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Duplication graphs are graphs that grow by duplication of existing vertices, and are important models of
biological networks, including protein-protein interaction networks and gene regulatory networks. Three mod-
els of graph growth are studied: pure duplication growth, and two two-parameter models in which duplication
forms one element of the growth dynamics. A power-law degree distribution is found to emerge in all three
models. However, the parameter space of the latter two models is characterized by a range of parameter values
for which duplication is the predominant mechanism of graph growth. For parameter values that lie in this
“duplication-dominated” regime, it is shown that the degree distribution either approaches zero asymptotically,
or approaches a nonzero power-law degree distribution very slowly. In either case, the approach to the true
asymptotic degree distribution is characterized by a dependence of the scaling exponent on properties of the
initial degree distribution. It is therefore conjectured that duplication-dominated, scale-free networks may
contain identifiable remnants of their early structure. This feature is inherited from the idealized model of pure
duplication growth, for which the exact finite-size degree distribution is found and its asymptotic properties
studied.
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[. INTRODUCTION same sets of nodesemains invariant under any one realiza-
tion of pure duplication growth. Therefore the number of
The study of evolving graphs as a means to describe thdistinct degrees of the graglwvhere the degree of a node is
power-law degree distribution of large networks has becomeéefined as the number of its nearest neighpalso remains
increasingly relevant in recent years, starting with the studynvariant. This lack of “self-averaging” property may be for-
of the preferential attachment model of graph grofiiththat ~ malized into an appropriate notion of lack of ergodicity in
models a diverse range of man-made and natural networkghe graph dynamics.
Graphs that grow by duplication of existing vertides-4] Another distinct feature of duplication graphs is the lack
are particularly relevant to the StUdy of biOlOgiC8.| netWOka,of clear emergence of an asymptdﬁong-time solution for
including protein-protein interaction networks and geneticthe degree distribution of an ensemble of realizatif@.
regulatory networks, because they mimic the process of genghile the dynamics of a single realization of the duplication
duplication by duplication of vertices, i.e, by creation of NeW process can be clarifief?] in terms of invariance in the
vertices that have exactly the same set of connections 3umber of orbits, the dynamics of an ensemble of such pro-

preexihsti.ng V‘;‘T“ﬁefj in It_he _grapfh. Various prolcesses OI gLap@esses is quite nontrivigdbecause of lack of self-averaging
growth in which duplication forms one element of the o | | |
growth dynamics have been shown to exhibit scale-free be‘?\nd 's discussed below. In a model proposed eafdér

havior at late times, characterized by a powerlaw depenWhICh includes duplication as well as mutation by edge re-

dence of the degree distributiop(k) of the graph, i.e., moval ar_1d a_ddition, a breakdt_)wn of the a_symptotic station-
p(k)~Kk?, wherey is the scaling exponeffis]. This has led ary solution is fou_nd to occur in the analy3|s_. For a range of
to the notion that biological networks possess features jfparameters in which d_upll_catlon IS the dom'T‘am process of
common with other well-studied, albeit disparate, networks3raPh growth(the duplication-dominated regimethe ana-
including the Internet and metabolic networfl&s7]. A par- lytically obtained sta_nonary solution has negative average
ticularly attractive feature of such scale-free networks is theil€gree and the scaling exponent does not agree with that
putative robustness and tolerance of efth8,d. obtained from numerical simulations. Further analysis of the
At the same time, it is not so well known that graphs thatsame mode[3] reveals that the degree distribution at late
grow predominantly by the duplication process have featuremes depends sensitively on initial conditions, although the
that are distinct from other scale-free graphs. These featurgependence itself is not clarified.
become particularly stark and revealing in the limit of pure  One of the common threads in the analysis of duplication
duplication growth. One such feature is the lack of “self- graphs is the assumed existence of a nontrivial, asymptotic,
averaging” property{ 3], i.e., the property that an individual stationary degree distribution. While the scale-free preferen-
realization of graph growth does not asymptotically reach theial attachment moddl1] and other related models do have
degree distribution of an ensemble of such realizations. Spen asymptotic solution that is stationary, this is not generally
cifically, it was shown[2] that the number of distinct “or- true. For our purposes, we will define a stationary degree
bits” (the subsets of nodes that are connected to exactly thdistribution to be a time-independent, nonzero degree distri-
bution[11].
A number of questions naturally emerge from the above
*Electronic addresses: araval@Kkgi.edu; alpan.raval@cgu.edu observations. Some of them are the following
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(1) Do ensembles of duplication graplise., graphs in  where the first two terms on the right-hand s{&S) of the
which the mechanism of growth is predominantly by meansabove equation describe the contribution of the duplicating
of duplication have stationary asymptotic degree distribu-vertex itself and distinguish between the two cagesthe
tions? duplicating vertex is of degrek, and (b) the duplicating

(2) Do ensembles of duplication graphs exhibit asymptoti-vertex is not of degrek; the third term comes from vertices
cally scale-free behavior? of degreek—1 increasing their degree because they are

(3) How does the asymptotic degree distribution dependheighbors of a duplicating vertex, and the fourth term is a
on initial conditions? loss term for vertices that were of degrkeat the previous

