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Crossover between special and ordinary transitions in random semi-infinite Ising-like systems
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We consider the crossover behavior between special and ordinary surface transitions in three-dimensional
semi-infinite Ising-like systems with random quenched bulk disorder. We calculate the surface crossover
critical exponent®, the critical exponents of the layer;, and local specific heats;; by applying the field
theoretic approach directly in three spatial dimensiahs 8) up to the two-loop approximation. The numeri-
cal estimates of the resulting two-loop series expansions for the surface critical exponents are computed by
means of Padand PadeBorel resummation techniques. We find tdata,, a4, obtained in the present paper
are different from their counterparts of pure Ising systems. The obtained results support the idea that in a
system with random quenched bulk disorder the plane boundary is characterized by a new set of critical

exponents.
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. INTRODUCTION They meet at a multicritical point ng3,co) = (m..c,).

which corresponds to the special transition and is called the
In recent decades the remarkable progress in understangpecial poin{15].
ing the critical behavior of real physical systems has been Most theoretical studies usually concentrate their attention
achieved from the application of the powerful field theoreti-on the investigation of critical behavior distinctly at the fixed
cal methods and renormalization gro(RG) approach to the  points c,=+ and Cozcgp, respectively. At the present
analysis of these systems. They can be used to perform witime, the theories of critical behavior of individual surface
higher accuracy the numerical analysis of critical exponentginjversality classes for pure isotropic systgih3,14,16—19
and universal amplitude combinations for bulk phase transiand systems with quenched surface-enhancement disorder
tions. There are a lot of publications related to this topic. Th§20-23 have been well developed. General irrelevance-
first few of them arg¢1-5]. For brevity we do not present all relevance criteria of the Harris type for the systems with
of them here. One can find a remarkable historical survey iuenched short-range correlated surface-bond disorder were
[6]. The general review on the critical behavior of infinite predicted in20] and confirmed by Monte Carlo calculations
randomly dilute spin models can be found[iA. [21,23. The investigation of the surface critical behavior of
Moreover, these methods have given the possibility to inthe semi-infinite systems with random quenched bulk disor-
vestigate the preasymptotic behavior of infinite systemsjer at the ordinary and the special transitions have been stud-
[8-10. A series of field-theoretical methods developed andeg by us[24,25. The obtained result®4,25 have shown
tested in the studies of bulk phase transitions have been ehat such systems are characterized by the new set of surface
tended to study the critical behavior of systems with boundcritical exponents in comparison with the case of pure sys-
aries. General reviews on surface critical phenomena argms.
given in Refs[11-13. It is well known that experimental systems are typically
The presence of surfaces, which are inevitable in real syscharacterized by the parameters different from values at the
tems, leads to additional complications. A typical model tofixed point. However, our understanding of the situation in
study the critical phenomena in real physical systems rethe crossover regions between different transitions is less
stricted by a single planar surface is the semi-infinite modetomplete. Investigations of the crossover behavior between
[11]. As it is known from the field-theoretic analysis of the different surface universality classes for pure isotropic sys-
continuum¢? model[12], we can take the influence of the tems have been published in a series of pap#8s19,26—
surface into account by a quadratic surface term with coeffi2g]. However, at the present time the question about the
cient ¢y, which describes the enhancement of the interacpicture in the crossover regions between the different transi-
tions at the surface, and additional surface figlds There  tions for the semi-infinite systems with random quenched
are different surface universality classes, defining the criticabulk disorder is still open. In the present paper we restrict our
behavior in the vicinity of boundaries, at temperatures closettention to the simplest case with surface fibld=0 and
to the bulk critical point[ 7=(T—T.)/T.—0]. Each bulk investigate crossover behavior between special and ordinary
universality class, in general, divides into several distinctransitions for semi-infinite Ising-like systems with random
surface universality classes. Three surface universalityuenched bulk disorder. Here it should be mentioned that
classes, called ordinarg{— =), special €x=cs,), and ex-  from the whole class of @f) symmetricN-vector models in
traordinary €,— —), are relevant for our case2-14. d dimensions only the Ising model is the one of primary
interest, because it satisfies the Harris criterion for the spe-
cific heat exponent(d)=0 [30].
*Electronic address: pylyp@ph.icmp.lviv.ua The proposed calculations are very important because
"Electronic address: huck@phys.sinica.edu.tw they allow to understand the phenomenon of adsorption of

