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Stochastically evolving networks
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We discuss a class of models for the evolution of networks in which new nodes are recruited into the
network at random times, and links between existing nodes that are not yet directly connected may also form
at random times. The class contains both models that produce “small-world” networks and less tightly linked
models. We produce both trees, appropriate in certain biological applications, and networks in which closed
loops can appear, which model communication networks and networks of human sexual interactions. One of
our models is closely related to random recursive trees, and some exact results known in that context can be
exploited. The other models are more subtle and difficult to analyze. Our analysis includes a number of exact
results for moments, correlations, and distributions of coordination number and network size. We report
simulations and also discuss some mean-field approximations. If the system has evolved for a long time and the
state of a random nodevhich thus has a random gge observed, power-law distributions for properties of the
system arise in some of these models.
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[. INTRODUCTION ity. In Sec. Il, we consider a growing tree, based on the birth
process of Yule. We recover the limiting coordination-
The rapidly increasing volume of theoretical work on number distribution 2% (ke N) long known as a rigorous
models of growing networks parallels the continuing explo-result for the “random recursive tree” discrete-time analog
sive growth of the communication networks that the modelg8], and exploiting the relation between Yule trees and ran-
purport to describ¢l]. Evolving network models also have dom recursive treef9—11] leads to additional exact results
important applications in biology and social phenomgtjla  for Yule trees.
The reviews of Albert and Barabig 3] and Dorogovtsev and Yule trees lack the small-world property of many ob-
Mendes[4] collect many applications of evolving network served networks. In Sec. IlI, we discuss a stochastic model in
models, and outline the principal approaches to date in théhe spirit of the discrete-time models of Szyrskin[12,13
formulation and analysis of such models. There is particulannd Albert and Baralsa[3], introduced by Reed and Hughes
interest in “scale-free” networks for which many properties [14], in which nodes of high coordination number in a grow-
have power-law distributions, and in networks that possesig tree are favored to recruit new nodes into the network,
the “small-world” property that internode distances are typi- and an asymptotic power-law distribution of coordination
cally small. number (long known[12] and periodically rediscovered in
In this paper, we formulate a class of network models ashe discrete contexis rigorously derived.
well-defined stochastically evolving systems, and we are In Sec. IV, we consider the extensions of the models of
able to exhibit a number of exact results on the time evoluSecs. Il and Il to incorporate cross-linking. Here the analy-
tion of the number of nodes in the network, the coordinationsis becomes more difficult, but some analytic results are still
number[5] of a chosen node, and other observable networlavailable. Mean-field arguments suggest that for one of the
properties. In addition, computer simulations and meancross-linked models, the mean coordination number is as-
field-type argumentf5] are used to study interesting quanti- ymptotically proportional to the network size, while for the
ties that do not seem easily captured by analytic argumentsther model mean coordination number grows as the square
Some of the results of Secs. Il and Ill have been previouslyoot of network size. The first of these mean-field results is
obtained in analogous discrete-step modgl$ but the also established rigorously, while the second is shown in
continuous-time models discussed here are especially suitegkcellent agreement with simulation.
to the analysis by techniques with which physicists may be Several different types of observation of evolving net-
more familiar and these techniques are found useful for thevorks need to be carefully distinguished. One may consider
more subtle models of Sec. IV. the number of nodes in the network, or the coordination
The models are discussed in order of increasing complexaumber of an individualixednode in the network, as a func-
tion of time, and many interesting observable properties ex-
hibit exponential growth or decay. For the second type of
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networks. As the age of the randomly chosen node is itselfjuestions about the trees that have no natural analog in the
random, this has an influence on the coordination number adriginal birth process.
the node and, for some of the models, power-law distribu- Since we shall answer some questions about this process
tions for the coordination number result. For the third type ofusing simulation, we observe that apart from the efficient
observation, the whole network is inspected edrrdom time  choice of a data structure to store information of inte(sse
with a given probability density function, and the variation Appendix A), simulation is straightforward. The waiting-
of node age affects the properties of the system. This modetime density for a given node next to give birth @ M.
the structure of a network at the instant before its death duach time any node gives birth, we draw exponentially dis-
to a single catastrophic random disaster. tributed random numbers to determine when that node next
Where we find power laws, these result from the compegives birth, and when its newly created offspring next gives
tition between exponential growth of the structural proper-birth. We can therefore easily create the complete time his-
ties, and exponential decay of the waiting-time density fortory of a realization of the process, and collect data as a
the random observation or for the probability density func-function of time, or as a function of the sizeumber of
tion for node age, paralleling similar observations of two ofnode$ in the network.
the authors in a number of other contexts in taxonomy of Denote the number of nodes in the network at tinzy
living [15] and extinc{16] genera, gene and protein family N(t) and the number connected to a specific néch! it
size distributiong17], surname distributiongl8], and other node * by K(t). Let py (t) =P{K(t)=k,N(t)=n}, with
areag19], and in a similar spirit to an explanation proposedp, ,(t)=0 for n<0. Then
by Fermi for the energy spectrum of cosmic rag6]. Some
remarks on possible applications of the network growth Pkn(t+h)=py_1p-1(H)NN+ Py -1 ()Nh(N—2)
models in the present paper will be found in Sec. V.
The distribution of shortest path lengths between nodes in +P,n()[1=Nhn]+o(h). ey

random networks is of considerable interest, and we includ(?_h first th ; the riaht-hand sid tf
some mean-field predictions for our two treelike networks, . € first three terms on the right-hand side account for one
birth at node *, one birth at some node other than node *,

and simulation results for all networks we have studied. A . ; S .
related quantity is the “Wiener index21], which is the sum and no births at all in the time interval,{ + h], respectively.

of the shortest connecting path lengths for all pairs of node&\l Other events have probabilities that argh) ash—0 and
in the network, and we include some results for this quantitySC &€ negligible compared to the three terms exhibited. Sub-

We adopt the following notational conventions: random r2ctingPyn(t) from both sides of Eq(1), dividing byh, and
variables are capitalized, with their generic values denotef®king the limith—0, we obtain the differential-difference
by corresponding lowercase letters; angle brackets denofeéfluation
expectation; and if a subscripted quantity is summed over
one of its subscripts, that subscript is replaced by a bullet,
€.0., 8 .n=2m3 mn- IN @ number of figures, we display
predicted distributions of integer-valued random variables.
For clarity in the comparison between predictions and simu- The equivalent partial differential equation for the gener-
lation results, the predicted distributions are usually interpoating functionP(K,g“,t)ZEE:OEﬁzlpk,n(t)Kkg“” is solved in
lated to produce continuous curves. These interpolations ardppendix B 1, and from that solution we are able to show
made by analytic continuations of the formulas for the prethat K(t) and N(t) are correlated for all finite times but
dicted distributions, for example, replacitdy by I'(k+1), that the correlation decays to zerotase. We are also able
and all special function calculations are performed usingo obtain exact formulas for the conditional mean and vari-
MATHEMATICA [22]. Standard deviations of simulation data ance ofK(t) for a given network size, from which follow the
are always computed as the standard deviation of the empirasymptotic formulas
cal distribution, which differs only slightly for the sample
sizes considered from the standard deviations that would be (K()|IN(t)=n)=Inn+ko— gs(ng) +O(n~ 1Y), (3)
obtained from unbiased estimates of the variance.

GiPen=APk-1n-1t AN =2)Pkn-1=ANPn. (2

var{K(t)[N(t)=n}=Inn—(no) — ' (ng) + O(n~ 1),
Il. YULE TREES @

Suppose there ame nodes in the network, with varying Where the digamma functiog(z) =I''(2)/T'(2) is the loga-
coordination number5]. We allow any node to connect to fithmic derivative of the usudl” function. N _
an external isolated node, thereby bringing it into the net- Ve are able obtain more directly several quantities of in-
work. For the present, we make this phenomenon indepeﬁereSt that also come from the full analy_s,ls of.Ap_pen_dlx B1.
dent of the current coordination number of the node, and wé& We sum overk we find that the marginal distribution of
assume that the probability of a given node bringing a newN(t), P n(t) = Z_oPk,n(t) =PHN(t) =n}, satisfies the evo-
node into the network in the time interval,(+h] is Ah  lution equation
+o(h) ash—0. This process is simply a standard linear
birth procesgYule procesy so that we shall call the result- i —\(n—1) \n )
ing time-evolving trees “Yule trees,” but we shall ask some atPen= M Pen-1 Pein
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of the standard Yule procef23] with paramete. It follows
from standard resultsan easy proof uses generating func-
tions) that N(t) has a negative binomial distribution with
parameters, ande '

(n_l)!efnoht(l_ef)\t)nfno
(No—1)!(n—nyp)!

p-,n(t):

(N(t))=ngeM, vafN(t)}=nger(eM-1). (7)

In particular, withng=1 we obtain the geometric distribu-
tion

p.h()=e M1-e ™"t for n=12,.... (8

We record for later use the result that foy=1,
1 e M g (1—e*H"  \te™ o
NO/ 1men . 1en @

If we sum ovem in Eqg. (2), we find that the marginal distri-
bution py .(t) ==, _ 1Pk n(t) =PHK(t) =k} of K(t) satisfies
the evolution equation

d

mpk,-:)\pk—l,-_)\pk,-- (10
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10
coordination number

FIG. 1. For Yule treegSec. I) we compare in a log-linear plot
the limiting coordination-number distribution 2 (solid line) with
the distribution obtained from one realization of a tree of 10000
nodes obtained att~12.35.

B e Mk 1
P{K(t)=k(random nodg = - W
1 t A7)k e dr
+<1_ N(t)> fo (1—e My(k—1)! 13
Using Eq.(9) we deduce that
limPH{K(t)=k (random nodg =2 (14)

t—o0

In Fig. 1 we compare the limiting coordination-number dis-
tribution 27 with one realization of a network of 10000
nodes. The fit is excellent except for the largest coordination
numbers encountered. For the limiting distribution the mean

This equation governs the Poisson process, and so has sofpordination number is exactly 2, and half of all nodes have

tion corresponding to the initial conditidd(0)=0 given by
pk,.(t)=e‘“()\t)k/k! for k=0,1,2 . ... This is the solution

appropriate for the unique initial node of the system, which

we shall call the “primal node.” For any other node, joined
to the network at time, , we haveK(t,)=1, and we find
that

Pi.-() = MBI (t—t,) 1Y (k—1)! (11)

for ke N andt=t, .

a single link. In the discrete-time context, the limiting distri-
bution (14) was proved in 1987 by Szymski [8], who also
notes that it was known earlier, and has been independently
obtained in a nonrigorous manner more recently by Krapiv-
sky et al. [25].

In the present model, each node has a unique path back to
the primal node from which the entire tree has grown. We
may think of all nodes with the same distance back to the
primal node as lying on the same ring when the tree is drawn
so that its nodes lie on concentric rings, and we refer to the
number of links between a given node and the primal node as

Feigin[24] has shown that for a small number of stochas-the “ring number”r. We shall derive a mean-field estimate
tic processes that create elements at random times and pd#hat is, an estimate neglecting fluctuatipf] of the num-

sess the “order statistics property,” the lifetime distribution

ber of nodes with ring numberat timet, and we denote this

of a random element can be simply calculated. In particularestimate byn(r,t). We have, in a mean-field treatment,
for the Yule process that underlies the present model, the

lifetime probability density function for a nod@ther than
the primal node from which the entire network was crepted
is given by

)\e—)\T

f(r)= P

O=r7=t,

12

if the current age of the whole system is Hence the

Jd
En(r,t)z)\n(r—l,t), r=1, (15

with n(r,0)=0 for r=1, andn(0;t)=1 for all t. The obvi-
ous generating function solution shows that
n(r,t)=(\t)"/r!, (16

and the total number of nodes present at tirisepredicted to
be n,=3,(\t)"/r1=eM. This agrees with the exact result

coordination-number distribution of a randomly chosen nodehat(N(t))=e' noted above. We therefore predict that for a

is given by

randomly chosen node,
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0.15 - that even after conditioning on a fixed large network size,
there can be large fluctuations in the coordination numbers of
older nodegcorresponding td&k,=1 andng smal.