In this work, these questions are first answered in théime and have since increased their degree due to neighbor
context of pure duplication growth, where, as is shownduplication.
below, an exact solution for the degree distribution at all Noting thatn(k,t)=p(k,t)(t+my), one can derive the
times can be obtained analytically. This is followed by afollowing master equation fop(k,t):
discussion of these issues in mixed models that contain du-
plication as a component of the dynamics. It is conjectured k—1
that duplication-dominated growth may serve to define a p(k,t)—p(k,t—1)= ——p(k—1t—1)
class of models that are asymptotically nonstatior(ary at t+mo
best, quasistationaryput nevertheless may exhibit scale-free
behavior. In spite of their lack of asymptotic stationarity,
these models could well describe realistic biological net-
works.

“TmPkt=D. @

The above equation holds for &0 [with p(—1,t)=0 for
Il. PURE DUPLICATION GROWTH all t]. However, the dynamics of isolated vertideertices of
. ' ~ degree 0 is decoupled from the dynamics of higher degree
Consider an undirected graph that grows by pure duplicayertices. Indeed, one obtaipg0,t) is constant for all time
tion. We will assume that the graph hag vertices at time  andp(k,t) for k=1 does not depend gm(0t). Because of
t=0, and that time progresses in units of 1. At each timethijs decoupling property, we will only consider solutions of
step, an existing vertex is picked at random and duplicatquq_ (4) for k=1, supplemented by the equatiqr(0;t)
i.e., a new vertex is added to the graph with the same set of p(0,0) Corresponding|y’ we will On|y consider graphs
edges as an existing vertex. The number of vertices therefokgith a minimum degree of 1, with the understanding that
increases by one at each time step and the total number ghsembles of graphs that contain isolated vertices can be
vertices at timet is t+ m,. Consequently, the maximum pos- subdivided into two ensembles, one ensemble of graphs
sible degree at timeis kya(t)=t+mo—1. As shown earlier \hose minimum vertex degree is 1, and another ensemble of
[2], any specific process of this tyfiee., a realization of this  graphs that only contain isolated vertices. The dynamics of
dynamicg leaves the number of orbits, and therefore, thethese two ensembles is then decoupled and we may only

number of distinct degrees in the graph, invariant. We will,consider the nontrivial dynamics of the ensemble with mini-
however, consider the dynamics of an ensemble of such prgnum vertex degree of 1.

cesses and denote the degree distribution of this ensemble by By inspection of Eq(4), a naive solution is obtained. This

p(k,t), which is the probability of finding a vertex of degree s a “stationary” solution with scaling exponent=—1 sat-

k at timet. isfying kp(k) = (k—1)p(k—1), i.e., p(k)~k~*. Note that
Since every vertex has equal probability of being dupli-this solution is not a global solution at any finite time be-

cated at a given time step, the probabilfiye(k,t) that a  c5yse it is not correctly normalized: demandmgﬂaf(t)p(k)

new vertex has degrdeat timet is given by =1 causes the solution to be nonstationary, in which case it
_ is not a solution at all. This solution can, at best, therefore be
Prew(k.t)=p(k,t=1). @ an asymptotic solution, and even so, hold only for finitely
Furthermore, the probabilitp,g,{K’,t) that a vertex of de- many values ofk, because the sum d&¢ * over infinitely
greek’ is a neighbor of a duplicating vertex is proportional many values ok is divergent, and the normalization condi-
to its degree. Demanding that a vertex of maximum degree ition would fail to hold. Indeed, from an analysis of the exact
a neighbor of a duplicating vertex with probability 1 then degree distribution below, we find that this stationary solu-

gives tion is not an asymptotic solution at all, although the pure
duplication growth limit in earlier analysd2-4] yields a
Praud K t) =k(mp+t—1)"%, (2)  scaling exponent of-1.
From the above we can find the number of vertices of degree o o
k at timet as A. Exact degree distribution for pure duplication growth
It turns out that the master equati¢$) is simple enough
N(K,t) = Prew(K,IN(K,t=1) +1]+[1—Ppen(K.t)] to solve exactly in terms of the initial degree distribution
XN(K,t— 1)+ Prgud k— LHN(K—1—1) p(k,0). By writing out each term on the RHS of the master
equation in terms of distributions at earlier times, one notices
— Praud K )N(k, t=1), 3 that p(k,t) is a sum of terms of the general form
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(k=1)(k=2)- - (k=1)(t+mo—K) (t—=14+mu—K) - - - (i + 1+ my—k)

pk=1.0 (t+mg)(t+my—1)---(my+1) ’

®)

wherei runs from O tot. Furthermore, there até/[i!(t—i)!] terms of this type. Putting all this together, one obtains

t (k=1) - (k=1)(t+mo—K)- - - (i +1+my—k)
iT(t—i)! (t+mo)(t+mp—1)- - - (Mg+1)

t
p(k,t>=i§0 p(k—i,0) (6)

Changing the dummy variableto j=k—i and noting that, Substituting these into Eq7), one obtains, fomy<k<t,
in the initial distribution, the minimum degree is 1 while the

maximum degree isng— 1, one finally obtains, after some Mo Mo+ Imy—1\ k|-t . .
simplification, p(k,t)~ ~T 2 n pP(j,0)[1+O(k™)].