1063-651X/2003/68)/0661158)/$20.00 68 066115-1 ©2003 The American Physical Society



Z. USATENKO AND C.-K. HU PHYSICAL REVIEW E68, 066115 (2003

behavior of so-called dilute magnets with the surfaces, whichH($
can be prepared by mixing danti)-ferromagnetic material
with a nonmagnetic one. 1 n 1 1
The calculations are performed by applying a field theo- +—0 2 S+ —u (|$|2)2 + | g9 Z¢ (52
. . S . . 4! 0,: i 4! 0 2 0 '
retic approach directly id=3 dimensions up to the two- i=1
loop order approximation. The numerical estimates of the 2.2)
resulting two-loop series expansions for the surface cross-

over exponentpl from the special to the ordinary transition where g(x) is ann-vector field with the components, (),
and surface critical exponents of the layer and local spe- ; _ n. Herem? is the “bare mass” representing a linear
— 4L, 0

gﬂg hBeatslalégare comput?_d b)t/ mﬁa\_ns of tr\'ﬁ sz_i&dé] tﬁgd measure of the temperature difference from the critical point
adeBorel [33] resummation techniques. We fin ! .value. The valuesiy andv, are the usual “bare” coupling

aq, aqq Obtained in the _present paper are different from the'rconstantsuo<0 andv,>0. The constant, is related to the
counterparts of pure Ising systems.

surface enhancement, which measures the enhancement of
the interactions at the surface. It should be mentioned that
1I. MODEL the d-dimensional spatial integration is extended over a half-
space R4 ={x=(r,z) e RYreR%"1,z=0} bounded by a
plane free surface at=0. The fields¢;(r,z) satisfy the Di-
richlet boundary condition in the case of ordinary transition:
¢i(r,z)=0 atz=0 and the Neumann boundary condition in
the case of special transition; ¢;(r,z) =0 atz=0 [14,17).

The model defined in Eq2.2) is restricted to translations
parallel to the boundaring surfaces 0. Thus, only parallel
Fourier transformations im—1 dimensions take place. It
should be mentioned that the LGW model works good for

fluid mixtures in contact with a wall, as well as the critical w 1. 1 _
)= [ a2 [ @ v g
0

The Hamiltonian of the semi-infinite model under consid-
eration with random quenched bulk disorder is given by

H=—3 X Jjpipss— > Jiss, (20
(i,j) ebulk (i,j) e surface

wheres; ands; are classicalm-component spins located at

the lattice sites and]; a nearest-neighbor bor(d,}) is said sufficiently low spin dilution -p as long as the system is
to belong to the surface region if boihe surface andj y P +P as long Y
not too close to the percolation limit.

e surface, in other cases they belong to the bulk region. The In order to consider the critical behavior in the crossover

bulk interaction potential;; has the parallel to the plane .

. . . - . ' region and to calculate the crossover exporiente should
translational invariance in the underlying lattice. The surface . . ) " X
. . R, ; . : consider correlation functions with insertions of the surface
interaction potentialj; will never be invariant with respect

, ; . ratore?
to lattice translations parallel to the plane or perpendicular tgPerato s

it. The random site variablp; and p; have the probability (NMLY) (e S
distribution | : G Y{xibArbARD
N M L4
— . ) =42
P(p))=p3(pi=1)+p' 3(p), =\ 1L o0l e[ 5 ¢S(R')>’

