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Alternative model of the Antonov problem
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Astrophysical systems will never be in a real thermodynamic equilibrium: they undergo an evaporation
process due to the fact that the gravity is not able to confine the particles. Ordinarily, this difficulty is overcome
by enclosing the system in a rigid container which avoids the evaporation. We propose an energetic prescrip-
tion which is able to confine the particles, leading in this way to an alternative version of the Antonov
isothermal model which unifies the well-known isothermal and polytropic profiles. Besides the main features
of the isothermal sphere model~the existence of the gravitational collapse and the energetic region with a
negative specific heat!, this alternative model has the advantage that the system size naturally appears as a
consequence of the particles’ evaporation.

DOI: 10.1103/PhysRevE.68.066116 PACS number~s!: 05.70.2a, 05.20.2y
m
a

si
a
it
-
i-

el
ce
a
be

l-
fo

em
w

lty
n
n

ig
a
ge
a

st

is

ng
y
se

har-
rs
ve-
ved

on
and
an

an-

i-

rip-
in

on-
I. INTRODUCTION

Thermodynamical properties of self-gravitating syste
are very different from the ones exhibited by the tradition
systems. They are typicalnonextensive systemssince they
are nonhomogeneous and the total energy is not exten
which is a consequence of the long-range character of gr
tational interaction. They also exhibit energetic regions w
a negative specific heat, which persist even in the thermody
namic limit @1–8#. That is the reason why the Gibbs canon
cal ensemble is nonapplicable to the description of s
gravitating systems, since this ensemble is not able to ac
to those macroscopic states possessing a negative heat c
ity. At first glance, the self-gravitating systems could only
described by using the microcanonical ensemble.

Gravitation is not able to confine the particles: it is a
ways possible that some of them have sufficient energy
escaping from the system, so that the self-gravitating syst
always undergo an evaporation process. Therefore, they
never be in a real thermodynamic equilibrium. This difficu
is usually avoided by enclosing the system in a rigid co
tainer @5–7#, which could be justified when the evaporatio
rate is small and a certain kind of quasistationary state m
be reached. There are some approaches which have t
into account this kind of regularization of the long-ran
singularity of the Newtonian potential in a microcanonic
framework@9,10#.

The use of a rigid container can be conveniently sub
tuted by imposing the following energetic prescription:

1

2m
p21mf~r !<eS,0, ~1!

where (1/2m)p2 is the kinetic energy of a particle of massm
andmf(r ) its gravitational potential energy at the pointr , eS
being an energy cutoff which is determined from the ex
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tence of certain tidal forces. All those particles satisfyi
condition ~1! are confined by gravity; on the contrary, the
will be able to escape out from the system if they do not lo
their excessive energy. This regularization procedure is c
acteristic of the Michie-King model for globular cluste
@11#, which supposes that those stars that gain sufficient
locity through encounters are able to escape or are remo
by tidal forces. The main motivation of such a regularizati
scheme relies on consideration of evaporation effects,
therefore, this regularization procedure is more realistic th
the box regularization~the use of a rigid container!. The aim
of this paper is to develop an alternative model to the st
dard isothermal sphere model of Antonov@5# based on the
consideration of this energetic prescription starting from m
crocanonical basis.

II. STATISTICAL DESCRIPTION

Let us consider theN-body self-gravitating Hamiltonian
system

HN5TN1UN5 (
k51

N
1

2m
pk

22 (
j .k51

N
Gm2

ur j2r ku
. ~2!

Taking into consideration the above regularization presc
tion ~1!, the admissible stages of this system are those
which the kinetic energy of a given particle satisfies the c
dition

1

2m
pk

2,uk5m@fS2f~r k!#, ~3!

f(r k) being the gravitational potential at the pointr k where
the kth particle is located:

f~r k!52(
j Þk

N
Gm2

ur k2r j u
, ~4!

where we introduce the tidal potentialfS (eS5mfS).
©2003 The American Physical Society16-1
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The regularized microcanonical accessible volumeWR is
given by

WR5
1

N! EXR

d@E2HN#dX,

where XR is a subspace of theN-body phase space wher
condition ~3! takes place,

dX5d3NRd3NP/~2p\!3N5)
k

d3r kd
3pk

~2p\!3

being the volume element. The spacial coordinates shoul
also regularized in order to avoid the short-range diverge
of the Newtonian potential, which will be performed belo
by using the mean-field approximation. This integral is
written by using the Fourier representation of thed function
as follows:

