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General theory of nonlinear flow-distributed oscillations
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We outline a general theory for the analysis of flow-distributed standing and traveling wave patterns in
one-dimensional, open flows of oscillatory chemical media, emphasizing features that are generic to a variety
of kinetic models. We draw particular attention to the cases far from a Hopf bifurcation and far from the
so-called kinematic or zero-diffusion limit. We introduce a nonlinear formalism for both traveling and station-
ary waves and show that the wave forms and their amplitudes depend on a single reduced transport parameter
that quantifies the departure from the kinematic limit. The nonlinear formalism can be applied to systems with
more complex types of bifurcations~canards, period doublings, etc.!.
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I. INTRODUCTION

The flow-distributed oscillation~FDO! @1–16# mechanism
of spatial pattern formation was predicted in on
dimensional chemical flows@1,2# and subsequently exper
mentally verified in the Beluosov-Zhabotinsky~BZ! reaction
@3–5#. FDO differs from the Turing@17# and related mecha
nisms@18# and from the differential flow instability@19,20#
in that it does not require any differential transport of t
reacting species. This mechanism operates in open flow
tems when the chemical kinetics is intrinsically oscillato
and the inflow boundary condition plays an essential role.
possible relevance to biological pattern formation~e.g.,
somitogenesis and axial segmentation! has been suggested
since an open flow system is related by a coordinate tra
formation to an axially growing medium such as a plant st
or animal embryo@11–14#. Key features shared with othe
open flow systems in fluid mechanics and plasma phy
@21–25# are convective instability, broken reflection symm
try, and the important role of boundary conditions in patte
selection. Chemical FDO was originally analyzed using
linear stability analysis of an unstable fixed point of t
chemical dynamics@1,2#. As pointed out in Ref.@9#, the lin-
earized analysis is most useful when the kinetic system is
far from a supercritical Hopf bifurcation. Likewise, the fre
quently studied complex Ginzburg-Landau equation@21–23#
describes the amplitude dynamics of weakly nonlin
waves. Chemical oscillators, however, have interesting
namical regimes far from a Hopf bifurcation, showin
strongly nonlinear oscillations. In such cases, the fixed p
enclosed by the limit cycle may be an unstable node ra
than a focus, in which case a linearized analysis does
reveal the intrinsic oscillatory behavior at all. A helpful in
tuitive view of the nonlinear FDO is provided by considerin
the kinematic or zero-diffusion limit@7# in which the FDO
represents a straightforward mapping of the chemical tem
ral dynamics onto the flow axis. The kinematic picture, ho
ever, misses some essential features, including the extinc
of the waves under sufficiently strong diffusion.

The goal of this paper is to outline a general framewo
for for understanding both stationary and traveling FD
waves, especially in cases where neither the linear ana
nor the kinematic picture gives an adequate description
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the fully developed waves. Unlike some of the fluid dyna
ics or plasma physics examples of convective instabiliti
the medium considered here is intrinsically oscillatory ev
in the absence of a flow and there is no differential transp
We are primarily interested in the conditions under whi
steady waves propagate and in the wave forms of th
waves. We consider sinusoidal boundary conditions wh
select a particular wave frequency, rather than noi
sustained structures in which the boundary condition is no
and the pattern is selected by the response of the med
itself @28,23#. Our attention is devoted more to steady p
terns than to the moving fronts that invade the unstable
dium. A general discussion of such fronts is given in@22# and
some discussion of those fronts in the case of FDO is gi
in @10#.