, . : o (2.3
wherep’=1-p is the concentration of nonmagnetic impu-
riies. As it is known, there are two possible ways to analyzgyhich involve N fields ¢(x;) at distinct pointsx; (1<i
the above ra_ndom model. The_ﬂrst way is connected Wl_thg N) off the surfaceM fields ¢(r; ,z=0)= ¢4(r;) at distinct
direct averaging over random disorder using the method ingrface points with parallel coordinates (1<j<M), and
troduced by Lubensk}34]. The second possibility is to per- L, insertions of the surface operathpp?(R,) at R, with (1
form the configurational averaging of the free energy using<|s|_1)_
the replica trickn—0, The corresponding parallel Fourier transform of the full

free propagator takes form

1
F=-T Iim—((Z“)Com— 1) 1 Co— K
_oN ! N~ | a—xolz=2'|_ 20 "0 —ko(zt+2")
n—0 G(p,z,2") P e Co+Koe }
(2.4

whereZ is the partition function of a configuration given by
the Boltzman weighe ", as it was first done in the renor- with the standard notatiom,=/p?+m3. Here, p is the
malization group(RG) calculations by Grinstein and Luther value of parallel momentum associated with-1 transla-
[35]. Performing the calculation in the spirit of the method tionally invariant directions in the system.

introduced by Grinstein and Luther it is possible to show that
the random mode(2.1) is thermodynamically equivalent to

- ; . . Ill. RENORMALIZATION
the n-vector cubic anisotropic modeln(=1) with an effec-
tive Hamiltonian of the Landau-Ginzburg-WilsofGW) The formulation of the renormalization process for the
type in semi-infinite space at the replica limit-0 random systems introduced by Grinstein and Lufl3&] is
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essentially the same as in the “pure” cd4,19. From the  crucial role in the investigation of the crossover behavior
other side, as it is known from the theory of semi-infinite from the special transitionc{m—0) to the ordinary transi-
systems[12,14,16,19 the bulk field ¢(x) and the surface tion (c/m— ).

field ¢4(r) should be reparametrized by different uv-finite

renormalization factorf12,19 Z,(u,v) andZ,(u,v). Thus IV. EXPANSION OF THE CORRELATION FUNCTION

we have ¢=Z3¢x and ¢s=2,°2}’¢sr. Besides, intro- NEAR THE MULTICRITICAL POINT

ducing the additional surface operator insertions @ZER,)

. " - . As was indicated before, the main goal of the present
requires additional specific renormalization fach;g g P

work is to investigate the scaling critical behavior between
B2=[Z,2] 1?2 special and ordina}ry transitio_n and to calcula_te the crossover
s bs SR exponent®. In this connection let us consider the small

. . . . ._deviations Aco=cyo—ck, from the multicritical int.
The corresponding renormalized correlation functions m-de ations ACp=Co—Cgp from the multicritical ~point

volving N bulk, M surface fields, and, surface operators TTS M?ower expansion of the barg correlathn _functlons
- . G M (p;mg,ug,vg,Co) in terms of this small deviatioAc,
(1/2)¢p5(R)) can be written as

has a form
(N\MLy) o _ >~ (N+M)25—M/2-5L1
Cr ™ (PiMUD.C)=Z, Z1 Z¢§ GNM(p;mg,Ug,v0,Co)
X GMNML)(prmgug,vg,Co). o (Aco)t
= 2 — G (pimg,ug,vo.Cp.
(3. L;=0 1

In the present paper we concentrate our attention on the (4.9
correlf';\tion functior_lG(O'z'l)(p;m,u,u,c) invc_;lvingétwo sur- Based on Eq(3.1), we rewrite the right-hand part of Eq.
face fields and a single surface operator inserig(R,). (4.1) in terms of the renormalized correlation functions and

It_is well kpown(lglh?]Lt?at the uv singularities of the cor- renormalized variablac:[Z(,)g(u,v)]*lAco and obtain
relation functionG'™"""~v can be adsorbed through a mass

