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Spin relaxation in a complex environment

Massimiliano Esposito and Pierre Gaspard
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We report the study of a model of a two-level system interacting in a nondiagonal way with a complex
environment described by Gaussian orthogonal random matrices~GORM!. The effect of the interaction on the
total spectrum and its consequences on the dynamics of the two-level system is analyzed. We show the
existence of a critical value of the interaction, depending on the mean level spacing of the environment, above
which the dynamics is self-averaging and closely obey a master equation for the time evolution of the observ-
ables of the two-level system. Analytic results are also obtained in the strong coupling regimes. We finally
study the equilibrium values of the two-level system population and show under which condition it thermalizes
to the environment temperature.
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I. INTRODUCTION

The nonequilibrium statistical mechanics of small qua
tum systems has become a topic of fundamental importa
for nanosciences. It is indeed very important to underst
what the minimum sizes and conditions are under whic
quantum system can display a relaxation to an equilibri
state. Isolated and finite quantum systems have a disc
energy spectrum, which has for consequence that all the
servables present almost periodic recurrences on long
scales. Nevertheless, their early time evolution may s
present relaxation types of behavior that is important
study. Although tools have been developed in nonequilibri
statistical mechanics to describe such relaxations to a sta
equilibrium by master and kinetic equations, the conditio
of validity of these equations remain little known.

It is the purpose of this paper to contribute to the clar
cation of these questions of validity of the kinetic descripti
by studying a simple model of a two-level system or sp
coupled to a complex environment described by random
trices. Indeed, work done during the last decade has sh
that the Hamiltonian of typical quantum systems prese
properties of random matrices on their small energy sca
Here, we consider the Hamiltonian of the environment
well as the operator of coupling between the spin and
environment to be given by random matrices taken in a
tistical ensemble of Gaussian orthogonal random matri
This defines a model in which many results can be obtai
analytically.

Similar models using Gaussian orthogonal random ma
ces@1,2# or using banded random matrices@3–7# have been
studied. In@5#, it has been shown that random matrices us
as environment coupling operators have a universal feat

The model we here consider differs from the spin-bos
model by the density of states of the environment. Inst
of monotonously increasing with energy as in the sp
boson model, the density of states of the environment ob
Wigner’s semicircular law in our model and is thus limited
an interval of energy with a maximum density in betwee
We notice that such densities of states appear in syst
where a spin is coupled to other~possibly dissimilar! spins
1063-651X/2003/68~6!/066113~21!/$20.00 68 0661
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as, for instance, in NMR, in which case the density of sta
of the other spins forming the environment also presen
maximum instead of a monotonous increase with ene
Our model may therefore constitute a simplification of su
kinds of interacting spin systems. Our main purpose is
understand the conditions under which a kinetic descript
can be used in order to understand the relaxation of the
under the effect of the coupling with the rest of the syste
which we refer to as a complex environment.

The plan of the paper is the following. The model is pr
sented in Sec. II. The properties of the spectrum are
scribed in Sec. III. The relaxation in the time evolution of t
spin is studied in Sec. IV. The very long time behavior a
the approach to the equilibrium is discussed in Sec. V. C
clusions are drawn in Sec. VI.

II. THE MODEL

We are interested in the study of a total system compo
of a simple system~with a few discrete levels! interacting
with a complex environment~with many levels!. We con-
sider a two-level system as a prototype for the simple s
tem.

For this kind of total system, the time-dependent Sch¨-
dinger equation is of the following type:

i\
duC~ t̃ !&

d t̃
5 Ĥ̃ totuC~ t̃ !&5S D̃

2
ŝz1 Ĥ̃B1l̃ŝxB̂̃D uC~ t̃ !&,

~1!

whereŝx , ŝy , andŝz are the 232 Pauli matrices, (D̃/2)ŝz

is the Hamiltonian of the two-level system,D̃ is the energy

spacing between the two levels of the system,Ĥ̃B is the
Hamiltonian of the environment,ŝx is the coupling operator

of the system,B̂̃ is the coupling operator of the environmen
and l̃ is the coupling parameter between the system and
environment.

The well-knownspin-boson model@8–10# is a particular

case of the total system whereĤ̃B corresponds to an infinite
©2003 The American Physical Society13-1
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harmonic oscillator lattice andB̂̃ is linear in the degree o
freedom of the environment. Here, we want to define a n
model, thespin-GORM model, also described by the Hamil

tonian~1! and for whichĤ̃B and B̂̃ are Gaussian orthogona
random matrices~GORM! ~see Appendix A for some basi
property on GORM!.

Let us discuss now the spin-GORM model in more det
As we said, we want to model a two-level system that int
acts with an environment that has a complex dynamics. H
complex is used in a generic way. The complexity can co
for example, from the fact that the corresponding class
system is chaotic like in a quantum billiard or for the hydr
gen atom in a strong magnetic field@11,12#. It can also come
from large coupling in an interacting many-body system
in nuclear physics@11# or in interacting fermion system
such as quantum computers@11,13#. Wigner in 1960@14–16#
was the first to develop random-matrix theory for the p
pose of modeling spectral fluctuations of complex quant
systems containing many states interacting with each ot
This tool has now become very common in many fields fr
nuclear physics to quantum chaos. This is the reason why
consider random matrices to characterize the complexity
the environment operators.

The environment operators of the spin-GORM model,Ĥ̃B

and B̂̃, are defined by

Ĥ̃B5sND
Ĥ̃B X̂

B̂̃5sND
B̂̃ X̂8, ~2!

where X̂ and X̂8 are two different (N/2)3(N/2) Gaussian
orthogonal random matrices with mean zero. Their non

agonal~diagonal! elements have standard deviationsND
X̂̃ 51

(sD
X̂̃5A2). X̂ and X̂8 are two different realizations of th

same random matrix ensemble and have therefore the s

statistical properties.sND
Ĥ̃B and sND

B̂̃ are the standard devia

tions of the nondiagonal elements ofĤ̃B andB̂̃, respectively.
For these random matrices, the width of their averag
smoothed density of state is given by

DH̃B5sND
Ĥ̃BA8N,

DB̃5sND
B̂̃ A8N ~3!

~see Appendix A!.
It is interesting to define the model in such a way th

whenN is increased, the averaged smoothed density of s
of the environment increases without changing its wid
DH̃B . The width can be fixed to unity. This is equivalent
fixing the characteristic time scale of the environment. F
doing this, it is necessary to rescale the parameters as
lows:

a5sND
Ĥ̃BA8N,
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D5
D̃

sND
Ĥ̃BA8N

,

l5l̃
sND

B̂̃

sND
Ĥ̃B

,

N5N.

The time-dependent Schro¨dinger equation of the spin
GORM model becomes

i\
duC~ t !&

dt
5Ĥ totuC~ t !&, ~4!

with the rescaled total Hamiltonian

Ĥ tot5ĤS1ĤB1lŝxB̂5
D

2
ŝz1

1

A8N
X̂1lŝx

1

A8N
X̂8.

~5!

As announced, we have nowDHB5DB51.
In the following, without loss of generality,a will always

be taken equal to unity. Notice that, to model an environm
with a quasicontinuous spectrum, the random matrix mus
very large (N→`).

In order to get ensemble averaged results, one has to
form averages over the different results obtained for e
realization of Eq.~5!. When we use finite ensemble averag
the number of members of the ensemble average will
denoted byx.