In Sec. II we introduce the governing equations of FD
and discuss the kinematic limit, which provides an intuitive
simple starting point for describing strongly nonlinear FD
waves, although we shall be interested particularly in dev
tions from the kinematic limit. In Sec. III we discuss th
linear stability analysis of a fixed point with emphasis
generic features of the two types of fixed points, unsta
foci and unstable nodes. Analyzing the response to tim
dependent perturbations imposed at the inflow, we show
a band of frequencies is spatially amplified and that this b
becomes narrower and sharper with increasing diffusion.
derive general expressions for the thresholds separating
solute from convective instability as well as the threshold
extinction of stationary waves and show that the lat
threshold disappears in the case of an unstable node~a typi-
cal case far from a Hopf bifurcation!. In the latter case we
also show that, in contrast to previous examples, susta
stationary waves can arise through an absolute instab
from a transient perturbation rather than from a stea
boundary perturbation. In Sec. IV we use a traveling wa
ansatz to introduce a reduced one-dimensional ordinary
ferential equation~ODE! that describes the fully nonlinea
stationary and traveling waves. Numerical solutions of t
equation are easier to obtain than those of the partial dif
ential equation and they allow us to obtain thedispersion
relation for the fully developed, large amplitude waves.
key result is that the amplitude and shape of the wave dep
only on the reduced transport parameterG[D/(v2c)2,
©2003 The American Physical Society22-1
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wherec is the phase velocity of the wave. It isG that governs
the strength of deviations from the kinematic limit. We sho
that in the case of relaxation or strongly nonlinear osci
tions these deviations are qualitatively different from those
the quasisinusoidal case, and we provide a physical inter
tation of the dependence onG. We illustrate the application
of our techniques with some numerical results. Finally,
Sec. V we summarize our conclusions and describe the p
pects for applying our techniques to more complex types
bifurcations ~canards, period doublings, etc.! in open flow
systems.

Throughout the paper we use as an illustrative model
van der Pol or FitzHugh-Nagumo~FN! oscillator @18,26,27#

dX

dt
5e~X2X32Y!,

dY

dt
52Y110X, ~1!

which is described in more detail in Appendix A. The F
model exhibits the generic features we are interested in
provides examples of quasisinusoidal oscillations chang
to relaxation oscillations and an unstable focus changing
an unstable node ase is increased. Appendix B describes th
numerical approaches used and the challenges encoun
in solving the one-dimensional ODE described in Sec. IV

II. THE KINEMATIC LIMIT

The governing equations of the one-dimensional open
active flow studied are the reaction-diffusion-advecti
~RDA! equation

]U

]t
5f~U;C!2v

]U

]x
1D

]2U

]x2 ~2!

together with the boundary conditionU(0,t) at the inflow.
Here U(x,t) is an N-dimensional vector of dynamical var
ables ~concentrations of species!, f(U;C) is the vector-
valued rate function which depends on one or more con
parametersC, v.0 is the flow velocity, andD is the diffu-
sion coefficient. In generalD andv can be matrices, allow
ing for differential transport, but here we focus on the ca
without differential transport, so thatv and D are real sca-
lars. We take the length of the reactor to beL and impose
no-flux boundary conditions at the outflow:]U/]xux5L50.
We are interested in the case wheref(U;C) has a stable limit
cycle and at least one unstable fixed point.

In the diffusionless orkinematiclimit @7# Eq. ~2! can be
written as

dU

dt
5f~U;C!, ~3!

where we have introduced the advective derivatived/dt
[]/]t1v ]/]x. In this limit each fluid element is an inde
pendent oscillator, and the inflow boundary condition ser
to establish the phase of these oscillators@3#. If the boundary
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condition is constant, for example, then all of the oscillato
enter the reactor with the same initial phase and station
waves result from the recurrence of the same phase
equally spaced downstream positions. On the other hand
oscillating boundary condition leads to upstream or dow
stream traveling waves, which have also been verified
perimentally@11–16#. The wavelengths and phase velociti
of waves generated by forcing the boundary at a given
quency can be derived simply by requiring that the phase
of each advected fluid element increase by 2p during each
time interval of T052p/v0 , wherev0 is the natural fre-
quency of the chemical oscillator. The dispersion relation
v5v01vk and the phase velocityc as a function of fre-
quency is given by

c5vS v0

v02v
11D . ~4!

Two features of these relations are physically instructi
First, asv→v0 the wavelength and phase velocity becom
infinite. This wave corresponds to a synchronous oscillat
of the entire medium. Second, asv→6`, the wavelength
becomes small and the phase velocity approaches the
velocity, corresponding to an imposed spatial pattern p
sively transported with the flow. The kinematic limit is help
ful for understanding the essential physics, but diffusion
troduces mixing between adjacent fluid elements which m
be oscillating out of phase and alters the wavelengths@6# as
well as the amplitudes and shapes of flow-distributed wa
@4#. Sufficiently strong diffusion may extinguish the wave
The strength of diffusion effects depends on the magnit
of the spatial gradients. The kinematic viewpoint leads one
expect diffusion to play a stronger role as the flow veloc
decreases, or as the driving frequency becomes large, s
both tend to lead to shorter wavelengths. We will show
Sec. IV that this is correct and that the strength of deviatio
from the kinematic limit can be quantified by a single r
duced flow parameter.