We can extend the mean-field theory to include the coor-
dination number of nodes. If we let(k,r,t) denote the
mean-field estimate of the number of nodes with coordina-
tion numberk and ring number, we have

0.10

0.05

- d
0 5 10 15 20 an(k,r,t)~)\n(k—1,r,t)—)\n(k,r,t)

ring number

FIG. 2. For Yule treegSec. l), we compare the ring-number roe
distribution predicted by the mean-field thedfy7), shown as the 0 2 (k' r=1p). (19
solid line, with simulations, showing meamne standard deviation.
The data correspond to 100 realizations stoppexdtat9.5, when
the mean network size is approximately 11201 notandard We solve this equation using generating functions in Appen-
deviation~13 06J). The dotted line is the exact ring-number distri- dix C 1 and deduce that

k'=1

bution (23).
Pr{ring number=r}=e M(\t)"/r!, 17 i n(kr.t)
“o [N}
a Poisson distribution with meaxt. In Fig. 2 we compare im—————=27X (20
simulation results with predictioi17). We find that for a H‘”z E n(k,r,t)
fixed timet, the realization-to-realization fluctuations in the k=0r=0 v

ring-number distribution are large and, in particular, the ef-
fects of those realizations in which the number of nodes gen-
erated is comparatively small spoils the performance of th&é0 the mean-field theory produces the correct limiting
mean-field theory. coordination-number distributiofi4).

From the mean-field predictiofl7), we can infer a cor- If we suppress the explicit time dependence and study the
responding mean-field prediction for the ring number at astructure of the tree that grows SOler in terms of the number
given network size by writing\t=Inn,. We arrive at the Of nodes present at a given tinfehat is, we condition on

prediction that N;=n,), then the problem reduces to that of the “random
recursive tree,” for which several exact results are known.
Pr{ring numberr}=(Inn,)"/(n;s!), (18) From work of Szymaski[8] it is known that for a randomly

chosen node the ring-number distribution has the generating
with the mean ring number being given byrin We have function
compared prediction(18) with statistics gathered for net-
works of fixed size in Fig. 3. The fluctuations are greatly It p)
reduced, and the mean-field calculation closely tracks the : _ r_ netp
mean found in simulations. Note however that E4).shows Zo Pr{ring number=r|N,=n}p I'(ni+ LI (p+1)
(21)

0.15

and P{ring number=r|N;=n,} can be expressed in terms of
0.10 - Stirling numbers. The mean ring number, found by differen-
tiation of Eq.(22), is

0.05
p(ni+1)—(2)=In(n+1)+1— y+0O(n; H~Inny,

0 5 10 15 20 where is the digamma function as before apds Euler’s
ring number constant, so that the error in the mean-field prediction of the

FIG. 3. For Yule treegSec. I), we compare the ring-number M€an ring number at given network singis O(1) asn,
distribution predicted by the mean-field thedg), shown as the —%-
solid line, with simulations, showing mezmwne standard deviation. For the case of a time-evolving tree network grown from
The data correspond to 100 realizations, all stopped when the ne single initial node, we know the distribution of the number
work size is exactly 10 000 nodes i mean value~10.03, with  of nodesN, from Eq. (8). Thus we can determine the gener-
standard deviatior=1.30). ating function for the ring-number distribution at tinte
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ZO Pr{ring number=r}p’ 010
r:
:2 F(n+p) e—}\t(l_e—)\t)n—l 0.05-]
S T+ 1T (p+1)
e M Z T(n+tp+1l) (1-e M }
- =\t T p—|—1 z'dz r??"?'r‘||||||||||||||||||||r‘|NT
1—e M=o n'I(p+1) Jo 0 5 10 15 20 25
node separation
e M [y gt
= 7)\4 (1-2) 1 rdz FIG. 4. For Yule treegSec. I), we compare the internode dis-
1-e 0 tance distribution predicted by mean-field arguments with simula-
ont . r+1 s tions (showing meartone standard deviati¢nThe data correspond
_ e -1 _ z (D™ "p (22) to 100 realizations, all stopped when the network size is exactly
p(eM=1) =0 (eM-1)(r+1)! 10000 nodes Xt mean value~10.03, with standard deviation
~1.30. The solid curve is the simple mean-field thed¢®g). The
and so we have the exact ring-number distribution dotted curve is the improved mean-field the¢dp).
r+1
Pr{ring number=r} = (AD) (23) Pr{path length=1}~e~2M(2xt)'/11. (25

(eM—1)(r+1)!

For an estimate written in terms of the number of nodes in
the network rather than time, we set e for the number of
nodes, and deduce that

The exact mean ring number, found by differentiation of Eq.
(22), is At(1—e M)"1—1~\t ast—x. Mean-field theory
predicted the mean ring numbeat for all t>0. We have
plotted the exact distributio(23) as the dotted line in Fig. 2.

It may be emphasized that this exact distribution is calcu- Pr{path length= I}~ (2 Inny)'/(nfI1). (26)
lated over all tree realizations. It reproduces well the simu-

lation averages, but the large standard deviations of the simyyhen prediction(25) is compared against simulations at

lation data reflect the cht that this exact d.istribution MaYfixed time, it performs quite poorly. The fixed size prediction
poorly capture the relative abundance of ring numbers inyg) 4oes somewhat better, but is still disappointisge Fig.
particular realizations at a given time of the tlme-evolvmg4, where the solid curve is the simple mean-field thgory
randon’_n tree. The coyariance of the numbers of node; for tWo' The reason for the failure of the mean-field theory to cap-
given ring numbers is known for the random recursive r€gre the path-length distribution comes from the typical
[11], so that.exa.lct results f‘?f the covariance of the "NG-3symmetry of individual realizations of the tree. Each pair of
number distribution for our time-evolving problem should distinct nodes is joined by a unique path, and if we regard the
also be able to be deduced, though we do not pursue thig,qes themselves as belonging to the path, there is a well-
here. ! ) defined smallest ring number encountered on the path. In

In the mean-field treatmeni(1t) —c ast—c, thatis, Tapje | we show estimates from simulation of the probabil-
the number of different branches of the tree that join at the;ty &, that two randomly chosen distinct nodes haver the

primal node diverges. Mean-field theory cannot resolve thgmajiest ring number encountered on the path that joins
sizes of these branches. It is temptitigough ill-advised, 8 yhem The data suggest that in an appropriate limit of long

discussed beloyto propose on symmetry grounds that the e or large network sizeg,—2 "1, but we have not

branches are of comparable size, and if this is so, the prolijeen, ghie to prove this. The probability that the path linking

ability that the(unique shortest path joining an arbitrary pair 4 arpitrarily chosen nodes passes through the primal node
of nodes with ring numbensands does not pass through the 5 5rqnd 0.5, whereas in the mean-field argument this prob-

primal node decays to zero, and we may estimate the pmk%{bility should converge to 1 as time progresses.

ability distribution function for the shortest path by assuming We shall give a simple argument to demonstrate the asym-
that the nodes inhabit different branches of the tree that jo"?netry. Consider that the model of this section started not

at the primal node. Hence only with the primal node but with the primal node O and its
Pr{path length= 1} first daughter A present at time= O At this instant,_ beca_u_se
of the lack of memory inherent in the exponential waiting-
I time density for births, the nodes O and A become equivalent
~ > Prring number=1 —r}Prring numberr} and independent and their number of offspring will in each
r=0 case be~eM ast—o, so the first daughter has as descen-
(24) dents half the nodes of the tree. This conclusion can also be
obtained by a more formal rigorous argument, based on gen-
and evaluating the sum on the right-hand side we find that irrating function$26]. This shows that individual realizations
the simplest mean-field treatment, of the process typically exhibit significant asymmetry when
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TABLE I. For Yule trees(Sec. I), we show estimates of the This leads to a prediction of the internode distance distribu-
probability ¢, that the smallest ring number encountered on thetion, but it is inconveniently restricted to networks of size
unique path joining two rﬂ]domly chosen distinct nodes. i¥he 2™ We recall that Lerch's transcendedt(z,s,a) and the

results(experimental meag, and standard deviatiprmare obtained polylogarithm Li,(z) are defined27] by
from 100 simulations of a network of 10 000 nodes.

- z A
r b, Standard deviation =~ 2'*1g @(Z,S,a)=k20 (a+k)s, Lim(z)=k2l ﬁ
0 5.03x 107! 2.03x10°! 1.006
1 2 46x 1071 1.47x 1071 0.983 respectively. We now see that
2 1.23x10°* 8.10x 102 0.982 m—1 [ me1
3 6.57x 102 5.40x 102 1.051 S 2kl ()= (In4) > 5
4 3.23x10°2 2.68x10 2 1.035 k=1 m I =1 ok
5 1.47<10°2 1.30x10°2 0.943 |
6 811102 7.31x10°3 1.038 _(In4) [ i (E)_q) 1 m)
7 3.76x10°° 3.28<10°3 0.963 TR V) 20 )
—3 —3
8 1.94 10_4 1.82¢ 10_4 0.992 Since Lerch’s transcendefit(z,s,a) is defined for all posi-
9 9.69<10 8.31X10 0.992 : . .
10 4.45¢ 104 3.78¢ 10~ 0.911 tive yalu_es ofa, we are able to deduc_e a predmte:d_ internode
., ., distribution for arbitrary network sizen by writing m
11 2.06x10 1.65x 10 0.842 —log,n, giving
12 1.01x10°4 1.17x10°4 0.825 20
13 4.56<10°° 5.40<10°° 0.748 28,1 (Ing)
14 1.89¢10°5 2.58x10°° 0.619 Pripath length= 1}~ —=+ ——
15 7.67x10°° 1.13x10°° 0.502 '
16 3.8710°°© 9.01x10°® 0.507 (1 1
17 1.35¢10°° 3.24x10°° 0.355 X L"(E)_Q(E'_"'OQZ”) :
18 4.83<10°7 1.51x 1078 0.253
19 1.50< 1077 4.98x10°7 0.157 (30
20 5.16<10°° 2.21x10°’ 0.108 This improved internode distance distribution is shown as
21 1.92<10°® 1.00x 10"’ 0.081 the dotted curve in Fig. 4. The major failure of the simpler
22 6.20<10°° 3.73x10°°8 0.052 mean-field theory has been effectively repaired.
23 8.00< 10 10 6.27x10°° 0.013 The average distance between pairs of nodes in a random

recursive tree has been discussed by Mp@nand Dobrow
) ) o ~[28]. The related problem of the determination of the Wiener
prediction performs so poorly in comparison to simulationsinternode distances, has been addressed by Neinjager

in Fig. 4. , _ ~ Where H,==]_,k™ ! is the nth harmonic number, it is
We have been able to derive an improved mean-field,nqwn [29] that

theory. We consider network of sizé"and we writeg (1)

for the probability that for an arbitrarily chosen pair of nodes (W,)=n?H,—2n?+nH,. (3D
the separation is. The corresponding mean-field prediction
is, from Eq.(26), As H,=Inn+y+0(1) forn—oo, wherevyis Euler’s constant,

o | we have the exact asymptotic form

e2(D)~(mlIn4)'/(22M1). (27

" (W(n))=n2(Inn+ y—2)+o(n?). (32)
Assuming equivalence of the independent branches from O ) ) )
and A, we write We can use our naive mean-field theory to estimate the

