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Properties of chord length distributions across ordered and disordered packing of hard disks
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Chord length distributions across packings—random or not—of equal hard disks have a universal divergence
which is proportional ta. /1 for small chords, where, is the mean number of contacts. A similar behavior
is derived for a population of polydisperse disks. Monte Carlo simulations across various kinds of regular and
random packings are in full agreement with the theoretical predictions.
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[. INTRODUCTION straight line. In a plane, a straight line can be represented by
its polar coordinategp and # as shown in Fig. 2.

Purely two-dimensional physical phenomena such as clus- An important result of geometric probability is that, up to
tering of bacteria or adsorption of monomolecular layers ofa constant, the only measure for sets of straight lines which
large molecules on surfaces are modeled by two-dimensioné invariant under the group of motiofiise., translations and
disk packingg1]. Information regarding such systems can berotations is the uniform measurdM=dp d6é [8,9]. Here,
obtained by looking at the chord length distributi@®LD).  for the needs of the papef is sampled uniformly over
Indeed, the study of chord length distributions across various— 7/2,77/2] while p is sampled uniformly ovef —R,R].
kinds of two-dimensional geometric shapes, including binaryConsequently, the density probability measure of random
stochastic mixtures, is a topic of great interest in many redines across a disk of radilR is
search fields ranging from image analygd to neutronics

(31 dp de

The aim of this paper is to present the behavior of the dM= %— with pe[—-R,R] and Oe[—m/2,7/2],
CLD for small chords across an arrangement of hard disks in ™ 1
which the particles are in contact with one another, following @)

a geometric argument of Pomedd]. As a first step, this

behavior is derived for packings of equal disks and then exWhere we notice that the denominator of Edj} is the pe-
tended to the general case of disks of arbitrary size. Montéimeter of the disk, which is precisely the measure of the set
Carlo simulations across several regular disk packings a@f straight lines intersecting the di$g]. Since the measure

well as various random disk packings, including ballistic iS_ invariant under f0tf_iti0n and tra}nslation, it is always_pos-
deposition model, illustrate our point. sible to chose th& axis as the axis between the two disks’

center and the origin at the center of a disk, as shown in Fig.
1. Now, given a fixedsmal) distancel and an angle, the
chords smaller thahare generated by lines of polar coordi-

In a couple of papers Pomefd] and Pomeau and Serra Nates p,d), whereh,;<p=<h,, h, andh, being the two
[5] consider a packing of hard spheres and show that medadii such that the length of the generated chordas illus-
surements iR2 give direct access to the coordination num-trated by Fig. 1. From Fig. 1 we get, using the notatioim
ber n. of spheres ink3. More precisely, the authors men- =|PQl=ha—hy,
tioned above relaten. to the distribution function of the
small chords between the neighboring disks of a uniformly
oriented two-dimensional section of the packiigy. (3) in
Ref.[5]]. In the following, using a likewise geometric argu-
ment, we derive the relation betwesp (for n.#0) and the
CLD for small distance for a packing of hard disks. Note that
the special packings considered in the present paper in whicl
the particles are in contact with one another includes the
packings referred to “jammed” packingsee Ref[6] for a
precise definition of a jammed packing and Réf| for ex-
amples of such packingsin fact, most of the packings pre-
sented hereafter are jammed packings, however our calcule
tions are not limited to such packings and an example of
unjammed random packing is presented at the end of Sec. I\

Let us consider two touching hard disks of same raélus
in the plane as shown in Fig. 1. FIG. 1. Chords across two touching disks: all the chords smaller

In the present paper, the chords we consider are theéan! are supported by random lines that pass betweemd Q
chords generated between two touching disks by a randotth,=|0OP| andh,=|0Q)).

I. MONODISPERSE DISKS
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Y
1
Ah=h,—h;=2Rsin*26. - ﬁ[1+4 cog6]sin'’26132

JR

+0(1%7?).

For disks of radius of the order of unitas it will be the case

in our Monte Carlo simulationsthe coefficient of¥?in the
expansion ofAh is of the same order as the onel&f. We

can therefore neglect the second term in our calculations. In

order to obtain the measuM(l) of the set of lines giving a
chord less thah, we have to integrate the last quantity over

\9 6 which gives

0 X - w2 w2
|v|(|)=f Ah dazzﬁﬁf | sing|¥%d6
—7l2

—7l2
FIG. 2. Random line in the plane.