III. GENERIC LINEARIZED ANALYSIS NEAR A FIXED
POINT

In the linearized approximation, a small perturbati
U(x,t)5U01u(x,t) of the unstable fixed pointU0 obeys

]u

]t
5J~U0!u2v

]u

]x
1D

]2u

]x2 , ~5!

where J is the Jacobian matrix]f(U)/]U. Denoting the
eigenvectors and eigenvalues of the Jacobian byj j and l j
5a j1 ib j , respectively (j P$1,...,N%) and expanding

u~x,t !5(
j 51

N

uj~x,t !j j ~6!

gives a separate equation for each component:

]uj

]t
5~a j1 ib j !uj2v

]uj

]x
1D

]2uj

]x2 . ~7!
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FIG. 1. ~Color online! General solutions to the dispersion relation near an unstable fixed point.~a! Real part of the wave number;~b!
imaginary part. The band of spatially growing modes (Qi.0) becomes sharper with increasing«.
bi
-

ve

r
a

an

d
am

ral

o

with
he
ate
ity

ex-
nd-

ith
y

We are interested in unstable eigenvectors for whicha.0.
~In the following we suppress the subscriptj.! Without loss
of generality we assumeb>0. In the case whereU0 is an
unstable node, which frequently occurs far from a Hopf
furcation, we haveb50. Substitution of a complex exponen
tial u(x,t)5A exp(ivt2ikx) into Eq.~7! gives the dispersion
relation

iv5a1 ib1 ivk2Dk2. ~8!

To analyze the dispersion relation generically, it is con
nient to use the dimensionless quantitiesV[v/a, Q5Qr
1 iQi[vk/a, «[Da/v2, and V0[b/a. We now restrict
our attention to purely real frequencies, an appropriate
striction when the boundary is forced sinusoidally with
steady amplitude. In dimensionless variables, the real
imaginary components of the dispersion relation~8! read

Qi1«~Qr
22Qi

2!51, ~9!

Qr22«QrQi5V2V0 . ~10!

In general these equations possess two solutions. As
cussed in@23#, in the presence of quite general downstre
boundary conditions it is the solution with theless positive
~i.e., more slowly growing! value ofQi that dominates in the
bulk. Numerical solutions forQr and Qi as functions ofV
06612
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2V0 for the relevant branch are plotted in Fig. 1 for seve
values of«. It is easy to show thatQi.0 ~i.e., perturbations
grow with downstream distance! when

2
1

«
,V2V0,

1

«
, ~11!

and the maximum growth rate always occurs atV5V0 . The
onset of absolute instability occurs when«51/4 and is
marked by the appearance of a cusp inQi and a vertical jump
in Qr at V5V0 . The absolute instability threshold can als
be derived by considering the group velocitydv/dk of
propagating disturbances@2,8,29,30#. Absolute instability oc-
curs when a disturbance propagates upstream and grows
time; thus the threshold of this instability occurs when t
mode with zero group velocity has precisely zero growth r
(v i50). The first mode to cross the absolute instabil
threshold is always the Hopf modeV5V0 .

An important special case, most commonly probed in
periments and previous simulations, is that of a fixed bou
ary condition which results in stationary waves (V50).
From Eq. ~11! we see that stationary waves grow ifV0
,1/« and are evanescent otherwise. This result together w
the threshold«51/4 for absolute instability allow one easil
2-3
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to plot curves for these thresholds as functions of flow a
kinetic parameters for an arbitrary system, generalizing
results of@2# and @8#.

The above results remain valid if the unstable fixed po
is a node rather than a focus, i.e.,V050, as frequently oc-
curs in chemically inspired models which are far from
Hopf bifurcation, although the waves described are qual
tively somewhat different. In this case, the fastest growth
along the most unstable eigendirection. A stationary w
mode is always the most unstable mode, and the first m
to cross the absolute instability threshold. This mode initia
grows as a pure spatial exponential with a purely imagin
wave number, but when the amplitude grows large eno
for nonlinear terms to be significant a finite-wavelength
cillation takes over. There are no evanescent station
waves.~The disappearance of the evanescent wave re
was observed in Refs.@2,8,9# but not extensively remarke
upon.! Figure 2 shows an example of a numeric
simulation1 in which a stationary wave pattern arises via
absolute instability rather than through a steady bound
perturbation, in sharp contrast to previous examples@8,9#.