22 2 ) it — _ -
shift mg=m+ém .anc_j surface enhancemeht shif§=c Z¢<N+M)’2(Zl) M2G(NM)(p:my, Ug,v 0, Co)
+ 6c. The renormalizations of the mass coupling constant
u, v, and the renormalization factar, are defined by stan-

oo

(Ac)tt GINM.Ly

dard normalization conditions of the infinite-volume theory =&, L Cr (p;m,u,v). (4.2)
[7,35-3§. In order to adsorb uv singularities located in the T v
vicinity of the surface, a surface-enhancement shtis The preceding equation in straightforward fashion defines

required. In this connection the new normalization conditiony,e correspondent renormalized correlation functions defined
should be introducetsee Appendix A Taking into account i the vicinity of the multicritical point

the normalization conditiofA3) and expression for renor-
malized correlation functiofi3.1) it is possible to define the GMM)(p:m,u,v,Ac)
renormalization factoZ 2 in the form

&[G(O’Z)(O;m01u01U01C0)]71‘
Co

:Z;(N+M)lz(zl)_MlzG(N’M)(p;mo,UO,UQ,Co).

4.3

[Z,217=2, |
Co=Cp(C,m,u,v)
(3.2 It is easy to see that these correlation functions depend on the

. o dimensionless variable= Ac/m. Thus, the correlation func-
It should be mentioned that the renormalization factor. . (NMY/ e .
B ) . ) - . tions Gg"/(p;m,u,v,Ac) satisfy correspondent Callan-

Z,=24Z, s defined via the standard normalization condmonS manzik equationl9,4(

(A2) (see[19,25) Yy q ,

P m 9 J J J N+M
Z‘Tl:ZmF[G(O,Z)(p)]fl :|im_§_[G(0,2)(p)]*l_ m%-i—ﬂu(u,v)%—l—ﬂv(u,v)%-l- 5 7]¢(U,U)
p p2=0 p—oP 9P
(3.3

Equation(3.2) enables us to considerably simplify the cal-
culation of the correlation functio®(®?%) with a surface
operatorg3(R,) insertion.

It should be noted that all factors in thed<4 case have \yhere the inhomogeneous parG should be negligible in
finite limits at A—o (whereA is a large-momentum cutoff  the critical region similarly as that takes place in the case of
All factors mentioned above depend on the dimensionlesgfinite field theory. The resulting homogeneous equation dif-
variablesu andv. Besides, the surface renormalization fac-fers from the standard bulk Callan-Syman#&S) equation
torsZ; andZ,2 depend on both, v and the dimensionless [41-43 in that it involves the additional surface-related
ratio c/m. The last dependence on the ratibm plays the function %3P and term—[1+ 7g(u,v)]c(d/Jc), where

M sp .
+ 5 (u,v)—[1+ ng(u,v)]C%

XGYM(p;m,u,v,Ac)=AGg, (4.9
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i G©2(p;mg,ug,vg,Co)
7 (u,v)=m—— InZy(u,v) P:Mg,Up,00,Co
om|

~m g2 R g pr moeac,
dlnZy(u,v) dlnZy(u,v) m
= BulUv) —— =+ By(Uv)———— o
FP ~7uG(pt 1,7 ®Acy), (5.4)
(4.9
where y;Y=v(1— 7)) is the local surface susceptebility ex-
and ponent andp;P= 73"+ 7 is the surface correlation exponent
[45]. It is easy to see that the asymptotic scaling critical
INZ42(u,) behavior of the surface correlation function for the systems
P s with random quenched bulk disorder is characterized by the
new crossover exponen(u*,v*), which belongs to the
aInZ¢§(u,v) universality class of the random model. In the next section,
:ﬁu(UvU)T we will calculate the surface crossover exponénbpf the

semi-infinite systems with random quenched bulk disorder.

J
ng(u,v)zm%

o7InZ¢,§(u,v)
+BU(U,U)T

P (4.6 VI. THE PERTURBATION SERIES UP TO TWO LOOPS

According to Eqgs.(5.3) and (4.6) the calculation of the

It should be mentioned that functio(u,v), B,(U,v)  crossover critical exponer is connected with the calcula-

and 74(u,v) appearing in Eq(4.4) are the usual bulk RG  {jon of the renormalization factoZ ;2 via Eq. (3.2. The
functions. The symbol “FP” indicates that the above value s

should be calculated at the infrared-stable random fixed poirf{St@l bulk W singyllarities which are present in correlation
(FP) of the underlying bulk theory. function[ G(®2(0)]~* can be removed by the method simi-

lar to those reported in Reff19], [24], [37], [39] with the

help of the standard mass renormalization procedure.

