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Continuum traffic model with the consideration of two delay time scales
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This paper presents a continuum traffic model. The derivation of this model is based upon the assumption
that the stream velocity reaches the equilibrium velocity, within the relaxation timel, while the equilib-
rium velocity u, is adjusted to be attained through the driver’s reaction timdt is also assumed that the
former delay time scale is greater than the latter. A motion equation with nonconstant propagation velocity of
a disturbance in traffic flow is derived that can reflect the anisotropy of disturbance propagation in real traffic,
unlike some other higher-order continuum models. It indicates that in our model the undesirable “wrong-way
travel” phenomenon and gaslike behavior have been eliminated. The formation and diffusion of traffic shock
can be better simulated.
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I. INTRODUCTION the conservation of vehicle number:
Recently, traffic problems have attracted considerable at- dp(x,t) N aq(x,t) ~o i
tention from scientists because of the increasing require- at X '

ments of traffic construction and management, and also due

to a variety of interesting nonlinear phenomena occurring in  Because the equilibrium relation between the velocity and
traffic systems. The theory of traffic flow is a subject usingdensity is introduced in the LWR model, it is impossible to
mathematics and physics to describe the characteristics dfescribe correctly the traffic flows in nonequilibrium states,
traffic, in which mathematical models are established anguch as phantom traffic jams or stop-and-go wdves4,15
then solved. The first paper about traffic flow can be traceé@nd forward propagation of disturbances in heavy traffic
back to the year of 1933, when Kinzer proposed and dist16]. Thus, there were no equilibrium curvés,ue(p)) in
cussed the applicability of the Poisson distribution to trafficthe fundamental diagram obtained by various early observa-
flow [1]. After the Second World War, the theory developedtions when traffic was not in equilibrium. Moreover, accel-
rapidly. In particular, in the 1950s, Lighthill and Whitham, eration and deceleration flows follow distinctively different
and Richards put forward the kinematics traffic modelpaths in the phase plang,), and these paths usually form
(called the LWR model lat¢rby introducing the hypothesis one or more hysteresis loop$7]. To solve these problems,
of a continuous medium and the continuity equation fromPayne complemented the continuity equation by a dynamic
fluid dynamics[2,3], and since then traffic flow research hasvelocity equation[5], derived from Newell's car-following
drawn much attention from fluid dynamicists. In 1971, Paynemodel [18] by means of the Taylor expansion. He claimed
proposed a high-order continuum model that includes théhat the velocity of traffic flow will reach equilibrium with
effects of the driver’s reaction and acceleration by considerthe reaction timeT, and the velocity at the locatiorx(t) is

ing the limiting case of the car-following modpd] and in-  determined by the traffic density at location Ax,t) due
troducing the “motion equation[5]. Later on, he applied his to drivers’ anticipation of traffic conditions ahead. His dy-
high-order model to compile the computer simulation pro-namic velocity equation is

gramFREFLO[6]. In recent decades, a variety of traffic mod-

els, including follow-the-leader models, continuum models, du du  du 1 v dp

gas kinetic models, cellular automaton models, etc., have E:EJW&:_?[U—%(P)]—E&—X, 2
been presented and some empirical observations reported

(for reviews, see Ref$7-13)). where the first term on the right side, called the relaxation

The continuum models of traffic flow aim to describe, term, describes the adaptation of the average velagityt)
through a system of partial differential equations, the evoluto the density-dependent equilibrium velocity(p). This
tion of traffic states such as the flow raiéx,t), the vehicle adaptation is exponential in time with the driver reaction
density p(x,t), and the travel velocity or mean velocity timeT. The second term, called the anticipation term, reflects
u(x,t) over spacex and timet. A number of continuum traf- the reaction of identical drivers to the traffic situation in their
fic flow models have been proposed over these decadesurroundings, where=(1/2)du.(p)/dp is called the antici-
Among them, the LWR theor}2,3] is the earliest and most pation exponent. Payne’s model does not require the velocity
fundamental. The model is a continuity equation describingo satisfy the equilibrium relation and allows some departure
from it. So it can depict real traffic rather well in some re-
spects. However, DaganZd9] and del Castilloet al. [20]
*Corresponding author. Electronic address: pointed out that the two equatiorig) and (2) violate the
yuxuegxu@gxu.edu.cn following principles: A fluid particle responds to stimuli
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from the front and from behind, but a car is an anisotropicy,. The stream velocityu in the relaxation timeT just

