy appears as an additional slow variable if one

considers an interaction of a number of systems. Total energy N 5

is conserved while energy of each subsystem changes slowly H= E Ha(xa) +H(Xq, .. XN)s (7.6
due to “heat(energy transfer” between the subsystems. We a=1

are going to derive in this section the equations of nonlinear

heat conduction. This involves, in addition to the aSymptOtiC\NhereHa(xa) is the Hamiltonian of the isolatedth sub-
analysis of Liouville’s equation, a limit transition from a fi-
nite number of subsystems to continuum. The resulting equ
tions are as follows.

Let £=(&%,&2,6%)=(&%), n=1,2,3 be a point of three-
dimensional continuum, and(t,¢) and »(U,&) be energy
and entropy densities per unit volume, respectively. The sys- 5 N
tem is isolated. Let the system be deviated from the equilib- H(Xq, - X< E Ha(Xa)- (7.7
rium state initially. Then the evolution to equilibrium is gov- a=1
erned by the equations

system and:|(x1, ... Xy) Is the interaction Hamiltonian.
% he sense in the partition of the Hamiltonian into the sum
(7.6) is introduced by the assumption

Again, though we are going to use some asymptotic reason-

ﬂ: _ ﬂ (7.) ing, we do not need to introduce a formal small parameter
at agr’ ' via Eq.(7.7) since we are interested only in the leading terms
of the asymptotic expansion.
9 1 We assume that each subsystem is ergodic on the energy
ql‘zf D*Y(&,€") d3¢’, surfacesH (x,) =const, and the entire system with Hamil-
9&" T(1,8") tonian (7.6) is also ergodic on the energy surfaces
H(Xq, ... Xy)=E=constin §,, ... Xy)-phase space. We
E: an(U,é) (7.2 are going to study the dynamics of slow variableg
T o’ ' =H,(Xa,).
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B. Equilibrium distribution We see from Eq(7.13 that the most probable state corre-

In thermodynamical equilibrium, the probability density SPONds to the maximum value of total entroBy(hy) + - - -
of variablesh=(h hy), f.(h), is given by the for- + Sy(hy), under the condition that the total energy is fixed,
1o - lin)y T(N), 1S g y N V _ . ;
mula (see, e.g.[10], Section 2.2 X _,h,=E (cf. [20]). This is obviously the state with equal
temperatures of the subsysterfig=[dS,(h,)/dh,] .
In what follows, we need a more precice formula than Eq.

f(h)= T (E)FEh' (7.12) in which the é function is replaced by a more exact
expression. Namely, let us show that
= _ Si(hy)+ - +Sy(hy) = (E—hy—- - —hy) %262
FEh (?Eé’hl- - 'ﬁhNF(E’h)’ (7.8 I'g,=conste™1'™ N 1 N 714
where with some small constart depending on interaction energy.
Indeed, using the Fourier presentation of th&unction,
PEN = [ OE=HE0OM,—H.(x0) -0
+ oo
- iEz
X (hy— Hyy () dXy - - - dxy (7.9 oB)=5.] ez
and one can write Eq(7.10 as
F(E):f O(E—H(x))dxy- - -dx r j giZ(E—=hy) o —izH
Eh™ 20
Obviously, N
\ ><af:[1 S(ha—Ha(xa))dxy- - -dxy.  (7.15
Fm=f{E—Zgu—ﬂ5mrHﬂm»~ 3
. Keeping in the expansion of exp(zH),
S(hy—Hn(Xp))dXq - - - dX (7.10 2
—izH_ 1 _izH— 22+ ...
Denote byl (h,) the phase volume of thath subsystem, e *'=1-izH 2H Tt
only the first three terms, we get
1_‘a(ha): f a(ha_ Ha(Xa))an, y g
1 2.2, A1 dly
and byS,(h,) its entropy Pen=g5—| iZ(E-hy) —izA-(2%2)e% Zdhe " dhy
(7.16

INT,(hy).

Sa(ha)= (7.11)
Assume that the number of degrees of freedom in each sut\)’\-/here we introduced the notations

system is huge. Then the formula for entrop®.1l) is
asymptotically equivalent to the formula

_dl4(hy)
Salha)=In—g—=.

A:f Ho(hy—Hy)- - - s(hy—Hy)dxy - - dxy,

SZZJ H28(h;—Hy) - - - S(hy—Hy)dxg - - - dxy—AZ

Neglecting the interaction enerdgy compared t&)_H, in  £rom Eq.(7.16, computing the integral over we obtain
Eqg. (7.10, we obtain
dry

dr
Igp=conste” E-Sha-AZ2e2 —1 N (749
dhy

r,
_ LU dh
Ten (E 2 h )dhl dhy .