We see that the Hamiltonian~5! is characterized by three
different parameters:D, l, andN. We define three differen
parameter domains in the reduced parameter space c
sponding to a fixedN in order to facilitate the following
discussion. These three regimes are represented in Fig
domain A with 1.l,D; domain B with D.1,l; domain C
with l.1,D.

III. THE SPECTRUM

In this section we study the spectrum of the compl
system for the different values of the parameters. This st
is important in order to understand the different dynami
behaviors that we encounter in the model.

Let us begin defining the notations in the simple ca
where there is no coupling between the two parts of the t
system~l→0!. The isolated system has two levels separa
by the energyD:

ĤSus&5s
D

2
us&, ~6!

wheres561. The environment has the standard spectr
of a GORM
3-2
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SPIN RELAXATION IN A COMPLEX ENVIRONMENT PHYSICAL REVIEW E68, 066113 ~2003!
ĤBub&5Eb
Bub&, ~7!

whereb51,2, . . . ,N/2. The Hamiltonian of the total system
without interaction between the system and the environm
is thus

Ĥ05ĤS1ĤB , ~8!

and the spectrum is therefore given by

Ĥ0un&5En
0un&, ~9!

with n51,2, . . . ,N and

En
05s

D

2
1Eb

B . ~10!

The eigenvectors are tensorial products of both the sys
and environment eigenvectors:

un&5us& ^ ub&. ~11!

Let us now define the notations in the opposite sim
situation where the coupling term is so large that the Ham
tonian of the system and of the environment can both
neglected~l→`!. Using the unitary matrixÛ acting only on
the system degrees of freedom

FIG. 1. Representation of the three different domains in
space of the reduced parametersl andD of the model for a fixed
numberN of states.
nt

m

e
l-
e

Û5F 1

A2

1

A2

1

A2
2

1

A2
G ,

the total Hamiltonian becomes

H̃̂05lŝzB̂. ~12!

Ekh andukh&5uk&^uh& are, respectively, the eigenvalues a
eigenvectors of the Hamiltonian

H̃̂0ukh&5lEkhukh&5lkEhukh&, ~13!

where h51, . . . ,N/2 and k561. After having defined the
notation in the two extreme casesl→0 andl→`, we will
start the study of the spectrum with interactionlÞ0.

The total spectrum is given by the eigenvalues$Ea%
which are solutions of the eigenvalue problem

Ĥ totua&5Eaua&, ~14!

wherea51,2, . . . ,N. It is very difficult to obtain analytical
results for this problem. We will therefore study the tot
spectra using a method of numerical diagonalization of
total Hamiltonian.

A. Smoothed density of states

In order to have a quantitative understanding of the glo
aspect of the spectrum~on large energy scales!, we will study
the total perturbed averaged smoothed density of states.

The environment-averaged smoothed density of sta
obeys the semicircular Wigner law@see Eq.~A4! in Appen-
dix A#

nw~e!5H 4N

p
AS 1

2D 2

2e2 if ueu,
1

2
,

0 if ueu>
1

2
,

~15!

wheree is the continuous variable corresponding to the e
vironment energyEb

B .
Therefore, whenl50, the total averaged smoothed de

sity of states is the sum of the two environment semicircu
densities of states which correspond to both states of
two-level system@see Eq.~9!#:

e

n~«!5nwS «2
D

2
D 1nwS «1

D

2
D 55

4N

p
AS 1

2
D 2

2S «2
D

2
D 2

1
4N

p
AS 1

2
D 2

2S «1
D

2
D 2

if S 1

2
2

D

2
D ,u«u,S 1

2
1

D

2
D ,

0 elsewhere,

~16!

066113-3
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where« is the continuous variable corresponding to the to
energy En

0 . The semicircular densitiesnw@«2(D/2)# and
nw@«1(D/2)# are schematically depicted in Fig. 2 for diffe
ent values ofD. The numerical density of states of the tot
system corresponding tol50 is depicted in Fig. 3.

When l→` ~meaning that the coupling term becom
dominant in the Hamiltonian!, the averaged smoothed de
sity of states of the total system@see Eq.~13!# is given by

FIG. 2. Smoothed densities of statesnw@«2(D/2)# and nw@«
1(D/2)# for different values ofD. The total smoothed average
density of states of the nonperturbed spectrum is obtained by
sum of them@see Eq.~16!#.
06611
l

l

n~«!5nwS «

l
D 1nwS 2

«

l
D

55
8N

lp
AS l

2
D 2

2~«!2 if u«u,
l

2
,

0 if u«u>
l

2
,

~17!

where« is the continuous variable corresponding to the to
energyEkh . This result can be observed in Fig. 3~a! for
l510 ~becauseD,1!l!.

WhenlÞ0, the total averaged smoothed density of sta
is also plotted in Fig. 3. The main observation is that there
a broadening of the complete spectrum when one incre
l. In Fig. 3~a! we see that the averaged smoothed density
states changes in a smooth way from~16! to ~17!. But in Fig.
3~b! and much more in Figs. 3~c! and 3~d!, the two semicir-
cular densitiesnw@«2(D/2)# andnw@«1(D/2)# seem to re-
pel each other asl increases. This is due to the fact that t
levels of a given semicircular density do not interact w
each other but only interact with the levels of the other se
circular density. This is a consequence of the nondiago
form of the coupling. Therefore, having in mind the pertu
bative expression of the energies@see Eq.~C6! of Appendix
C#, one understands that whenD is nonzero, the eigenvalue
that are repelling each other with the most efficiency are
ones closest to the center of the total spectrum.

B. Eigenvalue diagrams

The global effect of the increase ofl on the eigenvalues
has been studied with the average smoothed density of st

he
-
u-
FIG. 3. Total smoothed aver
aged density of states obtained n
merically for different values ofD
andl. ~a! corresponds toD50.01,
~b! to D50.5, and~c! and ~d! to
D55. For all of themN5500 and
x550. Notice that thel50 and
the l50.1 curves are not distin-
guishable.
3-4
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FIG. 4. Different parts of the
eigenvalue diagrams with N
5500, corresponding to~a! and
~b! D50.01, ~c! and ~d! D50.5,
and ~e! D55. They represent the
eigenvalues of the total Hamil
tonian ~14! as a function ofl.
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energy scale inside the spectrum, it is interesting to indivi
ally follow each eigenvalueEa as a function ofl on an
eigenvalue diagram.

The first thing to note~see Fig. 4! is that the increase o
the coupling induces a repulsion between the eigenval
This has as a result the broadening of the total spectrum
we already noticed on the smoothed averaged densit
states. If one looks closer inside the fine structure of
eigenvalue spectrum, we see that there is no crossing
tween the eigenvalues. This is a consequence of the fact
there is no symmetry in the total system. Therefore, the n
crossing rule is always working. Each time two eigenvalu
come close to each other, they repel each other and crea
avoided crossing. One can notice that there is a large num
of avoided crossings inside the region where the two se
circular densitiesnw@«2(D/2)# and nw@«1(D/2)# overlap
@see Fig. 2 in order to visualize the overlapping zone t
extends from~D/2!21 to 12~D/2!#. But outside this overlap-
ping zone, there are very weak avoided crossings~and of
course no crossing! and all the eigenvalues appear to mo
in a regular and smooth way. The regions seen in Figs. 4~a!,
4~b!, and 4~d! are inside the overlapping zone and the one
Fig. 4~e! is outside. In Fig. 4~c! the lower part of the diagram
is inside the overlapping zone and the upper part is outs
06611
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This phenomenon is due to the fact that the eigenvalues
given semicircular density do not interact with the eigenv
ues of their own semicircular density but only with those
the other semicircular density. It is the consequence of
nondiagonal nature of the coupling in the spin degrees
freedom. When the coupling becomes large enough~l.1!,
the avoided crossings also disappear inside the overlap
zone. Aroundl51 and inside the overlapping zone, there
a smooth transition from an avoided-crossing regime t
gives rise to a turbulent and complexl evolution to another
regime without much interaction between the eigenval
that gives rise to a smoothl evolution.