5
4

2Rcosf=hy+(hy+Ah), =2\/7TR—7\/_1
2RsiN0=w;+ w,+1 2) F(Z)

and where the symbol denotes the EuleF function.
o 2o From now on, let us consider a packingMfequal disks
R*=w5+h1, whose mean number of contactsng. For such a system,
the measureM (l) of all chords less thah is obtained by
R?= w3+ (h;+Ah)2. (3)  summing the last result over all the disks. By doing so each
point of contact is twice taken into account so this amounts

Combining the two preceding couple of equations leads to to the multiplication of Eq(5) by N n./2, which gives

| =2Rsin§— [ VR*—h2+JR?— (2Rcosf—h,)?]. (4) F(E)
4

After some algebra, Eq4) can be rewritten as a second- M(I):nCN\/ﬁ—7\/l_' (5)
order equation F(Z)

2 2 2_ H 2ai
hi[16R"+ 41"~ 16R sin ] +h,[ 32AR"sin 6 cosd In order to avoid difficulties regarding the normalization of

— 812R cosf— 32R3cosh] + 14— 8I3Rsin g the CLD, we also assume that each random line generates
one chord or more precisely that the set of random lines that
+R?1?[5—4 cog6]— 16/R3sin 6+ 16R*cos =0, does not hit at least two disks has a null measure. Conse-

quently, in the present paper we ignore infinite packings of
whose solutions, which are precisély andh,, can be easily dilute clusters where this hypothesis can be wrong. However,
obtained. However, the complicated exact solutions havéor a finite system the hypothesis of having a one to one
little interest since one looks at the small chords only. In thecorrespondence between random lines and random chords
limit of such chords clearly does not hold. The special case of two isolated touch-
ing disks is treated in Appendix A.
1 In order to obtain the distribution function of the chord
h, =R cosf— R sin?26\/| + —=[ 1+ 4 cog6]sin*2132 length we have to normalize the preceding equation by the
8\VR measure of the set of random lines generating a chord, which
is N(27R). Thus we get

+0(1%2),
1 it
h,=Rcosg+ Rsirt2g\I - —=[1+4 cog ¢]sin'/2g| 32 ne = \4
F(I)= — ——\I, 6
8\R (h 27%(3){ (6)
+0(1°?), 4
and and the density probability functiof(l) is
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and the measurd(l;R;,R,) of lines generating chords

shorter thar is
5
™ Ah cja—zf—F 4 N,
w2 TeNT Ri+Ry "

is

In the case of a general distribution of radii, we introduce the
two quantitiesv(R;,R,) andg(R) defined as follows.

(@ v.(R;,R,) dR, is the mean number of contact points
between disks of radiuR; and disks of radius betwedr,
andR,+dR,, per disk of radiusk; (it corresponds tm, in
Sec. I).

(b) g(R) is the density probability function of disks of
radiusR, normalized to unity[We note that the two quanti-
ties are related by.(R;,R R))=7v.(R,,R R,).]

FIG. 3. Chords across two touching disks: all the chords smaller Furthermore, vgjeC(delnotze) gy(ﬂhl()a tot;(l nfjmtl))e?(of Zgisks of
thanl are supported by random lines that pass betRemdQ  the system. With these notations, the measure of the set of
(h1=|OP|, h,=|0'Q’[, andAh=|PQ|=|P'Q’]). lines giving a chord less thahnis given by[such as in Eq.
(5), the factor 1/2 is there because each point of contact is
counted twicé

M(I;RlvRZ):J

11)

(5
CdF() g FZ)i .

4

1
5| | MR R v(Ry R R Ng(R) dRy. (12

This probability density function, valid for small chords only, The probability of generating such a chord is obtained by
does not depend on any hypothesis regarding the regulari§ividing Eq.(12) by the total number of chords, which is the
of the packing. This will be tested extensively through Montefotal perimeter of the disks of the system:

Carlo simulations in Sec. IV.