NeglectingA compared t&h,, we arrive at Eq(7.14).
An interesting consequence of B{.14) is that(for con-

N
_ Sp(hy) + - - +Sy(hy) S .
azfl ha) em " (7.12 stante) the most probable state satisfies the equations

and, for probability density, a_Sa E—h;—---—hy o
1 N dhy g? '
f (h Sl E= h. | @S(hd)+---+Sn(hn)
AW=rE e(E) ( azl é Therefore, at the point of equilibriunE—h;—---—hy is a
(7.13 small negative constant,
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2

€ oH, .. oH

E—hy—- —hy=——. (7.18 Va=—wl—=0,(¢,h). (7.25
axy  ax}

C. Evolution to equilibrium Denote by A, the Jacobian of transformatiorx,

First, we are going to show that evolution to equilibrium —(La,ha),

is described by a system of ordinary differential equations,
dXa=Aa({a,ha)dladhy,

dh, IS,

——=Dap=—> (7.19 .

dt ahy and by theA the product of Jacobians,
whereD ,;, are some functions on energies of all subsystems A=AjA,---Ay.

which obey the conditions

The functionf(t,{,h)A(Z,h) is the probability distribution
D..=Dy., D..=0. 7.2 of variables{ andh at the instant.
abha % ab (7.29 Initially let f(t,Z,h) have the value

The physical properties of the system are described by equi- f(0,£,h)=cS(E—H(x(¢,h)))
librium entropies of subsysten$,(hy,). The total energy of . .
the systenh;+ - - - +hy is constant in the process of evolu- X 8(hy—hy)-- - 8(hy—hy). (7.20

tion as follows from Eqs(7.19 and(7.20). The total entropy

S=8,(hy)+---+Sy(hy) changes in accordance with the The constant is determined from the normalization condi-
equat|0n tion

ds IS, IS, JS 39S

n Dbaa_haa_hb:Dab&_ha oy (7.29) f f(0,{,h)Ad{dh=1. (7.27)

Positivity of the quadratic form Our task is to study the solution of Liouville’s equation with

IS 9S the initial data(7.26). We expect that probability density bf
Dap—— ——=0 (7.2  variables evolves to the functigi7.13 [or, more precisely,
dha dhy (7.14], while probability density of andh approaches the
function

warrants the growth of entropy.
Evolution equationg7.19 do not have a Hamiltonian

part; they are pure dissipative. f(ee,d,h)=C.. 8(E-HX(Z,N))). (7.28
D. Cauchy’s problem for Liouville’s equation E. Liouville’s equation and evolution equations(7.19
The dynamics of the system is described by Liouville’s First, let us obtain the equation for the probability func-
equation for probability densitj(t,x), tion of variablesh,
orx) | oH X o (723 f(t,h)=J f(t,£,h)AdZ. (7.29
at axl  ax

We need to introduce explicitly the slow variablag Note the identity

=H,(x,). To this end, we choose some curvilinear coordi-

nates{,=({2), a=1,...,2—1, on the surface# ,(x,) Avad)  d(vaA)
=h,=const in thex,-phase spaces and write Liouville’s ac” dhy -
equation in coordinates= ({4, . ..,{n), h=(hy, ... hy), 2

0. (7.30

According to Eq.(7.30, Liouville’s equation(7.24) can be

af(t,¢,h) +U§‘9f(t'§'h) +Ua‘9f(t’§'h) =0. (7.24 written also in the divergence form,

at are dh,
af(t,,MA  d(vif(t,Z,h)A)  a(v,f(t,Z,h)A
Here the following notations are used: (t.2.h) + (val(tLh) )+ (val(t.4.0) )=0.
ot e dhg
o a ) (7.3)

Uaz_le_j_va(ga )1

Xy Xy Integrating Eq.(7.28 over £, we find
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of(t,h)  4J
(th) 9
at " ohy

=0,

Ja=f vaf(t,¢,h)AdL. (7.32

Our goal is to show that the probability flulg in Eq. (7.32
in the first approximation has the form

ISp

ab (9h

af(t,h)

‘] ab ﬁhb

f(t,h)— (7.33

Then the evolution equatior3.19 follow from Egs.(7.32

and (7.33 and the smallness of the diffusion coefficients
D,p. Note that the probability flux vanishes at equilibrium.
Therefore, Eq(7.33 can be obtained also from reversibility
of micromotion and the hypothesis on Markov's character of

approaching to equilibrium.

F. Solution of Liouville’s equation in the first approximation

We seek a solution of Liouville’s equatiair.24) which

corresponds to the state of local equilibrium: in the first ap-

proximation,

f(t,,h)=8(E—H(X({,h)))®(t,h), (7.39

i.e., for givenh, ¢ are distributed over energy surface in
accordance with “the ergodic thermodynamic equilibrium.”
Therefore, we seek a solution of Liouville’s equation in the

form

f(t,{,h)=8(E—H(x({,h)))
X[®(t,h)+ D' (t,Z,h)], (7.39
where®’ <®. Plugging Eq.(7.35 into Eq.(7.24), we have
b’
_Uaa—ha.

b 9D

I
Yaon, ot

— tv, =
Jt aly

(7.36

Note that coefficient®, of Liouville’s equation(7.24) are
much smaller than coefficientsy : this corresponds to a
slow change of energiels,. The further analysis is quite
similar to that of Sec. lll. We set up for the functidh the
initial data

®(0,h)=cys(h—hg). (7.37
Then
®'(0,4,h)= (7.39

Without loss of generality, we may impose the constraint

f S(E—H)®'(t,¢,h)Ad¢=0, (7.39

redefining, if necessary, functich(t,h).