C. Spacing distribution

The eigenvalue diagrams only give us a qualitative und
standing of the fine energy structure of the spectrum. Fo
more quantitative study, it is interesting to look at the sp
ing distribution of the spectrum.

Whenl50, each semicircular distribution, correspondi
to a different system level, has a Wignerian level spac
distribution,

Pw~s!5
p

2
se2(p/4)s2

. ~18!
3-5
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But the total spectrum is made by the superposition, wit
shift D, of two of such semicircular distributions. The sh
creates a Poissonian component to the total spacing dist
tion in the overlapping zone@~D/2!21 to 2~D/2!11#. A Pois-
sonian distribution is given by

Pp~s!5e2s. ~19!

Therefore, we choose to fit the total spacing distribution
the mixture

Pf it~s!5C1Pw~s!1~12C1!Pp~s!. ~20!

This choice of the form of the fit is empirical but reasonab
because the correlation coefficient of the fit is always clos
one ~between 0.963 and 0.982!.

We computed the spacing distribution and made the
~20! in order to compute the mixing coefficientC1 for dif-
ferent values ofl in the case where the overlapping zo
covers almost the whole spectrum~D!1!. The results are
plotted in Fig. 5. We see that there is a specific region ol
values where the total spacing distribution is close to a p
Wignerian one. This region corresponds to the situat
where l2N5O(1), i.e., when the typical intensity of the

FIG. 5. ~a! Spacing distribution for different values of the co
pling parameterl. ~b! Fitted coefficientC1 of Eq. ~20!. The closer
is C1 from unity, the closer is the spacing distribution to the Wign
spacing distribution. In the two figures,D50.01, N5500, and
x550.
06611
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interaction between the nonperturbed levels isO(l2) ~since
the first nonzero correction in perturbation theory is of s
ond order due to the nondiagonal coupling in our mode!,
becomes of the order of the mean level spacingO(1/N) in
the total system. In this region the level repulsion is maxim
and effective among almost all the states.

In the limit l→` the spectrum is again the superpositi
of two semicircular distributions, one for theE1h’s and one
for theE21h’s according to Eq.~13!. As a consequence, on
gets a Poissonian type of spacing distribution.

The otherD cases will have a Wignerian spacing distrib
tion outside the overlapping zone and a mixed one~like for
the caseD!1! inside. This can be visually seen on the e
genvalue diagram that we studied before.

D. The shape of the eigenstates„SOE…

We want now to have some information about the eig
states of the total system inside the overlapping zone of
two semicircular densities. Following@6#, we define the
quantity

j~«,«0!5(
a,n

z^aun& z2d~Ea2«!d~En2«0!. ~21!

If we fix «0 and studyj(«,«0) as a function of«, we will
call it the local density of states~LDOS!. If we fix « and
study j(«,«0) as a function of«0, we will call it the SOE
~shape of the eigenstates!.

We here focus on the SOE. The SOE tells us how clos
perturbed eigenstate~lÞ0! at energy« is from the nonper-
turbed eigenstate~l50! at energy«0. If the SOE is a very
narrow function centered around«5«0, the concept of a
nonperturbed eigenstate is still useful. This regime cor
sponds to very small coupling, for which the interaction i
tensity is lower than the mean level spacing 0,l2N&1, and
will be called to thelocalizedregime. In the limitN→` this
regime disappears. If one increases the coupling, the inte
tion intensity between the nonperturbed states begins to
larger than the mean level spacing between the states:l2N
.1. The nonperturbed levels start to be ‘‘mixed’’ by th
interaction and the SOE starts then to have a Lorentz
shape with a finite widthG, centered around«5«0. This
regime is called theLorentzian regime. If one further in-
creases the coupling parameter, the SOE begins to sp
over almost the whole spectrum. This regime is called
delocalizedregime.

In the banded random matrix model of@6#, the regimes
are classified according to a different terminology and th
is an additional regime corresponding to a spreading
goes beyond the energy range where the coupling acts~due

r

FIG. 6. Diagram of the different regimes as a function of t
coupling parameterl.
3-6



ar

rt

o
th

th
o

re

is
ea

me

an
e,

n
us
the
ed

the
.

ut
tic

th
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to the finite coupling range of the banded matrices!. The
motivation for our change of terminology will become cle
in the study of the dynamics.

The Lorentzian regime can be separated into two pa
For small coupling, the width of the LorentzianG is smaller
or of the order of magnitude of the typical energy scale
variation of the averaged smoothed density of state of
environmentde: n(e1de)'n(e). For larger coupling, the
Lorentzian width extends on an energy scale larger than
typical energy scale of variation of the density of states
the environment. Therefore, one hasG&de in the former case
andG.de in the latter case. The different regimes are rep
sented in Figs. 6 and 7.

To represent the SOE of the spin-GORM model, we d
cretize the energy axis in small cells of the order of the m
level spacing 1/N and we average the SOE overx realiza-
tions of the random matrix ensemble. We see in Fig. 8~a! the

FIG. 7. Schematic representation of the different regimes in
plane of the reduced parameterl andN. The Lorentzian 1 regime
corresponds toG&de and the Lorentzian 2 regime toG.de.
06611
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typical shape of the SOE going from the perturbative regi
~l50.01,0.05! to the beginning of the Lorentzian one~l
50.1!. In Fig. 8~b! we see the SOE across the Lorentzi
regime ~0.2<l<0.8!. We also see the delocalized regim
whenl→` and the SOE gets completely flat~l510!. Figure
8~c! shows the width of the Lorentzian from a fit made o
the SOE curve. The correlation coefficient of the fit helps
to determine the region of the Lorentzian regime where
SOE is very well fitted by a Lorentzian. It has been verifi
that the width of the Lorentzian is independent ofN in the
Lorentzian regime. Figure 8~d! ~log-log! shows that the
width of the Lorentzian has a power-law dependence in
coupling parameter close to two in the Lorentzian regime

E. Asymptotic transition probability kernel „ATPK …

An interesting quantity, which is close to the SOE, b
which has a nice physical interpretation, is the asympto
transition probability kernel~ATPK!. The transition probabil-
ity kernel ~TPK! gives the probability at timet to be in the
level un& if starting from r̂(0). It is defined as

P t„nzr~0!…5^nue2 iĤ tottr̂~0!eiĤ tottun&. ~22!

The ATPK is the time average of the TPK

P`„nzr~0!…5 lim
T→`

1

TE0

T

dtP t„nur~0!…

5(
a

z^aun& z2^aur̂~0!ua&. ~23!