particle that mostly responds to frontal stimuli. reaches the anticipated valug corresponding to the density
From Egs.(1) and(2), one can derive the two character- i time t+t, at the locationx+ut, . Thus, we deduce the

istic velocities\;=u—v/T and\,=u+\u/T, which de-  foliowing relation:

termine how traffic disturbances are propagated in a traffic

stream. Note that the second characteristic velokyis U(x+uT, t+T)=u(p(x+ut, ,t+1t,)). 3

larger than the velocity of the traffic flow. This means that

waves associated with the second characteristic velocity aMsing the Taylor series expansion for Eg) and neglecting

ways reach vehicles from behind, either slowing traffic downhigher-order terms,

or speeding traffic up. This evidently violates the anisotropy

of traffic flow and does not accord with real traffic. The main u(x,t) + a_u_H uT&—u+O(72)

reason is that these models tried to mimic the gas dynamic ’ at IX

equations and led to so-called gaslike behavior. Aw and du P P

Rascle proposed a model to suppress the gaslike behavior by =ug(p)+ _e(tr_P+ ut,—p

replacing the space derivative of the density with a convec- dp | "ot X

tive derivative[21]. The model is a system of hyperbolic

equations with no diffusion and no relaxation. Zhdr2]

derived a macroscopic equation with anisotropy and no re-

+0(t?). (4

Equation(4) can be rearranged as

laxation from Pipes’s car-following modé¢#]. Jianget al. (?_u ua—uzw t—r%(a—eruﬁ—p) (5)
[23] also presented a macroscopic equation with anisotropy at X T T dp |t X

derived from a car-following model by adding the reIativeA lying Eq. (1), we have

velocity. But the propagation velocity of disturbance in this pPlyINg . (L), W v

model is constant independent of the density. In fact, the t, dug) du ugp)—u
propagation velocity of disturbance in a Payne-Whitham-like 0 +(U+p T(p) dp ) X T (6)

model should depend on the dendi4,25. In this paper,
we attempt to improve these anisotropic continuum trafﬁcwherec= — p[t, /T(p)]dus/dp=0 is the “sonic speed” in
r e -

model;. The paper 1S organgd as .fOIIOWS' In _Sec. i, W&raffic flow, at which small disturbances propagate relative to
establish a continuum model with anisotropy by mtroducmga moving traffic streamT(p) is the relaxation time, which is

the drivers’ reaction timé, and the vehicle relaxation time a nonlinear function of the densifyand can be expressed as
to the forward anticipation velocity; thus the propagation Ve‘;[zg]

locity of a small disturbance results that is related to th
density. We then analyze the characteristics of our model in
Sec. Il. Anumerical simulation is described in Sec. IV, which T(p)=t, m
validates the correctness of the theoretical analysis. All of the PrPm
results indicate that gaslike behavior does not exist in OUfyhere p,, is the critical densityt, is the constant reaction
model, and_ the nonequilibrium phase transition and nonlinﬁmel 9 is a parameter >0), andE is a constant £>0)
ear dynamical phenomena are correctly revealed. that denotes the difference of reaction times between con-
gested and uncongested traffic situations. As 0, T(p)
Il. MODELING AND ANALYSIS —(E+1)t,; while asp>pp, T(p)—t,. This means that at
high density levels the relaxation time is smaller, and at low
Payne's assumption of forward anticipatifsy is impor-  density levels the relaxation time is larger. Moreover, del
tant and reasonable, but there exists the drawback that thgastillo and Bentez[30] have investigated the general
velocity at location k,t) was assumed to be determined by velocity-density model and attempted to provide a general
the velocity-density relation at locationx ¢ Ax,t) in front,  characterization of velocity-flow relationships. Two were ob-
and to be reached instantaneously. According to the cakained. One is the exponential curve given by
following theory, the adjustment of the state of traffic flow is
performed in a certain vehicle relaxation timeThe reaction Cjam Pjam
time t, of the drivers is not included, which differs from the Ue=Ur| L—exg- = 1= =~