Wiener index
eme1()=3Lem()+em(D]. (28) -

1 - (D" (AS
The two terms on the right correspond to cases where the W)~ 2 Zo SZO (r+s) rt s_!_)\te - 33
nodes are on separate branches from the primal nsde
each branch has approximately! 2odes—this is why we As noted above, in the mean-field approximation the total
usee? (1) rather thang®,, ,(1)], or on the same branch. The number of nodes ia=¢€', so we predict that

initial condition for the difference equation ig,(1)=4; ,,

~n2
and it is easy to deduce the exact solution W(n)~nInn. (34)
m-1 The mean-field prediction thus agrees with the exact re-
om()= _( > 2% +24 1)- (29)  sult to leading order, but the slow growth of the logarithm
2M\ k=1 ' ensures that for quite large values othe mean-field esti-
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forn=1,2,3.... Inparticular, for death at an exponentially
« distributed time, with W (t)=ve ", we find (cf. Refs.
% [15,19)
2
5 ; vI'(vIN+1D)T(n)  const
8 5 PNT=n}= ~
= AT (n+vIN+1) i+l
ﬁ' asn—o. We can also calculate the ring-number distribution
10000 20000 40000 50000 for a randomly killgd tree from the exact distributio®3). .
number of nodes Let RT denote the ring number of a randomly chosen node in

) . a randomly killed tree. Then
FIG. 5. For Yule treegSec. ), we compare the Wiener index y

predicted by Eq(34) with simulations(ten realizations We show

the mean Wiener indefW(n)) from simulation-one standard de- Pr{RJr: r}=
viation, scaled againsnz. The solid curve is the mean-field esti-

mateW(n)/n?~In n, which is asymptotically correct as—c, but

performs poorly for the range af values for which we have simu- For death at an exponentially distributed time, wibh(t)
lation data. The dotted line is the improved approximation=ype™ ", the integral can be evaluated exactly in terms of the
(W(n))/n*~Inn+y—2 based on the exact asymptotic form of Hurwitz zeta functior{31]

(W(n)). Both approximations perform much better than the rigor-

= P(t)(at) Tt idt
o (eM—1)(r+1)1°

ous lower boundW(n)/n?=(1—-n"%)~1 and the rigorous upper i 1 1 = xS le(l-axgx

boundW(n)/n?=n(1—n"2)/6~n/6 known for general trees. s,a)= = f ,
(v ( ) g {(s.a) n=0 (n+a)> I'(s)Jo e—1

mate differs significantly from the exact result. In Fig. 5 we 5304 we find that

compare the mean-field predictiam™ 2(W(n))=~Inn with

the better approximation™%(W(n))~ (In n+y—2) based on v v vIN

the exact asymptotic form and simulation data. It is known in P{R'=r}= Xg r+ 2’X+ o

general that for an arbitrary tree nhodes, the Wiener index (1+v/N)

W(n) satisfies the inequalityn— 1)2><W(n)<n(n®—1)/6,
with equality if and only if the tree is either a star or a linear
chain, respectively30], but neither of these bounds is use-
fully close to the exact result fgiw(n)). One could derive lIl. REED-HUGHES TREES
an improved mean-field estimate of the expected Wiener in-
dex using Eq(30), but as we have the exact value already,
we have not pursued this.

asr—o,

In 1985, Szymaski [12] considered a discrete-time ran-
domly growing tree for which the probability of selection of
a node as the next node to give birth is proportional to the
fode’s coordination number. In Theorem 5 of his paper he
proves a result which implies, but is slightly stronger than,
the statement that the probability that a randomly chosen
node has coordination numbkrconverges as the tree size

calculated exactly, using Eq&3) and (31). We find after a
little algebra that

* grows to 4fk(k+1)(k+2)]. Coordination-number depen-
(W(t))= >, e M(1—e ™" L(n?H, —2n%+nH,) dent growth probabilities, or mechanisms equivalent to this
n=1 differently expressed, have been made popular by the work
—2(\t+1)e?M—eM, (35) of Albert and Barabsi [32] and Dorogovtsev and Mendes

[33] and co-authors and generalized in various ways, but the
paper of Szymaski [12] has received little recognition.
Note that although the naive mean-field theory produced the We shall consider a continuous-time tree model that fa-
correct asymptotic form for the average Wiener index as aors birth from nodes of high coordination number and leads
function of the number of nodes present, it is more seriouslyo scale-free networks. In this specific form the model is that
deficient for the time evolution. introduced by Reed and Hugh¢84]. It is essentially a
To conclude our discussion of this simplest model of acontinuous-time analog of Szynmski's problem, but alsgas
growing network, note that if the growing network is killed in our discussion of Yule tre¢¢he Reed-Hughes formulation
at a random timeT after the creation of the primal node, addresses the joint time evolution of the coordination num-
where T has probability density functio’(t), then from  ber of a tagged node and the overall network size.
Eq. (8) the network sizeN™ at death has the probability dis- For a node in the network, with coordination numhkgeat
tribution timet, suppose that the probability of it bringing a new node
into the network in the time intervaltt+h] is Akh
) +0o(h) ash—0. Thus the well-connected nodes are much
Pr{NT=n}= jﬁ\lf(t)e‘“(l—e‘“)”‘ldt more likely to establish a new connection than the less well-
0 connected nodes. As in Sec. Il, we denote the number of
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nodes in the network at timeby N(t) and the number con- while (1/N(t))~2Ate” 2! ast—c,
nected to a specific nod@ode *, say by K(t). Let p, (t) Equation(40) is the evolution equation of a nonhomoge-
=Pr{K(t)=k,N(t)=n}. By similar arguments to those used neous birth process with
to derive Eq.(1), we find that
Prbirthin (t,t+h]IN(t)=n)}=2\(n—1). (43

Pin(t+h)=Py-1n-2(OM K= 1)h+pk,n—1(t))‘hi; ki From this it follows that the number of new nodds(t)
=N(t) —ng, connected in (@] is a birth process with immi-
gration and has a negative binomial distribution. Such a pro-
cess is an “order statistic” proce$24], which means that
the times of births since the start of the process have the
When N(t)=n, we know that=" k;=2n—2, since the Same joint_distribution as tho_se of the _order statistics of a
system evolves from one in which!"_,k;=2 whenn=2, sample of independent, identically distributed random vari-

and the addition of each new node to the network increase®Ples: in this case of random variables with a truncated
the sum over coordination numbers of all nodes by 2. In th&Xponential distribution, that is, with probability density
limit h—0, the recurrence relation(36) yields the function

differential-difference equation

+ pk,n(t)< 1-\h2) k| +o(h). (36)

2)\6*2)\7'
f(T)Zm, o< r<t, (44)

d
&pk,n:)\(k_1)pk—l,n—1+)\(2n_4_k)pk,n—l

wheret is the elapsed time since the founding of the net-
work. By similar arguments to those in Sec. Il, we find that
ghe limiting distribution of the coordination number of an
arbitrary node is

—M(2n=2)py . (37)

We shall extract some results of interest and compar
them with simulations. If a node currently has coordination
numberk, then its waiting-time density for the next birth,
that is, the creation of its next link, iske *'. In all other
respects, the simulation of this model is identical to the Yule
tree model of Sec. Il. o Conrnn kel

Summing Eg.(37) over n (from 1 to <) yields a = Jo 2 e e M(1-e M)t dr
differential-difference equation for the marginal distribution
Pic(1) = Znpyn(t) Of K(1):

lim P{K(t)=k(random nodg

t—oo

1
= f 2x3(1—x)* 1dx
0

d
apk,.:)\(k—l)pk,lv.—)\kpky.. (38)

_2r3)r(k) 4

4
F(k+3)  kkiDk+2) @ W9

This is the equation of a Yule process with paramatécf.
Sec. Il, where we found that for the simpler model of that . o )
section, it isN(t) that evolves as a Yule procds¥husK(t) ~ an asymptotic power-law distribution, as found in the
has a negative binomial distribution with parametégs discrete-time analog of the Reed-Hughes tree by Szgkian
=K(0) ande ™. In particular, withk,=1 this reduces to a [12] and subsequent authof85]. We compare limit(45)

geometric distribution with with a simulation in Fig. 6. Note that
Pr.()=e Ma1—e )1 for k=1,2,.... (39 , - 4
’ lim (K(t)|random nod — =2,
Hw< (0] )Fg‘l (k+1)(k+2)

Similarly by summing Eq(37) from k from 1 to o, we

obtain an evolution equation for the marginal distribution We h dqt q h its without havi
Do n(t) = ZPra(t) Of N(): e have managed to produce these results without having

to determine the joint distributiopy (). In Appendix B 2
d we obtain the exact solution for the generating function for
ap.,n=2)\(n—2)p.,n71—Zk(n—l)p-,n- (400 py (1), and we show that the correlation coefficient for the
number of nodes present and the coordination number of a

It is easily shown by generating functions that the solution ofSPecified starting node does not decay to zero in the long-

the system corresponding to the initial conditig(0)=2 is time limit. This is another way in which the variable birth-
rate model differs from the constant birth-rate Yule tree

p. n(t)=e M(1—e 2AHyn-2 (41 model of Sec. Il.
' By generalizing the ideas of Sec. Il, we can derive a
and consequently that for &0, mean-field prediction of the ring-number distribution. If we

denote the number of nodes with ring numbeand coordi-
(N(t))=e?M+1, vafN(t)}=e"—e, (42 nation numbek at timet by n(k,r,t), we have
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coordination number
FIG. 6. For the Reed-Hughes tree model of Sec. Ill, where
growth rates depend on coordination number, we compare in a log- /
linear plot the limiting coordination-number distribution[ K{k /
+1)(k+2)] predicted by Eq(45), shown as the curve, with the 0
distribution obtained from one realization of a tree of 10 000 nodes ring number

(At=7.97). In this realization all coordination numbedcsvith 1
<k<27 arose, but beyond there gaps appear. There were unique FIG. 7. For the Reed-Hughes tree model of Sec. Ill, we show

nodes with coordination numbers 220 and 209; the next largeshe ring-number distribution obtained from 100 realizations at a
coordination number was 76. fixed stopping time\t=>5.5, corresponding to a mean network size

~15400 and standard deviatiea29 500. The plotted data show
d the mean* one standard deviation. The continuous curve shows
—n(k,r,t)~N(k—1)n(k—1r,t)—rkn(k,r,t) the mean-field predictiof61), while the broken curve corresponds
dt to mean-field theory with the time adjusted so that the mean-field
network size corresponds to the experimental mean network size.
+81 2 NK'n(k',r—1p). (46)
k=1 Thus the mean-field coordination-number distribution
>.n(k,r,t)/n, converges at—« to the same limit(45) as
We seek the solution, given that we start with one link andthe earlier exact calculation.

two nodes:n(k,r,0)=(5; o+ ;1) S 1. In Appendix C2 we Although we do not have a rigorous result for the distri-
show that bution over ring numbers, we can easily extract a mean-field
prediction. If we setx=1 in Eq.(47) and extract the coeffi-

t Ap(1+p) ket P r cient of p" we deduce that

> > n(k,r,t)f«"pr=f
k=0 r=0

0o k+eMTN(1—k)
> onkr,=eMt) Y (r—1)!, r=1, (50
(I+p)x k
— . (47)
k+et(l-«) while =,n(k,0t)=1. We now have mean-field predictions
f the ring-number distribution for an arbitrarily chosen