=1
t4 mg| ~Lmntkimo—1) (11

t+me—k\ [k—1}
Mo— | )(j—l) P(j.0). Since every successive term in the sum above is multiplied
(7) by an additional factor ok/t<1, the dominant contribution
to p(k,t) comes from the lowest nonzero valuej&uch that
In the sum above, it is understood that for valuekaindt  p(j,0)#0. This value of is the lowest nonzero degree in the
such that the lower limit of the sum is larger than the upperinitial ensemble of graphs. Definirlg,,;, as the lowest non-
limit, p(k,t)=0. The above solution corresponds to a mix- zero degree in the initial distribution, we obtain the approxi-
ture, via the initial distribution, of a hypergeometric distribu- mate asymptotic result
tion [12] and may be readily verified by direct substitution
into Eq. (4). m[ me—1\ [k\Kmin—2
p(k.t)~T( K _1) (;) P(KminO[1+O(k™H)].
min
B. Asymptotic analysis (12

plk,t)=

j=maxk—t,1)

The exact degree distribution, E() above, shows that,
for t>m,, there are three regimes kivalues for which the
degree distribution has potentially qualitatively different be-
havior. The first regime is £k<my—1, for which only
terms fromj=1 up toj=k contribute in the sum. The sec-
ond regime iamy—1<k=<t+1, for which the entire support
of the initial degree distribution contributes to the sure.,
all terms fromj=1 to j=my—1). The third regime ig
+ 1<k<Kpna(t)=t+my—1, for which only terms from =k
—t up toj=my—1 contribute to the sum. At late times, the

number of distinctk values in the second regime-{mo gives plots of the asymptotic degree distribution generated

—1 value$ is much larger than the number of distinkt . ; . .
. . . . . ._from numerical simulations of the master equation. For the
values in the first and third regimes. We will therefore restrict o T .
casek,,=1, it is found that the degree distribution is uni-

our analysis to values df that correspond to the second form, while for k.=2, p(k) has a linear dependence &
regime. For the asymptotic analysis below, we will further ! O Kmin=2, P P n
consistent with the above result.

assume thamy<<k<t. o . .

In order to study the late-time behavior of the degree dis- For realistic graphs, such as most biological networks of
tribution, the asymptotic expansion of the Gamma functlonm\}glr\i::1 blt ';gasrlljsalz atheur(;ags Tﬁt‘l{nl rgcgiset}hgrglftJQSUme
[13] is used to obtain the following asymptotic results, valid y P P P
for my<k<t and 1<j<my—1: degr_ee distribution _of an Qnsgmple of such graphs would be

0 o - dominated by a uniform distribution.

tMo We now examine the features of the asymptotic degree
~—[1+ ot b, (8) distribution that are amenable to a direct analysis of the mas-

Mo: ter equation.

It follows that the asymptotic degree distribution approaches
zero ag ~ kmin for larget and is therefore nonstationary. How-
ever, for large, finite, the following result is obtainedlhe
asymptotic degree distribution for pure duplication graphs,
although nonstationary, has a scaling exponentysf K,
—1, where k,, is the smallest nonzero degree in the initial
graph.

In particular, the scaling exponent p®sitive when K,
>1. [This behavior does not cause any normalization prob-
lems ast—o becausep(k,t)—0 in this limit.] Figure 1

t+mg

Mg

[1+O(t_1)], (9) C. Direct asymptotic analysis

t+ mo_ k) tmoij
— |
Mo~ (Mo=J)! The asymptotic behavior of the degree distribution ob-
K1 i1 tained so far relies on knowledge of the exact solution It
( - ) - k [1+0(k™ 1] (10) is of interest to know what features of the asymptotic degree
§ '

ji—1 —1)! distribution can be obtained directly from the master equa-
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- ' ' ' : : where the possible values ofare to be determined. Since
Kin=1 the master equation is a linear homogenous equation, one
ol may further demand that every term in the above sum satis-
- fies the master equatiofNote that the true asymptotic solu-
Pt tion (12) is indeed of the form(15).] A typical term in the
-8r LT kmin=2 ] sum above can then be substituted into the master equation
e (4). After some rearrangement of terms, one obtains
% -10
) gc(t) ) fo(k—1)
t+mg)| 1— ——+~|=k—(k—=1)———+. (16
( O)( gt-1) TR TG 19
Since the left-hand side of the above equation is a function of
" t alone and the RHS a function kfalone, each side must be
separately constant, leading to the pair of equations
% 1 2 3 7 5 6 (t)
(t+mg) 1—%):c, (17)
FIG. 1. Pure duplication growth. The asymptotic degree distri- Ye
bution for an ensemble of graphs subject to pure duplication
growth, obtained by simulation of the master equation. The solid fo(k—1)
line is generated by an initial ensemble in which the lowest nonzero k=(k—1) fo(k) =c. (18

degree is 1. The dashed line is generated by an initial ensemble in
which the lowest nonzero degree is 2. The simulation was carrie

out to 18 time steps. Natural logarithms are used in the plots. %quat'on(]'?) above gives rise to divergent growth ga(t)

if c<0. Arequirement is therefore>0 (thec=0 case cor-
responds to a stationary solution, which has already been

tion, without recourse to the exact solution. This is especially

important in the analysis of more complex models, where théahmmated, a condition on the allowed values efWith this

exact degree distribution for all time and for all valueskof condition, Eqs(17) and(18) are readily solved to yield
may be analytically intractable.