WR5E
2`

1` dk

2p
exp~zE!ZR~z,N!, ~5!

where

ZR~z,N!5
1

N! EXR

exp~2zHN!dX ~6!

is the canonical partition function with complex argumenz
5b1 ik, with bPR. Integration byd3NP yields

1

N! ER3N
d3NRS m

2p\2zD
3N/2

exp@2zUN~R!1x~R;z!#,

~7!

x(R;z) being

x~R;z!5 (
k51

N

ln F@Azuk#, ~8!

whereF(z) is defined by

F~z!5erf~z!2
2

Ap
z exp~2z2! ~9!

and shown in Fig. 1. The asymptotic behaviors ofF(z) are
given by

F~z!5H 4

3Ap
z31O~z3! when z→0,

;1, z>2.5.

~10!

We are interested in describing the large-N limit. This aim
can be carried out by using the following procedure:
partition the physical space in cells$ca%, ra being the posi-
tions of their centers. We denoted byna5n(ra) the number
of particles inside the cell at the positionra . Introducing the
densityr(ra)5n(ra)/va , va being the volume of the cel
06611
be
e

-

ca , the functionsUN(R) andx(R;z) are rewritten by using
a mean-field approximationas follows:

UN~R!→U@r,f#5E
R3

1

2
mr~r !f~r !d3r , ~11!

x~R;z!→x@r,f,z#5E
R3

r~r !ln F„Azm@fS2f~r !#…d3r ,

~12!

f(r ) being the Newtonian potential for a givenr profile:

f~r !5G@r#52E
R3

Gmr~r1!d3r1

ur2r1u
, ~13!

which is the Green solution of the problem

Df54pGr. ~14!

It is easy to understand that this mean-field approximat
acts as a partial regularization procedure for the short-ra
singularity of the Newtonian potential. The microscopic flu
tuations of the Newtonian potential are disregarded in t
approximation, since this field is considered constant ins
the volume of each cell. Thus the gravity effects on the m
croscopic picture of each cell are reduced to a truncation

FIG. 1. Representation of the functionF(z). Its symptotic be-
haviors are also shown.
6-2
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the velocity distribution of the particles. This regularizatio
is partial since it does not avoid the gravitational collap
@5#.

Using the partition of the physical space in cells, the
tegration byd3NR can be approximately given by

1

N! ER3N
d3NR. (

$na%
dDS N2(

a
naD)

a

va
na

na!
, ~15!

where

dD~k!5H 1, if k50,

0, otherwise,
and (

$na%
[(

n1
(
n2

¯ .

~16!

The following factor can be rephrased in the mean-fi
approximation as follows:

S m

2p\2zD
3N/2

)
a

va
na

na!
→e2pf @r,z#, ~17!

where

pf@r,z#5E
R3

d3r r~r !F ln r~r !211
3

2
lnS 2p\2z

m D G ,
~18!

where the Stirling formula lnn!.n ln n2n was used. Finally,
we rephrase the summation in the mean-field approxima
as follows:

(
$na%

dDS N2(
a

naD→E Dr~r !dFN2E
R3

d3r r~r !G .
~19!

Taking into consideration all approximations introduc
above, the canonical partition function~6! is rewritten as

Zc@z,N#5E Dr~r !d„N2N@r#…exp$2pf@r,z#

2zU@r,f@r##1x@r,f@r#;z#%, ~20!

N@r# being the particle number functional:

N@r#5E
R3

d3r r~r !. ~21!

In order to avoid the complicatedr dependence off@r# in
Eq. ~20!, we introduce the identity

E Df~r !d$f~r !2G@r#%51 ~22!

in the functional integral~20!:

E Dr~r !Df~r !d$f~r !2G@r#%d~N2N@r#!

3exp$2pf@r;z#2zU@r,f#1x@r,f;z#%. ~23!
06611
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The d functions are also conveniently rewritten by usin
their Fourier representation:

d$f~r !2G@r#%;E Dh~r !expF E
R3

d3r J~r !$f~r !2G@r#%G ,
~24!

as well as

d~N2N@r#!5E
2`

1` dq

2p
exp$z1~N2N@r#!%, ~25!

z15m1 iq being withmPR; J(r )5 j (r )1 ih(r ), a complex
function with j (r ) andh(r )PR. Thus the canonical partition
function Zc@z,N# is finally expressed as

E
2`

1` dq

2p E Dr~r !Df~r !Dh~r !exp$z1N

2H@r,f;z,z1 ,J#%. ~26!

