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General theory of nonlinear flow-distributed oscillations
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We outline a general theory for the analysis of flow-distributed standing and traveling wave patterns in
one-dimensional, open flows of oscillatory chemical media, emphasizing features that are generic to a variety
of kinetic models. We draw particular attention to the cases far from a Hopf bifurcation and far from the
so-called kinematic or zero-diffusion limit. We introduce a nonlinear formalism for both traveling and station-
ary waves and show that the wave forms and their amplitudes depend on a single reduced transport parameter
that quantifies the departure from the kinematic limit. The nonlinear formalism can be applied to systems with
more complex types of bifurcatiorisanards, period doublings, etc.
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[. INTRODUCTION the fully developed waves. Unlike some of the fluid dynam-
ics or plasma physics examples of convective instabilities,
The flow-distributed oscillatiofFDO) [1-16] mechanism the medium considered here is intrinsically oscillatory even
of spatial pattern formation was predicted in one-inthe absence of a flow and there is no differential transport.
dimensional chemical flowfl,2] and subsequently experi- We are primarily interested in the conditions under which
mentally verified in the Beluosov-ZhabotinskZ) reaction  steady waves propagate and in the wave forms of those
[3-5]. FDO differs from the Turing17] and related mecha- waves. We consider sinusoidal boundary conditions which
nisms[18] and from the differential flow instability19,20)  select a particular wave frequency, rather than noise-
in that it does not require any differential transport of thesustained structures in which the boundary condition is noisy
reacting species. This mechanism operates in open flow syand the pattern is selected by the response of the medium
tems when the chemical kinetics is intrinsically oscillatory itself [28,23. Our attention is devoted more to steady pat-
and the inflow boundary condition plays an essential role. It$erns than to the moving fronts that invade the unstable me-
possible relevance to biological pattern formatiée.g., dium. A general discussion of such fronts is givef2g] and
somitogenesis and axial segmentatibas been suggested, some discussion of those fronts in the case of FDO is given
since an open flow system is related by a coordinate transn [10].
formation to an axially growing medium such as a plant stem In Sec. Il we introduce the governing equations of FDO
or animal embryd11-14. Key features shared with other and discuss the kinematic limit, which provides an intuitively
open flow systems in fluid mechanics and plasma physicsimple starting point for describing strongly nonlinear FDO
[21-25 are convective instability, broken reflection symme-waves, although we shall be interested particularly in devia-
try, and the important role of boundary conditions in patterntions from the kinematic limit. In Sec. Ill we discuss the
selection. Chemical FDO was originally analyzed using dinear stability analysis of a fixed point with emphasis on
linear stability analysis of an unstable fixed point of thegeneric features of the two types of fixed points, unstable
chemical dynamic§l,2]. As pointed out in Ref[9], the lin-  foci and unstable nodes. Analyzing the response to time-
earized analysis is most useful when the kinetic system is natependent perturbations imposed at the inflow, we show that
far from a supercritical Hopf bifurcation. Likewise, the fre- a band of frequencies is spatially amplified and that this band
guently studied complex Ginzburg-Landau equafi®db—23 becomes narrower and sharper with increasing diffusion. We
describes the amplitude dynamics of weakly nonlineaderive general expressions for the thresholds separating ab-
waves. Chemical oscillators, however, have interesting dysolute from convective instability as well as the threshold for
namical regimes far from a Hopf bifurcation, showing extinction of stationary waves and show that the latter
strongly nonlinear oscillations. In such cases, the fixed pointhreshold disappears in the case of an unstable (etgpi-
enclosed by the limit cycle may be an unstable node rathegal case far from a Hopf bifurcationin the latter case we
than a focus, in which case a linearized analysis does nalso show that, in contrast to previous examples, sustained
reveal the intrinsic oscillatory behavior at all. A helpful in- stationary waves can arise through an absolute instability
tuitive view of the nonlinear FDO is provided by considering from a transient perturbation rather than from a steady
the kinematic or zero-diffusion limit7] in which the FDO  boundary perturbation. In Sec. IV we use a traveling wave
represents a straightforward mapping of the chemical tempansatz to introduce a reduced one-dimensional ordinary dif-
ral dynamics onto the flow axis. The kinematic picture, how-ferential equationNODE) that describes the fully nonlinear
ever, misses some essential features, including the extinctigiationary and traveling waves. Numerical solutions of this
of the waves under sufficiently strong diffusion. equation are easier to obtain than those of the partial differ-
The goal of this paper is to outline a general frameworkential equation and they allow us to obtain ttispersion
for for understanding both stationary and traveling FDOrelation for the fully developed, large amplitude waves. A
waves, especially in cases where neither the linear analyslkey result is that the amplitude and shape of the wave depend
nor the kinematic picture gives an adequate description ofnly on the reduced transport paramefe=D/(v—c)?,
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wherec is the phase velocity of the wave. Itlisthat governs  condition is constant, for example, then all of the oscillators
the strength of deviations from the kinematic limit. We showenter the reactor with the same initial phase and stationary
that in the case of relaxation or strongly nonlinear oscilla-waves result from the recurrence of the same phase at
tions these deviations are qualitatively different from those irequally spaced downstream positions. On the other hand, an
the quasisinusoidal case, and we provide a physical interpr@scillating boundary condition leads to upstream or down-
tation of the dependence dh We illustrate the application stream traveling waves, which have also been verified ex-
of our techniques with some numerical results. Finally, inperimentally[11-16. The wavelengths and phase velocities
Sec. V we summarize our conclusions and describe the prosf waves generated by forcing the boundary at a given fre-
pects for applying our techniques to more complex types ofjuency can be derived simply by requiring that the phase of
bifurcations (canards, period doublings, etdn open flow of each advected fluid element increase by during each
systems. time interval of To=27/wy, Where wq is the natural fre-
Throughout the paper we use as an illustrative model thguency of the chemical oscillator. The dispersion relation is
van der Pol or FitzHugh-Nagum@N) oscillator[18,26,27 w=wy+vk and the phase velocity as a function of fre-
quency is given by