PHYSICAL REVIEW @B, 066126 (2003

We drop the last two terms on the right-hand side of Eq.
(7.36 and find®' explicitly in terms of solutions of the
system of ordinary differential equations

dZa(t.0)
dt

=va(t,¢,h).
The system defines the mapping
{=x(t;t',¢";h)
of the points{’ at the instant’ to the points{ at the instant
. We have
dt’.
(7.40

adP(t’,h)
dh

a

t
(D’(t,g“,h):—fova()((t’;t,g;h),h)

From Egs.(7.35 and(7.32),

Ja=fvaAf(t,g,h)dg=f V(&N S(E—H)ADZD(t,h)

0(t’)

f_f (&, Mva(x(t';t,¢h), h)————dt’

X S(E—H)AdZ. (7.4

Let us show that the first term on the right-hand side of Eq.
(7.4)) is zero. Indeed, according to E(..25, we have

f v 8(E—H)Ad¢

dH4 oH
= ol — S(E~H)a(h;—H,) -

-o(hy—Hy)
ax,  ax,
Xdxq- - -dxy
_f 26(h, a) ; J0(E—H)
axia axJ,
x [T 8(hy—Hp)dx,- - -dx
b#a
d [d6(h,—H .
:f i (a—.a)w”G(E—H)
ax} axy
X [T 8(hy—Hp)dx;- - -dxy=0 (7.42)
b#a

Here we used the divergence theorem and the factétat
—H) is equal to zero for sufficiently largedue to the com-
pactness of the surfad¢é=E.

Equation(7.42 means that the average valuewgf over
the energy surface in any local equilibrium is zero. This is
why the Hamiltonian part does not appear in the evolution
equationg7.19.
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So,v, has a character of fluctuations. As before, we in- . ) .
troduce the correlation tensor j D(&,E)e(&)e(&)d%Ed e =0. (7.48

Kab(t,t’§h)=f 0Lt 1.0).0) S(E—H) Conditions(7.20 take the form

XAd¢Tep. (7.43 D(¢,¢)=D(¢,¢), fE‘)(é,é')df‘é':o. (7.49

Fort’s<t, K, depend only on the differende-t’. We as- For simplicity, we assume the body is unbounded. There-
sume thatK,p# 0 only for [t —t[<7, and thatd®/sh, do  fore, the integrals in Eqg7.47)—(7.49 are taken over the
not change considerably on the time intervals in the order ogntire three-dimensional space. Interactions of remote parts
the correlation timer. Then of the body decay with distance, aridl(&,¢')—0 as|é

@ —¢'|—. The rate of decay is assumed to be fast enough

J.=—D..(h &—F 7.4 for the convergence of all integrals involved.
a ab( ) h Eh» ( . 4) .
Ny We are going to show now that the kernel has the form

where 92

D(&,¢')=

mv ’
S D) (7.50

t
D= | Kan(t=t' it
—w whereD#”(&,¢') have the symmetry

The first constraint oD, (7.20 follows from reversibility DH7(E,E")=D""(¢',§). (7.5)
of motion in the same way as in Sec. IV. The second con- . )
straint(7.20 holds due to conservation of total energy. Indeed, consider the Fourier transform of the kernel
Now note that the probability distribution &f, f(t,h), is
linked to ®(t,h), according to Eqs(7.29, (7.395, and D(k,k’)=f D(¢g eeketk ENg3eg3er (7.52
(7.10, by the relation
f(t,h)=d(t,)Tep. (7.45 Acco_rding to the first relatiof7.49, D(k,k’) is a symmetric
function
From Eqgs.(7.44) and(7.45), D(k,k')=D(K’ k). (7.53
Jf(t,h) dInTep Puttingk’ =0 in Eq.(7.52), we find using the second relation
Ja=—Dap e +Dgp e (7.49 (7.49
Equation(7.19 follows from Eqs.(7.46), (7.14), and(7.20 D(k,0)=0. (7.549

and the smallness of the diffusion coefficients. The magni-
tude of the neglected terms in E{.36) may be estimated in Due to the symmetry oD (k,k’), we have also
the same way as for the canonical variables in Appendix B.
D(0k")=0. (7.595
G. Transition to continuum Assume thaD(k,k’) is an analytic function ok andk’ at
Let the subsystems be small pieces of some body. Wihe pointk=k’=0. Then, from Eq(7.55, D(k,k") can al-
identify the number of the piece, with the coordinates of ways be presented in the form
the center of that piece&. Evolution to equilibrium is de-
scribed by the fieldU(t,£) while h(t,&)=U(t,&)d%¢, S D(k,k")=k,D*(k,k"),
=pd3¢, and D,, becomes a function of two variables ] ]
D(,&'). The functionD(£,&') is, in fact, a functional of the where D#(k,k’) are some analytic functions & and k'

field h(t,£) [or, equivalentlyT(t,£)] but we do not empha- (see, for example_, the lemma in the proof of Morse’s theo-
size this in the notation. We assume tha(¢,é') rem [21]). According to Eq.(7.54), D#(k,0)=0. For the

A INA3 N3 e _ same reasonD#(k,k’) can be presented in the form
tiolﬁ(g,g )d°&éde¢’. Then Eq.(7.19 transforms to the equa DH(kK') = D** (kK" )k’ and

D(k,k")=D*"(k,k")k Kk, (7.56

u(t,6) :f

a ’ 1 3¢
= | D). (747

T(t,¢) with the symmetryD#”(k,k’)=D"*(k’,k).