+ _
f (27R)Ng(R)dR=27NR, (13)
Ill. POLYDISPERSE DISKS 0

In this section, we consider packings of disks of variousyhere R=/{“Rg(R)dR is the mean radius. Thus, using

radii keeping the hypothesis that a random line always gengqs_ (12) and(13) we obtain the distribution function of the
erates a chord. For a couple of touching disks of ra@ys  chord length at small chords:

andR,, Egs.(2) and(3) become

5
(Ri+Ry)sinf=wq+ wy+I 8 ()= 2\/;1“(7) R
4
and
2R;R
R2= w2+ (hy+Ah)?, X jfyc(Rl,Rz) RlTlRig(Rl)dedRz}.
2_ 2 2
Ry=wath3, ©) Thus, the density distribution function of chords for this sys-
whereh, is the distancéO’'Q’| in Fig. 3. tem at small chords is
Then relation, Eq(4), is replaced by 5
1" —
| =(Ry+Ry)sing—[VR5—h3 1 (4) 1
OTaE 7 RA
+ JRIZ((Ry + Ry)c0S6—hy)?], 4 WF(Z Rl
approximation, Eq(5), becomes
ff Ry.R \/ZRlRZ Ry)dR; dR
- 2R1R2| e 0 X ve(R1,R3) R1+R29( DAdR dRy|.
= ———|sin ,
RitR; (149
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Note that Eq. (149 reduces to Eg.(7) when
ve(R1,R)9(Ry)=n.8(R—R;) 8(R—R,). For general ran-
dom packingsv.(R;,R5) is unknown. However, if we con-
sider a packing of disks of only two different radii, say
and r,, distributed according tog(R)=pd(r,—R)+ (1
—p)8(r,—R) (p being the ratio of disks of radius), we
have

PHYSICAL REVIEW E 68, 066117 (2003

60

- analitycal n=4
—— simulation

()

ve(R1,R2)9(Ry) = v116(r1—Rp)p 6(r1—Ry) oot 0.02
+v220(r,—Ry)(1=p) 6(r,—Ry) - analytical n~4
— simulation
+v120(r2—Rp)p o(r1—Ry)
+v210(r1—Rp)(1=p) o(r,—Ry), =
(14b
where we have used the following notations; 001 002
VR
= r !r 1 = r lr L . . . . . .
= ve(r1,1) v22=vel(l2:2) FIG. 4. Chord length distribution function€l) vs dimension-
_ . less distancé/R for ordered packings, both system have the same
vig=ve(l1,r2),  var=ve(f2,r). (140 coordination numben.=4 and the same analytical CLD near the

Then, using Eqs(14b) and Eq.(140, Eqg. (148 simplifies to

5
i
1 4] 1 1
f(')zmﬂﬁw praVr+(1—p)vonr,
4
21415
+[priot (1—p)val i, (15

whereR=pr;+(1—p)r,. This result will be tested for or-

origin.

unit disks by disks of radius/2—1 (labeled lattice 1 as
shown in Fig. 6.

The second packing testdthbeled lattice 2 shown in
the same figure, is obtained from the former one by taking
off one small disk out of two. The coordination numbers for
these two packings are;;=vi,=v,1=4, v,,=0 and v,
=vy1=4, v,=2, vy=0 respectively. Simulations were
performed for 20 000 and 15 000 disks;>lthes were gen-
erated and more than ¥QL.0° chords were collected in each
case. Again, the simulation results fully correspond to the

dered packings through Monte Carlo simulations in the fol-analytical prediction of Eq(15).

lowing section.

IV. MONTE CARLO SIMULATIONS

In this section, Monte Carlo simulations are performed for

various disk packings and for isolated systems. The Monteg
Carlo program that generates random lines in the plane an
then collects chords across the body has been described |
Ref. [10]. It has been tested for various simple geometric

€0

--------- analytical tiangular lattice, n.=6
—— simulation

NN AN AN AN/

()

objects where the CLD is known analytically1], as well as

0.01

for random medid10].

First, we have conducted the simulation for four different
types of lattice of monodisperse unit radius disks.

(@) The square lattice and the hexagonal lattice where
disks have been removed, shown in Fig. 4. Both packings
have a coordination number of 4.

(b) The triangular lattice, where.=6.

(c) The honeycomb lattice, wherg.=3.

