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Alternative model of the Antonov problem
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Astrophysical systems will never be in a real thermodynamic equilibrium: they undergo an evaporation
process due to the fact that the gravity is not able to confine the particles. Ordinarily, this difficulty is overcome
by enclosing the system in a rigid container which avoids the evaporation. We propose an energetic prescrip-
tion which is able to confine the particles, leading in this way to an alternative version of the Antonov
isothermal model which unifies the well-known isothermal and polytropic profiles. Besides the main features
of the isothermal sphere modéhe existence of the gravitational collapse and the energetic region with a
negative specific heptthis alternative model has the advantage that the system size naturally appears as a
consequence of the particles’ evaporation.

DOI: 10.1103/PhysRevE.68.066116 PACS nuni)er05.70—a, 05.20-y

[. INTRODUCTION tence of certain tidal forces. All those particles satisfying
condition (1) are confined by gravity; on the contrary, they
Thermodynamical properties of self-gravitating systemswill be able to escape out from the system if they do not lose
are very different from the ones exhibited by the traditionaltheir excessive energy. This regularization procedure is char-
systems. They are typicalonextensive systensince they acteristic of the Michie-King model for globular clusters
are nonhomogeneous and the total energy is not extensivgl1l], which supposes that those stars that gain sufficient ve-
which is a consequence of the long-range character of gravlecity through encounters are able to escape or are removed
tational interaction. They also exhibit energetic regions withby tidal forces. The main motivation of such a regularization
anegative specific heatvhich persist even in the thermody- scheme relies on consideration of evaporation effects, and
namic limit[1-8]. That is the reason why the Gibbs canoni- therefore, this regularization procedure is more realistic than
cal ensemble is nonapplicable to the description of selfthe box regularizatiofithe use of a rigid containgrThe aim
gravitating systems, since this ensemble is not able to acces$ this paper is to develop an alternative model to the stan-
to those macroscopic states possessing a negative heat capdard isothermal sphere model of Antonfi¥ based on the
ity. At first glance, the self-gravitating systems could only beconsideration of this energetic prescription starting from mi-

described by using the microcanonical ensemble. crocanonical basis.
Gravitation is not able to confine the particles: it is al-
ways possible that some of them have sufficient energy for Il. STATISTICAL DESCRIPTION

escaping from the system, so that the self-gravitating systems
always undergo an evaporation process. Therefore, they will Let us consider théN-body self-gravitating Hamiltonian
never be in a real thermodynamic equilibrium. This difficulty System
is usually avoided by enclosing the system in a rigid con-
tainer[5-7], which could be justified when the evaporation N1 ) N Gn?
rate is small and a certain kind of quasistationary state might Hy=Tn+Un= k§=:1 ﬁpk_ - m @)
be reached. There are some approaches which have taken : !
into account this kind of regularization of the long-range
singularity of the Newtonian potential in a microcanonical
framework[9,10].

The use of a rigid container can be conveniently substi
tuted by imposing the following energetic prescription:

Taking into consideration the above regularization prescrip-
tion (1), the admissible stages of this system are those in
which the kinetic energy of a given particle satisfies the con-
dition

1 2 _
%p2+m¢(r)$es<0, (1) ﬁpk<uk_m[¢5_¢(rk)]a (3)

¢(ry) being the gravitational potential at the pomtwhere

2 - - B .
where (1/2n)p“ is the kinetic energy of a particle of mass the kth particle is located:

andmd(r) its gravitational potential energy at the poihteg

being an energy cutoff which is determined from the exis- N om?
d(r)=— — 4
Fh [re=rjl
*Electronic address: Iuisberis@geo.upr.edu.cu
"Electronic address: guzman@info.isctn.edu.cu where we introduce the tidal potentigdk (es=mag).
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The regularized microcanonical accessible voluivigis — 1 ;' T T T T T T T
given by 14k ‘ ]
L FUNCTION Fi(z)
WR=—f S[E—HyJdX,
N! Jxq

1.2 | i
where Xy is a subspace of thil-body phase space where ! CUBIC POWER LAW
condition (3) takes place, [ 4

or, dpy |
dX=d3NRd®NP/27)N=]] ———
(2mi*=11 (2mh)°

0.8

being the volume element. The spacial coordinates should b
also regularized in order to avoid the short-range divergence

of the Newtonian potential, which will be performed below { .6
by using the mean-field approximation. This integral is re-
written by using the Fourier representation of th&nction

as follows: 0.4 i
+o dk
WR=f Eexng)ZR(z,N), (5)
- 0.2 -
where
1 0 0 l L l L ] L
N | ew-zoax ®© o 1 2 3 4§ ¢
. XR

is the canonical partition function with complex argument

=pB+ik, with e R. Integration byd*"P yields FIG. 1. Representation of the functiéi(z). Its symptotic be-