The functionalH@r,f;z,z1 ,J# is given by

5pf@r;z#1zU@r,f#2x@r,f;z#1z1N@r#1K@f,r,J#,
~27!

K@f,r,J# being the exponential argument of the express
~24!.

The reader may check that whenN is scaled asN→aN
and the following quantities are scaled as

r→a2r, r→a21/3r , f→a4/3f,

z→a24/3z, z1→z1 , J→a2/3J, ~28!

all terms in Eq.~27! scale proportional toa, and therefore

H@r,f;z,z1 ,J#→aH@r,f;z,z1 ,J#. ~29!

The thermodynamic limit is carried out tendinga to infinity,
a→`. Thus, we can estimateZc@z,N# for N large by using
the steepest decent method. The Planck potentialP(b,N)5
2 ln Zc@b,N# is thus obtained as follows:

P@b,N#.2max
r,f Hmin

m, j
@mN2H@r,f;b,m, j ## J . ~30!

where the stationary conditions

dH

dr
5

dH

df
5

dH

d j
5

dH

dm
2N50 ~31!

lead to the relations

r5S m

2p\2b D 3/2

expF2m2
1

2
bmf1G@ j #G

3F@Abm@fS2f##, ~32!

j 52
1

2
bmr1r]f ln F@Abm@fS2f##, ~33!
6-3



d

he

y

th

s
e

ru

ce
i-

ex
ll
k

mic

gas
el
imit

av-
ela-
ere

and
in-
of

he

x-
q.
-
icle

igh-

u-
the
s

the
the
.
ith
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f5G@r# and N5N@r#. ~34!

The relations~32! and ~33! define the state equation, an
the relations~34! establish the Newtonian potentialf for a
givenr profile as well as the normalization constrain for t
number of particles. The relation~32! is conveniently rewrit-
ten by using Eq.~33! as follows:

r5N~b,m!exp@F1C#F~F1/2!, ~35!

whereF5bm@fS2f# and

N~b,m!5~m/2p\2b!3/2 exp~2m2bmfS!,

C being a new function, which is given by

C52bmG@r]F ln F~F1/2!#. ~36!

It is not difficult to show that the Planck potential is given b

P~b,N!52S 11m1
1

2
bmfSDN1E

R3
d3r rS 1

2
F1CD .

~37!

The Boltzmann entropy can be estimated by using
steepest decent method as follows:

SB~E,N!.min
b

@bE2P@b,N##, ~38!

E@b,r,f# being the energy functional,

E@b,r,f#5E
R3

d3r @32F]F ln F~F1/2!#
1

2b
r1

1

2
mrf.

~39!

It can be easily seen that the quantity

e~b,F!5@32F]F ln F~F1/2!#
1

2b
~40!

represents thekinetic energy per particleat a given point of
the self-gravitating system. Note thatr vanishes whenF
tends to zero in Eq.~35!, so that the particle distribution ha
been regularized. This state equation differs from the on
obtained in the isothermal model by the presence of the t
cation functionF(F1/2) as well as thedriving function C.
AlthoughC naturally appears in our derivation, its existen
is closely related with the modification provoked in the m
croscopic picture of the system by the evaporation. An
ample of this affirmation is the deviation of the Maxwe
distribution along the system, which can be noted in the
netic energy per particlee~b, F! @Eq. ~40!#. A naive energy
truncation of theMaxwell-Boltzmann distribution,

vMB5C0 expF2bS 1

2m
p21mf D G , ~41!

leads to the state function

r;exp@F#F~F1/2!, ~42!

but here the driving functionC does not appear.
06611
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According to the scaling laws~28!, this astrophysical
model obeys the following thermodynamic limit:

N→`, keeping constant
E

N7/3 and LN1/3, ~43!

L being the characteristic system size. This thermodyna
limit was obtained in Ref.@12# for the self-gravitating fer-
mion model. The reader may be surprised by theN depen-
dence of the characteristic system sizeL. However, there is
nothing strange in this behavior since the self-gravitating
is constituted bypunctualparticles, and therefore, this mod
system can be reduced to a point in the thermodynamic l
N→`.

It is easy to understand that this is an asymptotical beh
ior which disappears when the particles’ size and/or the r
tivistic effects are taken into account. It means that th
should exist a superior limit ofN in which theseN depen-
dences of the energy and system size become invalid,
therefore, the self-gravitating nonrelativistic gas model is
applicable for describing the thermodynamical properties
such massive astrophysical systems.