IV. NONLINEAR, LARGE AMPLITUDE WAVES

In this section we derive a reduced ordinary different
equation that describes both stationary and traveling w
solutions of the RDA equation~2! and applies to situation
where neither the linear stability analysis nor the kinema
limit give an adequate description. We show that the am

1Numerical solutions of the RDA equation were obtained usin
simple first-order discretization. The time and space grids were
justed according to the characteristic time and space scales o
system being studied. For a sufficiently fine grid, the results w
verified to be insensitive to the grid size.

position
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e
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2

FIG. 2. Onset of absolute instability in the FN system. The g
levels are proportional toX(x,t). The inflow boundary conditions
areX(0,t)520.001, 0,t,0.1,X(0,t)50 otherwise. The unstable
fixed point ~0,0! is a node under the conditionse550, v51, D
50.01.
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tude and wave form depend on a single reduced trans
parameter which characterizes the degree of departure
the kinematic limit. The application of our formalism is the
illustrated by some numerical examples. As in the lineariz
analysis, we find that the two cases near and far from a H
bifurcation give qualitatively different wave behavior. Th
latter case departs significantly from what the linear stabi
analysis would lead one to expect.

We make the ansatzU(x,t)5Uc(x2ct), which is analo-
gous to the D’Alembert solution of the wave equation.
represents a generic wave~not necessarily periodic! traveling
downstream with velocityc and depending only on the com
binationz[x2ct. A growing or decaying traveling wave i
not strictly described by this ansatz unlessc50 ~since a
spatially changing amplitude implies a dependence onx and
not purely on z!, but we expect that it describes th
asymptotic behavior of such a wave when the amplitu
saturates. Substituting this into the reaction-diffusio
advection equation~2! gives a one-dimensional ODE:

05f~U!2~v2c!
]U

]z
1D

]2U

]z2
. ~12!

With a change of variablez8[z/(v2c) we obtain

05f~U!2
dU

dz8
1G

d2U

dz82
, ~13!

where

G[
D

~v2c!2
. ~14!

G represents the effective strength of the diffusion te
for a given wave. If Eq.~13! has a periodic solutionU(z8)
5U(z81L), then the periodL in terms ofz8 is related to
the frequency and wave number of the corresponding tra
ing wave by

v5ck5
c

~c2v !

2p

L~G!
, ~15!

where we have made explicit the dependence ofL on G.
For a physical interpretation of the particular combinati

of parametersG, it is helpful to consider again the intuition
developed in Sec. II based on the kinematic limit. First, n
that G→0 asuv2cu→`. The limitsc→6` ~infinite phase
speed! both correspond to synchronous oscillations in wh
there are no spatial gradients. Diffusion has no effect in t
limit and the system behaves like a well-mixed one. Altern
tively, as v→` the wavelengths in the kinematic pictur
become large, the spatial gradients are small, and little
fusive mixing occurs between adjacent crests and troug
On the other hand, asc approachesv from either directionG
diverges, as decreasinguv2cu tends to compress the wave

If the underlying chemical dynamics is not far from
supercritical Hopf bifurcation, thenf(U)5f(U01u) can be

a
d-
the
e

y
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FIG. 3. ~Color online! Numerical solutions of Eq.~13! for the FN system withe52. The left column showsY(z) vs X(z), the right
showsX(z) vs z. The dotted and lighter-colored curves show solutions in the kinematic limit~or G50). The boundary conditions are fixe
at a point on the local limit cycle at one end, free at the other end. In this weakly nonlinear regimeG functions like a Hopf bifurcation
parameter: forG,0.28 @~a! and ~b!# there is a periodic quasisinusoidal wave form, but forG.0.28 ~c! the solution spirals into the origin
The period changes little asG increases.
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approximated by a cubic function and it can then be sho
that periodic solutions with finite amplitude exist only if

G5
D

~v2c!2
,

a

b2
. ~16!

G thus functions as a bifurcation parameter for a Hopf-l
bifurcation of a particular wave mode.