N2 haviors are also shown.

exd —zUn(R) + x(R;2)],

. 3NR( ) . .
NI Jgan 2mh%z c,, the functionsU(R) and x(R;z) are rewritten by using

(7)  amean-field approximatioas follows:

x(R;2) being 1
y Un(R)—Ul[p, ¢]= fR35mp<r)¢<r>d3r, (12)
X(Ri2)= 2 InF[\zul, ®
X(R:Z)Hx[p.¢,2]=f p(NINF(z ¢s— (1) Dd°r,
whereF (2) is defined by 13 S
(12)
F(z)=erf(z)— \/i_zexp(—zz) 9 ¢(r) being the Newtonian potential for a givenprofile:
an
I . . Gmp(rq)d%;
and shown in Fig. 1. The asymptotic behaviorsFgkz) are ¢(r)=glpl= —f —_—, (13
given by g3 [r=rf
which is the Green solution of the problem
22+ 0(z%) when z—0,
F(2)=4 3Vm (10 A¢p=4nGp. (14)

~1, z=25.
It is easy to understand that this mean-field approximation
We are interested in describing the lafgdimit. This aim  acts as a partial regularization procedure for the short-range
can be carried out by using the following procedure: wesingularity of the Newtonian potential. The microscopic fluc-
partition the physical space in cells,}, r, being the posi- tuations of the Newtonian potential are disregarded in this
tions of their centers. We denoted hy=n(r,) the number approximation, since this field is considered constant inside
of particles inside the cell at the positiop. Introducing the the volume of each cell. Thus the gravity effects on the mi-
density p(r,)=n(r,)/v,., v, being the volume of the cell croscopic picture of each cell are reduced to a truncation of
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the velocity distribution of the particles. This regularization The § functions are also conveniently rewritten by using
is partial since it does not avoid the gravitational collapsetheir Fourier representation:
[5].

Using the partition of the physical space in cells, the in- _ Mf j
tegration byd*NR can be approximately given by Ab(r)=dlpl} Dh(rjex R

LA J(r){qﬁ(r)—qp]}}

N (29
1 v,
_ 3N _ _*
N RaNd R {n% 5D(N % na)l;[ - (15  as well as
+o0 dq
where 5(N—N[P])=f_ 5, &Pz(N=N[pD}, (29
1, if k=0, . . . . .
op(k)= . and >, =2, >, -+ . z,=pu+tiq being withu e R; J(r)=j(r)+ih(r), a complex
0, otherwise, {na} n My function withj (r) andh(r) e R. Thus the canonical partition

(16 function Z[z,N] is finally expressed as
The following factor can be rephrased in the mean-field

T e g
approximation as follows: f % J Dp(r)Dé(r)Dh(r)exp{z;N
m 3N/2 Un”‘
(2 727 ) I1 —a|—>e‘pf[p,z], 17 —H[p,¢;2,2,,31}. (26)
wh?z @ n,l

The functionalH|[ p, ¢;z,z,,J] is given by

=pslp;z]l+zUlp,¢]—xlp, ;2] +z:N[p] +K[ ,p,J],
2mh?z (27

3
In p(r)—1+zln( ,
m K[ ¢,p,J] being the exponential argument of the expression
18 (2a).
where the Stirling formula Im!=n In n—n was used. Finally, The reader may check that whéhis scaled aN—aN
we rephrase the summation in the mean-field approximatioAnd the following quantities are scaled as
as follows:

> 5D(N—E na)ﬁf Dp(r)é[N—std3r p(r)

{nat

where

plp.21= | & o)

p_>a,2p, r_)a*l/3r, ¢_)a4/3¢,

. z—a %2, 71—z, I—a??, (28

(19 all terms in Eq.(27) scale proportional te, and therefore

Taking into consideration all approximations introduced Hlp,$:2.21,3]1— aH[p, ¢:2,21,3]. (29)
above, the canonical partition functi@) is rewritten as A T