Plugging Eq.(7.56 in Eq. (7.52 and performing the in-
The second law requires positiveness of the kernel: for anyersed Fourier transform, we arrive at E¢&50 and(7.51),
function ¢(¢), where D#"(¢,&") is the inverse Fourier transform of
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—D#*"(k,k"). Equation(7.2) follows from Egs.(7.47 and  where S(y—®(x))=8(yt—dY(x))- - - sS(y™— d™(x)).
(7.50. Equation(7.3) is a consequence of E¢7.2) and the  Functionf(t,y) obeys the equation
locality condition.

af(ty)  ad-

H. Other nonlinear effects in continua T ay — Y

The above analysis can be extended to include viscosity
and other nonlinear effects in continua in the case when there ~9H oD
is no mass exchange between the continuum partislas- J”zf o'l — i S(y—d(x))f(t,x)dx, (8.1
systems The corresponding analysis is cumbersome, how- ax) ax

ever, because the additional integrals of motion, momentum,

and momentum momentum. must be taken into account. Th¥hich follows from Liouville’s equation and finiteness of the

final equations are similar to the usual equations of conSUPPOrt of functionf(t,x) [remember that energy surfaces

tinuum media[3,22] in which Onsager’s relations must be H(X)=E are compadt
understood in their nonlinear forfi.10 and (1.11). Con- ¢ ¢
sider as an example the following nonlinear phenomenon. In It(ty) :f J (;t’x) S(y—d(x))dx

nonlinear elastic body entropy, density is a function of inter- at

nal energyJ and Lagrangian coordinates of the strain tensor, 5 H

€ap, 8,0=1,2,3. In many cases, one can accept that :_f ;( Wl ;f(t,x)) 8(y—d(x))dx
X X

1
W(U’Sab):no(u)_ECade(U)Sabscdv 9H P
=J’ w”—jf(t,x)—iﬁ(y—CD(x))dx
where 7y(U) determines the heat capacity of the body at ox x
zero strains. Function82°°4U) describe the dependence of
Young’'s moduli on temperature. Temperature is determined = —f

- oH 9P
w" —.—if(t,x)é’(y—CD(x))dx
by the equation

ax! ax

abc J _dH oD
1_9mUeap) _dmo(U) 1dCHU) = 2 o1 E %0 8y - B (x)dx.
T KV du 2 du Tater ay* ax! ax
(7.57) Let the motion of the Hamiltonian system with the con-

) straints®#(x) =y* be ergodic and mixing on the surfaces
The last term in Eq(7.57) shows that the dependence of |j(x)=E ®~(x)=y*. Then one may expect that the as-
Young's moduli on temperature causes a reciprocal influencgmptotics of thef(t,x) has the form
of strains on temperature. This is a pure equilibrium effect.
The nonlinear heat conduction equatigh5) means that the F(t50 = S(E—HOMNFH.®OO) + ' (t.x
heat flux depends on the gradient of temperat(f&7), (tx)=( COFE PO+ (1]
which must include the gradient of straifthe gradient of g from the same chain of reasoning as in Sec. Ill, one can
the last term in Eq(7.57]. Being neglected in linear heat derive thaty* is a Markov process
conductivity, the dependence of heat flux on strain gradient Let function ®#(x) depend only on generalized coordi-

might be important for some materials. natesq,®#=®d#(q), and letH(p,q) be an even function of
generalized momenta Then the probability flux
VIIl. MOTION OF DEFECTS IN A CRYSTAL LATTICE

Y23
Probability flux in heat conduction vanishes at equilib- Jr= oH 9*(q)

rium. There is another interesting case where this occurs: ap dq

motion of defects in a crystal lattice. Consider first a general

setting when the Hamiltonian system possesses some sldwZ€0 at equilibrium whefi(t,p,q) =c5(E—H(p,q)) since
variables®*, which are functions of canonical variables, the integrand in Eq(8.2) is an odd function of. Vanishing

d#=dH(x). That means that the derivatives of the probability flux along with Markov's property deter-
mines the drift.

Now we apply this reasoning to the motion of vacancies.
do*  od* . oH ! . . .
SN § Consider a vacancy in an otherwise perfect crystal lattice.
dt ox' ox! Vacancy coordinates can be viewed as slow variables. Va-
_ cancy coordinates may be thought of as some functions of
are small compared w@H/dx'. Denote the probability ob# positions of atomsg. For example, one can defimeas a
by f(t,y), point where the functioi2)_,e(|r—q,|) (a is the atom
number,¢ is a growing function reaches its maximum. For
Markov’s process of the vacancy diffusion, the probability
flux is

o(y—®(q))f(t,p,q)dpdqg (8.2

f(ty)= J F(,)8(y— D(0)dx,
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af(t,r) D#*(0)=D"*(0).

