
PHYSICAL REVIEW E 68, 066117 ~2003!
Properties of chord length distributions across ordered and disordered packing of hard disks

David Guéron and Alain Mazzolo
CEA-Centre d’Etudes de Saclay, DEN/DM2S/SERMA/LEPP, 91191 Gif-sur-Yvette, France

~Received 1 August 2003; published 24 December 2003!

Chord length distributions across packings—random or not—of equal hard disks have a universal divergence
which is proportional tonc /Al for small chords, wherenc is the mean number of contacts. A similar behavior
is derived for a population of polydisperse disks. Monte Carlo simulations across various kinds of regular and
random packings are in full agreement with the theoretical predictions.
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I. INTRODUCTION

Purely two-dimensional physical phenomena such as c
tering of bacteria or adsorption of monomolecular layers
large molecules on surfaces are modeled by two-dimensi
disk packings@1#. Information regarding such systems can
obtained by looking at the chord length distribution~CLD!.
Indeed, the study of chord length distributions across vari
kinds of two-dimensional geometric shapes, including bin
stochastic mixtures, is a topic of great interest in many
search fields ranging from image analysis@2# to neutronics
@3#.

The aim of this paper is to present the behavior of
CLD for small chords across an arrangement of hard disk
which the particles are in contact with one another, followi
a geometric argument of Pomeau@4#. As a first step, this
behavior is derived for packings of equal disks and then
tended to the general case of disks of arbitrary size. Mo
Carlo simulations across several regular disk packings
well as various random disk packings, including ballis
deposition model, illustrate our point.

II. MONODISPERSE DISKS

In a couple of papers Pomeau@4# and Pomeau and Serr
@5# consider a packing of hard spheres and show that m
surements inR2 give direct access to the coordination num
ber nc of spheres inR3. More precisely, the authors men
tioned above relatenc to the distribution function of the
small chords between the neighboring disks of a uniform
oriented two-dimensional section of the packing@Eq. ~3! in
Ref. @5##. In the following, using a likewise geometric argu
ment, we derive the relation betweennc ~for ncÞ0) and the
CLD for small distance for a packing of hard disks. Note th
the special packings considered in the present paper in w
the particles are in contact with one another includes
packings referred to ‘‘jammed’’ packings~see Ref.@6# for a
precise definition of a jammed packing and Ref.@7# for ex-
amples of such packings!. In fact, most of the packings pre
sented hereafter are jammed packings, however our calc
tions are not limited to such packings and an example
unjammed random packing is presented at the end of Sec

Let us consider two touching hard disks of same radiuR
in the plane as shown in Fig. 1.

In the present paper, the chords we consider are
chords generated between two touching disks by a ran
1063-651X/2003/68~6!/066117~9!/$20.00 68 0661
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straight line. In a plane, a straight line can be represented
its polar coordinatesr andu as shown in Fig. 2.

An important result of geometric probability is that, up
a constant, the only measure for sets of straight lines wh
is invariant under the group of motions~i.e., translations and
rotations! is the uniform measuredM5dr du @8,9#. Here,
for the needs of the paper,u is sampled uniformly over
@2p/2,p/2# while r is sampled uniformly over@2R,R#.
Consequently, the density probability measure of rand
lines across a disk of radiusR is

dM5
dr

2R

du

p
with rP@2R,R# and uP@2p/2,p/2#,

~1!

where we notice that the denominator of Eq.~1! is the pe-
rimeter of the disk, which is precisely the measure of the
of straight lines intersecting the disk@8#. Since the measure
is invariant under rotation and translation, it is always po
sible to chose theX axis as the axis between the two disk
center and the origin at the center of a disk, as shown in
1. Now, given a fixed~small! distancel and an angleu, the
chords smaller thanl are generated by lines of polar coord
nates (r,u), where h1<r<h2 , h1 and h2 being the two
radii such that the length of the generated chord isl as illus-
trated by Fig. 1. From Fig. 1 we get, using the notationDh
5uPQu5h22h1,

FIG. 1. Chords across two touching disks: all the chords sma
than l are supported by random lines that pass betweenP and Q
(h15uOPu andh25uOQu).
©2003 The American Physical Society17-1
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2R cosu5h11~h11Dh!,

2R sinu5v11v21 l ~2!

and

R25v2
21h1

2 ,

R25v1
21~h11Dh!2. ~3!