The thermodynamic limit is carried out tendiagto infinity,

Z[zN :J Do(r)S(N=N exol — z a—». Thus, we can estimatg&;[z,N] for N large by using
2N p(r) & Lpexpt~pilp.2] the steepest decent methothe Planck potentiaP(8,N) =
—zUlp,d[p11+ x[p, ¢l p1;Z1}, (20) —In Z[ B,N] is thus obtained as follows:
N[p] being the particle number functional: P[B’N]:_Ti Tijn[”N_H[p'¢;B’“'j]] - (30
N[p]= L3d3r p(r). (21)  Where the stationary conditions

oH 6H oH 6H

In order to avoid the complicategl dependence of[p] in —==7=—=-—"N=0 (31
Eqg. (20), we introduce the identity L
lead to the relations
f De(r)8{p(r)—Glplt=1 (22) o )
p= —r) ex;{— — 5 Bmo+d[j]
in the functional integra(20): 2mh°B 2
XF[NBm[ps— &1, (32)

f Dp(r)Dp(r)8{(r) =Gl pl}(N=N[p])

__1 -
xexp{—pilpizl—2Ulp,d]+ xlp.dizl}. (23 J==g Amptpd, INFINAM ds— 1], (33
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¢=Glp] and N=N[p]. (34) According to the scaling law$28), this astrophysical
model obeys the following thermodynamic limit:

The relationg32) and(33) define the state equation, and
the relations(34) establish the Newtonian potentiel for a
given p profile as well as the normalization constrain for the
number of particles. The relatigB2) is conveniently rewrit-

E
N—co,  keeping constanfz and LN (43

ten by using Eq(33) as follows: L being the characteristic system size. This thermodynamic
N limit was obtained in Ref[12] for the self-gravitating fer-
p=N(B,pm)exd @+CIF (1), (35 mion model. The reader may be surprised by theepen-

dence of the characteristic system sizeHowever, there is

where®=gm[ ¢ ¢] and nothing strange in this behavior since the self-gravitating gas

N(B, 1) = (m2712B)32 exp( — w— BMds), is constituted bypunctualparticles, and therefore, this model
system can be reduced to a point in the thermodynamic limit
C being a new function, which is given by N— o0,
1o It is easy to understand that this is an asymptotical behav-
C=—pmG[pde In F(P)]. (36)  jor which disappears when the particles’ size and/or the rela-

tivistic effects are taken into account. It means that there

should exist a superior limit o in which theseN depen-

dences of the energy and system size become invalid, and

. therefore, the self-gravitating nonrelativistic gas model is in-
applicable for describing the thermodynamical properties of
such massive astrophysical systems.

The Boltzmann entropy can be estimated by using the Itis interesting to analyze the asymptotic behavior of the

It is not difficult to show that the Planck potential is given by

P(B.N)=—

l(I)C
§+

1
T+pts Bm¢S)N+ 3d3r p

R

steepest decent method as follows: particles density state functig{®; B, w). According to the
asymptotic behaviorg10) of the functionF(z), the state
Sg(E,N)=min[ BE—P[ 8,N]], (38)  equation(35) becomes in thésothermal distributionwhen
B J&>2.5:
E[B,p,¢] being the energy functional, prexd @], (44)

E[B,Pﬂﬁ]:f d3[3—Ddg In F(DL?) i p+ } mpo. which is characteristic of the inner regions of the systdm
IS 2B 2 core. At local level, the particles velocities obey to a Max-
(39 well distribution, where the kinetic energy per particle, Eq.
(40), is given by 3/B. When we move from the inner re-
gions towards the outer ones, the kinetic energy per particle
1 decreases until zero, being this approximately giveneby
€(B,@)=[3—Ddg In F(P?)] 2B (400  =3®d/58. There the particles velocities obeyuaiform dis-
tribution, and so the state equation in the halo obey®lg-
represents thkinetic energy per particlat a given point of  tropic distribution
the self-gravitating system. Note thatvanishes whenb

It can be easily seen that the quantity

tends to zero in Eq35), so that the particle distribution has 4

beenregularized This state equation differs from the one p“ﬁ e (45)
obtained in the isothermal model by the presence of the trun-

cation functionF(®%) as well as thedriving function C All these behaviors appear as consequence of the high-