dX
a=e(x—x3—v), 0y
c=v ( +1]. (4)
wWo— w
rIa Y +10X, (1) Two features of these relations are physically instructive.

First, asw— wq the wavelength and phase velocity become
which is described in more detail in Appendix A. The FN infinite. This wave corresponds to a synchronous oscillation
model exhibits the generic features we are interested in: #@f the entire medium. Second, as—+«, the wavelength
provides examples of quasisinusoidal oscillations changin§ecomes small and the phase velocity approaches the flow
to relaxation oscillations and an unstable focus changing t§elocity, corresponding to an imposed spatial pattern pas-
an unstable node asis increased. Appendix B describes the Sively transported with the flow. The kinematic limit is help-
numerical approaches used and the challenges encounteréd for understanding the essential physics, but diffusion in-

in solving the one-dimensional ODE described in Sec. Iv. troduces mixing between adjacent fluid elements which may
be oscillating out of phase and alters the wavelenfhss

well as the amplitudes and shapes of flow-distributed waves

[4]. Sufficiently strong diffusion may extinguish the waves.
The governing equations of the one-dimensional open refhe strength of diffusion effects depends on the magnitude

active flow studied are the reaction-diffusion-advectionof the spatial gradients. The kinematic viewpoint leads one to

II. THE KINEMATIC LIMIT

(RDA) equation expect diffusion to play a stronger role as the flow velocity
decreases, or as the driving frequency becomes large, since

U au a?U both tend to lead to shorter wavelengths. We will show in

E:f(U;C) Uy +D ax2 (20 sec. IV that this is correct and that the strength of deviations

from the kinematic limit can be quantified by a single re-
together with the boundary conditidd(0t) at the inflow. duced flow parameter.
Here U(x,t) is an N-dimensional vector of dynamical vari-
ables (concentrations of specigsf(U;C) is the vector- Ill. GENERIC LINEARIZED ANALYSIS NEAR A FIXED
valued rate function which depends on one or more control POINT
parameter<C, v >0 is the flow velocity, and is the diffu- _ . L :
sion coefficient. In generdd andv can be matrices, allow- !N the linearized approximation, a small perturbation
ing for differential transport, but here we focus on the case! (%) =Uo+u(x,t) of the unstable fixed poirit, obeys
without differential transport, so that andD are real sca- P 2
. u Ju a°u
lars. We take the length of the reactor to bend impose —=J(Ug)u—v — +D —, (5)
no-flux boundary conditions at the outflowty/dx|,_, =0. at 2
We are interested in the case wh§f¥;C) has a stable limit
cycle and at least one unstable fixed point.
In the diffusionless okinematiclimit [7] Eq. (2) can be