1+ , (7)

] . (8a)

Ug

Us

relaxation time varying with headwaj26,27. The relax-

ation time includes mechanical delay of the vehicles as wellfhe other, called the maximum sensitivity curve, is ex-
as the drivers’ reaction timg , about 1 s[28]. When the pressed by

traffic is in a near-jamming state, the vehicle relaxation time

can approach the driver reaction time. According to the data Cjam | Pjam

given by the National Safety Council of the United States, ue=uf(1—exp|’1—exp{ (7_1) ]) (8D)

the average reaction time of drivers is 0.75 s. Hence, we

determine the effect of reaction time on traffic. We considewhere u; is the free-flow velocity;cj,, is the propagation
that the forward anticipation of velocityis accomplished in  velocity of a disturbance under the jam density,,. Both
the relaxation timeT, while this process is completed by an relationships satisfy the properties of traffic flow, where the
adjustment with driver reaction tinte to the anticipated one free-flow velocity is the limit of the desired velocity, vehicles
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are stopped at the jam density, and the velocity decreases A. Disturbance propagation

v_vith increasing .density. Thus we have .established & CoN- 14 study how a small disturbance propagates, we assume
tinuum model with the propagation velocity of small distur- ,, equilibrium solution go,us) with a small disturbance
bances depending on the traffic density, which is consister‘(tg(x t),w(x,t)), where (&(x,t),w(x,t)) are sufficiently
with other high-order Payne-Whitham-like models. It is goth functions ok andt. Substituting the small distur-
comprised of two partial differential equations as follows: bance into Eq(9b), using the Taylor series expansions and

Ip(x,t) N q0x,t) neglecting higher-order terms g{x,t), w(x,t), we get

(9a)

at X ' 0
'3 Up Po £ ,
au du _ Ue(p)—u (W)t+(0 UO_CO)(W)X: Ue(po)é—w |, (13
R (PR (6b) T(p)

where cy= — pous(po)t; /T(p). By eliminatingw from Eq.
(13) we can obtain

[ 3¢+ (Ug—Co) Ix](d+ Ugdx) §= 91&+ C(po) €, (14)

. . | where C(po)=(poue(po)t; /T(p)+Ug) and @+ Ugdy)é
If the difference between the relaxation and reaction terms is 9E+ Ugdy € is the wave operator, whe and d, denote
not considered, that i,(p) =t,, Eq.(9b) will be reduced to  partial derivatives with respect to time and space. Equation
the anisotropic higher-order model developed by ZH&%,  (14) implies that any small disturbance in the model propa-
but the “sonic speed” in our model is directly derived with- gates in the form of two waves: the slower wave travels at a
meaning. We can analyze the characteristics of EB.and  of the traffic stream that carries it. The propagating velocities
(Qb), and obtain the characteristic velocity and corresponding the two waves mean that the disturbances are carried
eigenvectors downstream by the vehicles that generated them and, on the
- o= U— 10 other hand, propagate upstream through a line of vehicles
1=u 2=u=¢, (10a that are behind the disturbance-generating vehicles. Neither
ol =l
M= ’ y o= .
! ue(P) 2 0

wave travels faster than the traffic that carries it. The model
(10b) is therefore anisotropic, and we shall call it the anisotropic