As a special case, whenc50 we recover the previou
result for the threshold for the extinction of stationary wav
In the weakly nonlinear case whenb.0, Eq. ~16! predicts
that traveling waves with phase speeds close to the flow
locity do not propagate. Waves with sufficiently small amp
tude are well described by the linearized dispersion rela
of Sec. III. The cutoff frequency predicted by Eq.~11! is
precisely the frequency at which the resulting traveli
waves reach the threshold phase velocity set by Eq.~16!. For
the case of an unstable node orb50, on the other hand, th
threshold~16! diverges and so it appears that there is
excluded band of phase velocities, and waves may propa
arbitrarily close to the flow velocity. The case of strong
nonlinear waves in a case far from a Hopf bifurcation
considered below.
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A. Numerical solutions and qualitative features of nonlinear
wave forms

Equation~13! is useful for several reasons. First, it show
that the essential features of traveling and stationary wa
~the amplitude and the wave form! depend on a single com
bination of transport parameters,G, and therefore a family of
different waves are described by a single universal functi
Second, as a general rule, ODE’s can be solved with
computational effort than partial differential equatio
~PDE’s!, and Eq.~13! allows one to derive wave solution
without solving the full PDE~2!. Solution methods are de
scribed in Appendix B.

Some examples of numerical solutions for the FN syst
are shown in Figs. 3 and 4. As expected, increasingG has the
general effect of increasing the deviations from the kinema
limit. However, the behavior differs qualitatively betwee
the quasisinusoidal and the relaxation oscillation cases
the former case, the phase space orbit remains approxim
elliptical. Its period remains approximately constant while
amplitude shrinks uniformly until, at the critical thresho
G5a/b2, it vanishes into the fixed point. In the relaxatio
oscillation case, on the other hand, the limit cycle does
shrink to a point. Instead, asG increases, the periodL in-
creases apparently without bound, and the limit cycle
2-5
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FIG. 4. ~Color online! Solutions of Eq.~13! as in Fig. 3 but fore550. AsG increases, the period lengthens compared to the kinem
limit, and the wave forms trace narrower loops in phase space, but they do not spiral into the origin at any finiteG.
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mains elongated in the more unstable eigendirection w
narrowing in the transverse direction.

B. Dispersion relation for nonlinear waves

By finding L~G! numerically for a range of values of va
ues ofG and then using the relation~15! together with the
definitionG5D/(v2c)2, one can find thenonlinear disper-
sion relationbetween the frequencyv ~which can be set by
the forcing frequency of a perturbation at the inflow! and the
phase velocityc of large amplitude traveling waves at give
values of the transport parametersD, v. We have done this
for the FN model at two values ofe and plotted the results in
Fig. 6 below. In the quasisinusoidal dynamical regime n
the Hopf bifurcation,L is nearly constant and approximate
equal to the small amplitude oscillation period 2p/b. The
v-c relation is then approximately the same as that predic
in the kinematic limit, except that it is truncated at the cut
frequenciesb6Aav2/D @see Fig. 6~b!#. Outside this interval
of frequencies there are only evanescent waves.

In the strongly nonlinear regime, on the other hand,L
varies quite strongly withG. In fact, numerical results sug
gest that for asymptotically largeG it increases approxi-
mately linearly~see Fig. 5!. This means that the frequenc
does not become infinite asc→v but instead reaches a max
mum. Such a maximum is seen in Fig. 6~a!, which shows
frequency versus phase speed for the casee550, D
50.003,v51, based on the numerical data forL~G!. This
relation is radically different from the one for small amp
06612
le

r

d
f

tude, linearized waves. The maximum frequency appears
be lower than the cutoff frequency obtained from the line
stability analysis. There is thus a range of frequencies
which the linear theory predicts a growing mode, yet the
are no large amplitude solutions described by Eq.~13! cor-
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FIG. 5. Scaled wavelengthL as a function ofG obtained from
numerical solutions of the one-dimensional equation.L appears to
increase approximately linearly for largeG. The numerical results
become more uncertain at longer wavelengths due to the finite
terval of the solution~see Appendix B!.
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FIG. 6. ~a! Phase velocity vs frequencyv for the casee550, v51, D50.003 based on the numerical data of Fig. 5. There is evide
a maximum frequency. Perturbations near this frequency generate waves with a speed close to the flow velocity. The phase v
linearized small amplitude waves along the most unstable eigendirection is shown for comparison. Note that the cutoff frequency
amplitude waves occurs precisely when their phase velocity reaches 1, as can be deduced from the dispersion relation. The
frequency for large amplitude waves~approximately 90! appears to be lower than the linear cutoff frequency of 110. In the gap between
two frequencies, the linearized analysis predicts a growing mode but Eq.~13! gives no solution with the correct frequency.~b! A similar plot
for e52, v51, D50.0025. In this case the phase velocity for nonlinear waves is very close to the linearized prediction, and becom
as the cutoff frequency of 18.36 is approached.
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responding to these frequencies. In other words, there
pears to be a nonlinear cutoff frequency which is lower th
the linear one. Numerical results described below sugg
that perturbations between these two frequencies are su
to a secondary instability.