Observe that in the mean-field theory the total number Oﬁode'

nodes present at timeis given by

PHri b = o =1; (51

nt:; Z n(k,r,t):ezm‘f‘l. (48) r{rlng num eltr}_(EZ}\t_l_l)(r_l)! o =4 ( )

Recalling the exact resul#2) that(N(t))=e?"'+ 1, we see PHring number= 0} =1/(e**'+1). (52
that the mean-field theory correctly produces one exact result _ _ _

for all t=0: n,=(N(t)). The predicted mean ring number ixt(1)(1+e )1,

coordination-number distribution. Setting=1 in solution ~ Fig- 7. As in the Yule tree model of Sec. II, for a system
(47) for the generating function and then expanding in pow-iNSpected at a modest fixed time, the simulation results have
ers of k, we find after a little algebra that the ring-number modémost probable valyeclearly less
than the mean-field predictidshown as a solid line Figure
7 illustrates the effect of network size fluctuations in modest
> n(k,rt)=2e M1-e Mkt simulations. For the 100 realizations at fixed tirme5.5
' with A=1, the experimental mean network size is 15416.8,
t but with standard deviatior=29 500. The exact mean net-
+82Mf 2 e M (1-e M) 7. work size should be!'+1=598751 . ... Ifinstead we use
0 the mean-field distribution with timet given by
(49  t=In(n,—21)/(2\), wheren, is taken as the experimental mean
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fing number FIG. 9. For the Reed-Hughes tree model of Sec. Ill, we compare

FIG. 8. For the Reed-Hughes tree model of Sec. Ill, we showthe internode distance distribution predicted by &) with simu-

the ring-number distribution obtained from 100 realizations at alations for 100 realizations of fixed network size 10 Gagan run-

fixed network size of 10000 nodes, corresponding to a meafing imeAt=6.1282, standard deviation 1.2097

elapsed time\t~6.13(standard deviatior=1.21). The plotted data

show the meant one standard deviation. The continuous curve Pr{path length 1}=2(n—1)"’n"2, (55
shows the mean-field predictidb3).

and
network size, we obtain the mean-field prediction shown as a (n—1)[In(n—1)]' 2
broken line in Fig. 7, which is significantly better. Pr{path length=1}=
If we eliminate time in favor of network size,, the n?(1—2)!
mean-field prediction becomes 1 -1
_ vz _
| (n—1)"In(n—1)]"* 20y 2[2'”(” 1)}
Pr{ring numberr}= (53 + (1=2)
2" Yr—1)!n, n2(1—1)!
for r=1, with P{ring number=0}=n, *. Prediction(53) is (56

compared to simulation data for a fixed network size in Fig.The mean-field prediction of the path length distribution at
8. We find here very good agreement between mean-fielgonstant time performs badigs was the case with the analo-

theory and simulations. gous prediction for Yule trees in Sec).IPrediction(56) is a

As in Sec. II, we may attempt to predict the asymptoticijitie petter, but still disappointingFig. 9).

distribution of internode distances, using the observation that as in Sec. II, the disappointing quality of the mean-field

the statistics are dominated by node pairs for which the conpredictions of the distance distribution in comparison to
necting path passes through one of the two nodes initiallgjmylations in Fig. 9 is due to the asymmetry of typical re-
present, so that Eq24) applies. Using the mean-field ring- ajizations of the tree when viewed from the primal node, and

number distribution(50) we predict that fol =2, the argument to demonstrate this phenomenon is similar to
ot - t_hat in Sec. Il. One may attempt to de_rive an improved mean-
Pr{path length- |} — e“M(2\t) field theory for the present model using the approach based
(€M 1)2(1—2)! on Eq.(28), which was successful for Yule trees in Sec. Il.
However, the natural interpolation from networks of siZ& 2
2eM(\t)' 7t to general sizes seems very difficult, and we have not pur-

sued this here.

2\t 201 _ !
(e + D% =1)! As for the Yule tree model of Sec. Il, we may study the

-2\t 1=2/(1 _ 2\ . probability ¢, that the smallest ring number encountered on
S0 that Pypath lengti-1}~e (A1 =2)1, while the unique path joining two randomly chosen distinct nodes
Pr{path length- 0} = (e2\+ 1) "2~ ™, is r. Some simulation data is reported in Table Il. The data

are tolerably well approximated by
Pr{path length= 1} =2eM(e?'+ 1) "2~2e 3N,

o - - | ¢0: l/_2, r=0 57
Eliminating time in favor ofn=e?*'+1, we infer a corre- 137", r>o0,
sponding a mean-field path length distribution for a given
network sizen: for which we now offer a partial explanation. In some re-
spects the designation of one of the two nodes initially
Pr{path length=0}=n"2, (54) present as the origitnode O, with ring number)Oand the
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TABLE II. For the Reed-Hughes tree model of Sec. Ill, we
show estimates of the probability, that the smallest ring number
encountered on the unique path joining two randomly chosen dis-
tinct nodes isr. The results(experimental mear, and standard
deviation are obtained from 100 simulations of a network of
10000 nodes. The last column compares the experimental mean
with the empirical relation(57).

2
—
o

1

(Wiener index)/n
T

—'_/"_’_‘__,—r—v—ﬂ—v

n
1

e

r b Standard deviation ¢,/ ¢’ 10000 20000 40000 80000
number of nodes
0 5.10<10°! 2.98<10°! 1.021
1 3.40<10°1 2 44x 101 1.020 FIG. 10. For the Reed-Hughes tree model of Sec. Ill, we com-
_, . are the Wiener index predicted by H§O) with simulations(ten
2 9.1 10_2 1.06x 10_2 0-879 fealizations witha=1). VF\)/e show th)é mqean Wiener indé¥(n) =
3 3.59x 10 5.35x 10 0.969 L . . .
4 107X 102 L77% 102 0.866 one ste_lndard _dewatlon, szcaled againét _The solid curve is the
mean-field estimaté/(n)/n-~(1/2)Inn which performs much bet-
S 3.82¢10°° 7.26<10°° 0.928 ter than the rigorous lower bourW(n)/n?=(1—n"2)~1 and the
6 1.15¢10°° 1.69x10°° 0.841 rigorous upper bountV(n)/n?=n(1—n"2)/6~n/6.
7 3.69x1074 5.39x10°* 0.808
8 1.24<10°4 2.01x10°4 0.816 model than for the Yule tree model of Sec. II, and better than
9 3.45<10°° 5.53x10°° 0.679 one might expect, given the inadequacy of the mean-field
10 9.97x 10 2.18x10°° 0.589 distance distribution prediction manifest in Fig. 9.
11 2.41x10°8 5.38<10 8 0.426 If the growing network is killed at a random tinleafter
12 5.80<10° 7 1.12x10°© 0.308 the creation of the first two nodes, whefehas probability
13 1.31X 107 3.21x 1077 0.208 density function¥(t), then from Eq.(41) the network size
14 1.80<10°8 5.68< 108 0.086 NT at death has the probability distribution
15 3.60<10°° 1.58<10°8 0.052 .
16 4.00<1071° 2.80x10°° 0.017 pr{NT:n}:f W (t)e M(1—e AH)N-2g¢
0

artificial. Let us instead consider as our measure of remotedistributed time, with¥ (t)=wve™ "', we find
ness the shortest distan@@easured in units of link length

from whichever of nodes O or A is closest, and widgfor PHNT=n}= (/2N + DT(n=1) _ const

the probability that for the unique path joining any two arbi- 2N (n+v/(2N)) nv/(2M+1

trary nodes, the smallest remoteness.ifor paths that are

closer to O than to A, this value ofis the same as the ring asn—®.

number, but for paths that are closer to A, it is one less than A natural generalization of the continuous-time model
the ring number. If we assume that the two branches of théliscussed above would replace the birth rekg(t) at node
tree are statistically equivalent, which is appropriate as at by a more general function df;(t), and there has been
timet=0 the initial states of nodes O and A are identical, wework in this direction for discrete-time models. For example,

see that Krapivsky et al. [25] consider growth nodes selected with
probabilities proportional td&;(t)”. When vy is neither 0 or
B SN =S = 1, the sum rules that enable us to focus on the coordination-
bo=¢ot 5 d=——7— (r=1). (58  number distribution of a tagged node in the Yule tree and
Reed-Hughes tree models, respectively, are lost, and only
The empirical approximatiof57) takes the simple form mean-field and simulation approaches seem profitfig
R 2 IV. CROSS-LINKED NETWORKS
d=—— (r=0). (59
3 The models of Secs. [[Yule tree$ and Ill (Reed-Hughes

) ) ) treeg can be extended to allow for cross-linking in the net-
It would be interesting to have a result of this type estabwork structure. It is simplest to explain the simulation algo-

lished rigorously. S rithm first, as this raises a subtle issue.
From the mean-field distance distribution it is easy to es-

timate the Wiener indeXV(n) and we predict that A. A class of models for simulation

W(n)~in?lnn, (60) We associate with each ned a waiting-time density
W, (1) for it next to create a new link to a node not yet part
cf. Fig. 10. The performance of the mean-field estimate foiof the network. We consider two casesnstant fertility
the Wiener index is much better for the Reed-Hughes tred, (t)=xe M (cf. Sec. |) and variable fertility, ¥, (t)
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=kne M (cf. Sec. ll). In the variable fertility casek is the We shall calculate the probability of marriages occurring

number of nodes to which node * has given birth. The valudn the time interval {,t+h). For brevity, all quantities that

of k is updated each time a birth occurs and as the expone@€0(h) are suppressed in the analysis. Consider first a mar-

tial distribution has no memory, we draw a new random time'iage involving node *. This marriage may be initiated by

for the next birth from the same mother. Thus far, the confode * with probability.S(t)h, or initiated by another node

stant and variable fertility cases are the same as the Yule trdes o(*). In the latter case, nodeinitiates marriages with

model of Sec. Il and the Reed-Hughes tree model of Sec. IIIProbability xS;(t)h, but only one out of itsS(t) choices of

respectively. partner selects node *, so its probability of initiating a mar-
To escape the strict tree structure, we also introduce Hage to node * isuh. Thus

random waiting time for the creation of the next link to an

existing node to which node * has not been previously

linked. This link can be described as “marriage.” If the num- P{node marrieg=uS(t)h+ 2 uh=2uS(t)h

ber of eligible suitordmarriage partnejsfor node * at time Jealx)

tis denotegi bys, we associqtg a vv_aiting-time dgnsity =24[N(t)—1—K(t)]h.

o, (1)=puse *s! for node * to initiate its next marriage.

However, this waiting-time density only applies until either

(a) a node other than * gives birth, ¢b) some node other A marriage not involving node * may be initiated by a node

than * initiates a marriage to node *, ¢c) a pair of nodes eligible to marry node *, or a node not eligible to marry node

not including * marry. As these events all change the eligible®, and thus

suitor set for some nodes, continual resetting of the waiting-

time densities for marriages for all nodes must be accommo-

dated. Although this may be seen as a practical nuisance in

simulation, it enables us to switch off attempted marriages

for node * for appropriate time intervals when there are no

suitors available, but resume seeking marriages when new

eligible partners are created.

P{marriage not involvings

> w(SM-Dh+ > uS(bh

jea(x) jeo(x),j#*x

It remains to define precisely what is meant by an eligible =2 #S;(Hh—2uS(t)h
suitor, and we distinguish between the following two quite .
different cases. =u{N(t)[N(t)—1]—-2M(t) —2[ N(t) —1—K(t)]}h,

(1) Polygamy an eligible suitor for node * is any node not
yet linked to it as parent or offspring or by marriage.