We first note that the lack of existence of a stationary ¢ )_ ¢ () I(mp+1) T(t+mg—c+1) o
asymptotic degree distribution may be deduced immediately —*° S T(mg—c+1) T(t+my+1) '
from a generating functio14] approach to the problem. (19
Assuming that a stationary asymptotic degree distribution
exists, withp(k,t)=p(k,t—21)=p(k) for all k=1, and de- (k) )
. . ; _ B e
fining the generating functiog(x), fo(k)=f(1)I'(2—c) —F(k—c+ 1 ke (20)

¢(X)2k21 x“p(k), (13 Therefore, a power-law degree distribution with expongnt

=c—1 is obtained. From Eq19), the lowest possible value

] . . of c will dominate the late-time behavior. Note that, although
one obtains from the master equatid the following equa- ¢ js as yet undetermined, the analysis establishes the correct

tion for ¢(x): relationship between the exponent characterizing the rate at
which the degree distribution falls to zere-€) and the scal-
d¢ ing exponent ¢—1). This is evident by comparison of Egs.
X(x=1) 5 =0 (14 (19) and(20) to Eq.(12). This relationship is a testable one.

As shown in the following section, a similar relationship can
be derived from the asymptotic analysis of a more complex
model.

In order to obtain the allowed values of the constably

which gives¢(x) = const for 0<x<1. [The normalization
condition ¢(1)=1 then implies that the constant equal$ 1.

This is inconsistent with the fact thai(k)#0 for somek direct asymptotic analysis, we resort to an eigenvalue
=1. Hence the assumption of a stationary distribution Iead%ethod thatyis gescribed i% théA endix. The methgd Shows
to a contradiction and therefore a stationary distribution can- ppencix. Tl
not exist. that the allowed values af are the positive integers=n,

In order to analyze the nonstationary asymptotic distribu! 1.2, -+ -, consistent with the exact solu_tm(ﬁl). The !OW'
st possible value af is thenc=1, giving rise to a uniform

tion, one may assume that the asymptotic degree distributio R X
y ymp 9 egree distribution at late times. We are therefore able to

's of the separable form: capture most features of the exact solution by a direct
asymptotic analysis, the missing feature being the relation-
p(k,t)~2 9o(D)fo(K), (15) ship between the initial degree distribution and the lowest

c value ofc.
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Il. A DUPLICATION-MUTATION MODEL malizable probability distribution, the seri€¢83) must con-

We now consider a more general, two-parameter grovvtr\\/erge in the limitx— 1. Furthermoreg(x) must be analytic

) : atx=0. With this in mind, we turn to the equation satisfied
model suggested earlif4] as a model for the evolutionary b
growth of the proteome that involves both duplication and y (%),
mutation events. The model includes pure duplication growth de
as a special case. Assuming that the initial graph mgs [(1_5)X_5]ﬁ+2ﬁ¢20' (24
nodes, the graph evolves according to the following rulies:
a verte>_< is selected at random and duplicatéd,the links  The solution to the above equation is
emanating from the newly generated vertex are removed
with probability 8, and (iii) new links are created between p(x)=as 2PA-A|1—x(5 1-1)|72P1=9 (25
the new vertex and all other vertices with probabil@y(t
+mp—1) (wheret+m, are the total number of vertices in Wherea is an integration constant. The above expression is
the graph at time). The processes of link addition and re- analytic atx=0 and can be expanded in a Taylor series in
moval are necessarily correlated. However, fsg1, it is ~ powers ofx to obtain the probabilitiep(k). However, the
reasonable to approximate the evolution by uncorrelated adraylor series converges only if
dition and removal[4]. With this assumption, the master 1
equation forp(k,t) is X[(67*-1)<1. (26)

Demanding that the series convergexasl then yields the

p(k,t)—p(k,t—1) condition 5>1/2. For §<1/2, the series is divergeri5],
(k+1)8 k+2p which contradicts the assumption of a stationary normaliz-
= Trmg p(k+1t—-1)— tmg p(k,t—1) able probability distributiorp(k). Therefore, we find that,

for 6<1/2, the asymptotic distribution is not stationqfy6].