C. Evolution and asymptotic wave forms of growing modes

In this section we display a few numerical solutions of t
PDE ~2! in which a small sinusoidal perturbation about t
unstable fixed point grows with the downstream flow into
fully nonlinear wave solution governed by Eq.~13!. A given
solution of ODE~13! corresponds to a family of solutions o
the PDE ~2! which include traveling and stationary wave
having the same value ofG. In a sense, one can map an
traveling onto a stationary wave with different values of t
flow parameters but the same value ofG and hence the sam
amplitude and shape. We have verified this numerically
the case of the weakly nonlinear FN model withe52. If,
however, the system is far from a Hopf bifurcation~for ex-
ample, the FN system withe550), some solutions at high
values ofG do not correspond to an easily observable s
tionary wave. This is because in the case of stationary wa
(c50) high values ofG correspond to high values of«,
which are beyond the absolute instability threshold. In t
case, initial conditions and temporal transients have a la
06612
p-
n
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n

-
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e

influence on the final state in the bulk of the medium and
state is not so easily controlled by the upstream bound
condition. Therefore the highly nonkinematic wave form
seen in Fig. 4 do not correspond to standing waves that co
be easily generated, but they can be generated as trav
waves. One then obtains high values ofG by tuning the driv-
ing frequency to bringc close tov.

In Figs. 7–9 we display some examples of these wave
the FN system withe550, v51, andD50.003, where the
unstable fixed point is a node with two positive real eige
values. The predictedv-c relation for these parameter value
is shown in Fig. 6~a!. The boundary condition is a sinusoid
disturbance „X(0,t),Y(0,t)…5(0.05 cosvt,0.05 sinvt). The
boundary forcing has components of equal size along b
eigenvectors, but the component along the more unstabl
genvector of course grows faster. Figures 7 and 8 sh
waves generated by perturbations withv550 and 80, re-
spectively. These disturbances grow with downstream
tance to resemble the wave forms of Fig. 4. Figure 9 sho
the results of a perturbation withv585, which is near the
nonlinear cutoff frequency observed in Fig. 6. In this ca
the perturbation initially grows along the more unstab
eigendirection, but it penetrates only a small distance into
medium before breaking up. In the domain where the hi
frequency wave exists, the disturbance appears to occuronly
2-7
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FIG. 7. ~Color online! Waves generated by a sinusoidal perturbation withv550 in the FN system withe550, v51, andD50.003. The
initial transient response to the switching on of the perturbation att50 is followed by a steady traveling wave with phase velocityc
'1.6, a value consistent with thev-c relation plotted in Fig. 6. The corresponding value ofG is 0.008.~a! is a space-time plot with a gray
level proportional toX(x,t). ~b! showsX(x,T) for a particular timeT, while ~c! shows the shape of the wave form in phase space by plot
Y(x) againstX(x) at the same time. The orbit described by the underlying kinetics of the well-mixed system is shown as a lighter-
line and the cubic nullcline~dashed line! is included for reference. Compare~b! and ~c! to Fig. 4~a!.
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along the most unstable eigendirection. It never develops
loop in phase space that characterizes self-sustained os
tions. Instead it seems to behave as an imposed spatial
tern passively advected by the flow and simply stretched
phase space by the chemical dynamics until it breaks up
is replaced by a pattern of self-sustaining oscillations a
different frequency and wave number. Similar results w
found for perturbations betweenv'85 and the linear cutoff
frequency ofv'110 ~for v.110 the perturbations are im
mediately damped!. Evidently the waves within this fre
quency range are subject to a secondary instability. The
terns which arise after the high-frequency waves break
appear similar to the pulsating waves observed in Refs.@4#
and @5#. The behavior of perturbations near the cutoff fr
quency in the case of an unstable node warrants fur
study.