JH=VHrE(t,r) —D*' ——. (8.3

or If G* have a singularity aF, =0, for example, as in plas-

Equilibrium distribution off (t,r) is ticity theory, D"(F,) =d**(F\)/VF,F, then Eq.(1.11)
yields the constraint

f(oo,r)=ce "O/T, (8.9
d#*(0)=d"*(0).
whereH(r) is the energy value when the vacancy is posi- ) )
tioned at the point. Since the probability flux vanishes at  However, as follows from further consideration, Egs.

equilibrium, we find the drift from Eqs8.3) and (8.4), (1.10 and(1.11) do not seem to be constraining the func-
tional dependence d&* on F, beyond the poinf ,=0.
D" gH(r) Such a conclusion leads to a natural question: Why should
R SR (8.5  one bother aboun(m-+ 1)/2 functionsD*”(F,) if the equa-

tions contain onlym functionsG*(F,)? To close the system

Perhaps similar reasoning can be applied to the slow md?f €quations, one can prescribefunctionsG*(F,) which
tion of dislocations. One may speculate that the dislocatio0ssess the following two propertie8G*/dF,|¢ —o is a
position depends only on the positions of atoftieugh to  symmetric tensor an®*(F,)F ,=0. There is an important
write down this dependence explicitly is not a simple jask reason, however, to write the dependei@€ on F, in the

Therefore, the probability flux must be zero. form (1.10 and(1.11) with a provision that the closing of the
The dislocation line can be discretized and approximategystem of equations assumes prescritingn+1)/2 func-
by a set of vectors,raz(r‘a), i,j=1,2,3,a=1,... N, r tionsD#”(F,). As was shown by Kubo in the linear case and

=(ry, ... ry). Then as we have seen in Secs. Il and Il in the nonlinear case, the

B dissipation coefficient®*” have an additional peculiarity:
: Dip oH they characterize the correlations of fluctuations of thermo-
Va=— =~ T [?7 dynamic fluxes. Thus, the dissipation coefficients can be de-

b

termined, in principle, from the experiments which are inde-
pendent of the direct measurementsGJf andF,. We do

not know all the nonequilibrium properties of the system if
we do not know the dissipation coefficients. In mathematical

Extrapolating the set of vectorg(t) by a continuum curve
r=r(t,o), we have

Dii(o,0’)  6H modeling, the dissipation coefficients should be prescribed
Vi(o)= _f ’ . - o', along with the thermodynamic functions characterizing the
T orl(t,o’) equilibrium properties of the system.

After these general comments, we proceed to the deriva-
tion of the statement made at the beginning of this section.

Let G#(F,) be analytical functions at the poirfit, =0
vanishing at this point. We exparé@l, in Taylor’s series in a
vicinity of zero,

whereH(r(t,o)) is the energy functional of the dislocation
positionr (t,o), andSsH/ ér! is its variational derivative. Ob-
viously, D" (o,6’)=D"(c¢',0) and D"(o,c')dr!/do=0.
The equation of dislocation motion is

dri(t,U)__j Dij(O',O',) oH do’ G#:GgVFV‘FGMV)\FVF)\‘FG#V)\KFVF)\FK‘*"".
= - g .
dt T sri(a’) 9.9

If D'(o,0') can be approximated by & function, TensorG*** is, obviously, symmetric over indices\, ten-
Dii(o,0")=8(c—0c')D'l, the dynamical equation of dislo- sor G*" < over indicesv\ k, etc. We can rewrite the expan-

cation takes the form sion (9.1) in the form
dritt,e) DY oH G*=GH(F\)F,,
At T siito)
ori(t.o) GH(F))=Gh"+GH™ F) + G F\F o+ . (9.2

This equation must be valid if the dislocation velocity is v i i i i
much less than the characteristic velocity of micromotion, €NSOrG*”(F,) is not necessarily symmetric. The question
i.e., the speed of sound. is, could one find a symmetric tensbr*”(F,)=D"*(F,)

’ such that the expansig®.1) can be written as
IX. FEATURES OF NONLINEAR ONSAGER’S RELATIONS G“=DH"(F,)F,,

In this section, we will argue that the nonlinear version of

Onsager’s relation€l.10 and(1.11) does not put constraints D#"(F\)=D§"+D*""F,+- - (9.3
on the functional dependence @f* on F, beyond the point

F,=0. If G* are analytical functions ofF,, then these with some symmetric overv tensorsD4”,D#™, . ... We
constraints are just Onsager’s relations are going to show that this is possible.
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Let G**(F,) be given. We are going to fin®*"(F,).
Compare the terms of the same power in E§<) and(9.3).
Obviously, D§"=G§"”. Equate now the quadratic terms of
both expansions,

GH" F Fy=DH*"F F,. (9.4
TensorD#"\ is symmetric with respect tp, v but not nec-
essarily symmetric oves\. TensorG*** is symmetric with

respect tovA and not necessarily symmetric oyew. From
Eqg. (9.9),

1
5(DFA DI =G, 9.5

For a given tenso6#", Eqgs.(9.5) may be considered as a
system of linear equations f@***. This system admits an
explicit unique solution

1
DA =2 (GHA 4 GMN =GN, (9.6

Formula(9.6) can be checked by plugging E€.6) in Eq.
(9.5.