The model of Eqs(9a) and (9b) is therefore strictly hyper-

bolic. Note that the motion equation in the model does not

nonequilibrium traffic model.
explicitly depend on the density gradient. Becaosel, the We condu_ct a linear stability analysis of Eo[sa) and
characteristic velocity is no greater than the traffic velocity.(9b) governing the development of the disturbances
We can validate the anisotropy of traffic flow using the fol- (§o(X,t),Wo(X,t)) of the quantities g,u) from a certain
lowing example constructed by Dagarf4®]: We try to find  equilibrium value pg,up). Introducing a special form of the

with

PT(p) dp ~

B. Linear stability analysis

the traffic evolution, if at the initial instant small disturbances,
u=0, p=pmaH(X), V x=A, t=0 (A>0), E(X,t) =& expwt—ikx), w(Xx,t)=wgexp wt—ikx),
u=0 x=A. t>0 (11) in the linearized equations, we obtain

whereH(x) is the Heaviside unit step function, apg,.y is €o(@= Uolk) = poWoik =0,

the maximum density. Under these initial conditions, the cor-

rect solution should be that nothing would happen, namely, Wo| @ — (Ug— Co)ik + LI Ue(po) & (15)
vehicles do not move andu/dt=0. Substitutingdu/dt=0 T(p))  T(p)
in Eg. (9b), we have o .
Eliminating & from Eq. (15) yields
=Ue=0. .
u(x,t)=u=0 (12 (0—Ugik)

(—UgiK) 2+ co( w— UgiK)ik +

This means the vehicles always move forward and there is no T(p)
backward-travel problem in our model.
— U poik. (16
I1l. QUALITATIVE PROPERTIES OF THE MODEL (p)

Before the numerical simulations are carried out, we willWhen Ref)=0, the traffic flow is in a stable state. We have

analyze the disturbance propagation and linear stability in )
our model. Up— Co=Up+ poUe(po)- 17
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Thus, the condition of stability is

Co=—poUg(po)=t,<T. (18)

%
it
) 'I/’I;"I"'I,‘;I‘z

The criterion of stability indicates that the flow is stable
when drivers can respond to the changes ahead within the  peh/m)

2232

. e > ) o Wity I,/I';'I,;'l,;'l;;
reaction time; otherwise the flow is unstable, which is con- g, "l,"l,"l"l'l"l, [ttt @
: . 5 - R
sistent with one of Kbne et al’s models atu=0 [31,32. S ,i'%":f"‘"l"':"l:"l/'I/'I/'I,"I,"I;"I"’ll"lli'l,'lll[
i wi : 0 S =
Unstable traffic will lead to the occurrence of a traffic flow ™! "f""""""""'""f",f':"l,f'i,'l','l'l/"""ll <
pattern like stop-start waves or a spontaneous traffic jam. Oy il "'!f:,fl,""j'
~D Q0

IV. NUMERICAL COMPUTATION

We use the finite difference method to discretize Ega. #(min)

and (9b). For the discretization of the conservation equation
(9a), we use the difference format adapted to the physical
meaning of traffic flow and apply the first-order upwind
scheme to the motion equatid®b) [33,34]. Thus, we have

8
. At At . 'l'i""i"
ol =plt eltul—uliy+ Loulela—p)). 19 e
1) when traffic is heavyu/<cq(p))], DU (b)

i/

U= 0l ol (1= u) + = [ —u]]
i T Ax Pi i i+1 i T(p) el Pi ide

(20
(1) when traffic is light{ u!=co(p})],
u{'+1:u{'+ E[C(p{)—uf](uf—u{,l)+ t [Ue(pf)—ug], FIG. 1. Shock Waves_under the R.iemann initial conditigns of
AX T(p) Eg. (223: temporal evolution ofa) densityp(x,t) and(b) velocity
(2D u(x.t).

where the index represents the road section and the inflex The computational results under the two Riemann initial

represents time. To investigate congestion and dissipation %fonditions(ZZa) and (22b) are shown in Figs. (8 and 1b)
the traffic flow, we use two Riemann initial conditions. We and Figs. 23) and 2b), respectively.