where J is the Jacobian matrixf(U)/dU. Denoting the
eigenvectors and eigenvalues of the Jacobiarg;bgnd A

written as =a;+ip;, respectively [ {1,...N}) and expanding
N
du
G -fuic), 3 UOGH =2 U (®)

where we have introduced the advective derivati/elt  gives a separate equation for each component:
=Jd/dt+v dldx. In this limit each fluid element is an inde- )
pendent oscillator, and the inflow boundary condition serves auj _ : 9y Iy,

to establish the phase of these oscilla{@is If the boundary ot X X
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FIG. 1. (Color online General solutions to the dispersion relation near an unstable fixed f@ifReal part of the wave numbe(h)
imaginary part. The band of spatially growing mod€¥ ¥ 0) becomes sharper with increasiag

We are interested in unstable eigenvectors for whichO. —)q for the relevant branch are plotted in Fig. 1 for several
(In the following we suppress the subscrjptWithout loss  values ofe. It is easy to show tha®;>0 (i.e., perturbations
of generality we assumg=0. In the case whert), is an  grow with downstream distangc&hen

unstable node, which frequently occurs far from a Hopf bi-

furcation, we haveg=0. Substitution of a complex exponen-

tial u(x,t) = A exp(wt—Iikx) into Eq.(7) gives the dispersion 1 1
relation — =0 00<, (11

io=a+iB+ivk— DK (8)

‘and the maximum growth rate always occur$lat (). The
onset of absolute instability occurs when=1/4 and is
marked by the appearance of a cus@irand a vertical jump

in Q, at)=,. The absolute instability threshold can also
be derived by considering the group velocithw/dk of
gropagating disturbanc¢®,8,29,3Q. Absolute instability oc-

curs when a disturbance propagates upstream and grows with
time; thus the threshold of this instability occurs when the

To analyze the dispersion relation generically, it is conve
nient to use the dimensionless quantities w/a, Q=Q,
+iQ;=vkl/a, e=Dalv?, and Qy=p/a. We now restrict
our attention to purely real frequencies, an appropriate re
striction when the boundary is forced sinusoidally with a
steady amplitude. In dimensionless variables, the real an
imaginary components of the dispersion relati8nread

Qi+ s(Qf— Qiz) =1, (9 mode with zero group velocity has precisely zero growth rate
(w;=0). The first mode to cross the absolute instability
Q,—2:Q,Qi=0—-Q,. (10)  threshold is always the Hopf mode= (.

An important special case, most commonly probed in ex-
In general these equations possess two solutions. As digeriments and previous simulations, is that of a fixed bound-
cussed i 23], in the presence of quite general downstreamary condition which results in stationary wavef €0).
boundary conditions it is the solution with thess positive From Eq.(11) we see that stationary waves grow (¥,
(i.e., more slowly growingvalue ofQ; that dominates in the < 1/e and are evanescent otherwise. This result together with
bulk. Numerical solutions foQ, and Q; as functions of() the threshold: = 1/4 for absolute instability allow one easily
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tude and wave form depend on a single reduced transport
parameter which characterizes the degree of departure from
the kinematic limit. The application of our formalism is then
illustrated by some numerical examples. As in the linearized
analysis, we find that the two cases near and far from a Hopf
bifurcation give qualitatively different wave behavior. The
latter case departs significantly from what the linear stability
analysis would lead one to expect.

We make the ansatd(x,t)=U.(x—ct), which is analo-
gous to the D’Alembert solution of the wave equation. It
represents a generic waygot necessarily perioditraveling
downstream with velocitg and depending only on the com-
bination {=x—ct. A growing or decaying traveling wave is
not strictly described by this ansatz unless 0 (since a
spatially changing amplitude implies a dependence and
not purely on{), but we expect that it describes the
asymptotic behavior of such a wave when the amplitude

FIG. 2. Onset of absolute instability in the FN system. The graysaturates' Substituting this into the  reaction-diffusion-

levels are proportional tX(x,t). The inflow boundary conditions advection equatioi?) gives a one-dimensional ODE:

areX(0t)=-0.001, 0<t<0.1,X(0}t) =0 otherwise. The unstable

fixed point (0,0) is a node under the conditiores=50, v=1, D U 9?U

—0.01. O=f(U)—(v—c)ﬁ—§+Da—§2.