40

20

- gnalytical honeycomb lattice, n=3

—— simulation

()

In any of the cases the simulations fit very well with the
theoretical CLD given in Eq(7) as illustrated in Figs. 4 and

0

(1]

0.01
/R

0.02

5. The details of the different simulations are presented in F|G. 5. Chord length distribution functiorf{!) vs dimension-

Table I.

less distancé/R for ordered hexagonal packings, first system is the

Then, we have tested the ordered packing of two kinds ofiexagonal lattice or triangular lattice with=6, the second is the
disks generated in filling the interstices of a square lattice ohoneycomb lattice witm,=3.
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TABLE |. Packing of monodisperse disks: simulation results.

No. of disks Ne No. of lines  No. of chords  Simulation tirfie
Triangular lattice 11500 6 fo 10.8x 1¢° ~20 min
Square lattice 10000 4 o 9.3x 10° ~24 min
Honeycomb lattice 8400 3 %o 7.5x10° ~22 min
Triangular lattice with holes 8950 4 90 8.2x10° ~15 min
Ballistic packing 10371 4 10 97.0x 10° ~2 h 30 min
Packing on a plane 7494  ~2.16 10° 69.0x 1¢° ~1 h 48 min

@0n a pentium IV at 3.06 GHz.
bResults from simulations.

In order to study random disk packings, we use two bal- For the second model, the simulations show the expected
listic deposition models in which spheres or disks arebehavior in 141 for the CLD, giving an experimental value
dropped from a random point above the bottom of the boxor the coordination number ai.=2,16. This corresponds
(here a square for the spheres and a line segment for the an unjammed packing since a necessary condition for a
diskg one after anothef13,14. Under the gravitational particle to be jammed is that the particle must have, in two
forces, the dropped particle will roll over the existing par- dimensions, at least three neighboring contacts not all in the
ticles until it reaches a stable position. It is considered as 8ame half circlg7]. This behavior in 1{/|’ of the CLD is also
static model since once a ball finds a stable position it represent for relatively long chordsip to 1.5 times the radius
mains in place. as we can see in Fig)8Note that we had to simulate up to

The first ballistic model we used is a pure two- 1x 1P lines for this last model in order to get good statistics
dimensional ballistic deposition model in which the coordi- due to the existence of a more important void region, making
nation number is known as[45]. The second one is a three- possible the presence of long chords. Other irreversible-
dimensional one where spheres are dropped on a plane aggposition models of spheres on a plane, such as models that
we look at the pattern formed by these spheres in the horinterpolate between random sequential adsorption model and
zontal plane at the height of the sphere’s radius. The interegfallistic deposition mode[16] can be studied in the same
of the second model is that we free our system from graviway.
tational effects, making it isotropic. However, to the best of Finally, we tested the isolated system of two touching
our knowledge, the coordination number for this model isdisks. We generated 2010° straight lines; 7.% 10 chords
not known. In the first case, the simulation confirms the anawere collected in the case wheRa=R,=1 and 5.6<10°
lytical value ofn,=4. There exists a little hump around the chords in the case wheR, =3 andR,=1. Each simulation
radius of 0.002 in Fig. 7, which is due to the inaccuracy oftgkes less than 4 min on a pentium IV at 3.06 GHz. The
our deposition algorithm. simulations presented in Fig. 9 fit very well with the theoret-

ical predictions given by EqgA5a) and (A5b).

~ lattice 1 ~
Y Y Y Y Y \\KDGO
A A A A A
R S G S G SRR
00 ee
A A A A A
@ @@
seee
A A A A A
< P P <
08’
A A A A
SO @
v

25

,,,,,,,,,,, analytical
a0 | —— simulation |
- analytical n=4

20 simulation 1

m

20 -

0.01 0.02

........... analytical
—— simulation

()

0 0.05 0.1
IR

0.02

FIG. 7. Chord length distribution functiorfl) vs dimension-
FIG. 6. Chord length distribution functiorf§l) vs dimension- less distancé&/R for a random packing of disks built by the ballistic
less distancé/R for two packings of two kinds of disks. deposition algorithm.