Combining the two preceding couple of equations leads

l 52R sinu2@AR22h1
21AR22~2R cosu2h1!2#. ~4!

After some algebra, Eq.~4! can be rewritten as a secon
order equation

h1
2@16R214l 2216lR sinu#1h1@32lR2sinu cosu

28l 2R cosu232R3cosu#1 l 428l 3R sinu

1R2l 2@524 cos2u#216lR3sinu116R4cos2u50,

whose solutions, which are preciselyh1 andh2, can be easily
obtained. However, the complicated exact solutions h
little interest since one looks at the small chords only. In
limit of such chords

h15R cosu2AR sin3/2uAl 1
1

8AR
@114 cos2u#sin1/2u l 3/2

1O~ l 5/2!,

h25R cosu1AR sin3/2uAl 2
1

8AR
@114 cos2u#sin1/2u l 3/2

1O~ l 5/2!,

and

FIG. 2. Random line in the plane.
06611
e
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Dh5h22h152ARsin3/2uAl 2
1

4AR
@114 cos2u#sin1/2u l 3/2

1O~ l 5/2!.

For disks of radius of the order of unity~as it will be the case
in our Monte Carlo simulations!, the coefficient ofl 3/2 in the
expansion ofDh is of the same order as the one ofl 1/2. We
can therefore neglect the second term in our calculations
order to obtain the measureM̃ ( l ) of the set of lines giving a
chord less thanl, we have to integrate the last quantity ov
u which gives

M̃ ~ l !5E
2p/2

p/2

Dh du52ARAl E
2p/2

p/2

u sinuu3/2du

52ApR

GS 5

4D
GS 7

4DAl ,

where the symbolG denotes the EulerG function.
From now on, let us consider a packing ofN equal disks

whose mean number of contacts isnc . For such a system
the measureM ( l ) of all chords less thanl is obtained by
summing the last result over all the disks. By doing so ea
point of contact is twice taken into account so this amou
to the multiplication of Eq.~5! by N nc/2, which gives

M ~ l !5ncNApR

GS 5

4D
GS 7

4DAl . ~5!

In order to avoid difficulties regarding the normalization
the CLD, we also assume that each random line gener
one chord or more precisely that the set of random lines
does not hit at least two disks has a null measure. Con
quently, in the present paper we ignore infinite packings
dilute clusters where this hypothesis can be wrong. Howe
for a finite system the hypothesis of having a one to o
correspondence between random lines and random ch
clearly does not hold. The special case of two isolated tou
ing disks is treated in Appendix A.

In order to obtain the distribution function of the cho
length we have to normalize the preceding equation by
measure of the set of random lines generating a chord, w
is N(2pR). Thus we get

F~ l !5
nc

2ApR

GS 5

4D
GS 7

4DAl , ~6!

and the density probability functionf ( l ) is
7-2
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f ~ l !5
dF~ l !

dl
5

nc

4ApR

GS 5

4D
GS 7

4D
1

Al
. ~7!

This probability density function, valid for small chords onl
does not depend on any hypothesis regarding the regul
of the packing. This will be tested extensively through Mon
Carlo simulations in Sec. IV.

III. POLYDISPERSE DISKS

In this section, we consider packings of disks of vario
radii keeping the hypothesis that a random line always g
erates a chord. For a couple of touching disks of radiusR1
andR2, Eqs.~2! and ~3! become

~R11R2!cosu5h11h21Dh,

~R11R2!sinu5v11v21 l ~8!

and

R1
25v1

21~h11Dh!2,

R2
25v2

21h2
2 , ~9!

whereh2 is the distanceuO8Q8u in Fig. 3.
Then relation, Eq.~4!, is replaced by

l 5~R11R2!sinu2@AR2
22h2

2

1AR1
12~~R11R2!cosu2h2!2#,

approximation, Eq.~5!, becomes

Dh52A 2R1R2

R11R2
usinuu3/2Al , ~10!