to pI(_)t curves for these thresholds as functions of flqw anqjith a change of variablg’ = ¢/(v—c) we obtain

kinetic parameters for an arbitrary system, generalizing the

results of[2] and[8]. du d2u
The above results remain valid if the unstable fixed point 0=f(U)— —+T —,

is a node rather than a focus, i.€4=0, as frequently oc- d¢’ dg'?

curs in chemically inspired models which are far from a

Hopf bifurcation, although the waves described are qualitawhere

tively somewhat different. In this case, the fastest growth is

along the most unstable eigendirection. A stationary wave D

mode is always the most unstable mode, and the first mode I'= 5"

to cross the absolute instability threshold. This mode initially (v=c)

grows as a pure spatial exponential with a purely imaginary

wave number, but when the amplitude grows large enough ! o .
- P el for a given wave. If Eq(13) has a periodic solutiobJ({")
for nonlinear terms to be significant a finite-wavelength os _U({'+A), then the period\ in terms of ¢ is related to

cillation takes over. There are no evanescent stationar_e frequency and wave number of the corresponding travel
waves. (The disappearance of the evanescent wave regioIng wa(\q/e byy P 9

was observed in Ref$2,8,9) but not extensively remarked

upon) Figure 2 shows an example of a numerical
simulatiort in which a stationary wave pattern arises via an w=Cck= —— —_
absolute instability rather than through a steady boundary (c—v) A(I')’
perturbation, in sharp contrast to previous exampis9.

time

0.2 0.4 . 0.6 0.8 1.0
position

(12

(13

(14)

I' represents the effective strength of the diffusion term

c 2
(19

where we have made explicit the dependencd an I'.
V. NONLINEAR. LARGE AMPLITUDE WAVE For a physical interpretation of the particular combination
-NO : G U S of parameterd’, it is helpful to consider again the intuition

In this section we derive a reduced Ordinary diﬁerentia|deve|0ped in Sec. Il based on the kinematic limit. First, note
equation that describes both stationary and traveling wavéhatl' —0 as|v—c|—c. The limitsc— = (infinite phase
solutions of the RDA equatiof2) and applies to situations Speed both correspond to synchronous oscillations in which
where neither the linear stability analysis nor the kinemati¢here are no spatial gradients. Diffusion has no effect in this

limit give an adequate description. We show that the amplilimit and the system behaves like a well-mixed one. Alterna-
tively, asv—o the wavelengths in the kinematic picture

become large, the spatial gradients are small, and little dif-
INumerical solutions of the RDA equation were obtained using afUSive mixing occurs between adjacent crests and troughs.
simple first-order discretization. The time and space grids were adOn the other hand, asapproaches from either directior”
justed according to the characteristic time and space scales of tlverges, as decreasing—c| tends to compress the waves.
system being studied. For a sufficiently fine grid, the results were If the underlying chemical dynamics is not far from a
verified to be insensitive to the grid size. supercritical Hopf bifurcation, thef(U)=f(Uy+u) can be
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1 0.5
2 : : : 1 : : :
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X (B) r=0.02 14
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FIG. 3. (Color online Numerical solutions of Eq(13) for the FN system witte=2. The left column show¥ ({) vs X(¢), the right
showsX({) vs {. The dotted and lighter-colored curves show solutions in the kinematic (émlt =0). The boundary conditions are fixed
at a point on the local limit cycle at one end, free at the other end. In this weakly nonlinear rEdimetions like a Hopf bifurcation
parameter: fol’<0.28[(a) and(b)] there is a periodic quasisinusoidal wave form, butlfor 0.28 (c) the solution spirals into the origin.
The period changes little dSincreases.

approximated by a cubic function and it can then be shown A. Numerical solutions and qualitative features of nonlinear
that periodic solutions with finite amplitude exist only if wave forms