066117-5



D. GUERON AND A. MAZZOLO PHYSICAL REVIEW E 68, 066117 (2003

4 ' ' This result, which depends only on the packing fractigris
in apparent contradiction with the result obtained in Egj.
for small chords. However, Torquato’s results are obtained

- analytical n=2 for systems at complete unconstrained equilibrium where
3 ———:inr::l)g:a;lnn;zw(bestflt) 1 complete equilibrium means that statistical averages are

taken over all configurations limited only by the principle of
no overlap. Such averages correspond to the full thermody-
namic state of the hard disk systgd®]. This hypothesis is
not verified for the ballistic deposition models we used in
Sec. IV where disks are frozen as soon as they find a stable
position or hit the ground. Indeed, the distribution of the
CLD at small distances is governed by, the mean number

] of contacts. Our calculations assumed implicitly to be
nonzero. Torquato’s results thus correspond to a null value of
n., which accounts for the absence of the divergence for
small chords. In fact, it is known that disordered equilibrium
%, 05 p 15 hard disk systems are only “jammed.e., disks are in con-

VR tach at a special singular point known as the maximally ran-
dom jammed statg20]. For a two phase random media, Lu
and Torquatq18] also introduce a useful statistical measure
L'(z) called the lineal-path-function, which is defined for
statistically isotropic media as the probability that a line seg-
ment of lengthz lies wholly in phasei when randomly

In this section we focus on random packings of equafhrown into the sample. Here, since we only consider the
disks. Based on pure geometric argument, we have derived\@cuum, we drop indexandL (z) always refers to the phase
general formula, Eq(7), for the chord length distribution of outside the disks. Note thaf(z) is a probability and not a
an assembly of random equal touching disks that dependdobability density. Using a simple probabilistic argument
only on the coordination number. Torquato and co-workerghese authors show that(z) is related to the usual chord
[6,17,18, using techniques arising from statistical physicslength probability density function in the vacuuniy
(scaled-particle theojyderived the expression of the CLD

FIG. 8. Chord length distribution functior§l) vs dimension-
less distancé/R for a random packing of disks on a plane.

V. DISCUSSION

for a statistically isotropic random packing of mono or poly- *
dispersen-dimensional spheres. Their results for a random o 0(y—2)(y=2) f(y)dy
packing of equal disks are the following: L(z)=¢ — , (17)
J , Y fy)dy
27 27 |
p(I)=fexp{——_—} (16)
m(1=7R m(1=7) R where®(x) is the Heaviside step function art=1— 7 is
the void fraction. Our result concerning the CLD at small
60 ' chords, Eq(7), allows us to determink(z) for small values
of z First note that the denominator in EQ.7) is just the
"""""" analytical R=1R,=1 mean chord length and is given by Cauchy’s theorem in
— simulation R,=1 R=1 t dimensions
rrrrrrrrrrrr analytical R,=3 R,=1 wo di !
40 | — simulation R,=3 R=1 |

[y f(y)dy=n2 19

0 s’

(1)

wheres is the specific length, i.e., the interface length per
unit surface. For random disk packings, the vacuum phase
has a nonconvex shape that might even be nonconnex. How-
ever, even for nonconvex shapes Cauchy’s theorem remains
valid [12]. The numerator in Eq17) is,

1 o _ z

° o 0.02 f (y=2)f(y)dy=1-2~ f (y=2f(y)dy, (19
IR . 0

FIG. 9. Chord length distribution functiorf§l) vs dimension-

less distancé/R for a system consisting of two isolated disks in using Eq.(7) for evaluating the integral on the right-hand
contact. side of Eq.(19) gives, for smallz,
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JMﬂDl#QdM, (A1)
MND,#J

wheredM is the density of random lines across an object
defined by Eq(1). Matai[9] gives a derivation of this geo-
metric problem for convex bodies in the plane and the result
is the following:

fMﬁDlsﬁ@dM:Ll‘*'Lz_le, (A2)
MND,#3

wherelL; andL, are the perimeters of the digk; andD,,

respectively, and.,, is the perimeter of the outer cover or

convex hul[ABCDEFA] of D; andD,, (see Fig. 1D Con-

sequently, the distribution function of chords for the isolated
FIG. 10. Isolated disks: random liné, or M, do not generate  SystemFg(l) is