The distribution of the ATPK in energy is given by

e

f
.
e

FIG. 8. ~a! SOE in the pertur-
bative regime. ~b! SOE in the
Lorentzian regime.~c! The width
and the correlation coefficient o
the fit of the SOE by a Lorentzian
~d! Power-law dependence of th
width of the Lorentzian SOE in
the coupling parameter. In all the
figures: D50.01, N5500, x550,
and«50.
3-7
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P`„«
0zr~0!…5(

n
P`„nzr~0!…d~En2«0!. ~24!

The ATPK has an intuitive physical interpretation. It repr
sents the probability after a very long time to end up in
nonperturbed stateun&, having started from the initial condi
tion r̂(0). The ATPK is theconvolution of the SOE

P`~«0u«08!5(
n,m

(
a

z^aun& z2z^aum& z2

3d~En2«0!d~Em2«08!, ~25!

with r(0)5(mum&^mud(Em2«08).
Because we are interested in a random matrix model

for the purpose of studying the dynamics, we will perfor
averages of two different kinds. The first kind of average i
microcanonical average over states belonging to the s
given energy shell of widthd« for a given realization of the
random matrix ensemble used in our total Hamiltonian. T
second kind of average is an ensemble average over tx
different realizations of the random matrices ensemble.
the microcanonical average, a choice of the width of
energy shelld« has to be done in such a way that it is lar
enough to contains many levels~to get a good statistics! and
small enough to be smaller than or equal to the typical
ergy scale of variation of the averaged smoothed densit
states of the environmentde. Therefore, the adequate choic
of the width of the energy shell corresponds to 1/N,d«
,de.

Different ATPK are depicted in Fig. 9 where there is n
random matrix ensemble averagex51. In Fig. 9~a! the
ATPK is a microcanonical average inside the energy she
energy«08 and of widthd«08. ‘‘Pin’’ denotes the total prob-
ability of staying inside the energy shell after a very lo
time. Nl251 is on the border between the localized and
Lorentzian regime andl51,10 in the delocalized regime. W
see that, untilNl251, the main probability stays in the ini
tial energy shell. But when the Lorentzian regime starts,
probability spreads over energies larger thande ~here de

'd«08). In Figs. 9~b! and 9~c! no average has been don
The initial condition is a nonperturbed pure state~corre-
sponding to an energy close to zero! and one can see th
individual probability of being on another nonperturbed st
for the different regimes. We can see that in the localiz
regime the probability of staying on the initial state is mu
more important than the probability of leaving it. We also s
that the Lorentzian regime starts when the initial state lo
its privileged position containing the main probability an
therefore, when the neighboring levels begin to have an
portant fraction of the total probability.

IV. TIME EVOLUTION

We now want to understand the time evolution of o
model and more specifically the population dynamics of
system. The exact evolution of the total system is descri
by thevon Neumann equation
06611
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ṙ̂~ t !52 i @Ĥ tot ,r̂~ t !#, ~26!

whereĤ tot is given by Eq.~5!. The system dynamics is ob
tained from Eq. ~26! using the reduced density matri
r̂S(t)5TrBr̂(t). The total system has a finite and consta
energy. At initial time, the environment has a given fix
energye corresponding to a microcanonical distribution i
side a energy shell centered ate and of width de. d« is
chosen in such a way that it is large enough to contains m
levels ~to get a good statistics! and small enough to be
smaller than or equal to the typical energy scale of variat
of the averaged smoothed density of state of the environm
de. Therefore, the adequate choice for the width of the
ergy shell corresponds to 1/N,d«,de. The dynamics is
then averaged over thex realizations of the random matri
ensemble. In the following, we consider in detail the tw
different extreme cases of weak and strong couplings.

A. The weak coupling regime„l™1…

We derived in Ref.@17# a perturbative equation for th
description of the evolution of a system~with a discrete
spectrum! weakly interacting with its environment~with a
quasicontinuous spectrum!. This equation has been shown
be equivalent to the well-knownRedfield equation@10,18,19#
when the typical energy scale of the system~typical energy
spacing between the system levels! can be considered sma
compared to the typical environment energy scalede ~typical
energy scales on which the smoothed density of states o
environment varies!. In the spin-GORM model, this condi
tion means thatn(e1D)'n(e).

We will not perform in this paper the detailed derivatio
of this equation and its application to the spin-GOE mod
This has been done in Ref.@17#. We will simply recall the
main ideas and results of this paper and apply them to
study of the dynamics of our model.

The main idea is to suppose that the total density ma
can be described at all time by a density matrix of the f
lowing form:

r̂~ t !5
1

n~ĤB!
(
s,s8

us&^s8uPss8~ĤB ;t !, ~27!

where the environment density of states is

n~e!5TrBd~e2ĤB!. ~28!

Doing this, we neglect the contribution to the dynamics co
ing from the coherence of the environment but we keep th
of the system. Therefore, the total density matrix is diago
in the environment degrees of freedom but not in the sys
ones. For comparison, let us recall that in the derivation
the well known Pauli equation, both types of coherences
neglected and the total density matrix is completely diago
@20–22#.

The matrix of elementsPss8(ĤB ;t) is Hermitian,

Pss8~ĤB ;t !5Ps8s
* ~ĤB ;t !. ~29!
3-8
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SPIN RELAXATION IN A COMPLEX ENVIRONMENT PHYSICAL REVIEW E68, 066113 ~2003!
FIG. 9. ~a! ATPK from the localized regime, through the Loren
zian regime, to the delocalized regime. The ATPK is microcano
cally averaged over the different initial conditions correspon

ing to the levels inside the energy shell centered at«0850

with width d«0850.05. ‘‘Pin’’ denotes the proportion of the
ATPK that stays inside the initial energy shell after an infinite tim
~b! and ~c! ATPK for a single level as an initial condition, withou
any average. All the figures are obtained for very small sys
energy D50.01 with no random matrix ensemble averagex51
and forN5500.
06611
The reduced density matrix of the system becomes

r̂S~ t !5TrBr̂~ t !

5E de TrBd~e2ĤB!r̂~ t !

5(
s,s8

us&^s8u E de Pss8~e;t !. ~30!

We see that each element of the reduced density matri
the system depends on the environment energy. This is
damental in order to take into account the finite energy
fects of the total system.

Using Eq.~27! and performing a perturbative expansio
up to the second order inl on Eq.~26! ~see Ref.@17#!, one
gets for the population dynamics the equation

Ṗss~e;t !522l2(
s̄,s̄8

F1^suŜus̄8&^s̄8uŜus̄&Ps̄s~e;t !

3E de8F~e,e8!n~e8!
sin~Es̄2Es̄81e2e8!t

Es̄2Es̄81e2e8

2^suŜus̄&^s̄8uŜus&n~e!E de8F~e,e8!

3Ps̄s̄8~e8;t !
sin~Es2Es̄81e2e8!t

Es2Es̄81e2e8
G , ~31!

where F(e,e8)5‘‘ z^euB̂ue8& z2,’’ where the quotes denote
smoothening over a dense spectrum of eigenvalues aroue

ande8. We see that the probabilityṖs̄s̄(e;t), if initially con-
centrated in a given energy shell, can spread in energy u
the dynamics. This is a typical non-Markovian effect happe
ing on a short-time scale. It is due to the presence in
equation of the energy integral and of the sin~jt!/j function
that has a finite width in energy at short time. This equat
is non-Markovian in the sense that the coefficients of
differential evolution equation are time dependent and t
this time dependence can be neglected on long-time sc
~performing the Markovian approximation! when the envi-
ronment has a faster dynamics~i.e., typically a larger energy
scale! than the system.