Equation(13) is useful for several reasons. First, it shows
D @ that the essential features of traveling and stationary waves
I'= (v—c)2<E' (16) (the amplitude and the wave fojrdepend on a single com-
bination of transport parameteis, and therefore a family of
different waves are described by a single universal function.
I thus functions as a bifurcation parameter for a Hopf-likeSecond, as a general rule, ODE’s can be solved with less
bifurcation of a particular wave mode. computational effort than partial differential equations
As a special case, whet=0 we recover the previous (PDE’s), and Eq.(13) allows one to derive wave solutions
result for the threshold for the extinction of stationary waveswithout solving the full PDE(2). Solution methods are de-
In the weakly nonlinear case whe#>0, Eq. (16) predicts  scribed in Appendix B.
that traveling waves with phase speeds close to the flow ve- Some examples of numerical solutions for the FN system
locity do not propagate. Waves with sufficiently small ampli- are shown in Figs. 3 and 4. As expected, increaimgs the
tude are well described by the linearized dispersion relatiomeneral effect of increasing the deviations from the kinematic
of Sec. lll. The cutoff frequency predicted by E@1) is limit. However, the behavior differs qualitatively between
precisely the frequency at which the resulting travelingthe quasisinusoidal and the relaxation oscillation cases. In
waves reach the threshold phase velocity set by(Eg). For  the former case, the phase space orbit remains approximately
the case of an unstable node®+ 0, on the other hand, the elliptical. Its period remains approximately constant while its
threshold (16) diverges and so it appears that there is nocamplitude shrinks uniformly until, at the critical threshold
excluded band of phase velocities, and waves may propagale= o/ 82, it vanishes into the fixed point. In the relaxation
arbitrarily close to the flow velocity. The case of strongly oscillation case, on the other hand, the limit cycle does not
nonlinear waves in a case far from a Hopf bifurcation isshrink to a point. Instead, ds increases, the period in-
considered below. creases apparently without bound, and the limit cycle re-
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FIG. 4. (Color online Solutions of Eq(13) as in Fig. 3 but fore=50. AsT increases, the period lengthens compared to the kinematic

limit, and the wave forms trace narrower loops in phase space, but they do not spiral into the origin at ahy finite

mains elongated in the more unstable eigendirection whiléude, linearized waves. The maximum frequency appears to
be lower than the cutoff frequency obtained from the linear
stability analysis. There is thus a range of frequencies for
B. Dispersion relation for nonlinear waves which the linear theory predicts a growing mode, yet there
are no large amplitude solutions described by B&) cor-

narrowing in the transverse direction.

By finding A(I") numerically for a range of values of val-

ues of " and then using the relatiofl5) together with the 075

definitionI"=D/(v —c)?, one can find the@onlinear disper-
sion relationbetween the frequenay (which can be set by 0.7+
the forcing frequency of a perturbation at the infloand the
phase velocityc of large amplitude traveling waves at given 0.65F
values of the transport paramet&sv. We have done this
for the FN model at two values @fand plotted the results in
Fig. 6 below. In the quasisinusoidal dynamical regime near o0.55+
the Hopf bifurcation A is nearly constant and approximately <
equal to the small amplitude oscillation period/B. The

w-C relation is then approximately the same as that predicted g 45/
in the kinematic limit, except that it is truncated at the cutoff
frequenciegd+ \av?/D [see Fig. 6)]. Outside this interval 0.4r
of frequencies there are only evanescent waves.

0.6

0.5f

0.35
In the strongly nonlinear regime, on the other hand, \/

varies quite strongly witH". In fact, numerical results sug-

0.05

0.1 0.15 0.2 0.25

. o : 0
gest that for asymptotically larg€ it increases approxi- r
mately linearly(see Fig. 5. This means that the frequency
does not become infinite &-v but instead reaches a maxi-  FIG. 5. Scaled wavelength as a function ofl” obtained from

mum. Such a maximum is seen in Figat which shows numerical solutions of the one-dimensional equatibrappears to
frequency versus phase speed for the case50, D increase approximately linearly for larde The numerical results

=0.003,v=1, based on the numerical data fafI'). This become more uncertain at longer wavelengths due to the finite in-

relation is radically different from the one for small ampli- terval of the solutior(see Appendix B
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FIG. 6. (a) Phase velocity vs frequenay for the casee=50,v=1, D=0.003 based on the numerical data of Fig. 5. There is evidently
a maximum frequency. Perturbations near this frequency generate waves with a speed close to the flow velocity. The phase velocity for
linearized small amplitude waves along the most unstable eigendirection is shown for comparison. Note that the cutoff frequency for small
amplitude waves occurs precisely when their phase velocity reaches 1, as can be deduced from the dispersion relation. The maximum
frequency for large amplitude wavéapproximately 9Dappears to be lower than the linear cutoff frequency of 110. In the gap between these
two frequencies, the linearized analysis predicts a growing mode b Bicgives no solution with the correct frequenéy) A similar plot

fore=2,v=1,D=0.0025. In this case the phase velocity for nonlinear waves is very close to the linearized prediction, and becomes closer
as the cutoff frequency of 18.36 is approached.

responding to these frequencies. In other words, there aprfluence on the final state in the bulk of the medium and the
pears to be a nonlinear cutoff frequency which is lower tharstate is not so easily controlled by the upstream boundary
the linear one. Numerical results described below suggesfondition. Therefore the highly nonkinematic wave forms
that perturbations between these two frequencies are subjeséen in Fig. 4 do not correspond to standing waves that could
to a secondary instability. be easily generated, but they can be generated as traveling
waves. One then obtains high valueddby tuning the driv-

ing frequency to bring close tov.