any chord M5 generates one chordABCDEFA is the outer cover

hull of th tem. i2
or convex hull of the system f Ahde
—7l2
I‘(E) Fis(|)=m7 (A3)
‘ _ Ne 312
Jo(y—z) fly) dy=— 3yaR |7 z (20 \whereAh is given by Eq.(10). Performing the integration
F(Z) over # and the derivative with respect tdeads to
5
Using EQgs.(18)—(20) in Eg. (17) leads to F(—
g Eqs (18)~(20) in Eq. (17 R 0 | E U
5 IS L1+L2_L12 R1+R21“(z) \/l—n
ne F(Z) 2302 4
L(z)=¢| 1—=+ —_— . (21
3y7R F(Z) | for the chord length distribution of two isolated disks at
4 small lengths. Sincé 4, is given by(see Fig. 1D
The last term in Eq(21) is a correction td_(z) at smallz L1,=2[2VR;Ry+ 7R+ (Ry,— Ry) ]
due to the specific geometry of the system. Note thatzfor
=0 we recoverL(0)= ¢, i.e., the probability of having a _ R;—R,
random point in the vacuum ig. The first two terms are with a=arcco R.+R./
independent of the geometry of the system and are obtained e
from simple probabilistic arguments in Appendix B. Eq. (A4) is finally
ACKNOWLEDGMENT f ()= \/;
It is a pleasure to thank BeftdRoesslinger for reading the N 2mR—4VR1R+2(Ri—Ry) e
manuscript and for his comments. 5
2R;R, (Z 1
APPENDIX A: CHORD LENGTH DISTRIBUTION FOR X RIR. 7 7 (A5a)
TWO ISOLATED DISKS ! ZF(Z) a

In this appendix, we derive the CLD for a couple of two
isolated touching disks. For such a system the CLD normalgor the special case of two equal disks, the preceding equa-
ization needs special care. Indeed, the measure of randofn simplifies to
lines defined in Sec. Il by Eql) overestimates the number

of chords since for an isolated system some lines do not 5

generate any chord, as shown in Fig. 10. J7 F(Z) 1
Consequently, the measure of chords must be normalized fio(1)= _. (A5h)

according to the number of random lines that cut both disks 2(m—2)\JR F(Z) NI

D, andD,, which is formally 4
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z/2cos@
z z/2

FIG. 12. Random segment near the interface.

Fig. 11 and the whole segment is within the phase consid-
ered.

In the first case, the probability for the segment to hit the
interface, knowing that the segment’s center is at a distance
from the interface is, at the first order,

f%da_Z%

7()0’77 T

: (B1)

FIG. 11. Calculation of the lineal path function near the origin. )
where §,=arccos(X/z) (see Fig. 12and 6 has been taken

with uniform density in[ — 7/2,7/2].
Thus the probability of hitting the interface knowing that

) ) . . the segment’s center lies in the phase at a distance smaller
Recall that the lineal path function for a phase is definedy3n2/2 from the interface is

as the probability that a line segment of lengtles wholly

in the phase when randomly thrown into the sample. This JZ/ZdX %: 4 learcco%zx)dx: 2

definition is valid for statistically isotropic media. Now con- 0o 22 m wz)o z '

sider a phase satisfying the preceding assumptions. This ) ) -

phase may be convex, nonconvex, or even nonconnex arf¥nerex has been taken with uniform density[i,z/2]. Con-

has a filling fractioné. Throwing a line segment of length _sequently, the conditional probabilityz) around the origin

at random in the medium is a three-step procésfirst, IS

choose a special point on the lifgay the middlg (ii) then, 5 21
| I

T 2/ S

APPENDIX B: LINEAL PATH FUNCTION
NEAR THE ORIGIN

(B2)

1+l
S

4
S-L

locate it uniformly in the sample; an(ii) finally, choose a L(z2)=¢ 5

random orientation for the segment.

Once the randomly chosen segment center is in the phase
consideredwith probability ¢), two different cases can oc- =¢|1
cur.

(1) The segment’s center is at a distaxcanaller tharg/2
from the interface. =

(2) The segment’s center is at a distance greater #an

from the interface. o o _
In the last eventuality, the segment's center is inside thavhich is the beginning of the development of EJ). It is
hatched area whose surface is, for saa8— Lz/2 (whereS  also interesting to note that the slope of the lineal path func-

andL are the area and perimeter of the phase considered, sten is — &Il at the origin.

(B3)
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