V. SCALING CRITICAL BEHAVIOR AT THE The second step of our calculation is to remove the uv
MULTICRITICAL POINT divergences which are connected with the presence of the

The asymptotic scaling critical behavior of the correlationsurface in the system. The surface uv singularities of the
functions can be obtained through a detailed analysis of th#verse surface correlation functi¢@(®(0)]~* can be re-
CS equations of Eq(4.4), as was proposed if41,44 and  moved by performing the surface enhancement renormaliza-
employed in the case of the semi-infinite systems intion which is defined by EqAL.1). For convenience we can
[19,28,29. Our present investigations of the scaling critical rewrite the normalization condition of E¢A1) in the form
behavior are in complete analogy with the scheme mentioned
above[19,44 (see Appendix B Taking into account the Z,[G°2(0;mq,Uq,v0,Co)] " t=m+c (6.2)
scaling form of the renormalization factdr¢§ of Eq. (B1)
and the relatiom~ 7, we obtain forAc and for the scaling for the inverse unrenormalized surface correlation function
variablec the next asymptotic dependences [G(°?(0)]~*. Performing the differentiation of the above-

mentioned normalization condition with respecti@c, and
AC~m~ ng(u*,v*)Aco, AC~ 7 vng(u*,u*>ACO (5.1) taking into account Eq(3.2) we obtain for the renormaliza-
tion factorZ ;2 the next equation

and
7,0= 0% 6.2
c~m [ eNIAe, =1 PAc,, (5.2 9 ac ©.2
where wherecy=c+ 8¢ and
P =v[1+ 7(u*,0")] (5.3 sc=(Z7 = 1)(m+c)+ao(0:m,co=c+6c). (6.3

is the surface crossover critical exponent. Equat®g) ex-
plains the physical meaning of the surface crossover exp
nent as a value which characterizes the measure of deviati

from the multicritical point. The second equations in Eqs.t emo, corresponds. to the one-loop grapty denotes the
(5.1) and(5.2) indicate about nonanalytic temperature depenmelonlike tv(v;o-loop diagrams _
dence of the renormalized surface-enhancement deviatior N 1 /:\ m? 0 K
Ac. Taking into account the above-mentioned results from 92 = "X 67 — %\zj ﬂw )
the CS equation we obtain the next asymptotic scaling form ki=0
of the surface correlation functio@(®? (6.4)

djere oo(0;m,cq) denotes the sum of loop diagrams of all
ders in[G©2(0;m,ug,v0,c0)] 1 (see[19,25). Among
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o3 and o, represent the reducible and irreducible two-loopsurface-enhancement renormalization and performing the
diagrams in[G(®2(0;m,uy,v0,c0)]1" 1, respectively. Here Feynman integrals in analogy wift9,29 and carrying out

the full lines with labels G” denote the full free propagator the vertex renormalizations of bare dimensionless parameters
of Eq. (2.4). Equation(6.2) can be resolved by using the Uo=Uo/8mm andv=uvo/87m

method of sequential iteration. As a result of the first order of

the perturbation theoryone-loop approximationat general — n+8

spatial dimensions<4, we obtain o= ~(1+ TIHU)’

T, m @2 T(e)

Z¢2—1—7 16 P ] U_OZU<1+;7+2U, (6.10
2
3—¢ 1+e 34+e 1 we obtain a second-order series expansion for the renormal-
x| 1— 21+ 2,:1( R R 5” ization factorZ,2 in terms of new renormalized coupling
constantas andv,
(6.5
. . . . _ n+2 1\ 1\ _
where ,F,(---) is the hypergeometric function and coeffi- Zgp(Uv)=1+ —( InN2——|u+|(In2— —)U
cient T,=[(n+2)/3]uy+v, includes dimensionless effec- s 3 4 4
tive expansion parametersi;=upym ¢ and vo=vom € n+2
which are identified through the standard vertex renormaliza- + TC(n)U2+ 2C(n)uv +C(1)v?,
tion. In the case of massive theory the value eofs not
necessarily restricted to be small and the above expressions (6.11

hold for any relevant dimensiorts<4. The presence of the
Euler gamma functio'(e) indicates the existence of dimen- whereC(n) is a function of the replica number defined by
sional poles 1d when e—0.