In this section we display a few numerical solutions of the N Figs. 7-9 we display some examples of these waves in
PDE (2) in which a small sinusoidal perturbation about thethe FN system witte=50,v=1, andD =0.003, where the
unstable fixed point grows with the downstream flow into aunstable fixed point is a node with two positive real eigen-
fully nonlinear wave solution governed by Ed.3). A given  values. The predicted-c relation for these parameter values
solution of ODE(13) corresponds to a family of solutions of is shown in Fig. 6a). The boundary condition is a sinusoidal
the PDE(2) which include traveling and stationary waves disturbance (X(0,t),Y(0,t))=(0.05 coswt,0.05 sinwt). The
having the same value df. In a sense, one can map any boundary forcing has components of equal size along both
traveling onto a stationary wave with different values of theeigenvectors, but the component along the more unstable ei-
flow parameters but the same valuelodnd hence the same genvector of course grows faster. Figures 7 and 8 show
amplitude and shape. We have verified this numerically invaves generated by perturbations with=50 and 80, re-
the case of the weakly nonlinear FN model wik-2. If,  spectively. These disturbances grow with downstream dis-
however, the system is far from a Hopf bifurcatifor ex-  tance to resemble the wave forms of Fig. 4. Figure 9 shows
ample, the FN system wite=50), some solutions at high the results of a perturbation witth=85, which is near the
values of" do not correspond to an easily observable stanonlinear cutoff frequency observed in Fig. 6. In this case,
tionary wave. This is because in the case of stationary wavege perturbation initially grows along the more unstable
(c=0) high values ofl" correspond to high values af, eigendirection, but it penetrates only a small distance into the
which are beyond the absolute instability threshold. In thismedium before breaking up. In the domain where the high-
case, initial conditions and temporal transients have a largrequency wave exists, the disturbance appears to artyr

C. Evolution and asymptotic wave forms of growing modes
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(A)

0.25 0.5 0.75 1 1.25 15
position

(B) ©)

0.5 1 15 15 1 05 0 05 1 15
position

FIG. 7. (Color onling Waves generated by a sinusoidal perturbation with50 in the FN system wite=50,v =1, andD=0.003. The
initial transient response to the switching on of the perturbation=a is followed by a steady traveling wave with phase velodity
~1.6, a value consistent with the-c relation plotted in Fig. 6. The corresponding valuel'of 0.008.(a) is a space-time plot with a gray
level proportional toX(x,t). (b) showsX(x,T) for a particular timeT, while (c) shows the shape of the wave form in phase space by plotting
Y(x) againstX(x) at the same time. The orbit described by the underlying kinetics of the well-mixed system is shown as a lighter-colored
line and the cubic nullclinédashed lingis included for reference. Compafie) and (c) to Fig. 4a).