FIG. 3. Chords across two touching disks: all the chords sma
than l are supported by random lines that pass betweenP and Q
(h15uOPu, h25uO8Q8u, andDh5uPQu5uP8Q8u).
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and the measureM ( l ;R1 ,R2) of lines generating chords
shorter thanl is

M ~ l ;R1 ,R2!5E
2p/2

p/2

Dh du52 Ap

GS 5

4D
GS 7

4DA
2R1R2

R11R2
Al .

~11!

In the case of a general distribution of radii, we introduce
two quantitiesnc(R1 ,R2) andg(R) defined as follows.

~a! nc(R1 ,R2) dR2 is the mean number of contact poin
between disks of radiusR1 and disks of radius betweenR2
andR21dR2, per disk of radiusR1 ~it corresponds tonc in
Sec. II!.

~b! g(R) is the density probability function of disks o
radiusR, normalized to unity.@We note that the two quanti
ties are related bync(R1 ,R2) g(R1)5nc(R2 ,R1) g(R2).#

Furthermore, we denote byN the total number of disks o
the system. With these notations, the measure of the se
lines giving a chord less thanl is given by@such as in Eq.
~5!, the factor 1/2 is there because each point of contac
counted twice#

1

2E E M ~ l ;R1 ,R2! nc~R1 ,R2! dR2 Ng~R1! dR1 . ~12!

The probability of generating such a chord is obtained
dividing Eq.~12! by the total number of chords, which is th
total perimeter of the disks of the system:

E
0

1`

~2pR!Ng~R!dR52pNR̄, ~13!

where R̄5*0
1`Rg(R)dR is the mean radius. Thus, usin

Eqs.~12! and~13! we obtain the distribution function of the
chord length at small chords:

F~ l !5
1

2Ap

GS 5

4D
GS 7

4D
Al

R̄

3F E E nc~R1 ,R2!A2 R1 R2

R11R2
g~R1!dR1 dR2G .

Thus, the density distribution function of chords for this sy
tem at small chords is

f ~ l !5
1

4Ap

GS 5

4D
GS 7

4D
1

R̄Al

3F E E nc~R1 ,R2!A2 R1 R2

R11R2
g~R1!dR1 dR2G .

~14a!

r

7-3
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Note that Eq. ~14a! reduces to Eq. ~7! when
nc(R1 ,R2)g(R1)5ncd(R2R1)d(R2R2). For general ran-
dom packingsnc(R1 ,R2) is unknown. However, if we con
sider a packing of disks of only two different radii, sayr 1
and r 2, distributed according tog(R)5pd(r 12R)1(1
2p)d(r 22R) (p being the ratio of disks of radiusr 1), we
have

nc~R1 ,R2!g~R1!5n11d~r 12R2!p d~r 12R1!

1n22d~r 22R2!~12p! d~r 22R1!

1n12d~r 22R2!p d~r 12R1!

1n21d~r 12R2!~12p! d~r 22R1!,

~14b!

where we have used the following notations;

n115nc~r 1 ,r 1!, n225nc~r 2 ,r 2!,

n125nc~r 1 ,r 2!, n215nc~r 2 ,r 1!. ~14c!

Then, using Eqs.~14b! and Eq.~14c!, Eq. ~14a! simplifies to

f ~ l !5
1

4Ap

GS 5

4D
GS 7

4D
1

R̄

1

Al
Fpn11Ar 11~12p!n22Ar 2

1@pn121~12p!n21#A2 r 1 r 2

r 11r 2
G , ~15!

whereR̄5pr11(12p)r 2. This result will be tested for or-
dered packings through Monte Carlo simulations in the f
lowing section.

IV. MONTE CARLO SIMULATIONS

In this section, Monte Carlo simulations are performed
various disk packings and for isolated systems. The Mo
Carlo program that generates random lines in the plane
then collects chords across the body has been describe
Ref. @10#. It has been tested for various simple geome
objects where the CLD is known analytically@11#, as well as
for random media@10#.

First, we have conducted the simulation for four differe
types of lattice of monodisperse unit radius disks.

~a! The square lattice and the hexagonal lattice wh
disks have been removed, shown in Fig. 4. Both packi
have a coordination number of 4.

~b! The triangular lattice, wherenc56.
~c! The honeycomb lattice, wherenc53.
In any of the cases the simulations fit very well with t

theoretical CLD given in Eq.~7! as illustrated in Figs. 4 and
5. The details of the different simulations are presented
Table I.