The Markovian approximationconsists of taking the
infinite-time limit of the time-dependent coefficients usin
the property limt→`@sin(jt)/j#5pd(j). This approximation
is justified if the contribution of thej50 value~if it exists!
has the main and almost unique contribution to the ene
integral. If one further neglects the contributions of the c
herence to the population evolution~this is automatically sat-
isfied for the spin-GORM model because of the nondiago
coupling!, one gets a Pauli-type equation@20–22#

i-
-

.
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M. ESPOSITO AND P. GASPARD PHYSICAL REVIEW E68, 066113 ~2003!
Ṗss~e;t !522pl2 (
s8Þs

z^suŜus8& z2F~e,Es2Es81e!

3n~Es2Es81e!Pss~e;t !

12pl2 (
s8Þs

z^suŜus8& z2F~e,Es2Es81e!

3n~e!Ps8s8~Es2Es81e;t !. ~32!

We see that the Markovian approximation strictly keeps
dynamics of the total system inside an energy shell. Star
with the probability located on a given energy shell, the d
namics will preserve the probability inside this shell. But
course, the probability of the different states inside the s
are varying. The dynamics described by this equation can
seen as a random walk between nonperturbed states o
total system belonging to the same energy shell with tra
tion rates between these states given by the Fermi go
rule.

We now apply our equation to the spin-GORM model
order to study of the population evolution throughŝz ~the
difference between the probability of being in the upper st
of the system minus the probability of being in the low
one!. Doing this, we suppose that the environment is qua
continuousN→` and that the random matrix ensemble a
erage has been performedx→`. For the non-Markovian
equation~31!, one gets

^ŝz&
NM~ t !5E de8@P11~e8;t !2P22~e81D;t !#,

~33!

where

Ṗ66~e;t !5
l2

p E
21/2

11/2

de8
sin~6D1e2e8!t

~6D1e2e8!

3FP77~e8;t !A1

4
2e2

2P66~e;t !A1

4
2e82G . ~34!

In the Markovian limit, Eq.~33! becomes

^ŝz&
M~ t !5P11~e;t !2P22~e1D;t !, ~35!

which obeys a Pauli-type equation so that we get

^ŝz&
M~ t !5^ŝz&`

M1@^ŝz&
M~0!2^ŝz&`

M#e2gt, ~36!

where the equilibrium value of the populations is given b

^ŝz&`
M5

A1

4
2~e!22A1

4
2~e1D!2

A1

4
2~e!21A1

4
2~e1D!2

~37!
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and the relaxation rate by

g5l2SA1

4
2~e!21A1

4
2~e1D!2D , ~38!

where we adopted the convection thatAx50 if x,0.
In the case of the spin-GORM model, the transition pro

ability between states belonging to the same total ene
shell only depends on the smoothed density of states. Th
due to the fact that the environment coupling elements
tween the environment nonperturbed states are randomly
tributed because the environment coupling operator is a
dom matrix. This has the consequence that the equilibr
value of the populations~37! corresponds to a microcanon
cal distribution probability of the states belonging to the to
energy shell independently of the initial distribution of the
states inside this energy shell.

We notice that, in the general case, the Markovian
sumption made on our equation does not directly give
Pauli-type equation which is an equation for the populatio
only. To get a Pauli equation, the further approximatio
which consists of neglecting the contribution of the coh
ences to the population dynamics, has to be done. For
particular case of the spin-GORM model, this further a
proximation is not necessary because it is automatically
isfied.

B. The strong coupling regime„lš1…

We are now interested in describing the dynamical regi
where the coupling parameterl is very large and, therefore
dominant in front of 1 andD. We will again suppose that th
environment is continuousN→` and that the random matrix
ensemble average has been performedx→`.

The population dynamics of the system is given by

^ŝz&~ t !5Tr r̂~ t !ŝz5Tr ei [(D/2)ŝz1ĤB1lŝxB̂] tr̂~0!

3e2 i [(D/2)ŝz1ĤB1lŝxB̂] tŝz . ~39!

Using the following unitary transformation acting on the sp
degrees of freedom:

Û5S 1

A2

1

A2

1

A2
2

1

A2

D ~40!

we get

^ŝz&~ t !5Tr ei [(D/2)ŝx1ĤB1lŝzB̂] tÛ†r̂S~0!Û

3 r̂B~0!e2 i [(D/2)ŝx1ĤB1lŝzB̂] tŝx

5Tr eil[(1/l)(D/2)ŝx1(1/l)ĤB1ŝzB̂] tÛ†r̂S~0!Û

3 r̂B~0!e2 il[(1/l)(D/2)ŝx1(1/l)ĤB1ŝzB̂] tŝx .

~41!
3-10
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SPIN RELAXATION IN A COMPLEX ENVIRONMENT PHYSICAL REVIEW E68, 066113 ~2003!
Using the following perturbative expansion of the evoluti
operator to order zero in 1/l:

e2 il[(1/l)(D/2)ŝx1(1/l)ĤB1ŝzB̂] t 5
1/l→0

e2 iltŝzB̂1OS 1

l D ,

~42!

we get

^ŝz&~ t ! 5
1/l→0

Tr eiltŝzB̂Û†r̂S~0!Û r̂B~0!e2 iltŝzB̂1OS 1

l D .

~43!

Using the following notation:

ŝzB̂ukh&5ŝzuk& ^ B̂uh&5kEhukh& ~44!

and

ĤBub&5Eb
Bub&, ~45!

we find that

^ŝz&~ t ! 5
1/l→0

(
k,h

eiltkEh^hur̂B~0!uh&^kuÛ†r̂S~0!Ûu2k&

3eiltkEh1OS 1

l D . ~46!

Becauser̂B is diagonal in the basis that diagonalizesĤB , we
have

^hur̂B~0!uh&5(
b

z^hub& z2^bur̂Bub&. ~47!

If we perform an ensemble average over different reali
tions ofĤB and use the random matrix eigenvectors statis
@14–16#, we find

^hur̂B~0!uh& (ĤB)5(
b

z^hub& z2(ĤB)^bur̂Bub& (ĤB)

5(
b

2

N
^bur̂Bub& (ĤB)

5
2

N
. ~48!

Equation~46! therefore becomes
06611
-
s

^ŝz&~ t !(ĤB) 5
1/l→02

N (
k,h

e2iltkEh^kuÛ†r̂S~0!Ûu2k&

5
2

N F ^1uÛ†r̂S~0!Ûu21&(
h

e2iltEh

1^21uÛ†r̂S~0!Ûu1&(
h

e22iltEhG1OS 1

l D .

~49!

Performing now the following ensemble average over diff
ent realizations ofB̂:

(
h

e2iltEh(B̂)5E
21/2

11/2

de n~e!e2ilte

5
4N

p E
21/2

11/2

deA1

4
2e2e2ilte

5N
J1~lt !

lt
, ~50!

we finally get

^ŝz&~ t !(ĤB ,B̂) 5
1/l→0

2
J1~lt !

lt
@^1uÛ†r̂S~0!Ûu21&

1^21uÛ†r̂S~0!Ûu1&#1OS 1

l2D . ~51!

It is easy to show that the term of order 1/l is zero. This
explains the fact thatO(1/l) has been replaced byO(1/l2).