According to Egs.(3.2) and (6.5) for ¢ at a one-loop n +2
order in the case of general dimensions upl to4 we obtain C(n)=A-B-3In2+——In"2+ ——>—, (6.12
,70__E Lﬁ—d&z—dp(e/z) and A=0.202428,B=0.678061 are integrals originating
2 1+e from the two-loop melon-like diagrams. Combining the

3—¢ 14+e 3+e 1 renormalization factozd)g with the one-loop pieces of the
5 T T EH functions Bg(u,v)=—u(1—[(n+8)/6Ju—v) and B, (u,v)
=—v(1—(3/2v —2u) according to Eq(4.6), we obtain the
(6.6  desired series expansion fo,

At the random fixed point of orde®(y/e) [46] (K u*
=—36€/53, Kyv*=4.6€/53, where the geometric nor- z(u,v)=
malization factork ;= 1/(872)), Eq. (6.6) in the limit e—0
leads to

x| 1— 2(1+5)/2 2F1(

_|._

2 1 2 1
Inz—z)u——(an——)

2D(n) D(1) ,

n+8 uv + 9 )

lim 77P=1im0 7g=— \/» (6.7 (6.13

e—0 e—0

This result coincides with that obtained by Ohno and Okabd&'here

[46]. At e—0 for the surface crossover exponehtin one- 42 1 17422
; : n n n

loop calculations we obtain D(n)=A—B+ 3 In22— 5 In2+ 5

11 /6 (6.149
®=5"2 V53 6.8

and renormalized coupling constantsindv, normalized in
In the case of three spatial dimensionis=3) the renormal- a standard fashion=[(n+8)/6]u andv =(3/2)v. In com-
ization factorsZ; and Z¢§ are finite and their one-loop ex- mon, Eq._(6.1_3) gives a result for t_he model yvith the effe_c-
pressions do not coincide. At one-loop order, we obtain Ve Hamiltonian of the Landau-Ginzburg-Wilson type with
cubic anisotropy in the semi-infinite spat@2) with a gen-
7e~—0.596 andd=0.286. (6.9 eral numbem of order parameter components. Our calcula-
tions are connected with the investigation of the critical be-
In the next order of the perturbation theory we restrict ourhavior of semi-infinite random Ising-likeystems by taking
attention only to the case df=3 dimensions. Thus after the the replica limitn— 0. Hence, we obtain
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TABLE I. Surface critical exponents involving the RG functigg at the Jug fixed point* = —0.60509 v * = 2.39631(two-loop ordey.

o Oy
Exp. 61 O_l' [0/0]  [1/0] [0/1] [2/0] [0/2] [11/1]  [1/11] [R] R f(ar,vm)

2 2i
7 —08 —15 000 —-0574 -0.365  0.150 -0.152 -0.281 -0.268 —0.313 -0.280 —0.164
aq -1.7 -7.6 0.50 0.051 0.190 0.312 0.220 0.201 0.213 0.185 0.211 0.211
g -1.1 -2.8 0.00 -0.574 -0.365 -0.036 —-0.268 —-0.324 -—-0.306 —-0.351 -0.313 —-0.222
() -0.5 -05 0.50 0.375 0.389 0.652 0.658 0.451 0.452 0.444 0.445 0.567

1 1 2 1 [4]. The results of our calculations at Jug random fixed point
Ne=— E(In 2— Z) u-— §( In2— Z)U [47] are represented in Table I. The quantit@s/O, and
0,;/0,; represent the ratios of magnitudes of first-order and

3 D(0) D(1) second-order perturbative corrections appearing in direct and
-8 3—2D(0)u2+ 2 Ut —g v2|. (6.19 inverse series expansions. The largabsolut¢ value of
these ratios indicate about the better apparent convergence of