Then, we have tested the ordered packing of two kinds
disks generated in filling the interstices of a square lattice
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unit disks by disks of radiusA221 ~labeled lattice 1! as
shown in Fig. 6.

The second packing tested~labeled lattice 2!, shown in
the same figure, is obtained from the former one by tak
off one small disk out of two. The coordination numbers f
these two packings aren115n125n2154, n2250 and n11
5n2154, n1252, n2250 respectively. Simulations wer
performed for 20 000 and 15 000 disks; 105 lines were gen-
erated and more than 103106 chords were collected in eac
case. Again, the simulation results fully correspond to
analytical prediction of Eq.~15!.

FIG. 4. Chord length distribution functionsf ( l ) vs dimension-
less distancel /R for ordered packings, both system have the sa
coordination numbernc54 and the same analytical CLD near th
origin.

FIG. 5. Chord length distribution functionsf ( l ) vs dimension-
less distancel /R for ordered hexagonal packings, first system is t
hexagonal lattice or triangular lattice withnc56, the second is the
honeycomb lattice withnc53.
7-4
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TABLE I. Packing of monodisperse disks: simulation results.

No. of disks nc No. of lines No. of chords Simulation timea

Triangular lattice 11500 6 105 10.83106 ;20 min
Square lattice 10000 4 105 9.33106 ;24 min
Honeycomb lattice 8400 3 105 7.53106 ;22 min
Triangular lattice with holes 8950 4 105 8.23106 ;15 min
Ballistic packing 10371 4 106 97.03106 ;2 h 30 min
Packing on a plane 7494 ;2.16b 106 69.03106 ;1 h 48 min

aOn a pentium IV at 3.06 GHz.
bResults from simulations.
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In order to study random disk packings, we use two b
listic deposition models in which spheres or disks a
dropped from a random point above the bottom of the b
~here a square for the spheres and a line segment for
disks! one after another@13,14#. Under the gravitationa
forces, the dropped particle will roll over the existing pa
ticles until it reaches a stable position. It is considered a
static model since once a ball finds a stable position it
mains in place.

The first ballistic model we used is a pure tw
dimensional ballistic deposition model in which the coor
nation number is known as 4@15#. The second one is a three
dimensional one where spheres are dropped on a plane
we look at the pattern formed by these spheres in the h
zontal plane at the height of the sphere’s radius. The inte
of the second model is that we free our system from gra
tational effects, making it isotropic. However, to the best
our knowledge, the coordination number for this model
not known. In the first case, the simulation confirms the a
lytical value ofnc54. There exists a little hump around th
radius of 0.002 in Fig. 7, which is due to the inaccuracy
our deposition algorithm.

FIG. 6. Chord length distribution functionsf ( l ) vs dimension-
less distancel /R for two packings of two kinds of disks.
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For the second model, the simulations show the expec
behavior in 1/Al for the CLD, giving an experimental valu
for the coordination number ofnc.2,16. This corresponds
to an unjammed packing since a necessary condition fo
particle to be jammed is that the particle must have, in t
dimensions, at least three neighboring contacts not all in
same half circle@7#. This behavior in 1/Al of the CLD is also
present for relatively long chords~up to 1.5 times the radius
as we can see in Fig. 8!. Note that we had to simulate up t
13106 lines for this last model in order to get good statisti
due to the existence of a more important void region, mak
possible the presence of long chords. Other irreversib
deposition models of spheres on a plane, such as models
interpolate between random sequential adsorption model
ballistic deposition model@16# can be studied in the sam
way.

Finally, we tested the isolated system of two touchi
disks. We generated 203106 straight lines; 7.23106 chords
were collected in the case whereR15R251 and 5.63106

chords in the case whereR153 andR251. Each simulation
takes less than 4 min on a pentium IV at 3.06 GHz. T
simulations presented in Fig. 9 fit very well with the theore
ical predictions given by Eqs.~A5a! and ~A5b!.