Choosing as an initial condition

r̂S~0!5S 1 0

0 0D , ~52!

we get

^ŝz&~ t !(ĤB ,B̂) 5
1/l→0

2
J1~lt !

lt
1OS 1

l2D . ~53!

We have found a well-defined behavior of the system
namics when the coupling parameterl is so large that the
coupling term can be considered to contribute alone to
dynamics.

C. Numerical results

We will now numerically study the validity of the ap
proximated equation that we just derived in order to und
stand the dynamical evolution of our model.

In our numerical simulations, the initial condition of th
system is always the upper state~52!: ^ŝz&(0)51. The dif-
ferent parameter domains represented in Fig. 1 will pla
fundamental role in our discussion of the dynamics.

We begin by the comparison between the results of
non-Markovian version~33! and ~34! of our perturbative
3-11
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FIG. 10. Time evolution of the
z component of the spin: compari
son between the Markovian~M!
and non-Markovian ~NM! ver-
sions of the perturbative equatio
for different values of the cou-
pling parameter. In all the case
D50.01 ande50.
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see
th
equation and the results of the Markovian version~36!–~38!
~of Pauli type! in order to understand better the consequen
of the Markovian approximation. Figures 10~a! and 10~b!
show the time evolution of̂ŝz& for both equations at differ-
ent values of the coupling parameter. The time axis has b
scaled by the coupling parameter (l2t). This scaling is char-
acteristic of the Lorentzian SOE regime. The values ol
have of course to be reasonably small in order to rem
consistent with the fact that these equations are obtained
turbatively. The time scale that we are observing is the glo
one: from the initial condition to the equilibrium. The cha
06611
s

en
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acteristic energy of the system (D) is different in Figs. 10~a!
and 10~b!. But we are in both cases in domain A of th
reduced parameter phase space~see Fig. 1!. For such small
values ofD, we see almost no difference between Figs. 10~a!
and 10~b!. The characteristic time scale of the environmen
of order 2p, and is therefore in both cases much shorter th
the system one. We are in situations where the Markov
approximation makes sense on times longer than 2p. Using
thel2t scaling, the Markovian equation is independent ofl.
This is not the case for the non-Markovian equation. We
that the strongerl is, the larger the deviation is between bo
d

r

n
-

FIG. 11. Time evolution of the
z component of the spin.~a!, ~b!,
and ~c! Comparison between the
exact von Neumann equation an
the non-Markovian~NM! version
of the perturbative equation fo
different values of the coupling
parameter.~a! and ~b! correspond
to D50.1 and ~c! to D50.5 and
l50.1. ~d! Comparison between
the exact von Neumann equatio
and the Bessel strong coupling re
sult given by Eq.~53! for D50.01,
N5500, andx550. In all the fig-
uresx550.
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SPIN RELAXATION IN A COMPLEX ENVIRONMENT PHYSICAL REVIEW E68, 066113 ~2003!
equations. This is the consequence of the fact that thel2t
scaling that we use amplifies the non-Markovian short ti
behavior~that occurs on time of order of the characteris
time scale of the environment 2p! whenl increases. Figures
10~c! and 10~d! show us the long time behavior of the Ma
kovian and non-Markovian versions of our equation. We
that the equilibrium value of̂ŝz& depends onl for the non-
Markovian equation. This is not the case for the Markov
equation. The differences between the equilibrium values
small. But, comparing Figs. 10~c! with plot 10~d!, one no-
tices that whenD is larger, the differences are larger. This
a consequence of the error made on short-time dynam
using the Markovian approximation. Because this error
more important whenl is large, the consequence on the lo
time dynamics is more important, even if globally small.

We now compare the non-Markovian version~33! and
~34! of our perturbative equation with the exact von Ne
mann equation~26!, staying in the parameter domain A. Fig
ures 11~a! and 11~b! show the time evolution described b
both equations at differentl values using thel2t time scal-
ing. In Fig. 11~a! the Markovian and the non-Markovian ve
sions of our equation are so close that we only plotted
second one. We see that the non-Markovian equation is v
not only for values ofl below an upper bound, but als
above a lower bound. Whenl is too small, the non-
Markovian version of our perturbative equation does not
with the exact result. The exact initial dynamics is well r
produced by our equation, but the relaxation process to
equilibrium value is not reproduced. This is due to the d
crete nature of the spectrum and therefore depends on
number N of states and disappears in the limitN→`. It
corresponds to the border between the localized and Lor
zian regimes of the SOE. This is one of the main results
this paper. This phenomena is of course again related to
effect of the perturbation between the levels in the total sp
trum that we already observed in the spacing distribution
the SOE, and in the ATPK.l has to be large enough (l2

.1/N) to ‘‘mix’’ the nonperturbed levels in order for all the
states inside the total unperturbed energy shell to be m
together. Remember that the equilibrium value of our M
kovian perturbative equation is given by a microcanoni
distribution in the total unperturbed energy shell@see Eq.
~37!#. One also sees in Fig. 11~b! that our perturbative equa
tion loses again its validity above a certain value ofl. It
happens at value ofl that cannot be considered as perturb
tive any more. It also corresponds to a value of the coup
parameter corresponding in the SOE to the transition in
Lorentzian regime when the width of the Lorentzian starts
be larger than the typical variation energy scale of the en
ronment density of states.

In Fig. 11~c! we deal with the parameter domain B~see
Fig. 1!. We again compare the non-Markovian version of o
perturbative equation with the exact dynamics given by
von Neumann equation. In this case, the system dynamic~of
period 0.4p! is faster than the environment one~of period
2p!. We are in a highly non-Markovian situation. The Ma
kovian version of our equation~that describes no evolutio
in this case! completely misses the observed behavior
damped oscillations. But the non-Markovian equation rep
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duces this behavior with a very high accuracy. The freque
of the oscillations corresponds to the system dynamics o
and the damping of these oscillations occur on a time sc
corresponding to the environment characteristic time sca

Finally, in Fig. 11~d! we are in the high coupling param
eter domain C~see Fig. 1!. We see that whenl becomes
large enough to make the coupling term dominant in the to
Hamiltonian, the dynamics obey the Bessel behavior deri
in Eq. ~53!. It is important to notice that this behavior scal
in time according tolt.

A summary of the validity of the different approximate
equations@Markovian ~36!–~38! and non-Markovian~33!–
~34! versions of our perturbative equation and the stro
coupling Bessel equation~53!# and of the different scalings
depending on the regime that one considers, is represent
Fig. 12.

D. Average versus individual realizations

An interesting point is the comparison, for the syste
dynamics, between the averaged~random matrix ensemble
averaged or microcanonically averaged! dynamics and the
dynamics of an individual realization within the statistic
ensembles. This latter corresponds to a dynamics gener
by an initial condition that corresponds to a pure state a
without any random-matrix average~x51!.