first assume that From Figs. 1 and 2, we can see that different Riemann
pu=0.04 veh/m, py=0.18 veh/m, (229 initial conditions lead to different fronts between the con-
gested and free-flow traffic. Figure 1 shows how the
backward-moving shock wave front evolves under the con-
dition (229. This means that traffic becomes more con-
gested, which we often see in rush hours. Figure 2 shows
how the rarefaction wave front evolves under the condition
(322b). It is a queue in the process of dissolution, which is
consistent with our daily experiences in real traffic. The
variations of the propagation velocit(p) of a disturbance
U,=Ug(py), Ug=Ug(pq). (23)  with the density and its temporal evolution processes under
the two Riemann initial condition§22a and (22b) are
Free boundary conditions are applied hg28]. Consider a  shown, respectively, in Figs(& and 3b). From Fig. 3a),
section of freeway 20 km long, divide it into 100 cells, and e can clearly understand that the propagation velocity of a
take the time interval as 1 s. According to real observatioryisturbance is density dependent and decreases with an in-
and the parameter identification process, the values of thgrease of the density. Figurgl shows that the temporal
parameters are chosen as follows: evolution of the propagation velocity(p) of a disturbance

p,=0.18 veh/m, py=0.04 veh/m, (22b

wherep, and p4 are, respectively, the upstream and down-
stream densities. Equatiq22g corresponds to the appear-
ance of shock waves when free-flow traffic meets stoppe
vehicles, while Eq(22b) corresponds to the rarefaction wave
as a queue dissolves. Two initial conditions are

Ur=30 M/, pay=0.2, veh/im, C,y=6.0 mIs, with different values of the driver reaction tinbein the 50th
cell. These curves indicate that the driver reaction tipteas
pm=0.168 veh/m, E=0.5, 6=1.5, a remarkable effect on the propagation velocity of the distur-
bance. The lower curves label€d) correspond to the Rie-
vehicle relaxation timeT,=7 s[35], mann initial conditions of(228, which shows that the
change in the propagation velocity of a disturbance in the
driver reaction timet,=0.75 s[28]. 50th cell is very drastic when a shock wave occurs. The
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FIG. 2. Rarefaction waves under the Riemann initial conditions t=1.0(2)
of Eq. (22b): temporal evolution of density(x,t) and(b) velocity
u(x,t). : t=0.75(2)
1 M ¥ v 1 v ] v 1 v ¥ M 1
0 100 200 300 400 500 600
upper curves labelefl) correspond to Eq(22b), indicating Ks)
that the propagation velocity of a disturbance in the 50th cell
approaches a high value when a queue is dissolving. All the (®

results illustrate that the propagation velocity of a distur-

bance is very large during queue dissolution, but is reduced FIG. 3. The variation of propagation velocitfp) of a distur-

to a smaller value in the case of congestion. bance of vehicle density and its temporal evolution under the two
Riemann initial conditions of Eqs223 and (22b), respectively

labeled ag1) and (2).
V. CONCLUSION

In this paper, we assume that the stream velocity propagation of disturbances in dense traffig] and model-
reaches the equilibrium velocity, within the driver relax- ing stop-and-go traffi¢23]. When we carry out traffic mea-
ation time while the equilibrium velocityu, is attained sures on the ground and overhead traffic in Shanghai, we
through adjustment of the driver reaction time in this dy-also find differences between the reaction titpeand the
namic process. We derive the motion equation with a nonrelaxation time. The relaxation timEis abou 7 s while the
constant propagation velocity of disturbance in the trafficdriver reaction timet, is about 1 §35]. When the vehicle
flow. The model has anisotropy, which is confirmed by therelaxation timeT approaches the driver reaction tieat a
formation and diffusion of a traffic shock wave in numerical red light at an intersection, small disturbances caused by
simulations and validated by using the model. The modesome drivers late for this change in dense traffic will be
reflects that the propagation velocity of a disturbance is verpropagated fast through the vehicle stream and enlarged with
large in the free-flow state, but small in congested traffictime, and finally lead to a traffic jam, which corresponds to
consistent with real situations. Moreover, the model has atthe propagation velocity of disturbanadp) in Fig. 3(b)
analogy with Zhang’s, Aw and Rascle’s, and Jiang and Wu'sunder the two Riemann initial conditions of E®23. In
models. It can describe certain traffic phenomena that evadeontrast, when the traffic stream dissipates, the disturbances
the LWR model, such as vehicle clustering and forwarddecrease with time. All the results show that the relationships
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