(1-6)(k—=1)+28
t-+mg p(k—1t-1). (2D B. Asymptotic degree distribution for &<1/2

. . o Since the asymptotic distribution is not stationary for
Although the above equation describes the duplications<q/> e may now consider solutions of E@1) of the
mutation process only foé<1, the equation is still a valid separéble form

master equation for all values éfand will be studied for all

values of & first before focussing on the duplication- p(K,t)~f(K)ge(t). (27)
dominated regimes<l1. The equation that describes the

duplication-mutation process for all values 6f a further ~As in the preceding section, these solutions are labeled by
generalization of Eq(21) above, has also been derivet] the separation constaat One then obtains the pair of equa-
and its asymptotic behavior fa#>1/2 has been studied in tions

detail[3]. The eventual case of interest heresis1/2. Thus,

Eqg. (21) will be sufficient for our purposes. Note that the (t+m )(1_ 9c(t) ): (28)
limiting case =0, B=0 corresponds to pure duplication 0 gc(t—1) ’
growth.
(k+1)6fe(k+1)—(k+28—c)f.(k)
A. Condition for an asymptotically stationary degree +[(1-8)(k—1)+2B]f(k—1)=0. (29
distribution

To obtain the condition for the existence of an asymptotic't IS cléar from Eq/(28) that one must have=0 for g(t) to
$—00. Sincec=0 corresponds to the

stationary distribution, we assume a stationary normalizabl&Main bounded as— _ ) .
distribution to begin with, proceed with the analysis, andStationary case, we will restrict our attentionde-0. First,
search for a contradiction for some range of parameters. ir2n€ finds from Eq(28),

deed, settingp(k,t) =p(k,t—1)=p(k) in Eq. (21), one ob- I(t+m—c+1)I(m+1)
tains, = ~tC
9 =8O r e r(m—c+p) * - (0
(k+1)dp(k+1)—(k+28)p(k)
ast—oo.
+[(1-8)(k—=1)+2B]p(k—1)=0. (22 While the full asymptotic solution fof ;(k) is difficult to
obtain from Eq(29), we may carry out a Taylor expansion of
The corresponding generating functightx) is given by f.(k+1) andf.(k) for large values ok, i.e.,
‘ df,
$(x) =2 Xp(k). (23 fo(kt ) =Fe(k)+ 5 (3
Before analyzing the equation satisfied by the generating fo(k—1)=f (k)—% (32)
function, it is important to note that, fqu(k) to be a nor- € e dk’
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18 : : : : : : 1/2 the mean degree will grow very slowly and remain small
even when the size of the graph is large. This1/2 could
well be a viable region of parameter space, although, as
shown here, the analysis of graph growth would require that
the assumption of asymptotic stationary behavior be dis-
carded. If the lowest allowed value af does depend on
initial conditions(as in the pure duplication casdarge bio-
logical networks may contain important clues about the
structure of such networks very early in evolution.

log p(k)

IV. AMODEL WITH DUPLICATION AND PREFERENTIAL

ATTACHMENT
451 ] We now consider another two-parameter model of graph
growth that also contains pure duplication growth as a spe-
5 s . - : = : s cial case but for which an asymptotic stationary distribution
log k always exists everywhere in parameter space except at the

o _ ) point corresponding to pure duplication growth. It will be
~ FIG. 2. Duplication-mutation growth. The asymptotic degreegeen that, although an asymptotic stationary distribution ex-
distribution for an ensemble of graphs subject to duplication-jgis the actual degree distribution approaches its stationary
mutation growth with parameteid=8=0.1. The scaling exponent value very slowly in the duplication-dominated regime.
is about—0.72, in good agreement with analytical predictions. TheTherefore even at late timésorresponding to large graphs
simulation was carried out to $@ime steps. Natural logarithms are the degre1e distribution is more accurately described,by a
used in the plot. quasistationary distributiorfin a manner clarified below
rather than by the true asymptotic stationary distribution.
This model therefore serves to identify another possible fea-
ture of duplication-dominated growth, namely, quasistation-

After substituting the above in Eq29) and solving the re-
sulting first-order differential equation, one finds

C ary behavior, which may well hold in other, more realistic
V=125 1, (33)  descriptions.
The growth model is a combination of pure duplication
resulting in the asymptotict{-) solution growth, and growth by simple scale-free, preferential attach-
ment[1]. We start with an initial graph at timie=0 with m,
p(k,t)~t Ck(1-20-1 " ks>1. (34)  vertices. At each time step one of the following two pro-

cesses can occur.

Again, the separation of variables analysis of the asymptotic (a) An arbitrary vertex in the graph is duplicatéall ver-
degree distribution does not fix the allowed valueg.ofhe tices have equal probability of duplicatipras in the pure
eigenvalue method outlined in the Appendix, gives, to firstduplication growth model.

order in §, (b) A new vertex withm edges is added to the graph.
5 These edges are preferentially attached to the high-degree
c=2B(1-0)+n(1-26)+0(5%), n=0,12.... (39  yeriices, i.e., the probability that an old vertex will be linked

. . . . to the new one is proportional to its degree.
Therefore, the late time solution will be dominated by the =\, Jssume that proce& occurs with probabilityp, and

lowest value ofc that is consistent with initial conditions. . o
i ) rocesgb) occurs with probability + p4. The model there-
The lowest possible such valueds- —28(1— 6). It should Fore has two parameteﬁm and pZ_ Tﬁ?—z casang=1 corre-

be emphasized, however, that the above range of values of P : )
is only valid for 5<1. sponds to pure duplication growth, while the cage=0 cor