. . truncated seriegl9].
The knowledge ofyz gives access to the calculation of the The valueg p/q] (wherep, =0, 1) in Table | are simply
crossover critical exponent via the scaling relation of Eq. - padeapproximants which represent the partial sums of the
(5.3). Besides, we can calculate the critical exponentsand  gjrect and inverse series expansions up to the first and sec-
ay; of the layer and local specific heats via the usual scalingnd order. The nearly diagonal two-variable rational approxi-

relations[12] mants of the typefl1/1] and[1/11] give atu=0 orv =0 the
usual[1/1] Padeapproximant 32]. The results of the Pade
a=atrv—1+P=1—v(d—2—175), Borel analysis of the direcR and the inverseR™ ! series

expansions give numerical estimates of the surface critical
ap=at+v—2+20=—v(d-3-27;). (6.1 exponents with a high degree of reliability in the frames of
the present approximation scheme. One can see from Table |
The above critical exponents should be calculated at théhat the largestabsolute value of the quantitie®, /O, and
standard infrared-stable random fix&€eP) point of the un-  O4;/0,; exists for the inverse series expansion of the surface
derlying bulk theory [47] u*=-0.60509 and v* critical exponenty; . It indicates that from the inverse series
=2.39631, as it is usually accepted in the massive fieldexpansion for the surface critical exponent, which repre-
theory. sents the best convergence properties, we obtain the most
reliable estimate. Substituting this valag=0.211 together
with the standard bulk value=0.678 into the scaling rela-
tions (5.3 and(6.16), we have obtained the remaining criti-
For each of the surface critical exponents mentionedtal exponents that are present in the last column of Table I.
above and the crossover expon@htwe obtain from Eq. The deviations of these estimates from the other estimates of
(6.195 atd=3 a double series expansion in powersugind  the table give a rough measure of the achieved numerical
v truncated at the second ordd8]. In order to perform the accuracy.
analysis of these perturbative series expansions and to obtain The results of the similar analysis of the perturbative se-
accurate estimates of the surface critical exponents a poweries expansions of the surface critical exponent at random
ful resummation procedure must be used. One of the simfixed pointu* = —0.6524,0* =2.4203[49] are presented in
plest ways is to perform the double Paalealysis[32]. This  Table Il for comparison. In a similar way the most reliable
should work well when the series behaves in lowest ordergstimate is obtained for an inverse series expansion;of
“in a convergent fashion.” Another way is to perform the The results of substituting,=0.208 andv=0.679 into scal-
double Paddorel analysig33] for these series. The usage ing laws (5.3 and(6.16) are presented in the last column of
of the PadeBorel resummation procedures are possible inTable Il. As is easy to see from a comparison of the results of
the case when the terms in the series are alternating in sigfable | and Table 1l, the difference in the ways of tjse

VIl. NUMERICAL RESULTS

TABLE II. Surface critical exponents involving the RG functiefg at the fixed poinu* = —0.6524,v* =2.4203(two-loop ordey.

O, Oy

Exp. roN o, [o/0] [1/0] [0/1] [2/0] [0/2] [12/1] [1/11] [R] R f(ay,v,m)
2 2i
e —-0.82 —-1.55 0.0 -0.570 -0.363 0.124 -0.168 -0.287 -0.272 -0.318 -0.283 —0.166
ay —-1.82 —-9.56 0.5 0.054 0.191 0.300 0.215 0.197 0.209 0.182 0.208 0.208
a;;  —112 -3.08 0.0 -0.570 -0.363 -0.060 -0.278 -0.331 -0.311 -0.357 -0.317 —0.226
) —-0.47 —-0.50 0.5 0.376 0.389 0.641 0.643 0.449 0.450 0.442 0.444 0.566
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functions resummation do not have essential influence on the aGgo*z)(p;m,u,u,c)’
values of the surface critical exponents. The difference be- 702 ’ =— 2m(mEc)2’ (A2)
tween the final results of Table | and Table Il are 1.2% for P p=0