It is interesting to analyze the asymptotic behavior of t
particles density state functionr~F; b, m!. According to the
asymptotic behaviors~10! of the function F(z), the state
equation~35! becomes in theisothermal distributionwhen
AF.2.5:

r}exp@F#, ~44!

which is characteristic of the inner regions of the system~the
core!. At local level, the particles velocities obey to a Ma
well distribution, where the kinetic energy per particle, E
~40!, is given by 3/2b. When we move from the inner re
gions towards the outer ones, the kinetic energy per part
decreases until zero, being this approximately given bye
.3F/5b. There the particles velocities obey auniform dis-
tribution, and so the state equation in the halo obeys apoly-
tropic distribution

r}
4

3Ap
F3/2. ~45!

All these behaviors appear as consequence of the h
energy cutoff~3! in the Maxwell distribution for the kinetic
energy f (k)52p21/2k1/2 exp(2k) (k5bp2/2m), which is
shown in Fig. 2. Note that the cutoff value ofk is equal toF.
In the inner regions whereAF.2.5, this energy cutoff is
unimportant because it is located in the tail of the distrib
tion. However, it modifies considerably the character of
state function forr in the halo due to the fact that it i
located before the pick. The particles densityr will obey the
polytropic dependence~45! throughout the whole system
volume whenF is also small in the inner regions.

Thus the consideration of the energetic prescription~1!
always leads to the existence of a polytropic halo, where
system core can be isothermal or polytropic, according to
values of the functionF in the inner regions of the system
Due to the general properties of the spherical solutions w
6-4
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a polytropic profile, the particles’ density willvanish at a
finite radioRtidal , which can be identified with the characte
istic size of the system. This radio is related to the tid
potentialfS throughout the relation

fS52
GM

Rtidal
, ~46!

M being the system total mass. Thus the characteristic siz
the system isdeterminedby the tidal interactions.

III. NUMERICAL STUDY

In order to perform a numerical study of the equatio
obtained in the previous section, we express the energ
units ofE05GM2/Rtidal and the length in units of the syste
size Rtidal and the mass in units ofM. It is not difficult to
show that the functionsF andC obey the following structure
equations:

D rF524pF1~C,F!, D rC524pF2~C,F!, ~47!

whereD ru5r 22] r(r
2] ru) is the radial part of the Laplac

operator, the functionsF1(C,F) and F2(C,F) being de-
fined by

FIG. 2. Maxwell distribution for the kinetic energy. The chara
ter of the state function for the particles’ densityr depends on the
localization of the energy cuttoffF.
06611
l
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F1~C,F!5exp~C1F!F~F1/2!,

F2~C,F!5
2

Ap
exp~C!F1/2. ~48!

In the expressions above the functionC5C1 ln K(b,m),
with K(b,m)5b1/2 exp(2m1b). The solutions of the non-
linear system~47! satisfy the following conditions at the sur
face:

F~1!50, F8~1!52b, C~1!52C8~1!, ~49!

which are derived from the boundary conditions of the Gre
solutions~13!.

The solution can be obtained from the imposition of t
following boundary conditions at the origin:

D~0!5F0.0, ~50!

C~0!5C~F0!, ~51!

where the value ofC~0! depends on the parameterF0 be-
causeF must vanish whenr 51. This situation can be over
come by redefining the problem as follows:

C~r !5c~j!12 ln Rm , F~r !5w~j!, ~52!

$w~j!,c~j!% being the solution of Eq.~47! whose boundary
conditions are given by

w~0!5F0.0, w8~0!50, c~0!50, c8~0!50,
~53!

wherej is related withr throughout the relation

r 5j/Rm , ~54!

Rm being the radio at whichw vanishes@w(Rm)50#.
The canonical parameterb and m are obtained from the

relations

Rm]jw~Rm!52b52b~F0!, ~55!

c~Rm!1Rm]jc~Rm!52h, ~56!

whereh5h(F0)[2 ln@K(b,m)/Rm
2 #, which allow us to ex-

pressm as a function ofF0 :

m5h1b2
1

2
ln b22 ln Rm . ~57!

Taking into consideration Eqs.~39! and ~37!, the total
energy and Planck potential per particle are rewritten as
lows:

e~F0!5
3

2b
2

1

2
2

1

b2Rm
h1~F0!, ~58!

P~F0!5212m1
1

2
b1h~F0!1

1

bRm
h2~F0!, ~59!

where
6-5
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h1~F0!5E
0

Rm
4pj2dj

1

2
w@F1~c,w!1F2~c,w!#,

~60!

h2~F0!5E
0

Rm
4pj2 dj F1~c,w!S 1

2
w1c D . ~61!