along the most unstable eigendirection. It never develops thef [2,8,9. We pointed out some particular features that occur
loop in phase space that characterizes self-sustained oscillahen the unstable fixed point is a node rather than a focus.
tions. Instead it seems to behave as an imposed spatial patfe then showed that the nonlinear behavior of periodic trav-
tern passively advected by the flow and simply stretched irling or stationary waves reduces to a one-dimensional ODE
phase space by the chemical dynamic_s yntil it b_reaks up and.3) governed by the single paramefer D/(v —c)?, which
is replaced by a pattern of self-sustaining oscillations at &3s a physical interpretation as the strength of diffusive mix-
different frequency and wave number. Similar results wergng between peaks and troughs of a particular wave. The
found for perturbations between~85 and the linear cutoff ODE can be solved numerically to derive the wave forms
frequency ofw~110 (for »>110 the perturbations are im- and obtain a relation between the frequency of driving at the
mediately damped Evidently the waves within this fre- poundary and the wave number and/or phase velocity of the
quency range are subject to a secondary instability. The pafyaves generated by the perturbation. We examined devia-
terns which arise after the high-frequency waves break ugions of wave forms from the kinematic limit, noting quali-
appear similar to the pulsating waves observed in Réfs. tative differences between the quasiharmonic and relaxation
and [5]. The behavior of perturbations near the cutoff fre-cases.
guency in the case of an unstable node warrants further \we illustrated our formalism by applying it to the
study. FitzHugh-Nagumo toy model, but the tools we developed
here can be applied to other kinetic models, including those
V. CONCLUSIONS AND DISCUSSION with multiple fixed points, period doubling, subcritical Hopf
bifurcations, canards, and bistable behavior for which the
We have attempted to give a general framework for undinearized analysis is insufficient.
derstanding the behavior of flow-distributed waves in one- Some other questions have been left open. The behavior
dimensional open flows of oscillatory media without differ- of traveling waves near the cutoff frequencies in the case of
ential transport, aiming at generic results. First, we usedn unstable node may be a fruitful subject for further study.
linear stability analysis to examine the response to constarilore generally, we have only hinted at the possibility of
or sinusoidal forcing at the boundary, generalizing the resultsecondary instabilities that may affect FDO waves. Also, in
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FIG. 8. (Color online Waves generated by a perturbation with- 80 show a larger deviation from the kinematic limit. The waves have
c=1.27 andl’=0.04. Comparéb) and (c) with Fig. 4(b).

this work we have considered only regular traveling wavesuseful toy model with many generic features seen in real
not the pulsating waves observed in Rt} and[5], al- chemical systems, including bistability, excitability, and os-
though some of our numerical resulsee Fig. 9appeared to cillations of quasisinusoidal as well as relaxational character.
show pulsating waves arising from a secondary instability. ~ The nullclines are a cubic and a straight lieés the ratio
of time scales of motion along andY, ais the slope of the
ACKNOWLEDGMENT Y nullcline, andb is its intercept with theY axis. Relaxation
] oscillations occur wheee is large. The number and location
This work was supported by the NSERC of Canada.  of the fixed points depends on tNenullcline, i.e., on values
of a andb. There may be either one fixed point or three. In

APPENDIX A: THE FITZHUGH-NAGUMO MODEL: this paper we follow Refl13] in settingb=0, and addition-
QUASISINUSOIDAL AND RELAXATION OSCILLATIONS ally choosea=10, thus ensuring a single fixed point and

The FitzHugh-NagumeFN) model or van der Pol oscil- excluding bistability, excitability, or canard transitiof31].
lator is defined by [18,26,27 Only e is varied as a control parameter.
” The Jacobian eigenvalues at the origin are given by

dXx
—=e(X=X3-Y),

dt - e—1 1 >

)\izTi‘E V(1+e) —40e. (A2)
dy
dat —Y+aX+b. (A1) They are real and positive for ad>e;;~38 and complex

otherwise. Figure 10 shows the real and imaginary parts of
It is not a realistic model of any chemical system, since itsthe two eigenvaluea .. together with the angular frequency
state variables include negative values, but it serves as @ _-=2«/T of the stable limit cycle which exists for adl
>1. The Hopf bifurcation occurs &=1 where ReX..) be-
comes positive. In the immediate vicinity of the Hopf bifur-
2This version of the model was used in REf3]. cation, the frequency of the limit cycle is identical to the
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FIG. 9. (Color online Boundary perturbation frequeney=85. A high-frequency traveling wave, oscillating almost entirely along the

most unstable eigendirection, penetrates a limited distance into
moving waves.
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FIG. 10. (Color onling Inverse time scales as functionseofor
a=10. Dotted line, Im,); solid lines, ReX-.); dashed line, Z/T
for the limit cycle. At the critical valuee.~38, the eigenvalues
become real.

the medium before giving way to a pattern of much longer, irregularly

imaginary part Im{,). At ey, however, Im{,) vanishes

and the eigenvalues become real. They are degenerate at the
critical point but quickly become different @increases fur-

ther. Roughly speaking, the two real eigenvalues almye
correspond to two different inverse time scales: a slower one
for motion in theY direction and a faster one for motion in
the X direction. It is this separation of time scales that dis-
tinguishes relaxation oscillations from quasisinusoidal ones.
The frequency of relaxation oscillations is determined prima-
rily by the slowerof the two time scales. As increases, the
qualitative character of the oscillations changes from ap-
proximately sinusoidal to relaxation oscillations. Although
there is a sudden change in the eigenvalues and eigenvectors
near the fixed point ag;, the associated change in the
nonlinear limit cycle is gradual.