. ) o responds to growth by preferential attachment alone.
5_':'9‘361 2| dltstFIays a ptlﬁt (Tf thetdegre.ebld|str||but|o.rf15 when The master equation for such a growth model is a simple
=B=0. - 1N this case, the lowest possible valuecas ¢ combination of the pure duplication and the scale-free pref-
=0.18, giving rise to an analytically predicted scaling expo-

. i ) "~ erential attachment master equations,
nent y=—0.775. Direct simulation of the master equation, q
shown in Fig. 2, gives approximate power law behavior withp(k,t)—p(k,t—1)
a scaling exponent of about0.73, in reasonable agreement

with the analytical result. _ Pd
It may be argued that duplication-dominated growth T t+ mo{(k—1)p(k—1,t—1)—kp(k,t—1)}
<1/2) in this model is unrealistic because the mean degree
(k) grows without bound3,4], whereas realistic, large, bio- n 1-pqg T5 —p(kit-1)
logical networks have small mean degree. This argument is, t+mg | k %M Pk,
however, unfounded. For the duplication-mutation model, it
has been showf3,4] that (k),~t'~2° for larget and for L_m [(k=1)p(k—1t—1)—kp(kt—1)]}, (36)
5<1/2. Therefore, ifé is less than but sufficiently close to (K)t-1 ' ' '

066119-6



SOME ASYMPTOTIC PROPERTIES OF DUPLICATION GRAPHS PHYSICAL REVIEWEB, 066119 (2003

where To do this, we change variables frogto s’ =(1—xs)/(1
—X) and rewrite¢(x) in the form
(Kye-1=2 kp(k,t—1) (37) -
k ¢(x)=ux’“j ds's’  # 1-s'(1—x)]**M 1
1

is the mean degree at tinte-1, anddy , is the Kronecker (43)
delta function.

Settingx=1 in the above yieldsp(1)=1, as required by
normalization.

) ) We therefore find, for all &py<1 andm>0, that the

~ As before, we assume the existence of a stationary solussymptotic distribution is stationary for this type of growth.
tion of Eq. (36) and check whether the generating functionygwever, to find the stationary distribution and the corre-
¢(x) is analytic atx=0 and whether the series converges assponding scaling exponent, we need to figkl).,, the
x—1. Assumingp(k,t—1)=p(k,t)=p(k) in the limit t  asymptotic mean degree.

—o0, one obtains fop(k),

A. Existence of an asymptotic stationary distribution

m(1—pq) B. Asymptotic mean degree
( at (K)o )[(k—l)p(k—l)—kp(k)] The recursion equation for the evolution of the mean de-
gree can be obtained by multiplying both sides of &%) by
=(1=py)(P(K) = dim), (38  kand summing ovek. One obtains
where 2pg—1| 2m(1—py)
(K)=(k)i—1| 1+ rm m (44)
(K)o =limy_oo(K)y - (39 0 0

The corresponding equation for the generating function For pd.<1/2’ the above recursion gives rise to a finite
, asymptotic mean degree,
¢(x), for pg#1, is

2m(1—py)
X(1—x) do o (K)o =———F5—, pg<1/2. (45
Ak +xM=0, (40) 1-2py
h For py=1/2, the mean degree grows without boundtas
where —o0, To see this, we propagate Hg4) back tot=0, giving
m
M—1=%+W>o. (41) o Ermor2p0) [ T(mo+ D)
Pa (K= CT(tme+1) | OT(mo+2pg)
Equation(40) can be solved to yield, after some simplifica- t T'(i+mg)
tion and a variable change, +o2m(1— v 46
AP Tt mor2pg| 49
1
B(x) = u(1=x)“x™ fodssﬁmfl(l_xs)f’ﬁl The casepy=1/2 andpy>1/2 are considered separately.
For pg=1/2, the above equation simplifies to give
1-—x\*
+a T) , (42 t _
<k)t=<k>0+mi§1(mo+|)‘1, pe=1/2. (47

wherea is an integration constant. Note that the radius of

convergence of the Taylor expansion of{%)* is 1 and For larget, one obtains the asymptotic behavjag]

that the radius of convergence of the Taylor expansion of

(1—xs) #"1is 1/s>1. Furthermore, every term in the Tay- e N 1

lor expansion of (+xs) “~! can be integrated to give a <k)t=mlnt+<k>o—mjzl j MmO, pg=1/2,

finite result, providedm#0. Thus ¢(x) is analytic atx (48)

=0, provideda=0 andm# 0. We therefore set the integra-

tion constanta=0. To show that the Taylor expansion con- whereC is Euler's constant. Thus the mean degree fgr

verges atx=1, it is not enough to know that the Taylor =1/2 grows logarithmically to infinity ag— .

expansion abow=0 has a radius of convergence of 1. We  For py>1/2 (the duplication-dominated regime in this

further need to show that the integral owegives a finite  mode), the sum oveii in Eq. (46) can be explicitly per-

result atx=1. formed by expressing the ratio of Gamma functions in the
In fact, the integral is divergent at=1 for any u=0. sum in terms of the Beta function. Using an integral repre-

However, the factor of (+x)* outside the integrand tends sentation of the Beta functiofil3], and interchanging the

to 0 asx—1. A more careful analysis is therefore required.sum and the integral, one finds
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_I(t+mo+2pg) T'(mp+1)

‘ 2m(1—pg)
(k)= T(t+my+1) T'(mg+2pg)

2pg—1

(K)ot

]

_2m(1-py) 9

2pg—1
'(my+1)
I'(mo+2pg)

~2m(1-py)
2pd_1 ’

2m(1-pg)

~t2pg—1
2pd_ 1

(K)ot

|

(50

where the second equation above holds for larg&gain,
one finds forpy>1/2, that the mean degree grows without
bound as a positive power offor larget.