IV. RESULTS AND DISCUSSIONS

Figures 3 and 4 show respectively the caloric curve a
the central density of the model. These dependences
dence that this model system exhibits the main feature
the Antonov isothermal model: the existence of a nega
specific heat wheneA,e,eB and gravitational collapse fo
e,eA , where the central density grows towards infinity a
the system develops a core-halo structure, whereeA5
20.806 andeB520.446.

This conclusion is supported by the analysis of the th
modynamical potentials of the model: the entropy in t
microcanonical ensemble, in Fig. 5, and the Planck poten
in the canonical ensemble, in Fig. 6. Figure 5 shows that
points of the superior branch of the caloric curve 3 cor
spond to equilibrium configuration while the others repres

FIG. 3. The alternative model exhibits the main features of
isothermal model of Antonov. It adopted the characteristic un
assumed at the beginning of Sec. III for all figures of the pres
section.
06611
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unstable saddle points. No equilibrium states exist whee
,eA .

On the other hand, Fig. 6 evidences that the canon
ensemble can access only those equilibrium states belon
to the interval 0,b,bB ~with e.eB), wherebB51.193.
The energetic regioneA,e,eB is invisible for the canonical
description due to the negativity of the heat capacity.
equilibrium states exist forb.bB . This fact evidences the
existence of a gravitational collapse in the canonical
semble beyond the critical pointbB , which is usually re-
ferred as anisothermal collapse@13#.

The Gibbs argument—the equilibrium of a subsyste
with a thermal bath—is nonapplicable to this situation b
cause of no reasonable thermal bath exits for the astroph
cal systems. Therefore, the isothermal catastrophe is n
phenomenon with physical relevance since it can be ne
obtained in nature: the consideration of a thermal bath in
astrophysical system is outside of context. A different sign
cance possesses the gravothermal catastrophe. The gr
tional collapse is the main engine of structuration in ast
physics and it concerns almost all scales of t
universe: the formation of planetesimals in the so
nebula, the formation of stars, the fractal nature of the in
stellar medium, the evolution of globular clusters and gal
ies, and the formation of galactic clusters in cosmology@13#.

e
s
t

FIG. 4. Central density vs energy: this dependence shows
existence of the gravitational collapse fore,eA .
6-6
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ALTERNATIVE MODEL OF THE ANTONOV PROBLEM PHYSICAL REVIEW E68, 066116 ~2003!
Let us now carry out a comparative study between
isothermal model and this alternative one. As already m
tioned, the only difference between these approaches r
on the regularization prescription of the long-range singu
ity of the self-gravitating gas: the isothermal model avo
particle evaporation by using a rigid container, while t
present model takes into account the effects of this evap
tion by truncating the kinetic energy distribution functio
This study is carried out by considering a spherical conta
in the isothermal model with a linear dimensionR5Rtidal .

Figure 7 shows the caloric curves of these models.
spite of the qualitative similarity of these dependences,
alternative model is able to describe an additional energ
range from20.806 to20.335, but the isothermal model de
scribes equilibrium configurations belonging to the inter
1.193,b,2.518, which are cooler than the ones describ
by using the first model.

A second difference is evidenced in regard to the cen
density versus energy dependence, which is shown in Fig
The central density at the critical energy of the gravitatio
collapse is much greater in the alternative model than
isothermal one, and this qualitative relationship seems to
applicable to the whole energetic range.

Figure 9 shows two interesting observables: the radio
which the system exhibits an isothermal behavior,Ric , and
the mass content enclosed inside,M ic . These quantities char

FIG. 5. Entropy vs energy: equilibrium configurations e
only for e.eA .
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acterize the size and mass of the isothermal core. The re
may observe that the isothermal core contains at the crit
energy of the gravitational collapse half of the system to
mass inside;1% of the system volume. On the other han
it is interesting to note that this isothermal core disappear
e* .20.066.

The quantitative differences in the thermodynamical d
scription between these models seem to be explained by
following reasonings. Most of the energy contribution to t
total energy comes from the isothermal core. The contri
tion of the gravitational potential energy is dominant in t
core due to the high mass concentration enclosed inside
region, where, moreover, the Newtonian potential exhibits
highest values. Outside the isothermal core, the kinetic
ergy contribution decreases considerably as a consequen
the deviation from the isothermal character of the mic
scopic particle distribution function due to evaporation.