We see in Figs. 13~c!–13~f! the dynamics of a system
with small energy spacingD50.1 for different values of
l2N. The solid line represents the random-matrix and mic
canonically averaged dynamics. The dashed lines de
some of the individual members of the random-matrix e
semble corresponding to an initial pure state inside the t
unperturbed energy shell. We see that the largerl2N is, the
closer the individual trajectories are from the averaged
jectory. We therefore have, whenl2N is large enough, tha

FIG. 12. Table giving the validity of the approximated equati
and of the time scaling for the different parameter domains of
model. The parameter domains are defined in Fig. 1. ‘‘M pert. e
means the Markovian verion of the perturbative equation~36!,
‘‘NM pert. eq.’’ refers to the Markovian version of the perturbativ
equation~33!, and ‘‘Bessel’’ refers to the equation~53! obtained in
the very strong coupling regime.
3-13
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FIG. 13. In all the figures
D50.1, N5500, e50, and de
50.05.~a! Variance between indi-
vidual trajectories and the aver
aged one~x5100! as a function of
time for different values ofl2N.
~b! Power-law dependence be
tween the equilibrium value of
this variance andl2N. ~c!–~f! In-
dividual trajectories of the en-
semble~dashed lines! and the en-
semble averaged trajectory~solid
line!. In ~c! l2N50.1, in ~d!
l2N51, in ~e! l2N510, and in
~f! l2N5100.
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the individual realizations are self-averaging in the rando
matrix and microcanonical ensembles. In order to quan
this behavior, we plotted in Fig. 13~a! the variance between
the individual trajectories and the averaged trajectory a
function of time for different values ofl2N. We observe that
this variance decreases asl2N→`. In Fig. 13~b! we show
that the asymptotic value of the variance decreases wi
power-law dependence with respect tol2N.

We again see the relation with the SOE regimes. In
localized regime@Fig. 13~c!# the dynamics is governed b
very different individual trajectories oscillating with a ver
few frequencies that differ from one individual trajectory
another. This is a consequence of the fact that the pertu
levels are still close to the nonperturbed ones and are
slightly affected by neighboring nonperturbed levels. In t
Lorentzian regime@Figs. 13~d! and 13~e!#, each individual
trajectory follows roughly the averaged trajectory and co
tains a very large number of different frequencies. T
shows that the interaction ‘‘mixes’’ many of the nonpe
turbed levels, deleting the discrete structure of the spectr

Therefore, we can say that our master equation~31! or
~32! holds with a given accuracy for a majority of individu
trajectories ifl is small enough satisfyingl>CN2n with
n,1

2 and a constantC.0, in the limit N→`.
06611
-
y

a

a

e

ed
ly

e

-
s

.

V. THE VERY LONG TIME BEHAVIOR

We here focus on the very long time behavior of o
model, in other words on its equilibrium properties.

A. Equilibrium values of the system observables

Let us consider the spin observableŝz of the two-level
system. This observable evolves in time according to

^ŝz&~ t !5Tr r̂~0!eiĤ tottŝze
2 iĤ tott

5 (
a,a8

^aur̂~0!ua8&^a8uŝzua&ei (Ea2Ea8)t. ~54!

The time-averaged value of^ŝz&(t) is obtained perform-
ing the following time average:

^ŝz&`5 lim
T→`

1

TE0

T

dt^ŝz&~ t !5(
a

^aur̂~0!ua&^auŝzua&.

~55!

We see that this time averaged value clearly depends on
initial condition.
3-14
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FIG. 14. Comparison betwee
the equilibrium value of^ŝz&`

given by the Pauli equation an
the exact values given by the tim
averaged value for different val
ues ofl. These equilibrium values
are depicted as a function of th
initial microcanonical energye of
the environment.de50.05 in all
figures. The parameter values a
~a! D50.01 and N5500; ~b!
D50.5 andN5500; ~c! D50.01
and N5200– 2000; ~d! D50.5
andN5200– 2000.
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An important result, that holds everywhere on the para
eter space and for all kinds of initial conditions, is that t
observed equilibrium value given by the exact von Neuma
equation corresponds very well to the time-averaged va
~55!. Therefore, the study of the equilibrium properties
systems as ours is equivalent to studying the time avera
quantities~55!.

Let us note that the standard initial condition we used
now is a microcanonical distribution around energye for the
environment and an upper state for the system form
given by

r̂~0!5u1&^1u ^
d~ĤB2e!

n~e!
5(

n

d~En2e!

n~e!
u1n&^1nu.

~56!

Therefore, we have that

^aur̂~0!ua&5(
n

d~En2e!

n~e!
u^au1n&u2. ~57!

An interesting point is to understand when the Markov
perturbative equation gives the correct equilibrium value.
want, therefore, to compare~55! with ~37!. This is done in
Fig. 14 where we plotted the time averaged value^ŝz&` as a
function of the initial energy of the environmente @the initial
value of the total system being~56!#. The different curves in
Figs. 14~a! and 14~b! correspond to different values ofl. We
compare these curves to thel independent curves given b
the Markovian perturbative equation~37!. As expected from
our precedent study of the dynamics, we find again th
whenl is too small, the ‘‘mixing’’ between the nonperturbe
levels is not sufficient inside the microcanonical energy sh
and the Markovian perturbative results overestimate
equilibrium values. Ifl is too large, the Markovian pertur
06611
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bative equation gives again bad results. The Markovian p
turbative equilibrium values are correct in a characteris
region ofl. The beginning of this region corresponds, in t
SOE, to the critical value ofl at which the transition occurs
from the localized to the Lorentzian regimes. The end of t
region corresponds tol values that cannot be considered a
more as perturbative. Figures 14~c! and 14~d! show that
^ŝz&` scales likel2N. This again confirms our preceden
analysis.

B. Thermalization of the system

One of the important questions is to understand the c
ditions under which the system thermalizes under the ef
of a weak contact with the environment, or in other word
under which conditions the system relaxes to a canon
distribution corresponding to the microcanonical temperat
of the environment.

We begin by recalling these conditions in the general c
of a small system weakly interacting with its environme
The isolated total system is composed of the system and
environment and has the total energy

Etot5e1e. ~58!

e is the energy of the environment ande the energy of the
system. We suppose that the contribution of the interac
energy between the environment and the system is neglig
compared to the total energy. The microcanonical envir
ment entropy is defined as

SB~e!5k ln VB~e!, ~59!

where VB(e) is the number of states of the environme
available at energye. This number can be related to the de
sity of states of the environmentnB(e) using the fact that
3-15
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M. ESPOSITO AND P. GASPARD PHYSICAL REVIEW E68, 066113 ~2003!
VB(e)5nB(e)de, wherede is a small energy interval bu
contains many states of the environment. The microcanon
temperature of the environment is given by

1

TB~e!
5

dSB~e!

de
. ~60!

It can be expanded in the system energy as

TB~e5Etot2e!5TB~e5Etot!2e
dTB~e5Etot!

de
1•••,

~61!

because we suppose that the system energy is much sm
than the environment energy. The specific heat capacit
the environment is

1

CvB~e!
5

dTB~e!

de
. ~62!

If the condition

uCvB~e!u@U e

TB~e!
U ~63!

is satisfied, the temperature expansion can be truncate
follows:

TB~e5Etot2e!5TB~e5Etot!. ~64!

Therefore, we understand that if Eq.~63! is satisfied, the
environment plays the role of a heat bath because its t
perature is almost not affected by the system energy.

We suppose further that the interaction between the
tem and the environment, even if small, is able to make
total probability distribution microcanonical on the total e
ergy shell at energyEtot . We suppose also that the ener
levels are discrete and, therefore, thatEtot5Es1Eb wheres
and b are discrete index’s, respectively, for the system a
the environment. Therefore, the probabilityPS(Es) for the
system being at energyEs is given by

PS~Es!5
VB~Eb5Etot2Es!