(2) Monogamy an eligible suitor for node * is any node
not yet linked to it as parent or offspring that has not yet
been married, so that in this case, no node ever contracts
more than one marriage. . . Pr{no marriagels=1— u{N(t)[N(t)—1]-2M(t)}h.

We shall only develop theory and report simulations for
polygamous cases, in which extensive cross-linking can oc- ) ) ) ) )
cur. The monogamous case, or a variant in which each node_ Ve briefly consider a system in which there are no births,
is allowed to acquire a limited number of marriage partnersWith links only created via marriage. A state of the system in
produces a more sparsely linked network. which K(t) =k,M(t)=m,N(t)=n, andS(t) =s will be de-
noted by k,m,n,s) for brevity, and recalling thag(t) is
determined byN(t) andK(t) we write

where we have used Eq&§1) and (62). Considering the
complement of the events just considered, we deduce that

B. Transitions due to marriage

Let N(t), K;(t), andS;(t), respectively, denote the num-

ber of nodes in the network, the coordination number of node PHK(t) =k,M(t)=m,N(t) =n}=py mn(t).

j of the network, and the number of eligible suitors of npde

at timet. Note that This probability is zero if any ok, m, n is negative, or if
S (H)=N(t)—1—K; (1), (61) k=n. Ignoring all events with probabilitp(h), the system

can be found in statek(m,n,s) at timet+h in only the
so that although we usg(t) in the derivation of our evolu- following three ways.
tion equations, it can be eliminated in the later stages of the (i) Node * marries between timé¢sandt+h, correspond-
analysis. For a specified node * of the network, we shall foring to (k—1m—1n,s+1)—(k,m,n,s), with probability
brevity replaceK, (t) andS, (t) with K(t) andS(t), respec- 2u[n—1—(kK—1)]hpx_1m-1n(1).
tively. The set of suitor nodes eligible to marry node * at  (ii) A marriage that does not include node * occurs, so that
time t will be denoted byo(*). In addition, letM(t) denote  (k,m—1,n,s)—(k,m,n,s) with probability u[n(n—1)

the total number of links in the network, so that —2(m—1)—2(n—1—-K)Jhpg m-1n(t).
(iii) No marriages occur, so thak,m,n,s)—(k,m,n,s)
_ — with  probability {1—u[n(n—1)—2mlh}py ma(t). We
(t)= + (t)= . ,m,n
; Ki(t)=K(®) j;e Kit)=2M(®) 62 readily deduce the evolution equation
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d This result establishes the appropriateness of the mean-field
gt Pemn=21(N=K)P-1m-1n treatment of the marriage contribution in our subsequent ap-
proximate analysis of models in which both birth and mar-
+u[n(n=1)—2(m—=1)—2(n—=1—K) Pk m-1n riage occur. Indeed, for this special model with marriage
alone, the mean-field evolution equati@Y) is equivalent to
—p[n(n=1)=2m]py mn- (63 the exact evolution equatici64), with py . ,(t) correspond-

Note thatn is constant in the process, as there are no birtha"9 to n(k.t)/no.

If we sum overm we find that
C. Constant fertility polygamy

ipk n=2u(N=K)Pr_1.n—2u(N—1=K)Py. n We retain the notation of Sec. IV B and seek an evolution
demmn " o equation for the distributiop, , ,(t) of a system with con-
stant birth rategcf. the Yule trees in Sec.)lland the mar-
riage mechanism of Sec. IV B. In the infinitesimal interval
* (t,t+h] the following four transitions that add one link to
Pk, t)= 2 pk,.,n(t)xk the network can occur to produce the stdtgr{,n); all other
k=0 events involving multiple births and/or marriages have prob-
ability o(h), and allo(h) terms are suppressed in the analy-
sis for brevity as usual.
(i) Node * gives birth:

and hence the generating function

satisfies the partial differential equation

P
ot

P,
—2uk(l—k)——==2u(n—1)(1—k)P,. (64
JK (k=1m—-1n-1,s)—(k,m,n,s),
One may verify directly that the solution of this equation, | .
given thatk (0)=ke<n—1, is with probability Nhpy_ 1 m—10-1(1).
(i) A node other than * gives birth:
Po(k,t) =k o[e” 2+ k(1—e 2"k, (65)
o (k,m—1n—-1s—-1)—(k,m,n,s),
from which it follows that forkg<k=n-—1,
with probability A (n—2)hpy m—1n-1(t).
e 2mt(n=1-K) (1 — g~ 2utyk=ko, (iii) Node * marries:

(66)

_[n=1-k
pk,-,n(t)_ k—ko

(k=1m-1n,s+1)—(k,m,n,s),

The model evolves sensibly and converges to the fully mar-
ried or fully cross-linked stat&(t)=N(t) —1 in the sense \ith probability 2u(n—K)NPe_1m_1n(t).
that P{K(t)=n—1}—1 ast—o. (iv) A marriage that does not involve * occurs:

In Secs. IV C and IV D we add this marriage or cross-
linking mechanism to the models with birth rates of Secs. I
and Ill, respectively. We note that the special case of(&6).
for the initial conditionky=0 is produced exactly by the
following mean-field argument. Let the number of nodes
with coordination numbek be denoted byi(k,t). For each
such node, the number of eligible suitors ng—1—k. #[n(n=1)=2(m—1)-2(n—1-K) Jhpxm-1na(t).
(Later, when we allow the number of nodes in the network to
changeng will be replaced by the current number of nodes. The probability that no event of the typés—(iv) occurs is
We take the evolution equation {1-Anh—pu[n(n—1)—2m]h}py mn(t). We now readily

deduce that

(k,m—1,n,s)—(k,m,n,s),

with probability

J
ﬁn(k,t)=2,u[n0—1—(k—1)]n(k—1,t) g
&pk,m,n: )\pkfl,mfl,nfl"' A(n— 2)pk,mfl,nfl

—2u(ng—1-kK)n(k,s,t), (67)

with initial condition n(k,s,0)=nyd, . The coefficient +2pu(N=K)P-1m-1n
appears in the evolution equation because a node may marry +u[n(in—1)—2(m—1)—2(n—1—K) 1Pk m_1n
either at its own initiative or at the initiative of an eligible B
suitor (cf. the earlier exact analy3isA standard generating —{An+u[n(n—1)—2m]}Pxmn- (68
function solution(see Appendix CBshows that

Kt As the random variabl®1(t) is not of primary importance,

n(k,t) :(no—l)(l_ezm)kezm(nolk)_ we sum out ovem to obtain an evolution equation for the
No k joint distributionpy . ,(t) of K(t) andN(t):

066124-13



CHAN et al. PHYSICAL REVIEW E 68, 066124 (2003

d 1000
& Pk,en= )\pkfl,-,nfldl' A(n— 2)pk,-,nfl

e

(=3

o
1

+ ZM(n_ k)pk—l,-,n_{zﬂ(n_ k— 1+ )\n}pk,-,n .
(69

ary
o
1

Note that if we also sum out ovdr we obtain an evolution
equation for the marginal distributiop. . ,=PH{N(t)=n},
namely,

mean coordination number

-

f T T T T T T
0.001 0.01 041 1 10 100 1000

d

&p.,.,nz)\(n—1)p.,.,n,1—>\np.,.,n, (70 o N
FIG. 11. The mean coordination number of the constant fertility

. olygamy case of Sec. IV C. We show results obtained from 20

so thatN(t) is a Yule process and the node ages therefor§ea|izations of a network of 1000 nodes for eget value. The

have the order statistic property as in Sec. Il. However, if, .o is the approximation 1009(\+ ) based on Eq(79).

instead we attempt to sum out ovein Eqg. (69) we do not
obtain an evolution equation for the marginal distribution of
K(t) alone.

We introduce the generating function

node has been in existence, which has probability density
functionxe *7/(1—e ™M) if the chosen node was created at
timet— 7. Then the initial network siza, has to be taken as

w the random variablé&(t— 7) for a process started at time 0
P, t)= E E Pr o n(1) KK (71  with one node initially present, and so has expectation
k=on=1 " eMt=7 We thus have for a random node other than the pri-

. o . . mal node
and obtain the partial differential equation

P gP JP (1—e M)(K(t)|random nonprimal node
- PN +2pe(1- K)}&—g —2pr(l=K) o

A
=f )\e“(z——1+ 2- - ezf”]dq-
=(\{—2p)(k—=1)P. (72 0 M M
Although it is possible to solve this equation using similar + ft)\efmex(tff) 21 (e —e 247y dr
methods to those employed in Appendix B for the tree mod- 0 At 2u

els of Secs. Il and Il and for the model with marriage alone
in Sec. IV B, the resulting solution is expressed in terms of a =(L_ 1)(1_em) A4u—N) (1—e~(+2mt)

relatively intractable integral, which we refrain from record- 2u 2u(N+2u)
ing here. N
If we only wish to extract the means bi(t) andK(t) we + 2pe A A (1—e 200+ mt
can do so more directly by differentiating E.2) with re- A+2u 2(Nt )
spect tol or k and settingk=¢=1, from which we find that (77)
J
St (N)=MN(1)=0, (73~ andsoas—e,

At
+0(1). (79
M

(K(t)[random nonprimal node= T

1%
(K0 +2u(K () =N =2p+2u(N(D). (74
That is, for a process started at time 0 from a single primal

With the initial conditionsN(0)=ny andK(0)=k,, we find node

that

(N(t))=ngeM, (79) (K(t)|random nonprimal node- ﬁ(N(t)). (79

(K(t))=koe™ 21+ s (1—e 2

In Fig. 11 we show estimates of the mean coordination num-
ber as a function oft/A (20 realizations of a network of 1000
2ung “out nodes for eachu/\ value showp, together with the approxi-
+ )\+2M(e —e ). (76)  mation 100Q/(\+ ) based on Eq(79). The fit is excellent

for u/A\>0.01. For a given network size, the difference be-

If we want the mean coordination number for an arbitrarytween the mean-field prediction and simulations is to be ex-
node (other than the primal nodlewe have to average the pected for sufficiently smajl/\, since we know from Sec. I

latter equation appropriately to take account of the time thehat for =0, the mean coordination number of a randomly