V. CONCLUSIONS AND DISCUSSION

We have attempted to give a general framework for
derstanding the behavior of flow-distributed waves in o
dimensional open flows of oscillatory media without diffe
ential transport, aiming at generic results. First, we u
linear stability analysis to examine the response to cons
or sinusoidal forcing at the boundary, generalizing the res
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of @2,8,9#. We pointed out some particular features that oc
when the unstable fixed point is a node rather than a foc
We then showed that the nonlinear behavior of periodic tr
eling or stationary waves reduces to a one-dimensional O
~13! governed by the single parameterG5D/(v2c)2, which
has a physical interpretation as the strength of diffusive m
ing between peaks and troughs of a particular wave. T
ODE can be solved numerically to derive the wave for
and obtain a relation between the frequency of driving at
boundary and the wave number and/or phase velocity of
waves generated by the perturbation. We examined de
tions of wave forms from the kinematic limit, noting qual
tative differences between the quasiharmonic and relaxa
cases.

We illustrated our formalism by applying it to th
FitzHugh-Nagumo toy model, but the tools we develop
here can be applied to other kinetic models, including th
with multiple fixed points, period doubling, subcritical Hop
bifurcations, canards, and bistable behavior for which
linearized analysis is insufficient.

Some other questions have been left open. The beha
of traveling waves near the cutoff frequencies in the case
an unstable node may be a fruitful subject for further stu
More generally, we have only hinted at the possibility
secondary instabilities that may affect FDO waves. Also,
2-8
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FIG. 8. ~Color online! Waves generated by a perturbation withv580 show a larger deviation from the kinematic limit. The waves ha
c51.27 andG50.04. Compare~b! and ~c! with Fig. 4~b!.
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this work we have considered only regular traveling wav
not the pulsating waves observed in Refs.@4# and @5#, al-
though some of our numerical results~see Fig. 9! appeared to
show pulsating waves arising from a secondary instabilit

ACKNOWLEDGMENT

This work was supported by the NSERC of Canada.

APPENDIX A: THE FITZHUGH-NAGUMO MODEL:
QUASISINUSOIDAL AND RELAXATION OSCILLATIONS

The FitzHugh-Nagumo~FN! model or van der Pol oscil
lator is defined2 by @18,26,27#

dX

dt
5e~X2X32Y!,

dY

dt
52Y1aX1b. ~A1!

It is not a realistic model of any chemical system, since
state variables include negative values, but it serves a

2This version of the model was used in Ref.@13#.
06612
,

s
a

useful toy model with many generic features seen in r
chemical systems, including bistability, excitability, and o
cillations of quasisinusoidal as well as relaxational charac

The nullclines are a cubic and a straight line.e is the ratio
of time scales of motion alongX andY, a is the slope of the
Y nullcline, andb is its intercept with theY axis. Relaxation
oscillations occur whene is large. The number and locatio
of the fixed points depends on theY nullcline, i.e., on values
of a andb. There may be either one fixed point or three.
this paper we follow Ref.@13# in settingb50, and addition-
ally choosea510, thus ensuring a single fixed point an
excluding bistability, excitability, or canard transitions@31#.
Only e is varied as a control parameter.

The Jacobian eigenvalues at the origin are given by

l65
e21

2
6

1

2
A~11e!2240e. ~A2!

They are real and positive for alle.ecrit'38 and complex
otherwise. Figure 10 shows the real and imaginary parts
the two eigenvaluesl6 together with the angular frequenc
vLC52p/T of the stable limit cycle which exists for alle
.1. The Hopf bifurcation occurs ate51 where Re(l6) be-
comes positive. In the immediate vicinity of the Hopf bifu
cation, the frequency of the limit cycle is identical to th
2-9
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FIG. 9. ~Color online! Boundary perturbation frequencyv585. A high-frequency traveling wave, oscillating almost entirely along
most unstable eigendirection, penetrates a limited distance into the medium before giving way to a pattern of much longer, ir
moving waves.
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FIG. 10. ~Color online! Inverse time scales as functions ofe for
a510. Dotted line, Im(l1); solid lines, Re(l6); dashed line, 2p/T
for the limit cycle. At the critical valueec'38, the eigenvalues
become real.
06612
imaginary part Im(l1). At ecrit , however, Im(l1) vanishes
and the eigenvalues become real. They are degenerate a
critical point but quickly become different ase increases fur-
ther. Roughly speaking, the two real eigenvalues aboveecrit
correspond to two different inverse time scales: a slower
for motion in theY direction and a faster one for motion i
the X direction. It is this separation of time scales that d
tinguishes relaxation oscillations from quasisinusoidal on
The frequency of relaxation oscillations is determined prim
rily by the slowerof the two time scales. Ase increases, the
qualitative character of the oscillations changes from
proximately sinusoidal to relaxation oscillations. Althoug
there is a sudden change in the eigenvalues and eigenve
near the fixed point atecrit , the associated change in th
nonlinear limit cycle is gradual.