Although C naturally appears in our derivation, its existenceenergy cutoff(3) in the Maxwell distribution for the kinetic
is closely related with the modification provoked in the mi- energy f(k)=27"Y%Y2 exp(—k) (k=pBp%2m), which is
croscopic picture of the system by the evaporation. An eXshown in Fig. 2. Note that the cutoff value ofs equal tod.
ample of this affirmation is the deviation of the Maxwell |4 the inner regions where®>2.5, this energy cutoff is
distribution along the system, which can be noted in the kiynimportant because it is located in the tail of the distribu-
netic energy per particle(B, ®) [Eq. (40)]. A naive energy  tjon. However, it modifies considerably the character of the
truncation of theVlaxwell-Boltzmann distributian state function forp in the halo due to the fact that it is
located before the pick. The particles dengitwill obey the
, (41) polytropic dependencé45) throughout the whole system
volume whend is also small in the inner regions.
Thus the consideration of the energetic prescripiibn
always leads to the existence of a polytropic halo, where the

1
wMB=C0 ex;{ _ﬁ(ﬁ p2+ m¢

leads to the state function

p~exd PIF(d?), (42)  system core can be isothermal or polytropic, according to the
values of the functiorb in the inner regions of the system.
but here the driving functio© does not appear. Due to the general properties of the spherical solutions with
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AL L Fi(P,®)=exp(V+P)F (D),

2
Fo(W,P)=— exp¥)P2 (48)

J

In the expressions above the functidh=C+In (B, u),
with (8, )= BY? exp(—u+ B). The solutions of the non-
linear system47) satisfy the following conditions at the sur-
face:

®(1)=0, d'(1)=—-B, C(1)=-C'(1), (49

which are derived from the boundary conditions of the Green
solutions(13).

The solution can be obtained from the imposition of the
following boundary conditions at the origin:

A(0)=dy>0, (50
W (0)=V(Dy), (52)

where the value of’(0) depends on the parametér, be-
caused® must vanish whem= 1. This situation can be over-
come by redefining the problem as follows:

V(r)=4(§)+2 InRy, ®(r)=0¢(8), (52)

{p(&),(&)} being the solution of Eq(47) whose boundary
conditions are given by

k e(0)=®¢>0, ¢'(0)=0, #(0)=0, ¢'(0)=0,

FIG. 2. Maxwell distribution for the kinetic energy. The charac- (53
ter of the state function for the particles’ densitydepends on the where¢ is related withr throughout the relation
localization of the energy cuttofb.

r=¢/R,, (54

a polytropic profile, the particles’ density willanishat a . . _ _
finite radioRyg, Which can be identified with the character- Rm being the radio at whiclp vanisheq ¢(Rm) =0].
istic size of the system. This radio is related to the tidal The canonical parametgd and u are obtained from the

potential ¢ throughout the relation relations
GM Rm%‘P(Rm):—ﬁ:_B(‘bo), (55
STTR. (46)
tidal P(Ry) + Rmaglﬁ( Rm)=—h, (56)
M being the system total mass. Thus the characteristic size efhereh=h(® )= —In[K(,)/R2], which allow us to ex-
the system igleterminedby the tidal interactions. pressu as a function ofbg:
1
ll. NUMERICAL STUDY #=h+B—§ In B—2 InR,,. (57)

In order to perform a numerical study of the equations
obtained in the previous section, we express the energy in Taking into consideration Eqg39) and (37), the total
units of E,=GM?/R;4 and the length in units of the system energy and Planck potential per particle are rewritten as fol-
size Rjga and the mass in units dfl. It is not difficult to  lows:
show that the function® andC obey the following structure

C 3 1 1
equatlons. e(CI)O)= ﬁ_ E— ,BZ—R hl(q)o), (58)
m
AD=—47F(V,D), AV=—47F,(V ), (47)

1 1
P(Pg)=—1—pu+ > B+h(Dg)+ —5— hy(Py), (59

where A, u=r"24,(r?g,u) is the radial part of the Laplace BR,

operator, the function§(WV,®) and F,(V,®) being de-
fined by where
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FIG. 3. The alternative model exhibits the main features of the energy

isothermal model of Antonov. It adopted the characteristic units FIG. 4. Central densit - this d d h th
assumed at the beginning of Sec. Il for all figures of the present - 4. ~entral densily vs energy. IS dependence shows the

section. existence of the gravitational collapse fox e, .

o 1 unstable saddle points. No equilibrium states exist when
_ m 2 <E€p.
hl(q)O)_fo amé dgi elF1( @)+ R e)], Sn the other hand, Fig. 6 evidences that the canonical
(60) ensemble can access only those equilibrium states belonging
to the interval 6<B8<Bg (with e>e€g), where Bg=1.193.
The energetic regioa,< e< eg is invisible for the canonical
. (61)  description due to the negativity of the heat capacity. No
equilibrium states exist foB>Bg. This fact evidences the
existence of a gravitational collapse in the canonical en-
IV. RESULTS AND DISCUSSIONS semble beyond the critical poim8g, which is usually re-
ferred as ansothermal collaps¢13].