2
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TABLE Ill. We show the results of ten simulations of mean TABLE IV. Mean coordination number and internode distance
coordination number scaled against network size for constant birthfor constant birth-rate polygamy at three fixed timés 4, t=6,
rate polygamy at three fixed times<4, t=6, andt=8) for A\=1 andt=8) for A=1 and three values gi («=0.1, 1, or 10.
and three values of (©=0.1, 1, or 10, together with the corre-

sponding predictionu/(\+ ) for this ratio. Casen=1, u=0.1 Mean Standard deviation
Time Mean Standard deviation Predicted ~ Number of nodes t=4 25.4 13.7
generated t=6 181.2 104.4
w/\=0.1 t=4 0.1895 0.1037 0.0909 (1/11) t=8  1346.2 806.8
t=6 0.1094 0.0276
t=8 0.0931 0.0038 (K(t)[random nodg  t=4 3.641 1.514
t=6  18.065 9.900
uIn=1 t=4 05113 0.0736 0.5000 (1/2) t=8 123.043 72.112
t=6 0.5107 0.0353 -
t=8 0.5039 0.0289 Mean internode t=4 2.376 0.527
distance t=6 2.273 0.223
puIN=10 t=4 0.7803 0.1570 0.9091(10/11) t=8 2.030 0.095
t=6 0.8851 0.0626
t=8 0.9056 0.0076 Casern=1, u=1 Mean Standard deviation
Number of nodes t=4 26.7 18.4
chosen node converges to 2 ms>. Some simulations at generated t=6 192.2 137.6
constant time are reported in Table III. t=8 1398.0 1041.1
Consider now the mean-field approximation for this
model. We denote byi(k,t) the number of nodes with coor- (K(D)lrandomnode  t=4  13.010 8.185
dination numbek at timet and we writen(t) ==,n(k,t) for t=6 94.446 65.042
the total number of nodes in the network at tim&he evo- t=8 700.192 522.527
lution equation forn(k,t) is obtained by combining the \ean internode t=4 1.446 0.133
growth terms of the mean-field analysis of Sec. II, with theistance t=6 1.494 0.037
terms from the mean-field treatment of network evolution t=8 1.499 0.026
due to marriage in Sec. IV B:
P Casen=1, u=10 Mean Standard deviation
En(k,t)z)\n(k—1,t)—)\n(k,t)+7\5k’1n(t) Number of nodes t=4 28.6 19.1
generated t=6 227.1 163.0
+2u[n()—1=(k=1)Jn(k=1%) t=8  1680.0 1215.6
—2p[n(t)—1-K]n(k,t). (80 (K(t)jrandomnode  t=4  24.689 17.927
In the third term we have noted that each birth creates a ::g 1250254;8?612 1114(?3')819(;)6
node able to marry all but one of the nodes currently present i '
The equation is slightly in error, since we tragit) as an  Mean internode t=4 1.160 0.102
integer variable in setting up the evolution equation, but subdistance t=6 1.104 0.061
sequently treat(t) andn(k,t) as continuously varying func- t=8 1.092 0.007

tions of time. We shall consider here only the initial condi-
tion n(k,0)= 6y appropriate to a network grown from a

si,ngle_initial nlodg I Wehsum Eq80) over k V‘;.e Igbtaind_ significant fluctuations in network size and coordination

P (t)tﬁ)f[n(? T eﬂ mgi].toht € approprlat(?”r]neaq- ff p]Eeth'c'number, but show that at fixed sufficiently large times the

lon tha n(t)=e*, w ICh We now use. 1he Solution ot e .+ 1ations in internode distance are small. For fixed size
mean-field Eq.(80) using generating functions is discussed data, see Table V. We have not been able to find a simple
in Appendix C 4. We show there in particular thattasoe, rediction of the rﬁean internode distance

the mean-field model predicts that the mean coordinatio® ’
number is

1 un(t) D. Variable fertility polygamy
n(t) Ek kn(k,t)~ ANu’ (81) We continue the notation of Sec. IV B and seek an evo-
lution equation for the distributiopy , ,(t) of a system with
which agrees with the rigorous asymptotic value forvariable birth rates as in Sec. lll and the marriage mechanism
(K|random nodg given by Eq.(79). of Sec. IV B. In the infinitesimal intervalt(t+h] the fol-
A sample of simulation data for networks inspected atlowing four transitions that add one link to the network can
fixed times is given in Table IV. These data illustrate theoccur to produce the stat&,m,n); all other events involv-
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TABLE V. Mean coordination number and internode distance 2
f birth- | 0 li f k of 2 P
or constant birth-rate polygam{20 realizations of a network o 54_#5 (1- 5)_+ k(1= K)ENE— 2#)—
1000 nodep aL?

Coordination Internode P P
+ —&0)— —8]—+ —K)—
number path length [2NE(1—-&0)—2mé(L E)]ﬁg 2pél(1-k) Y
J70N Mean Standard deviation Mean Standard deviation =2ué(1—K)P. (84)
0.001 3.012 0.047 6.0522 0.0891 The second-ordet derivative in this equation makes the
001 1184 0.41 3.1541 0.0362 analysis somewhat more difficult than that encountered in
0.1 93.18 2.49 2.0072 0.0112 the previous models. It is possible to obtain a slightly simpler
1 499.4 12.9 1.5033 0.0133 equation forQ(¢,4,t)=P(1£,{,t), but even this equation
10 904.7 5.4 1.0947 0.0054 does not appear to permit any significant analytical progress
100 987.3 1.9 1.0118 0.0019 towards the calculation of probability distributions of inter-
1000 996.2 0.9 1.0028 0.0009 est, so we confine our attention to an analysis of moments.

Before attempting an exact analysis of moments, we turn
to mean-field arguments for guidance, knowing these argu-
ing multiple births and/or marriages, or have probability ments have given correct results for the models studied ear-
o(h) and allo(h) terms are suppressed in the analysis forlier in this paper. The mean-field evolution equation for

brevity as usual. n(k,t), the number of nodes with coordination numisers
(i) Node * gives bhirth:
J
(k—1m—-1n—-15)—(k,m,n,s), Nk =A(k=1)n(k—=1t)—krn(kt)

with probability N (k—1)hpe_1m-—1n-1- L
(i) A node other than * gives birth: +)\5k,1§ k'n(k",t) +2u[n(t) —1—-(k—1)]

(k,m—1n—-1s—-1)—(k,m,n,s), Xn(k—21t)—2u[n(t)—1—-k]n(k,t). (85

with probability This is a direct combination of the mean-field treatments of
the model of Sec. Il and of marriage in Sec. IV B. The
initial condition isn(k,0)=246y ;. We show in Appendix C5
2 Akihpem-1a-1=M2(Mm=1) =KIhpgm-10-1- that Eq.(85) implies that the number of nodegt) and the
17 mean coordination numbex(t) are related by

(iii) Node * marries, as in Secs. IVB and IV C. n’(t)

(iv) A marriage that does not involve * occurs as in Secs. c(t)= n(D)” (86
IVB and IV C.

The probability that no event of type®—(iv) occurs is  \hile
{1-2xmh—p[n(n—1)—2m]h}py mn(t).

We again adopt the convention that, ,=0 if k<0, or dc m 5 2u(n—1)
m<0, n<0, ork=n. Taking account of all the events dis- Ny, 2l i-yjefe=—p— (87)

cussed above, we obtain the evolution equation
We have not found a closed-form solution of this differential
equation except fop/A=1 (see belowy, but it is easily veri-

ﬁpk'm'”:)‘(k_1)pk—1ym—1yn—1+)‘[2(m_ 1=kl fied that the asymptotic solution for largeis
X Pem-1n-1F2(N—K)Pr_1m— 4un\Y¥2 4
Pkm-—1n-1 u( )pk 1m-1n o= 3:“)*\) +§(1_% +O(n‘1’2). 88)
+u[n(in=1)—2(m—1)—2(n—1-k)]

X — —1)— ) In Fig. 12 we show estimates of the mean coordination
Pim-1n~{20M+ p[n(n=1) = 2m] P number for a network of 1000 nodes as a functionué.
(82 Simulations(20 realizations for eaclu/\ value are shown
i i ) as disks. The straight line corresponds to the first term in the
If we introduce the generating function asymptotic expansiotB8). We note that for a fixed large,
expansion(88) must fail in the limits u/A—0 and u/\—x,
_ k m #n since we know from our earlier analyzes tlt)—2 and
P&t zk % 2. Puma(DK €T @3 c(t)=n(t)—1+--- in the casesu=0 and \=0, respec-
tively. However, we find that a numerical solutif®v] of the
we find that differential Eq.(87) (with the appropriate initial condition
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Integrating this frorm=2 ton=«, we deduce that in mean-
field theory for\=pu, the network size becomes infinite at
the finite time

RS dn 1.44

polygamy case of Sec. IV D. Results obtained from 20 realizationsl US

of a network ofn(t) =1000 nodes for each/\ value are shown as

disks. The dashed line corresponds to the one-term mean-field ap-

proximation y4un(t)/(3\), and the continuous curve to the nu-
merical solutions of the differential equati¢i7) for the mean-field

treatment. At the resolution of the figure, the latter curve is indis-

tinguishable from the simulation results.

c=1 for n=2) gives mean-field predictionshown by the
continuous curve in Fig. 22hat closely coincide with the
simulation results for nine decades@f. The quality of the

te=oe | ——————~—— 92
© 282 n3=(32nZ7+1 A 92
Moreover, we have for large(t),
3(= dz 3
tc—t"’\/—— —/: \/— . (93)
2N Iy 222 An(t)
nt)y~ ——— t—t.. (94
[N (te—1)]? :

One may argue from an asymptotic analysis of the differ-
ential Eq.(87) for general\/u that in the mean-field treat-
ment divergence of the network size occurs at some finite
time t.(\,x) for O<u/\<, but we have not pursued accu-
rate estimates oft.(\,u) other than the special value
t.(\,\) found above.

mean-field approximation can also be seen from the data Guided by the mean-field analysis, we see what we can
given in Table VI. establish by exact arguments. Rigorous relations involving
In the special casg/A=1, the differential equatio(87) is  averages oK(t), M(t), andN(t) can be found by differen-
easily shown to have the exact solution tiating Eq. (84) with respect tok, & or ¢ and settingk=¢
=/=1, and we find that

4n 4
2= —2+— (89) d
3 3n?2 i {KO) = (A =2p)(K(1))=2u[(N(1))—1], (99
d d
nese T (M) =200 =) (M(0) = (N[N —1]),
n'(t) _(4)1’2 3 1\ (96)
F(t) = § n— §+ F , (90 q
Gr(N(®)=20(M(1)). (97
that is
1 As these equations do not decouple, we cannot extract exact
ﬂ _ \/_§( 3 §n2+ 1) 91) formulas for the moments. However, if we elimingid (t)),
dn 2\ 2 ' we deduce that

TABLE VI. Mean coordination nhumber and mean internode distances for variable birth-rate polygamy for a network of 1000 nodes.
Simulation results for 0.0064./A<10 000 are averages over 20 realizations. We also give mean-field predictions. The asymptotic expan-
sion (88), taken to one or two terms, is only useful for 0s9&/A<100, and indeed the two-term expansion becomes negative fordéxge
However, the predictions based on numerical solution of (B@. agree well with simulations over the entire range and show the correct
transition to known long-time limit$2 for u/A—0 and 999 foru/\ —©).

JIN 0.0001 0.001 0.01 0.1 1 10 100 1000 10000
Mean-field approximation One term from expansi88) 0.365 1.155 3.651 1155 36.51 1155 365.1 1154.7 36515
for mean coordination Two terms from expansi@®) 1.165 1.954 4.443 12.27 36.51 108.3 285.9 355.5<0)
number Numerical solution of Eq87) 2.047 2432 4589 1229 36.49 1085 297.0 640.7 917.9
Computer simulation for  Mean 2.046 2429 4595 1236 36.64 1085 298.0 642.2 913.0
coordination number Standard deviation 0.010 0.019 0.088 0.19 0.84 2.2 7.1 9.8 7.2
Computer simulation for  Mean 6.642 5710 4.256 3.086 2.388 1.986 1.714 1.359 1.086
internode distance Standard deviation 0.402 0.187 0.031 0.014 0.018 0.011 0.009 0.010 0.007
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2 (ND)=200= ) G (N(D) + 20 u(N(D)
=28 u(N(1)?)
=20 u[(N(1))2+ varN(1)} 1= 2\ u{N(1))2.

If we assume that there exist constatts G, and y with
(N(t))~G(t,—t)” ast—t., we see from inequality98)
that fort sufficiently close ta. we have

Gy(y+1)(t,—t) 7 2=2\uG?(t.—t)~ 2,

so thaty<2 and if y=2, thenG=3/(\ ). Further, ify>1, it
follows from Eq.(95) that for any fixed node,

(K(D))~2uG(y=1) Hte—t)* 7 (98)
and thus agN(t))— we have
Z/LGl/y -
(K(t)~ 71 (N (99)

The mean-field calculation fox=u suggests thay=2. If
one makes this stronger assumption, it follows t&ft))
~H(N(t))¥2, with the constanH=<23u/X, for any fixed
node.