We thus find thatk),.=« for p4=1/2. Combining this
result with the result45) for py<1/2, we obtain

mu=2(1—pg), Pg<1/2, (51

(52)
C. Asymptotic stationary distribution and quasistationary
correction

In order to obtain the asymptotic stationary distribution,
we may directly solve the recursion of E8) for k>m.
One finds

'm+u+1)
I'(m)

I'(k)
I'k+pp+1)

p(k)=p(m

rm+up+1) "

I'(m) ' 3

where the last expression holds form. A scale-free, sta-

tionary distribution therefore emerges, with scaling exponent

y=—u—1, andu given by Egs.(51) and(52) above. Note
that this result breaks down in the pure duplication limjt
=1, because in this limit the asymptotic distribution is not
stationary, as discussed earlier.

Although the above result for the scaling exponent is cor-

rect for infinitely large graphs, the scaling exponent for larg

asymptotic scaling exponent. To see this, note that th
asymptotic scaling exponent=—u—1 was obtained by sub-
stituting the value of the mean degreetat> into the defi-
nition of w. For py<<1/2 this mean degree is finite and it is

expected that, as the graph grows, the mean degree will”_

quickly approach its asymptotic value. However, in the
duplication-dominated regimepy=1/2, the asymptotic

€
but finite graphs may not even agree approximately with the_.
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FIG. 3. Growth by duplication plus preferential attachment. The
asymptotic degree distribution for an ensemble of graphs subject to
duplication plus preferential attachment wigk1/2 andm=6. The
simulation was carried out only to 1000 time steps in order to dis-
play the effect of the quasistationary correction. The true stationary
asymptotic solution for this system has a scaling exponent &f
while the quasistationary correction predicts a scaling exponent of
about —1.84, in closer agreement with the actual value of about
—1.8 obtained from the above simulation. The jump discontinuity at

=6 appears because the master equation is discontinuous at that
value. Natural logarithms are used in the plot.

sponds to a quasistationary correction to the asymptotic sta-
tionary distribution, applied for large but finite graphs.

Specifically, in the quasistationary regime, we have
p(k,t)~k?® with y(t)=—u(t)—1 and

_ Pd
1_
,u(t) =

—Pd 64

+W,

where, for large but finite graphék), is given by Eq.(48)

for pg=1/2 and by Eq(50) for p4>1/2. The scaling expo-
nent therefore slowly drifts towards its true asymptotic value
as the graph grows larger.

The effect of the quasistationary correction is studied in
ig. 3 for the cas@y=1/2 andm=6. The graph is grown to
approximately 1000 vertices. In this case, the scaling expo-
nent att=o« is y=—2, while the quasistationary correction
gives (K)100=31.07, u~1=1.19, and a scaling exponent
—1.84. This is in better agreement with the actual scaling
exponent of about-1.8 obtained from the plot than the value

mean degree is infinite and therefore never approached, even

if the graph is large. A simple example is the cage=1/2,
for which the mean degree grows logarithmically with the

V. DISCUSSION

size of the graph and may therefore be small even for large, The asymptotic degree distributions in three models for
finite graphs. Therefore, for values @fy greater than or graph growth have been analyzed in this paper: growth by
equal to, but close to, 1/2, it may be a better approximatiorpure duplication, and two two-parameter models in which
to replaceu (and thereforey) by its time-dependent value duplication forms one element of growth. While pure dupli-