APPENDIX B: NUMERICAL SOLUTIONS OF THE
REDUCED ONE-DIMENSIONAL EQUATION
Here we discuss the solution of the reduced OB)
d?u

du
0=f(u)— _+FCE.

dg’

In the kinematic limitl'— 0, this equation reduces to a first-
order equation, identical in form to that of the dynamics of
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the well-stirred system. Solutions of this first-order equationwaves in the medium.

with general initial conditions approach the stable limit cycle In order to obtain numerical solutions of the boundary
of the well-stirred system. However, for any nonzero valuevalue problem, we used a collocation algorithm included in
of I the equation is second order and antidissipatisethat  the MATLAB software packagg32]. This algorithm requires
the initial-value problem leads to unbounded solutions foran initial guess for the solution which is then adjusted to
most choices of initial conditions(0) andu’(0). Toexclude  satisfy the differential equations and the boundary conditions
these unphysical solutions, a boundary condition must bgjithin a specified tolerance. For long solution intervals
imposed. Thus, the equation should be solved as a boundargarg,3 multiples ofA) the algorithm may fail to converge
value problem on a finite interval<0{<L. Our procedure iess the initial guess is close to the actual solution. We
was to impose a fixed boundary condition on the 18(0) 564 two procedures for iteratively obtaining a solution.

= Ui, aﬂd a free_ bozndgry ccjonQition on the éi%m'(ol) (1) Use a solution of the initial value problem of the first-
=0. In the cas&=0 the boundaries correspond directly to order,I'=0 system as an initial guess for a relatively small

theFt:re tﬁzytsaf:rlnz(l)g;i?{;gise gf EC: ?(ljllﬁ-(;lot\;}varte?c(;rtor;o derat é/alue of I'. Then increasé’ iteratively to the desired value,
values ofl" and for sufficiently largeL the solutions of the Using each solution as the guess for the next value. ghis

boundary problem behave qualitatively like solutions of aprocedure was used, for example, to generate the solutions at

first-order initial value problem with an attractor. In other & 'ange of values df in Fig. 5. _ _

words, after some transient behavior at smialivhich de- (2) Sometimes it is more convenient to approximate the
pends strongly on;,, the solutions settle either to a fixed §olut|on with piecewise golutlons on a series of overlapping
value or to a periodic behavior with an intrinsic periag? intervals. The procegiure is as fpllows: First, solve t'h.e bound-
which depends ofi but doesiotdepend sensitively ow, or &7y Value problem with the desired boundary conditigpat

on L. The free boundary condition on the right affects the{=0 and free boundary conditions at a relatively small
solution only in a small interval near the right boundary, i.e.,Wh'Ch IS neither tC_JO much larger nor too much shorter than
the boundary can be moved to a larger value? afithout A. Obtam a solutioru;(¢) on that interval. Then evaluate
changing the solution on most of the intervak@<L. In  thatsolution ag=L/2 and usei(L/2) as the boundary con-
the c=0 case, the entire solution, including the boundarydition for a new solution on the interval2<{<3L/2. Con-
transients, is physically meaningful as part of a stationanfinue this procedure on a series of overlapping intervals. If
wave pattern in the reactor. Fo: 0, boundary conditions at 'S not too Iarge, then the |n|t!al trial solutions need not be
fixed £ values are not directly equivalent to boundary condi-¢l0se to the final ones, andlifis not too small they are not
tions at fixedx, but the attractors reached by the solutionsSensitive to the free boundary condition at the right, so that

can be interpreted as the asymptotic shapes of travelin§'€ Overlapping solutions should be approximately the same
except very near the boundaries. Stitched together, the piece-

wise solutions approximate a solution on a longer interval.

3f the equation is rearranged to isolate the second-order term on L-@/g€ values of” (where large means significantly larger
one side, the analogy with the equation of motion of a point particidhan 1/4x, the threshold of absolute instability in tle=0

shows that the “force” contains an antidamping term, and the ternc@S€ often present computational challenges because the so-
—f(u) is also of the “wrong” sign, tending to push the particle lutions become more sensitive to the right boundary condi-

away from the stable limit cycle of the well-mixed system. tion, and large intervals were needed in order for an attractor
“4A chaotic attractor is also possible. We plan to discuss this in 40 appear. This is the source of some of the numerical jitter in
future publication. the data in Fig. 5.
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