V. DISCUSSION

PHYSICAL REVIEW E 68, 066124 (2003

have a much longer history, and should perhaps be better
known.

For the tree networks we have made some progress in
studying the metrical structure of the network. The exact
results we give for Yule trees build on known results for
random recursive trees, a discrete-time model that underlies
Yule trees. The apparent absence of analogous discrete-time
results applicable to Reed-Hughes trees makes analysis of
this problem somewhat harder.

For both tree models we have discussed, mean-field treat-
ments give predictions of the distribution of the ring number
(the distance of nodes from the initial ngdbat agree well
with simulations for a given large network size. Realization-
to-realization temporal fluctuations make the mean-field pre-
dictions much less accurate for predicting the distribution for
a given time. For Yule trees, building on results for random
recursive trees, we have derived the exact distribution for the
ring number at fixed time.

In contrast to these successes of mean-field theory, the
simple mean-field approach gives disappointing predictions
of the internode distance distribution, which can be under-
stood by noting(as we have showrthat the treelike struc-
tures have a strong statistical anisotropy. For Yule trees, an
improved mean-field theory that addresses this anisotropy
enables us to find a much better approximation to the inter-
node distance distribution

One quantitative measure of the metrical structure of the

In this paper we have considered four models for the stotree is the Wiener index, a sum over all internode distances.
chastic growth of networks. All four models are based onFor Yule trees the mean Wiener index for fixed network size
well-defined time-evolving random processes, and we havés known from earlier work on random recursive trees. We
been able to study properties of the resulting networks bothave deduced from this the mean Wiener index at fixed time.
as functions of time and as functions of network size, using=or both tree models, our mean-field analysis suggests that
exact analysis, mean-field approximations and simulations.the Wiener index grows asymptotically as a multiple of

The first two models produce trees, that is, random net¢n)2in(n), where n is the network size. This prediction
works without cross-links. The “Yule tree” model of Sec. Il agrees to |eading order with the exact result for the mean
assigns constant birth rates to nodes, while the “Reedwiener index for Yule trees. One may conjecture that with
Hughes tree” model of Sec. Il has coordination-number de+igh probability in any given realization of either process,
pendent birth rates. In both cases, the mean coordinatiofe \Wiener indexW,(w) will have the asymptotic behavior

number in the network converges to 2 in the long-time limit,
but the coordination-number distributions differ greatly. In
the constant birth-rate Yule tree model, the coordination-

number distribution converges to % k=1,2,3... [Eq.

(14)]. For the variable birth-rate Reed-Hughes tree model
the coordination-number distribution converges to the heav

tailed distribution 4/k(k+1)(k+2)], k=1,2,3... [Eq.

(45)]. These limiting distributions have been derived rigor-

ously here(they have been previously prové®,12] and re-

W, (@)~ C(w)N(t)2In N(t) ast— o, whereC(w) has a well-
defined distribution.

Concerning applications of our treelike models, the Yule
tree (constant birth rabemodel of Sec. Il can be viewed as
the classical linear birth process, and therefore inherits all
applications of that process, although the questions we have
asked differ from those normally asked in many of the stan-
dard applications. The Yule tree does not exhibit scale-free

[3] behavior. In contrast, the Reed-Hughes tfgariable

discovered25] for the discrete analognd are also identical L°
with the limiting distributions in a mean-field treatment. The Pirth rate model of Sec. Ill does produce scale-free net-
striking difference between the two models reflects the fac¥vorks.

that when a random node is examined, its coordination- Both the Yule tree and the Reed-Hughes tree can be
number distribution depends on how long the node has beefiought of as models for the spread of infectious diseases:
present in the network. The interplay of exponential growththe former for diseases such as influenza or SARS, and the
of a system and random lifetime of elements in the systenatter for sexually transmitted diseases in which more pro-
being able to produce heavy tails is in line with general ob-miscuous individualgthose with many previous contagts
servations of two of the authof49] that find applications in are more likely to spread the disease to new uninfected part-
a wide variety of context§15—1§, and embody a perspec- ners. The Reed-Hughes tree may also be a reasonable model
tive that goes back at least to Fermi in 194®], but may for food webs and networks of interacting proteins. For the
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Reed-Hughes model to apply to a system, the exponents in APPENDIX A: SIMULATION DETAILS
the empirical distributions of connectivities should be close
to 3. In fact estimates cited by Albert and Barsij&] are 3.4 Simulation code was written in C. For brevity beloifp)

for a network of sexual partners, 2.4 for the protein networkand (int) denote floating point and integer, respectively. For
of the yeasSaccharomyces cerevisjand 1.05 and 1.13 for  simulatingtrees(Secs. Il and IIJ, two lists are maintained.
two food webs. The first two are not too far from the value of The first is a list of allbirth events both past and future.

3 derived in the model. Those for the food webs however arg-ach hirth events a C structure consisting of birth tinp),

very different, but it should be borne in mind that the food identity number of mothefint), and ring number of mother
webs are rather small, the largest having 186 nodes, so theygy) This Jist is sorted in order of increasing birth times, and
is probably considerable sampling error in the estimates. o gata structure used for the list is a binary search tree.

In Sec. IV we have addressed models in which links be'Since we will often be inserting new items into the middle of

tween nodes can pe established not only by biwhich a sorted list, the binary tree data structure should be much
brings new nodes into the networkut also by a cross- - ) . i
more efficient than either arrays or linked lists.

linki h i i hich intro- . . .
inking process that we describe as marriage, which intro The second list, namely, thede property lisis a list of

duces a new characteristic cross-linking rate parametén o . : .
g parame nodes and certain information associated with each node.

the casen=0 the models of Sec. IV reduce to the tree- h nod X o f birth ti
growing models of previous sections. Models with cross-Each node entnsia C structure consisting of birth tint#p),
identity number of mothe(int), number of

linking are of more potential interest in communication net-"ing numberint), _
work modeling, since existing tortuous connection paths mafldughters(int), list of daughtergimplemented as an array

be supplanted as the network evolves by shorter paths. ~ consisting of daughter’s identity numbgnt) and daughter’s

We have studied the degenerate case in which the birtRirthtime (fp), and dlimit (int)—a number used to check
component of network evolution is disabled in Sec. IV B, whether we have filled up the daughters array, to then allo-
and shown that a mean-field treatment producesate more memory. The node property list is also imple-
coordination-number predictions that agree exactly with rig-mented as an array, and the subscript of the array is used as
orous calculations. When constant birth rates and marriagte identity number of the node. Identity numbers are or-
are combined in Sec. IV C, we find that the problem remainglered such that higher identity numbers are created at later
sufficiently tractable such that we can prove rigorously thatimes.
the mean coordination number of the network is asymptoti- For trees, the calculation of the distance between any pair
cally proportional to the mean network size in the long-timeof nodes is straightforward, since there is a unique path join-
limit (this is also predicted by a mean-field analysiEhere  ing the nodes. We first move back through the tree towards
is scope for further work on the properties of this model,the primal node from the node with higher ring number until
including the difficult problem of determining the distribu- \ye have the same ring number as the other node. We then

tion of internode distance. _ move from both nodes towards the primal node until we
The last specific model we have studi@ec. IV D) com- encounter a common node.

pines c%ordinqtioln numbtlar d;apenﬁent birth rl(al'ges r\]Nith m%r— For simulatingnetworks with internal linksthree lists are
riage. The typical example of such a network is the Wor S N . .
Wide Web. When new nodes are added to the web, they armalntalned. The first is a list of all birth events, both past and

more likelv to have links to nodes. such as Google Adobef%ture. The second is a list @l birth and marriage events
y ' gee, that have occurredbut no future events. Each event is a C

etc., that are already well connected than to weakly con- ¢ i i ¢ ¢ f b
nected nodes, and nodes already present in the network argucture consisting ot ime o _eveﬁp), ype o ?Ven(. or
more likely to be found by and linked to already well- m), id1 (int), and id2(int). For birth events, id1 gives birth to

connected modes. For the model of Sec. IVD few exacld?- For marriage events, id1 chooses to link to id2. Both
results seem to be available, but mean-field arguments arlt§ts are sorted in order of increasing birth times. The list of
simulations predict that the mean coordination number scaledirth events is implemented as a binary search tree for the
as the square root of current network ﬁiz‘eexce”ent agree- same reasons as for tree networks. The list of all events that
ment with simulationg and also predict that the mean num- have occurred is implemented as an array. This list is not
ber of nodes present in the system divergest@st()*z ata really required in practice, but is a useful check that the
finite timet,. Some rigorous bounds on exponents that maysimulation is running correctly. The third list is a list of
characterize divergence of the mean number of nodes and th@des. Each node entrg & C structure consisting of birth
mean coordination number of a fixed node are derived, butime (fp), number of partnersint), list of partners(imple-
there are opportunities for further analysis. In particular, netmented as an arrayonsisting of partner’s identity number
works with directed links merit examination, and the tech-(int) and time the link was created with partr{§p) sorted in
niques of the present paper may be useful in that context. order of increasing link timeg$we do not differentiate be-
tween nodes being a mother, daughter,)etdimit (int), a
number used to check whether we have filled up the partners
This research was supported in part by the Particulat@rray, to then allocate more memory. The node list is imple-
Fluids Processing Centéan ARC Special Research Center mented as an array, and the subscript of the array is used as
at the University of Melbourne and by NSERC Discovery the identity number of the node, as for trees.
Grant 7252, The algorithm used in determining the shortest distance
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between any two nodes in a network with cross-links is thecan be solved in terms of an integral, but as useful exact
“breadth first search” algorithni{38]. Conceptually this is results do not appear easily extracted from it, we do not give
quite simple. To find the shortest distand€A,B) between details here. The second of our models with cross-linking
two distinct nodes A and B, we pick one of the nodes, say A(Sec. IV D produces a partial differential equation of second
and set all of A's nearest neighbors to be distance 1 from Aorder for the generating function, and does not appear ame-
Call this set of nearest neighborS;. If BeS;, then nable to explicit solution.

d(A,B)=1 and the search ends. Otherwise, consider each

node ofS; in turn, search its nearest neighbors, and for any 1. The Yule tree model of Sec. Il

of them that have not yet been assigned a distance from A, o, Eq.(2) we find that the partial differential equation

assign distance 2. The process continues until node B is as- . ) )
signed a distance. Since the network is connected, node Eqb((ale())l}/sed for the generating functidii«,¢,t) defined by

will always be found.

So far as the actual practical implementation of this algo- 9 aP
rithm goes, we control the order in which we process the H‘f’)\g(l—é’)a—g:)\(K—l)éﬂP. (B2)
different nodes with a first-in first-out queue data structure.