So, if G¥(F,) is a quadratic function, it can be presented

in the form(9.3).
Consider now the terms of some powsrs>2. The co-
efficientsD#"1"" s andG*”1" "' are linked by the equations

1
—(DH#V1 Vs DRV VsV L L DMYSYL T Vs )
S

= GMV1 s,

9.7

We consider Eq(9.7) as a system of linear algebraic equa-

tions with respect td#"1"""”s assuming thaG*"1""""s are
known. Let us compute the number of equati¢ds) iden-

tifying the equations obtained by permutation of indices
.,vs. The number of equations is equal to the number

Viy
of independent components of ag+{1)-rank tensor which

is symmetric ovesindices. This is equal to the space dimen-
sion m times the number of independent component of a

symmetric tensor of rank The latter isC;,, s [29]. Thus,
the number of equations is

m(m+s—1)!

MCos-1= 51 (m—1)!

The number of unknowns is equal to the number of indepen
dent components of a symmetric tensor of second order
times the number of independent components of a symmetric

tensor of ranks—1,

m(m+1) ., _m(m+1)(m+s—2)!
2 ms=27 2(s—1)I(m—1)!

PHYSICAL REVIEW @B, 066126 (2003

m(m+21)(m+s—2)! m(m+s—1)!
2(s—1)!(m—1)!  sl(m—1)
_m(m+s—1)!( (m+1)s )
T sli(m=1)! \2(m+s—1)

B m(m+s—1)! (m—1)(s—2)
~ sl(m=1)! 2(m—1+s)

_ (s—2)m(m—2+s)!
B 2(m—2)!s!

It is seen that the number of unknowns is equal to the num-
ber of equations fos=2 (and, as we have seen, there is a
unique solution in this cagebut for s>2 andm=2, the
number of unknowns is larger than the number of equations.

The only obstacle for the solvability of the system of Egs.
(9.7) might be the linear dependence of the left-hand sides of
Egs.(9.7). Let us show that they are, in fact, linearly inde-
pendent. Assume the opposite: there is some nonzero tensor
Apyy g symmetric over v;---vg such that for any
DAY Vs,

8y, (DF/T sk DM e 1) =0, (9.8)

Equation(9.8) reduces to

a,

VlmVSD,uVl'“Vs:o.
The arbitrariness oD#”1"" s and their symmetry over the
first two indices yield the system of linear equations for

a +a =0.

MV Ve Vg

VlMVz' < VS (9‘9)
This system has only a zero solution. Indeed, changing indi-
ces in EQ.(9.9), one can also write

+a =0 (9.10

aVZ,uVle"'VS KVoV Vgt VS

and

=0. (9.11

Using Egs.(9.9 and (9.11) and deducting Eq(9.10, we
obtain

avzvl,uv3- . VS+ avlvz,u,v3- Vg

2a =0.

VipVye VS

Thus, the left-hand sides of E¢0.7) are linearly indepen-
dent and Eqs(9.7) are solvable.
So, without loss of generaliyp#”(F,) can be chosen

Symmetric, as claimed.

X. SECONDARY THERMODYNAMICS
(THERMODYNAMICS OF ATTRACTORS )

The special structure of macrophysical equations pertains

The difference between the number of unknowns and théo the “first level of averaging” when the system has only
number of equations is two characteristic time scales. In many cases, there are
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“intermediate-fast variables” between the macrolevel anda mechanical system is a choice of the phase space. After this
the microlevel. In such cases, the quasi-Hamiltonian strucehoice is made, one has to specify the interactions in the
ture is characteristic for the equations governing thesystems, i.e., to define the Hamiltonigt{p,q). To be con-
intermediate-fast and slow variables. Equations for slowsistent with equilibrium thermodynamics, the Hamiltonian
variables are obtained by elimination of the intermediate-fastust possess the following two properties: energy surfaces,
variables from the quasi-Hamiltonian equations. The correH(p,q) = const, bound compact regions with finite volumes
sponding macrotheory may be called secondary thermodyin the phase space; and motion is ergodic on the energy
namics or thermodynamics of attractors since the existencsurfaces. These properties eliminate a pathological construc-
of attractors is a characteristic feature of the quasition (A2)—(A4) [obviously, the energy surfaces of the Hamil-
Hamiltonian equations. The examples of the intermediatetonian(A4) do not bound the regions with finite volunjes
fast variables are the coordinates of defects in sdlidsan- The above-mentioned features of microdynamics are key
cies, dislocations, efc. The entire realm of plasticity is a to deriving equilibrium thermodynamics from the underlying
subject of secondary thermodynamics, as well as turbulenddamiltonian mechanics. One may ask to what extent these
theory. features define microdynamics, or, in other words, do micro-
There might be many “thermodynamics.” The number of dynamic equations need to possess the Hamiltonian structure
thermodynamics is equal to the number of the well-separateith order to be consistent with equilibrium thermodynamics?
time scales. Even the secondary thermodynamics is at embri- We describe in this appendix, under natural assumptions,
onic stage. Some statements of secondary thermodynamitise microdynamic equations consistent with equilibrium
can be found in the booKkL0]. In particular, it was shown thermodynamics. They turn out to be slightly more general
[10,23 that the relations of secondary thermodynamics ofthan the standard Hamiltonian equations.
vibrating systems are potential in the limit of vanishing fric-  Let the system be described by fast microvariabtes

tion. Perhaps, similar facts hold for turbulent flows with high = (x*, ... x") and slow macrovariableg=(y*, ... y™.