7e, 1.4% foraq, 1.8% foray,, and 0.2% ford. o N

For evaluation of the reliability of the results obtained in and the correspondent normalization condition for the corre-
the two_|00p approximation' we have performed an addiJation function G(O'Z’l) with the insertion of the surface op-
tional calculation of the surface critical exponents fram  erator (1/2)1’5,
=0.211 and six-loop perturbation theory resUl® for a
bulk critical exponent of the correlation lengti-0.67810). (0.20)/1-. B
We have obtainedss= —0.164, ay;= —0.222 and for the Gr ™ (Pim,U0,0)lp-0= 152 (A3)
surface crossover critical exponeht=0.567. This indicates
the good stability of our results obtained in the frames of the Equation(A3) is motivated by the fact that the bare cor-

two-loop approximation scheme. relation functionG(®21(0;mq,uq,v4,Co) Mmay be written as
derivative — (9/dcg) G(®?(0:mg,ug,v0,Co). This equation
VIIl. SUMMARY simplifies considerably the calculation of the correlation

We have studied the crossover critical behavior betweett1ur](:t'on with insertions of surface operator (M’Z)

special and ordinary surface transitions of three-dimensional F:o;n i?]_(Al_)o't Ibs easy to tstehe' that. tth?hspgmal point 'Sf
guenched random semi-infinite Ising-like systems. We fintiocae am=c="1, because at this point the civergence o

that the asymptotic scaling critical behavior of the surfacehe bulk and the surface correlation length and susceptibility

correlation function for the systems with random quencheds, obs_grved. Atfo the_sgrface .norm_a||zat|on conditions are
bulk disorder is characterized by the crossover exponertmPlified and'y|eldcéo—csp. This point corresponds to the
®(u*,v*), which belongs to the universality class of the multicritical point (mOC,c’S*p) at which spemal_transmon tqkes.
random model. We have calculated the crossover critical exPlace. On the other hand, the above-mentioned equation im-
ponent® and critical exponents of the layer; and local plies also that the surface correlation length and the suscep-
specific heatsx;; by applying the field theoretic approach tibility are finite at the ordinary t.ransmon, because in this
directly in three dimensions up to the two-loop approxima-¢ase we have>0 whenm— 0. This latter case corresponds
tion. We have performed a rational double Patiel double to the situation when the surface remains “noncritical” at the
PadeBorel analysis of the resulting perturbation series ex-Pulk transition temperature.

pansions for the surface critical exponents in order to find the

best numerical values. The final numerical values of the sur- APPENDIX B

face critical exponenta,, a1, and crossover exponeshtfor

the systems with quenched random bulk disorder in the AS itis usually accepted in the massive field theory, the
frames of the present approximation scheme are variable m is identified with the inverse bulk correlation

length ¢~ and is proportional tor’, where 7=(T
—T.)/T.. Following the scheme proposed [iA4], we can
perform the integration of Eq4.5), Eq. (4.6), and expres-
These values evidently different from their counterparts ofSioNS for the RG functiong,(u,v), B,(u,v), andz(u,v).
pure Ising systemgL9,39 Thé)s- gives the following asymptotic dependencies nat

a;=0.211, ay;=—0.222, ®=0.567. (8.1

a1=0.279, a;=-0.182, ®=0.539. (8.2
[u—u*|~m®u  where w,=g,(U*v*),

We suggest that the obtained results could stimulate further
expenmentalland numerical investigations of the surface lo—0v*|~m®  where w,= B! (U* v*),
critical behavior of random systems. v

Z,~m7 where n=n,4U*,v*),
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APPENDIX A As follows from these expressions, the variabllesndv

deviate from their fixed values* andv* by different scal-
ing laws with various values ab, andw, . The scaling laws
[19,39 [see Eq(B1)] have the similar form as in the case of the pure
systems[19], but renormalization factors are characterized
by another value of the critical exponents which belong to
: (A1) ’ -
the universality class of random model.

In order to specifyéc, Z;, and Z,2, we require that
S

GO2(p:m,u,v,0)|,0=——
R (P v )|p—0 m+c
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