These arguments can be rephrased as follows: in the
thermal region, where20.806,e,20.066, the presen
model behaves as an isothermal model with a character
size equal to the size of the isothermal core. Since the
evant canonical variables in the isothermal model ish
5bGM/R @5,13#, a rough estimation of the maximal valu
bmax5bB in which the isothermal collapse takes places
given by

FIG. 6. Planck potential vs inverse temperature: the canon
ensemble accesses only to those equilibrium stages withb,bB

(e.eB).
6-7
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bB'
Ric

M ic
bmax

isoth. ~62!

By using the characteristics valuesRic'0.2, M ic'0.5, and
bmax

isoth'2.5 ~obtained from the isothermal model!, the formula
~62! gives a fairly good estimation ofbB'1 (bB51.193).

The main difference between these models is in regar
the character of the equilibrium profiles in the high-ener
region withe.0. As already discussed, the isothermal co
has disappeared in this energetic region and the equilibr
configurations of the system are essentially polytropic, wh
the isothermal model leads to a uniform distribution of t
particles throughout the volume of the rigid container.

In this case, the structure equations~47! become in aqua-
sipolytropic model

DF524p exp~C!
4

3Ap
F3/2,

DC524p exp~C!
2

Ap
F1/2, ~63!

which exhibits the same fractal characteristics of a polytro
model with polytropic indexg5 5

3 . This polytropic index
characterizes an adiabatic process of the ideal gas of
ticles, which is in our case the evaporation of the system
the vacuum. However, this equation system is not equiva

FIG. 7. The caloric curves: The figure shows the compari
between the two models.
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to the polytropic model due to the presence of the driv
functionC. This purely polytropic profile is obtained by dis
regarding the second equation and settingC[0 in the first
one.

Let us finalize our discussion by carrying out a compa
tive study among the equilibrium profiles obtained from t
alternative model with the well-known isothermal and po
tropic profiles. These equilibrium profiles are shown in F
10. Equilibrium profilesA and C were obtained from the
alternative model: profileA corresponds to an equilibrium
configuration possessing an isothermal core, whileC is a
quasipolytropic equilibrium profile. ProfilesB and D corre-
spond, respectively, to isothermal and polytropic configu
tions. The reader can note that the alternative model pro
differ essentially in regard to the existence of the isotherm
core, since no qualitative differences are evidenced in
halo structure. On the other hand, these results suggest t
system undergoing an evaporation process concentrates
particles in the inner regions more than what the isother
or the polytropic models predict.

V. CONCLUSIONS

As already shown in the present paper, the considera
of the energetic prescription~1! leads to an alternative ver
sion of the Antonov problem. This model, besides exhibiti
the main features of the isothermal model—the gravitatio

n FIG. 8. The central density vs energy. The central density
much greater in this alternative version of the Antonov problem
6-8
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collapse and the energetic region with a negative spe
heat—has the advantage that the system size naturally
pears as a consequence of the particles evaporation. The
no need for enclosing the system in a rigid container in or
to avoid the long-range singularity of the Newtonian pote
tial because this regularization procedure is sufficient to
cess finite equilibrium configurations.

It is remarkable that the present approach unifies the w
known isothermal and polytropic equilibrium profiles. As a
ready mentioned, the equilibrium profiles derived from th
alternative model differ essentially in regard to the existe
of the isothermal core, since no qualitative differences
evidenced in the halo structure. A comparative study of
equilibrium r profiles suggests that a system undergoing
evaporation process concentrates the particles in the i
regions more than what is predicted by the isothermal

FIG. 9. Isothermal core radio and its mass content in the a
native model.
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polytropic model.
There are many open questions in the study of this mo

system by using this kind of regularization scheme, for e
ample, the dynamical aspects: Which is the influence of
particles’ evaporation in the system dynamical evolutio
How could this dynamical description be performed by p
serving this energetic prescription? Further studies sho
clarify these questions. The present study is carried out
considering that the evaporation rate is small enough in o
to ensure that the system reaches a quasistationary state
assumption is satisfied by the globular clusters, since
relaxation timet relax in them differs considerably from the
evaporation timetevap, t relax!tevap ~see Ref.@14#!. The dy-
namical approach could be developed by considering that
system evolves slowly throughout these quasistation
states.

r-

FIG. 10. Comparison among the equilibrium profiles: altern
tive model with an isothermal core~curve A!, isothermal profile
~curve B!, alternative model with a quasipolytropic profile~curve
C!, and purely polytropic profile~curveD!.
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