Figures 3 and 4 show respectively the caloric curve and The Gibbs argument—the equilibrium of a subsystem
the central density of the model. These dependences ewvith a thermal bath—is nonapplicable to this situation be-
dence that this model system exhibits the main features afause of no reasonable thermal bath exits for the astrophysi-
the Antonov isothermal model: the existence of a negativeal systems. Therefore, the isothermal catastrophe is not a
specific heat wher,<e<eg and gravitational collapse for phenomenon with physical relevance since it can be never
e<e,, Where the central density grows towards infinity andobtained in nature: the consideration of a thermal bath in the
the system develops a core-halo structure, whege astrophysical system is outside of context. A different signifi-
—0.806 andeg= —0.446. cance possesses the gravothermal catastrophe. The gravita-

This conclusion is supported by the analysis of the thertional collapse is the main engine of structuration in astro-
modynamical potentials of the model: the entropy in thephysics and it concerns almost all scales of the
microcanonical ensemble, in Fig. 5, and the Planck potentialniverse: the formation of planetesimals in the solar
in the canonical ensemble, in Fig. 6. Figure 5 shows that theebula, the formation of stars, the fractal nature of the inter-
points of the superior branch of the caloric curve 3 corre-stellar medium, the evolution of globular clusters and galax-
spond to equilibrium configuration while the others representes, and the formation of galactic clusters in cosmolfbgj.

Rm 1
(@)= [ "4t de Fulo)| 3 o+
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FIG. 5. Entropy vs energy: equilibrium configurations exit FIG. 6. Planck potential vs inverse temperature: the canonical
only for e> e, . ensemble accesses only to those equilibrium stages guttBg
(e>€g).

Let us now carry out a comparative study between the
isothermal model and this alternative one. As already menacterize the size and mass of the isothermal core. The reader
tioned, the only difference between these approaches religsay observe that the isothermal core contains at the critical
on the regularization prescription of the long-range singularenergy of the gravitational collapse half of the system total
ity of the self-gravitating gas: the isothermal model avoidsmass inside~1% of the system volume. On the other hand,
particle evaporation by using a rigid container, while theit is interesting to note that this isothermal core disappears at
present model takes into account the effects of this evapora* = —0.066.
tion by truncating the kinetic energy distribution function.  The quantitative differences in the thermodynamical de-
This study is carried out by considering a spherical containescription between these models seem to be explained by the
in the isothermal model with a linear dimensiB+ Ry, - following reasonings. Most of the energy contribution to the
Figure 7 shows the caloric curves of these models. Irtotal energy comes from the isothermal core. The contribu-
spite of the qualitative similarity of these dependences, théion of the gravitational potential energy is dominant in the
alternative model is able to describe an additional energeticore due to the high mass concentration enclosed inside this
range from—0.806 to—0.335, but the isothermal model de- region, where, moreover, the Newtonian potential exhibits its
scribes equilibrium configurations belonging to the intervalhighest values. Outside the isothermal core, the kinetic en-
1.193< < 2.518, which are cooler than the ones describedergy contribution decreases considerably as a consequence of
by using the first model. the deviation from the isothermal character of the micro-
A second difference is evidenced in regard to the centrascopic particle distribution function due to evaporation.
density versus energy dependence, which is shown in Fig. 8. These arguments can be rephrased as follows: in the iso-
The central density at the critical energy of the gravitationalthermal region, where—0.806<e<—0.066, the present
collapse is much greater in the alternative model than thenodel behaves as an isothermal model with a characteristic
isothermal one, and this qualitative relationship seems to bsize equal to the size of the isothermal core. Since the rel-
applicable to the whole energetic range. evant canonical variables in the isothermal modelzs
Figure 9 shows two interesting observables: the radio in= BGM/R [5,13], a rough estimation of the maximal value
which the system exhibits an isothermal behaviRg,, and  Bn.=Bg in which the isothermal collapse takes places is
the mass content enclosed insitie, . These quantities char- given by
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FIG. 7. The caloric curves: The figure shows the comparison F!G. 8. The central density vs energy. The central density is
between the two models. much greater in this alternative version of the Antonov problem.