Reynolds number. Note also Ruelle’s pap24] on attrac- We consider the driven systems whan variables are

tor’s response to slow excitation. changed in a prescribed way(t). Microdynamics is gov-
erned by a system of ordinary differential equations,

APPENDIX A: A GENERAL FORM OF MICRODYNAMIC dx
EQUATIONS CONSISTENT WITH EQUILIBRIUM X _Fixy). (A5)
THERMODYNAMICS dt

The term widely used in this paper, the Hamiltonian struc- We make the following assumptions. _
ture, needs to be made more precice because any system of(i) The x-phase space is split in a one-parametric set of
differential equations can be written in a Hamiltonian form hypersurfaces described by the equatitx,y) = const with

[28] a smooth functiotd (x,y). For any fixedy, a trajectory start-
ing on a surfaceH(x,y)=const remains on the surface all
dg  dH(p,q) dp'  dH(p.q) (A1) the time, i.e.H(x,y) is an integral of motion,
e gpt 7 dt o H(XY) .
—F'(x,y)=0. (A6)
Indeed, let us have a system of ordinary differential equa- IX'
ti :
ons Obviously, any vectorr' satisfying Eq.(A6) can be pre-
dq _ sented in a form
g - Q- (A2)
. L aH(xY)
L I _ Fixy) =o' (xy) ———, (A7)
One can embed it in a Hamiltonian system of equations by ox!

introducing the additional variablgg(t) and determiningp;

from the equations wherew' (x,y) is an antisymmetric tensor field.

(i) For each fixedy motion is ergodic on the surfaces
_ k H(x,y)=const.
dp R (, ) . (A3) (iii ) Tensorw" in Eq. (A7) is nondegenerate,

dt =~ Pk i
aq .
w=det|w"|#0. (A8)

Equations(A2) and (A3) form a Hamiltonian system with

the Hamiltonian An immediate consequence of E@\8) is evenness of the

dimension of thex-phase spac@éemember that any antisym-
H(p.q)= kK(Q). Ad metric matrix of an odd order has zero determinant
(P.0)=PQ7q) A4 (iv) Vector fieldF'(x,y) is incompressible. Note that we

So, we have to rectify what is understood under the ternf@nnot write the incompressibility condition simply as
“Hamiltonian structure.” i

Modeling of any system begins with a description of its IF(x.y) -0 (A9)
kinematics. Therefore, the starting point in the description of X!
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because EquatiotA9) is not invariant under coordinate The systems possessing the propeifips(v) can be writ-
transformations. To put EqA9) in an invariant form, one ten in the form

has to includeF' in Eq. (A9) with a factor which is a relative _

scalar of the weight 1/2. The only scalar of this type which dx i IH(X,y)
one can form from the above entries isy&. Thus, we at @ (X)T’
specify the assumptioD by putting

(A12)

where tensow'! satisfies Eq(A11).

ii,:izo (A10) The system(A12) is of a more general form than that
X o ' describing Hamiltonian flow on a symplectic manifg&D].

- The latter has the forn{A12) with a provision that the
(v) Tensorw' characterizes the geometry of tkephase 2-form Qijdx‘/\dxj, Qj; being the inverse tensor fap',
space and does not depend on specific interactions in thaust be closed, or, equivalently, there is a covector field
system. In other wordsp" depend only orx and do not  P;(x) such that
depend on the choice of Hamiltonian. Then, from Egs/)
and(A10), the incompressibility constraint is a constraint on aPi(x)  dPj(x)
' (x) only, Q(x)= -

X ax! (AL3)

i(iwij(x)> =0. (A11)  Hamiltonian flows on symplectic manifolds obey the incom-
X'\ Vo pressibility condition(A11). Indeed,

J ( 1 ij> 1 o0 a1 e d0 9,

Er— - w -
Vo Q4 oxt - 2032 9ok Qmn gx
1 PPy PP 1

- _ _wl| wkj - | —
axloxt axkax]  2\w

IXNax axMax!

. 9P J*P"
qukl(_wknwml)( m )

Vo

1o PP, PP, B PP,

1 .
o" — +——w o™ : -
Jo axiaxk  2\w ( axaxt gxMaxt

Here we used the definition of the inverse tenso?(),;  Due to Eq.(A1l), it can be written also as
=6, and its consequences! Q= 6}, Jw/dw" = wl);,
anddw"/9Q = — 0" ™.

The inverse statement is not true: incompressibility con- i dH a9 Jo)=
dition (A1l) does not necessarily yield closedness of the @ gg(p ®)=0. (Al4)
form Q;;dx'’/Adx" since it imposes onlyn constraints on
n(n—1)/2 functionsw" (x). This number of constraints does
not seem enough to reduog¢n—1)/2 functionsw (X) to N Therefore, it has a solution=1/yw. Introducing, as in Sec.
functions Pi(x). Therefore, the system@All) and (A12) | some curvilinear coordinates in the-phase space,
form a wider class than the class of Hamiltonian flows ongs« n1 h=H(x,y), ¢*=¢%(x), and denoting byA the
symplectic manifolds. Note that Hamiltonian systems onjscobian of transformatiog,h—x : dx=Aa¢dh, we get
symplectic manifolds can be put locally in the standard formy,e invariant measure on the energy surfacAs(.