(obtained from the time dependence {&),). This corre- cation growth may be an unrealistic mechanism for a number
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of reasongincluding lack of ergodicity, linear growth of the These results suggest that duplication-dominated graph
mean degree with the size of the graph, etit.serves as a growth may serve to model a class of large networks whose
useful idealized test case for the study of qualitative featuresjegree distributions, although displaying power-law behav-
such as asymptotic nonstationarity and sensitivity to initialior, are not well approximated by stationary distributions,
conditions, which may be present in more complex, moreaven when these networks have large size. Based on the
realistic models. By analysis of the exact degree distributiormodels studied, we have found that at least two kinds of
in the pure duplication model, we find that the asymptoticnonstationary asymptotic behavior can occur in such net-
degree distribution of an ensemble of graphs subject to pureorks: (a) one in which the probabilities drift to zero while
duplication growth is indeed nonstationary but neverthelesthe scaling exponent remains invariant as long as the net-
exhibits power-law behavior with a non-negative exponentwork is large enougknonstationary behaviggrand(b) one in
that depends on initial conditions in a simple way—thewhich the probabilities eventually converge to a nonzero,
power-law exponent is related to the lowest nonzero degrepower-law distribution but the scaling exponent drifts slowly
in the initial graph. The nature of the asymptotic degree disto its asymptotic valuéquasi-stationary behaviprWe also
tribution is also found from a direct asymptotic analysis offind that the scaling exponent will depend on initial condi-
the master equation characterizing pure duplication growthtions in both cases: in the nonstationary case, this depen-
although such an analysis, being valid only in the asymptoticdence occurs via the allowed lowest value of the separation
regime, does not relate the scaling exponent to initial condieonstantc, while in the quasistationary case, the scaling ex-
tions. ponent depends on the mean degree in the initial graph, via
The lack of existence of a stationary degree distribution is€qg. (54). Thus, duplication-dominated, scale-free networks
also found to occur in the duplication-dominated regimemay well contain early, and possibly identifiable, evolution-
(6<1/2) of the duplication-mutation model. For this model, ary remnants.
6=1/2 defines a critical boundary in parameter space that We leave open to future work the question of the relation-
separates nonstationary and stationary asymptotic behaviahip, if any, between asymptotic stationarity of the degree
This also happens to be the critical boundary separating finitdistribution and ergodicity in the graph dynamics.
asymptotic mean degree and infinite asymptotic mean degree
[4]. It is argued that, if5 is less than but sufficiently close to ACKNOWLEDGMENTS
1/2, such a model could still describe realistic graphs, be- o )
cause the mean degree would increase very slowly with the The author thanks John Angus for pointing out an error in
size of the graph. The nonstationary asymptotic behavior of€ original version of the manuscript and Greg Dewey,
such duplication-dominated graphs could well depend on iniPavid Galas, and Ashish Bhan for the benefit of numerous
tial conditions in a manner similar to the pure duplicationdiscussions on duplication graphs.
case, via the lowest allowed value of the constatiat is

consistent with initial conditions. APPENDIX: AN EIGENVALUE METHOD FOR
For the model containing duplication growth combined ANALYZING THE TIME DEPENDENCE OF THE DEGREE
with preferential attachment, an asymptotic stationary distri- DISTRIBUTION

bution is found to exist for allpy=1. However, for the Consider the duplication-mutation model of Sec. Ill. At

duplication-dominated regimegyy=1/2 (the critical bound- . S :
ary separating finite asymptotic mean degree and infinitclaate times (>my), Eq. (21) can be expressed approximately

asymptotic mean degrgehe asymptotic degree distribution as a differential equation in the time variable,
is more realistically described by a quasistationary distribu-

tion that takes into account the fact that the mean degree is dp(t)
always finite for large but finite graphpy= 1/2 can then be d(Int)
interpreted as a critical boundary separating stationary and

guasi-stationary asymptotic degree distributions. On bothwvhere p(t) is a t-dimensional vector representation of the
sides of the critical boundary, the degree distribution haslegree distribution, p(t)=[p(0t)p(1t)p(21t)---p(t

=A-p(1), (A1)

power-law behavior. —11)], and thet Xt matrix A is given by
[ -2 5 0 0 00 ]
2B —(1+2p) 26 0 0 O
0 1-6+28  —(2+2B) 36 0 0
A= 0 0 2A1-8)+28 —(3+28) 46 O (A2)
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The general solution to EqAL) is By solving for the eigenvalues to first order ifi one
t-1 obtains
p(t)=2 q™th, (A3)
n=0
where{\,} are the eigenvalues of the matAxand the time- Nn=—N(1-28)=2B(1-5)+0O(5%). (A6)

independent vectorg™ depend on the eigenvectors Af

and on the initial degree distribution. Note that the above

solution justifies the separation-of-variables assumptionf he above gives the allowed values of the constantSec.

made in Secs. Il and lll. lll, c=—A\,. At late times, the degree distribution is domi-
In order to obtain the time dependence of the degree disaated by the largeskt, (lowestc), obtained by settingh

tribution, we are interested in the eigenvalue spectrud.of =0, asho=—c=—-28(1-95).

While it is difficult to obtain the eigenvalues #f in general, The results of the pure duplication growth described

it is quite straightforward to obtain them to leading order inin Sec. Il may be obtained by settify0,8=0 in the above

d. Indeed, whers=0, the eigenvalue equation ¢&t-N1)=0  and removing the first row and first column of the matrix

immediately yields the eigenvaluégenoted by () A (corresponding to decoupling the dynamics of isolated

vertices from nonisolated onesRemoval of the first row

O)— _n— = . : . . :
An n-2g n=01z2.... (A4) and column is equivalent to discarding the eigenvale®.
For §+0, one finds, to first order i@, Eenoting the remaining eigenvalues by’?, we then
t-1 ave

de(A—M):(—l)t[H (N+2B8+X\)
n=0
A0O=_n  n=12,.... (A7)

t—1 n-2
-> na(lﬂ (1+28+\) | (n—1+2pB)
n=1 =0

The largest possible eigenvalue is thenl, resulting
in c=1 and a uniform degree distribution as argued in

t—1
IT a+28+n)

J +0(8%). (A5)

X I=n+1 Sec. Il.
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