FIG. 7. Chord length distribution functionsf ( l ) vs dimension-
less distancel /R for a random packing of disks built by the ballisti
deposition algorithm.
7-5
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V. DISCUSSION

In this section we focus on random packings of eq
disks. Based on pure geometric argument, we have deriv
general formula, Eq.~7!, for the chord length distribution o
an assembly of random equal touching disks that depe
only on the coordination number. Torquato and co-work
@6,17,18#, using techniques arising from statistical phys
~scaled-particle theory! derived the expression of the CLD
for a statistically isotropic random packing of mono or po
dispersen-dimensional spheres. Their results for a rand
packing of equal disks are the following:

p~ l !5
2h

p~12h!R
expF2

2h

p~12h!

l

RG . ~16!

FIG. 8. Chord length distribution functionsf ( l ) vs dimension-
less distancel /R for a random packing of disks on a plane.

FIG. 9. Chord length distribution functionsf ( l ) vs dimension-
less distancel /R for a system consisting of two isolated disks
contact.
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This result, which depends only on the packing fractionh, is
in apparent contradiction with the result obtained in Eq.~7!
for small chords. However, Torquato’s results are obtain
for systems at complete unconstrained equilibrium wh
complete equilibrium means that statistical averages
taken over all configurations limited only by the principle
no overlap. Such averages correspond to the full thermo
namic state of the hard disk system@19#. This hypothesis is
not verified for the ballistic deposition models we used
Sec. IV where disks are frozen as soon as they find a st
position or hit the ground. Indeed, the distribution of t
CLD at small distances is governed bync , the mean number
of contacts. Our calculations assumed implicitlync to be
nonzero. Torquato’s results thus correspond to a null valu
nc , which accounts for the absence of the divergence
small chords. In fact, it is known that disordered equilibriu
hard disk systems are only ‘‘jammed’’~i.e., disks are in con-
tact! at a special singular point known as the maximally ra
dom jammed state@20#. For a two phase random media, L
and Torquato@18# also introduce a useful statistical measu
Li(z) called the lineal-path-function, which is defined fo
statistically isotropic media as the probability that a line se
ment of lengthz lies wholly in phasei when randomly
thrown into the sample. Here, since we only consider
vacuum, we drop indexi andL(z) always refers to the phas
outside the disks. Note thatL(z) is a probability and not a
probability density. Using a simple probabilistic argume
these authors show thatL(z) is related to the usual chor
length probability density function in the vacuumf by

L~z!5f

E
0

`

Q~y2z!~y2z! f ~y! dy

E
0

`

y f~y! dy

, ~17!

whereQ(x) is the Heaviside step function andf512h is
the void fraction. Our result concerning the CLD at sm
chords, Eq.~7!, allows us to determineL(z) for small values
of z. First note that the denominator in Eq.~17! is just the
mean chord lengthl̄ and is given by Cauchy’s theorem i
two dimensions,

l̄ 5E
0

`

y f~y!dy5p
f

s
, ~18!

wheres is the specific length, i.e., the interface length p
unit surface. For random disk packings, the vacuum ph
has a nonconvex shape that might even be nonconnex. H
ever, even for nonconvex shapes Cauchy’s theorem rem
valid @12#. The numerator in Eq.~17! is,

E
z

`

~y2z! f ~y!dy5 l̄ 2z2E
0

z

~y2z! f ~y!dy, ~19!

using Eq.~7! for evaluating the integral on the right-han
side of Eq.~19! gives, for smallz,
7-6
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E
0

z

~y2z! f ~y! dy52
nc

3ApR

GS 5

4D
GS 7

4D z3/2. ~20!

Using Eqs.~18!–~20! in Eq. ~17! leads to

L~z!5fF 12
z

l̄
1

nc

3ApR

GS 5

4D
GS 7

4D
z3/2

l̄ G . ~21!

The last term in Eq.~21! is a correction toL(z) at smallz
due to the specific geometry of the system. Note that foz
50 we recoverL(0)5f, i.e., the probability of having a
random point in the vacuum isf. The first two terms are
independent of the geometry of the system and are obta
from simple probabilistic arguments in Appendix B.
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APPENDIX A: CHORD LENGTH DISTRIBUTION FOR
TWO ISOLATED DISKS

In this appendix, we derive the CLD for a couple of tw
isolated touching disks. For such a system the CLD norm
ization needs special care. Indeed, the measure of ran
lines defined in Sec. II by Eq.~1! overestimates the numbe
of chords since for an isolated system some lines do
generate any chord, as shown in Fig. 10.