(2.16 and (2.18 by a coordinate transformation, because Eq, any functione(x), the time average over the trajec-
any differential form P,;dx!+---+P,dx" (n iseven,n tory,

=2k) can be transformed locally f,dg*+ - - - + p,dg* by
a change of coordinates.

We are going to show that Eq6A12) yield the classical 1
relations of equilibrium thermodynamics. (@)= lim 5[() e(x(t))dt,
Consider the stationary Liouville equation b
17 . oH . .
- w”(X)—.p) =0. can be computed by means of integration over the energy
X' ax! surface,
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f ppAd{
()= —— (A15)

ijdé

Equation(A15) can be written also in the form

<¢>=J <pp5(E—H(x,y))dx/ Jp5(E—H(X,Y))dX-
(A16)

The denominator in EqA16) can be expressed in terms of

an invariant phase volume,

I(Ey)= f pOE—H(x,y))dx.
We have

ol (E,y)

JE I'e.

f po(E—H(X,y))dx=
Let us introduce also the “standard” phase volume
F(E,y)=f A(E—H(x,y))dx
and the “average value” op
pEY- | pe(E—H<x,y>)dx/ | oE-rocynax

_TEy
FEy)

Then the following relation holds:

o . oH T

BX'—. 25}A—.

pox I'e
Indeed,

Exiﬁ —jxiﬁé(E—H X ))dx/f‘
L A (x.y .

=—J xi—&e(E_H.(X'y))dx/ I'e

ox!

X .
=f —.G(E—H(x,y))dx/ I'e
ox!

(A17)

(A18)

Multiplying Eq. (A18) by p, we get Eq.(A17).

We interpret Eq(A17) as an equipartition law, and thus

we introduce temperature by the formula

PHYSICAL REVIEW E68, 066126 (2003

T= r (A19)
Ie

This formula is consistent with the thermodynamic relation

1 9S(Ey)
T T 6E (A20)

if we introduce entropy as a logarithm of the invariant phase
volume,

S(E,y)=InT'(E,y),

and identify the value oH(x,y) with energyE.
Then the thermodynamic constitutive equation for the
forces,(dH/d9y*), is also true,

<ﬁ> =—TaS(E’y). (A22)
ayH ayH

(A21)

It follows from Eqgs.(A16), (A20), and(A21) that
oH JoH .
< >=f p— S(E—H(x,y))dx/T'g
ay*

ayr
:_f pae(E—H(x,y))dX/ P
ay*

ol /ol

F)y# JE

aS

ayr

It remains to show tha$ is an adiabatic invariant of the
system. Consider the energy equation

dE_ oH ay*

Energy is a slow variable becaudg#/dt are small. Averag-
ing Eq. (A23) over time, we have

dE_ dH \ gy* A24
dt~\ e/ Tt (29
From Egs.(A22) and (A24),

dE_ 1 4S gy*
dt =~ 9SIGE gy» dt

or

dSE =0
a ( ,y)_
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as claimed. This completes the justification of the statement$his allows one to introduce a characteristic time of mixing

made.

APPENDIX B: SOME ESTIMATES

System(3.32) is ergodic by our assumption. Therefore,

for any functione(¢) and almost all,

10 - dz
;J()@(X(t,O,{))dtT(@)—f@(é)r :

il
]t

If (¢)=0, then the integral

e(x(1;0,0))dt —— (¢)= f@(é)—-

t/ —»—

t ~ ~
|<<p>=f0<p(x<t;o,z>>dt

may tend to infinity ag—oc. It must grow, however, more
slowly thant, so that the ratid (¢)/t tends to zero.

We need this integral, in fact, to go to zero as« at
least for functionsp=H', and for most initial points. The

of functions¢ and ¢, for example, as

”"’:f:“wf'd“\/f ﬁi)?—if «ﬂg)?—i.

To obtain estimates justifying our approximations, the fol-
lowing two conditions are, perhaps, sufficient.
(i) There is a finite correlation time

T:Suppyllje L27¢l// .

(ii) The correlation timer is much smaller than the char-
acteristic time of change ab(t,y) int.

We give here just some rough estimates. etndAy be
characteristic scales for functieh(t,y) with respect td and
y, respectively, andH ,~a. Then from Eg.(3.34, &'
~rad®(t,y)/dy, and the term neglected in E(B.28 has
the order

ab(ty) 1

gy Ay

, aD(ty)

2
T 3y

1
"Iy

assumption of mixing brlngs us closer to such a feature: foiThis is much smaller than the kept tefnvhich is of order

a mixing system, the following property hol{i25]: for any
square integrable functions({) and ¢({),

df
f e (GO D —— <P(§)—f l/f(()—

ast— *+ o

If average values o and s are zero, then
dg
I<P¢(t)=f <P(x(t;0,§))¢/(§)F—E—>0 ast—=*o.
We accept a stricter condition of mixing,

f [1,,(D]dt s finite.
0

aod(t,y)lay] if
Ta<<Ay.

The functionf(t,y) [and, thus,®(t,y)], as is seen from
Fokker-Planck’s equation, changes on sca@lgsand 6 such
that

Ay
7"’61 T.

Thus, our approximation is valid if

T<1
5 .
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