APPENDIX B: NUMERICAL SOLUTIONS OF THE
REDUCED ONE-DIMENSIONAL EQUATION

Here we discuss the solution of the reduced ODE~13!

05f~u!2
du

dz8
1Gc

d2u

dz82
.

In the kinematic limitG→0, this equation reduces to a firs
order equation, identical in form to that of the dynamics
2-10
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GENERAL THEORY OF NONLINEAR FLOW- . . . PHYSICAL REVIEW E 68, 066122 ~2003!
the well-stirred system. Solutions of this first-order equat
with general initial conditions approach the stable limit cyc
of the well-stirred system. However, for any nonzero va
of G the equation is second order and antidissipative,3 so that
the initial-value problem leads to unbounded solutions
most choices of initial conditionsu~0! andu8(0). Toexclude
these unphysical solutions, a boundary condition must
imposed. Thus, the equation should be solved as a bound
value problem on a finite interval 0,z,L. Our procedure
was to impose a fixed boundary condition on the left,u(0)
5uin , and a free boundary condition on the right,u8(0)
50. In the casec50 the boundaries correspond directly
the the physical boundaries of the plug-flow reactor.

For the examples studied, we found that for moder
values ofG and for sufficiently largeL the solutions of the
boundary problem behave qualitatively like solutions of
first-order initial value problem with an attractor. In oth
words, after some transient behavior at smallz which de-
pends strongly onuin , the solutions settle either to a fixe
value or to a periodic behavior with an intrinsic periodL,4

which depends onG but doesnot depend sensitively onuin or
on L. The free boundary condition on the right affects t
solution only in a small interval near the right boundary, i.
the boundary can be moved to a larger value ofz without
changing the solution on most of the interval 0,z,L. In
the c50 case, the entire solution, including the bounda
transients, is physically meaningful as part of a station
wave pattern in the reactor. ForcÞ0, boundary conditions a
fixed z values are not directly equivalent to boundary con
tions at fixedx, but the attractors reached by the solutio
can be interpreted as the asymptotic shapes of trave

3If the equation is rearranged to isolate the second-order term
one side, the analogy with the equation of motion of a point part
shows that the ‘‘force’’ contains an antidamping term, and the te
2f(u) is also of the ‘‘wrong’’ sign, tending to push the partic
away from the stable limit cycle of the well-mixed system.

4A chaotic attractor is also possible. We plan to discuss this
future publication.
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waves in the medium.
In order to obtain numerical solutions of the bounda

value problem, we used a collocation algorithm included
the MATLAB software package@32#. This algorithm requires
an initial guess for the solution which is then adjusted
satisfy the differential equations and the boundary conditi
within a specified tolerance. For long solution interva
~large multiples ofL! the algorithm may fail to converge
unless the initial guess is close to the actual solution.
used two procedures for iteratively obtaining a solution.

~1! Use a solution of the initial value problem of the firs
order,G50 system as an initial guess for a relatively sm
value ofG. Then increaseG iteratively to the desired value
using each solution as the guess for the next value ofG. This
procedure was used, for example, to generate the solutio
a range of values ofG in Fig. 5.

~2! Sometimes it is more convenient to approximate
solution with piecewise solutions on a series of overlapp
intervals. The procedure is as follows: First, solve the bou
ary value problem with the desired boundary conditionuin at
z50 and free boundary conditions at a relatively smallL
which is neither too much larger nor too much shorter th
L. Obtain a solutionu1(z) on that interval. Then evaluat
that solution atz5L/2 and useu1(L/2) as the boundary con
dition for a new solution on the intervalL/2,z,3L/2. Con-
tinue this procedure on a series of overlapping intervals.L
is not too large, then the initial trial solutions need not
close to the final ones, and ifL is not too small they are no
sensitive to the free boundary condition at the right, so t
the overlapping solutions should be approximately the sa
except very near the boundaries. Stitched together, the pi
wise solutions approximate a solution on a longer interva

Large values ofG ~where large means significantly large
than 1/4a, the threshold of absolute instability in thec50
case! often present computational challenges because the
lutions become more sensitive to the right boundary con
tion, and large intervals were needed in order for an attra
to appear. This is the source of some of the numerical jitte
the data in Fig. 5.
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