Ric o to the polytropic model due to the presence of the driving
B~ M. Pmax- (62 function C. This purely polytropic profile is obtained by dis-
© regarding the second equation and setting 0 in the first
By using the characteristics valug&~0.2, M;;~0.5, and  one.
'solh_ 2.5 (obtained from the isothermal modigthe formula Let us finalize our discussion by carrying out a compara-
(62) gives a fairly good estimation gdg~1 (Bg=1.193). tive study among the equilibrium profiles obtained from the
The main difference between these models is in regard talternative model with the well-known isothermal and poly-
the character of the equilibrium profiles in the high-energytropic profiles. These equilibrium profiles are shown in Fig.
region with e>0. As already discussed, the isothermal corel0. Equilibrium profilesA and C were obtained from the
has disappeared in this energetic region and the equilibriuralternative model: profilé\ corresponds to an equilibrium
configurations of the system are essentially polytropic, whileconfiguration possessing an isothermal core, wkilés a
the isothermal model leads to a uniform distribution of thequasipolytropic equilibrium profile. ProfileB and D corre-

particles throughout the volume of the rigid container. spond, respectively, to isothermal and polytropic configura-
In this case, the structure equatidd®) become in ajua-  tions. The reader can note that the alternative model profiles
sipolytropic model differ essentially in regard to the existence of the isothermal
core, since no qualitative differences are evidenced in the

AD=—47 exp( W) i P32 halo structure. On the other han_d, these results suggest that a

3T ' system undergoing an evaporation process concentrates their

particles in the inner regions more than what the isothermal

2 or the polytropic models predict.
AV =—47 expVP) \/_— P2 (63 poIrop P
n

. - L . V. CONC
which exhibits the same fractal characteristics of a polytropic LUSIONS

model with polytropic indexy=3. This polytropic index As already shown in the present paper, the consideration
characterizes an adiabatic process of the ideal gas of paof the energetic prescriptiofl) leads to an alternative ver-
ticles, which is in our case the evaporation of the system irsion of the Antonov problem. This model, besides exhibiting
the vacuum. However, this equation system is not equivalerthe main features of the isothermal model—the gravitational
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-1.00 0.75 -0.50 0.25 0.00 FIG. 10. Comparison among the equilibrium profiles: alterna-
energy tive model with an isothermal coréurve A), isothermal profile
(curve B), alternative model with a quasipolytropic profileurve

FIG. 9. Isothermal core radio and its mass content in the alterb) and purely polytropic profilécurveD)
native model. s purely polytropic p .

. . ) ) __polytropic model.
collapse and the energetic region with a negative specific There are many open questions in the study of this model

heat—has the advantage that the system size naturally aRystem by using this kind of regularization scheme, for ex-

pears as a consequence of the p?”'c'?s_evapom_‘“o”: Thereaﬁ]ple, the dynamical aspects: Which is the influence of the
no need for enclosing the system in a rigid container in orde

to avoid the long-range singularity of the Newtonian poten_E)articles’ evaporation in the system dynamical evolution?

) . N . o How could this dynamical description be performed by pre-
tial because this regularization procedure is sufficient to acéervin this energetic prescription? Further studies should
cess finite equilibrium configurations. 9 9 P ption:

It is remarkable that the present approach unifies the wen?'a”f?/ th_ese questions. The _present_study 1S Carrled_ out by
known isothermal and polytropic equilibrium profiles. As al- considering that the evaporation rate is small (_anough in order_
ready mentioned, the equilibrium profiles derived from thist® €nsure that the system reaches a quasistationary state. This
alternative model differ essentially in regard to the existencéSSumption is satisfied by the globular clusters, since the
of the isothermal core, since no qualitative differences aréelaxation timety,, in them differs considerably from the
evidenced in the halo structure. A comparative study of theevaporation timete,ap, treiax<tevap (Se€ Ref[14]). The dy-
equilibrium p profiles suggests that a system undergoing ammamical approach could be developed by considering that the
evaporation process concentrates the particles in the innsystem evolves slowly throughout these quasistationary
regions more than what is predicted by the isothermal ostates.
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