The queue used is array based, though queues using linked We first solve the ordinary differential equatiaht/dt
lists are also possibl9]. When we first set all of A's near- =\{(1—¢), which giveseM (1= ¢)/¢=const as the charac-
est neighbors to be distance 1 from A, we also put the idenferistic cur,ves of Eq.(B2). We then write P(x,7.t)

tity numbers of these nearest neighbors into a queue. Noviq)(x t), whereX=e(1— ¢)/¢ and obtain the equation
we get the first element from the queue, search among its Y

nearest neighbors, and any of these nodes which have not 100 A(x—1)eM
already been processed or is already in the queue are inserted -
into the end of the queue. Then we get the second element in d ot X+eM
the queue and repeat the step above. We keep repeating this N . .
until either B is found(this always occurs for a connected 9Ving ®(X,t)=F(X)(X+e*)*“"". The funchnF(X) IS
network such as those considered in the present papéne ~ found from the initial condition(«,,0)=«“°{™, corre-
queue is emptyfor a disconnected network with A and B in SPonding tokK(0)=ko, andN(0)=n,, and we deduce that
disjoint components of the network

When we wish to determine the distances between all Plr,L,t)=
pairs of nodes in the network, the simple approach of choos- =t
ing each painA,B) of nodes in turn and implementing the
above algorithm is inefficient. Instead it is better to consider This reduces in the special cases1 and{=1 to simple
each node A in turn, and use the basic breadth-first searaingle-variable generating functions from which the marginal
algorithm to determine the distances of all nodes from A. distributions ofN(t) andK(t), respectively, follow. We can
also deduce by differentiating the generating function appro-
priately the moments of the distribution. The covariance is
covK(t),N(t)}=eM—1, and the correlation coefficient is

Kkogn()e— no\t

[1_§(1_e7)\t)]no+xfl'

(B3)

APPENDIX B: JOINT DISTRIBUTIONS

We outline here the solution for the joint distributions of
coordination number and nodes for the models of randomly co{K(HN()}  (1-e M)P?
growing trees discussed in Secs. Il and lll. The method of JvarK (t)}vafN(t)} B (NoAD)¥2
characteristics is used to solve an appropriate first-order par-
tial differential equation for the generating function so thatK(t) and N(t) are asymptotically uncorrelated &s
— 00,
o The expansion of the generating function we have found
p(K,g,t)ZE 2 pk,n(t)Kkén, (B1) in both variables is messy and unenlightening, but we ob-
k=0 n=1 serve that whered),=1'(n+«a)/T'(«), with T' the usual
Gamma function, we have

where p ,(t) =PH{K(t)=k,N(t)=n}. The same technique

can be used for the exact analysis of model involving mar- - " (No+ K_l)n—noKko Cfonen
riage without birth discussed in Sec. IV B, but as the details k;( Pi.n(t) k= RrSy— 1-e )" o,
are practically identical to those for the mean-field analysis 0 0
of that model in Appendix C3, we do not give them here., .o
The models with cross-linking produce harder partial differ-
ential equations. For the model of Sec. IV C, the partial dif- o (Ng)n—n
ferential equation for the generating function of 2 Prn(H)=p. o(t)= — 1—e MH)n-No
K=ko ’ e"oM(n—ng)!
_ Al — _ and so the generating function for the conditional distribu-
PRK(D=KN(D=n}=Pin() % Prcma(t) tion of K(t), givenN(t)=n, has the form
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(ng+ K_l)n_noKko cov{K(t),N(t)} - (1—e 2M)12
(No)n-n, ’ WarK(DlvafN(t)} 2(1—e M)v2’

> PHK(1)=kIN(t)=n}xk=
K=Kq

(B4)

. . o _.and this converges to 1/2 in the long-time limit, so that the
and this contains no explicit time dependence. Moreover, it igqordination number of a given one of the two starting nodes
a polynomial inx, and for values of that are not extrava- etains its correlation with the number of nodes present for
gantly large, we can calculate the conditional probabilitiesy times. Observe that the correlation coefficient does not

using standard computer algebra packages. _._converge to 1 as—0"; a similar result holds for the con-
We note, in particular, that on appropriately differentiating giant pirth-rate model when the system is started with more
Eq. (B4) and setting<=1 the conditional mean and variance }han one node initially present.

of the coordination number can be found exactly in terms o
the digamma functions(z) =I''(z)/T"(z) and its derivative,
and the largex asymptotic behavior extracted: APPENDIX C: MEAN-FIELD SOLUTIONS

n—1 1. The Yule tree model of Sec. Il

1
(K(t)IN(t)=n)=Ko+ z/x<n>—¢<n0)=ko+j2 =

ik If we define the generating function

var{K(t)|N(t)=n}=(n)— ¥(ng) + ' (n)— ' (o) N(x,p,t>=k§0 ;0 K*p'n(k,r 1), (CY)

and the asymptotic form@) and (4) follow.
we find the evolution Eq(19) corresponds to

2. The Reed-Hughes tree model of Sec. lll

0.
From Eq.(37) the partial differential equation for the gen- A[(K,p,t) +N(1—)Mk,p,t)=NkpN(1lp,t), (C2)
erating functionP(«,{,t) is at

JP P d which we solve with initial conditiom(k,r,0)= 6y ¢6; o, SO
T TAm k)T M=) e =201 =P, that A(x,p,0=1. Wiite ®(p,t)=M{(1p,t), so that
®(p,0)=1, and sek=1 in Eq.(C2) to deduce that
We construct two families of characteristics by solving the
simultaneous equations d
Ecb(p,t):)\p‘b(p,t)
dx

dg

dt so that® (p,t) = e and the required solution of E¢C2) is

and are thus led to writ®(«,{,t)=exd Q(X,Y,t)], where easily shown to be

_\2 _ 1+p)(1—k)e M-t K
= 1=« L, Y =2 1-¢ _ ./\f(K,p,t)=( P (1+ — + 7 p_ eMrt,

K 1-¢ 14 p—K p—K
This gives Thus

&Q e2)\t o o

=2 1-—— ], n(k,r,t) kX -

ot Y+ e . k§=:0 r§=:0 (kr.t« o Mk, 1}) K K<
50 thatQ(X,Y,t) =2At—In(Y+e)+{(XY), with the func- 1= 5y 51 | (1,10 KOk 2
tion f(X,Y) to be determined from the initial condition, kcor=0 '

which we take to beP(x,,0)=«{?, so that the specified
node whose coordination we study is here taken to be one @fnd Eq.(20) follows.
the two nodes initially present. After a little algebra we find

that
2. The Reed-Hughes tree model of Sec. llI
Pe M (1— k)& -t If we again introduce the generating functi¢81), we
Pk, {t)= — find that the evolution Eq(46) and initial condition corre-
1-(1-e )¢ 1-(1-e )¢
spond to

From derivatives of this solution we may show that the co- N N N
variance is cofK(t),N(t)}=3(e®'—e). The correlation — +Ak(l—k)—=Akp—| (C3
coefficient is Jat Ik IK | =y
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and MV(k,p,00=(1+p)«, respectively. To solve the partial dif-
ferential equationC3), we use a variant of the method of

characteristics. Suppressing the dependence iomotation
for brevity, we define

N
D(t)=— (C9
oKk |
k=1
so that the equation to be solved is
N L IN ® s
E-F)\K( —K)ﬁ—)\Kp (1). (Ch)

Solving the equatiom«/dt=A«(1— «) we find the charac-
teristic curves to be given by =eM(1- «)/x, and we seek
the general solution of Eq(C5 by writing A'=Q(X,t),
which gives

0Q  NpeMa(t)
g xteM

Integrating from O tat and writing F(X) =Q(X,0), we de-
duce that

}\T(I)
Mk,p,t)= ft M-ﬁ- F(eM(1—k)/k).

0 X+e\7

From the initial condition M{«,p,0)=(1+p)x we have
F(k 1=1)=(1+p)«, whenceF(z)=(1+p)/(1+2). Re-

placing the variabl&X by the original variables, we have now

shown that

(I+p)x
k+eM(1—k) '

M t)_ft ANpx®(7)d7
P 0 k+erMtTD(1-k)

To determine the functiorb (t), we differentiate with re-
spect tox and setk=1, giving

t
O(t)=(1+p)er+ )\pe“f ®(r)e Mdr.
0

If we write ®(t)=ey(t) we obtain
t

X(t)=1+p+)\pf0)((7')dr,

leading to the differential equatiopt (t) =\ px(t) and initial
condition x(0)=1+p, so x(t)=(1+p)e**!, and it follows
that

(1+p)k
k+eM(1—k) ,

t Ap(1+p)xertP)7d 7
MKlpit):f )
0 k+eT(1-k)

which is Eq.(47).

3. Marriage alone

With M(k,t)==p_on(k,t)«¥, the evolution Eq(67) be-
comes

PHYSICAL REVIEW E 68, 066124 (2003

N 2 1 N 2u(l HN=
—r 2mk(1=K) 2o+ 2u(1- k) (Ng~ IN=0,

with the initial conditionn(k,0)=ngdy o becomingA\{«,0)
=ngy. Solving the equatiox/dt=—2uk(1—«) we find
the characteristic curveX=e 2*'(1—«)/k, and write
Mk, t)=Q(X,t). This gives

—2ut

1- m) (ng—1)Q=0,

J
R

and so
QX =QUX,0) (M0 DX+ g2y,

Fitting the initial condition, we find that

ng—1

X+1

— e 2ulng-Lt| 2T
Mk, t)=nge X+ o 2i

=no[e 2*(1—k)+ k] 1

and using the binomial theorem to extract the coefficient of
«*, we obtain the mean-field approximation

No—

”(k-t):”o( K ! (1— e 2rtykeg=2ut(ng=1-kK)

which agrees with an exact calculation of the coordination-
number distribution in Sec. IV B. The general soluti@®)

of the exact evolution Eq(64) for py.n,(t) can be con-
structed by a slight extension of the preceding analysis.

4. Constant birth-rate polygamy
We introduce the generating function

©

Mr,t)=>, n(k,t)x¥

k=0

so that the initial condition i8V(x,0)=1. As we have already
noted thain(t) =e™' (both rigorously and in mean fieldwe
are able to deduce from E(BO) that

N N \t
W_ZMK(l_ K)E"‘(l— KN+ 2u(eM=1) NV

=rreM, (Co)

with the initial conditionn(k,0)= &y o becoming\V(«,0)=1.
The solution by characteristics is very similar to that in Ap-
pendix C 3, but the integrals that arise in the solution do not
appear to be simply evaluable and we do not write them
out. We settle for extracting the mean-field prediction of
the mean coordination number. Write(t) ==, kn(k,t)
=9dMd«|,.-1. Then on differentiating Eq.C6) with respect

to k and settingk=1 we deduce that

m'(t)+2um(t)—reM—2u(eM—1)erM=\e\!,
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with m(0)=0. This differential equation is easily solved. We c(t)=MA1}t) YoM k| ,.—1=m(t)/n(t).
find that ast—ce, m(t)~ue®Y(\+ u), and so the mean-
field prediction of the mean coordination number isSetting k=1 in Eq. (C7) givesn’(t)=Am(t) and soc(t)
m(t)/n(t) ~ wn(t)/ (A + ). =n’(t)/[An(t)]. Differentiating Eq.(C7) with respect tox
and then settinge=1 gives
5. Variable birth-rate polygamy

Introducing M{«,t) as in Appendix C4 and noting that m’(t) =2(A = p)m(t) = 2u[n(t) = 1]n(t)=0.

the relevant initial condition is\V(«,0)=2«, we find the o ] ]
evolution equation We may now eliminaten(t) in favor of n(t) to obtain the

mean-field evolution equation far(t),

N N
Gt T 2wl ) ek 2pu(1 k) ()= 2(A— w)n’ ()~ 21 u[n(t)— 1]n()=0, (C§)
B N to be solved subject to the initial conditions(0)=2,
XM= ”N_)\Kﬁkl' Y n’(0)=2\. The differential Eq(C8) is autonomous, so we

can obtain an associated first-order differential equation in
We write for brevityn(t)=A{(1}t) for the total number of the standard way. Write =n’=xnc so thatn”"=v dv/dn
nodes present anah(t)=dA7d«|,_,. The mean coordina- =\2nc d(nc)/dn, giving an evolution Eq(87) for c as a

tion number is then function ofn.
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