Consequently, the measure of chords must be normal
according to the number of random lines that cut both di
D1 andD2, which is formally

FIG. 10. Isolated disks: random lineM1 or M2 do not generate
any chord,M3 generates one chord.@ABCDEFA# is the outer cover
or convex hull of the system.
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EMùD1ÞB

MùD2ÞB

dM, ~A1!

wheredM is the density of random lines across an obje
defined by Eq.~1!. Matai @9# gives a derivation of this geo
metric problem for convex bodies in the plane and the re
is the following:

EMùD1ÞB

MùD2ÞB

dM5L11L22L12, ~A2!

whereL1 andL2 are the perimeters of the diskD1 andD2,
respectively, andL12 is the perimeter of the outer cover o
convex hull@ABCDEFA# of D1 andD2 ~see Fig. 10!. Con-
sequently, the distribution function of chords for the isolat
systemFis( l ) is

Fis~ l !5

E
2p/2

p/2

Dh du

L11L22L12
, ~A3!

whereDh is given by Eq.~10!. Performing the integration
over u and the derivative with respect tol leads to

f is~ l !5
Ap

L11L22L12
A2R1R2

R11R2

GS 5

4D
GS 7

4D
1

Al
, ~A4!

for the chord length distribution of two isolated disks
small lengths. SinceL12 is given by~see Fig. 10!

L1252@2AR1R21pR11~R22R1!a#

with a5arccosS R12R2

R11R2
D ,

Eq. ~A4! is finally,

f is~ l !5
Ap

2pR224AR1R212~R12R2!a

3A 2R1R2

R11R2

GS 5

4D
GS 7

4D
1

Al
. ~A5a!

For the special case of two equal disks, the preceding eq
tion simplifies to

f is~ l !5
Ap

2~p22!AR

GS 5

4D
GS 7

4D
1

Al
. ~A5b!
7-7
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APPENDIX B: LINEAL PATH FUNCTION
NEAR THE ORIGIN

Recall that the lineal path function for a phase is defin
as the probability that a line segment of lengthz lies wholly
in the phase when randomly thrown into the sample. T
definition is valid for statistically isotropic media. Now con
sider a phase satisfying the preceding assumptions.
phase may be convex, nonconvex, or even nonconnex
has a filling fractionf. Throwing a line segment of lengthz
at random in the medium is a three-step process:~i! first,
choose a special point on the line~say the middle!; ~ii ! then,
locate it uniformly in the sample; and~iii ! finally, choose a
random orientation for the segment.

Once the randomly chosen segment center is in the p
considered~with probability f), two different cases can oc
cur.

~1! The segment’s center is at a distancex smaller thanz/2
from the interface.

~2! The segment’s center is at a distance greater thanz/2
from the interface.

In the last eventuality, the segment’s center is inside
hatched area whose surface is, for smallz, S2Lz/2 ~whereS
andL are the area and perimeter of the phase considered

FIG. 11. Calculation of the lineal path function near the orig
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Fig. 11! and the whole segment is within the phase cons
ered.

In the first case, the probability for the segment to hit t
interface, knowing that the segment’s center is at a distanx
from the interface is, at the first order,

E
2u0

u0 du

p
5

2 u0

p
, ~B1!

whereu05arccos(2x/z) ~see Fig. 12! andu has been taken
with uniform density in@2p/2,p/2#.

Thus the probability of hitting the interface knowing th
the segment’s center lies in the phase at a distance sm
thanz/2 from the interface is

E
0

z/2dx

z/2

2 u0

p
5

4

pzE0

z/2

arccosS 2x

z Ddx5
2

p
, ~B2!

wherex has been taken with uniform density in@0,z/2#. Con-
sequently, the conditional probabilityL(z) around the origin
is

L~z!5fF S S2L
z

2D 1

S
1S 12

2

p D S L
z

2D 1

SG
5fF12

zL

pSG
5fF12

z

l̄
G , ~B3!

which is the beginning of the development of Eq.~21!. It is
also interesting to note that the slope of the lineal path fu
tion is 2f/ l̄ at the origin.

.

FIG. 12. Random segment near the interface.
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