V tot~Etot!
, ~65!

where VB(Eb) is the number of states of the environme
available at energyEb , andV tot(Etot) the number of states o
the total system available at energyEtot . Using Eqs.~60! and
~63!, one gets that

PS~Es!5
e(1/k)SB(Eb5Etot2Es)

V tot~Etot!

.
e(1/k)SB(Eb5Etot)2@Es/kTB(EB5Etot)#

V tot~Etot!
. ~66!

Using the normalizationPS(Es)51, one finally gets the
well-known canonical probability distribution for the syste

PS~Es!5
e2[Es /kTB(EB5Etot)]

Z
, ~67!
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2[Es /kTB(EB5Etot)] .

We conclude that two conditions are necessary in orde
thermalize the system to a canonical probability distribut
due to the contact with the environment: a large heat capa
of the environmentuCvB(e)u@ue/TB(e)u and a microcanoni-
cal distribution on the total energy shell.

Let us apply this result to the spin-GORM model. Th
density of states of the environment is

nB~e!5
4N

p
A1

4
2e2. ~68!

Therefore the microcanonical temperature of the envir
ment is

TB~e!5
e22 1

4

ke
~69!

and the heat capacity is

CvB~e!5
ke

e21 1
4

. ~70!

The canonical distribution of the populations of the syste
at the microcanonical temperature of the environment
given by

^ŝz&TB(e)
can 52tanh

D

2kTB~e!
52tanh

De

2~e22 1
4 !

. ~71!

The first condition~63! in order to thermalize the system to
canonical probability distribution becomes

uCvB~e!TB~e!u5U e22 1
4

e21 1
4

U@D ~72!

and is depicted in Fig. 15. The second condition to hav
microcanonical distribution on the total energy shell is sa
fied ~as we discussed in Sec. V A! when l2N.1. In this

FIG. 15. Representation of the region where the thermaliza
condition u(e22

1
4 )/(e21

1
4 )u.D holds.
3-16



ic
a-

s

ari-
con-

n-

e
on-

ain
ven

a-
en-

n

ical
ure

ys-
ding
on
tion
dis-
ant
on-
nal

after
ig.
s

de
lu

SPIN RELAXATION IN A COMPLEX ENVIRONMENT PHYSICAL REVIEW E68, 066113 ~2003!
case, the populations of the system obey the microcanon
equilibrium value of the Markovian version of our perturb
tive equation~37!, i.e.,

^ŝz&e
micro5

A1

4
2S e2

D

2
D 2

2A1

4
2S e1

D

2
D 2

A1

4
2S e2

D

2
D 2

1A1

4
2S e1

D

2
D 2

. ~73!

If the two conditions are satisfied, then Eqs.~71! and ~73!
should be equal. The comparison between Eqs.~71! and~73!
can be seen in Fig. 16 for different system energies. We

FIG. 16. Comparison between Eqs.~71! and ~73! for different
values ofD. The narrow dotted lines are plotted to show the un
termination around the environment energy. The parameter va
are ~a! D50.01; ~b! D50.05; ~c! D50.1. ‘‘mic’’ means micro-
canonic and ‘‘can’’ means canonic.
06611
al

ee

that the smaller the system energy is the better the comp
son is. Therefore, we can conclude that under these two
ditions @ u(e22 1

4 )/(e21 1
4 )u@D and l2N.1], the random

matrices of the spin-GORM model can model an enviro
ment that behaves as a heat bath.

C. Thermalization of the total system

Until now, we have chosen initial conditions where th
system is in the upper state with a microcanonical envir
ment at a given energy, like in Eqs.~56! or ~57!. We now
want to consider initial conditions where the system is ag
in the upper state but where the environment is at a gi
canonical temperature:

r̂~0!5u1&^1u ^
e2bBĤB

ZB
5(

n

e2bBEn

ZB
u1n&^1nu. ~74!

Therefore

^aur̂~0!ua&5(
n

e2bBEn

ZB
z^au1n& z2. ~75!

It is important to notice that there is no statistical equiv
lence between the canonical and the microcanonical
sembles in the spin-GORM model~see Appendix B!. There-
fore, it is interesting to ask how the probability distributio
looks like at equilibrium after the interaction.

One can clarify this point by plottinĝaur̂(0)ua& versus
energy. One uses the following energy representation:

P~«!5(
a

d~Ea2«!^aur̂~0!ua&. ~76!

If the total system thermalizes and reaches a canon
distribution for the total system at an effective temperat
beff

21 , one would have that

P~«!5
e2beff«

Ztot
, ~77!

because

^aur̂~0!ua&5
e2beffEa

Ztot
. ~78!

As we shall see, it is the case if, again,l is large enough
to induce ‘‘mixing’’ between the statesl2N.1.

Indeed, one sees in Fig. 17~a! that, forl50, the states of
the total system corresponding to the upper level of the s
tem are exponentially populated and the ones correspon
to the lower level are not. When the interaction is turned
and increased, one can notice that the probability distribu
starts to accumulate around a mean effective canonical
tribution. As expected, this accumulation becomes signific
whenl2N.1 and, in this case, the total system can be c
sidered as having thermalized. One can calculate the fi
effective temperature that the total system has reached
interaction. This effective temperature is depicted in F
17~b! as a function ofl. The correlation coefficient indicate

-
es
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M. ESPOSITO AND P. GASPARD PHYSICAL REVIEW E68, 066113 ~2003!
FIG. 17. In all the figuresD50.01,N5500, andb52. ~a! Prob-
ability P(«)5Dist(«) of being in an eigenstate of the total syste
at equilibrium starting from the initial conditionr̂(0)5u1&^1u
^ e2bĤB/ZB with 1/b50.5.~b! Effective temperature of the equilib
rium probability distribution obtained by fitting a canonical dist
bution to the data of~a!. ~c! Comparison between the exact equili
rium population value and the canonical one computed with
effective temperature of plot~b!.
06611
whether the exponential fit of the final effective temperatu
is good or not. The effective temperature obeys the follow
law: be f f5b i /(11l2). We also show in Fig. 17~c! the com-
parison between the time-averaged value of^ŝz& and his
canonical average computed with the effective temperat
One sees that, whenl2N.1, both coincide.

This thermalization is not statistical in the sense of t
equivalence between the ensembles. It is an intrinsic t
malization due to the complexity of the interaction betwe
the states. This thermalization appears at a critical value
the coupling parameter when the interaction term become
the order of or larger than the mean level spacing of the t
system.

VI. CONCLUSIONS

In this paper, we have studied a system made of two pa
a two-level system interacting in a nondiagonal way with
complex environment modeled by Gaussian orthogonal r
dom matrices. We began our study by analyzing the spec
properties of this model. We investigated the spectrum o
large energy scale with the averaged smooth density of st
and on a finer energy scale with the eigenvalue diagrams
shape of the eigenstates~SOE!, the spacing distribution, and
the asymptotic transition probability kernel~ATPK!. We
found a global repulsion as well as avoided crossings
tween the eigenvalues when the coupling parameterl was
increased. We also showed the existence of three regi
~easy to distinguish in the SOE! that are important to de
scribe the different qualitative behaviors of the model: t
localized regime when the interaction between the level
weaker than the mean level spacingl2N&1 ~giving rise to
very narrow SOE!, the Lorentzian regime when the intera
tion between the levels becomes larger than the mean l
spacingl2N.1 ~giving rise to a Lorentzian SOE!, and the
delocalized regime for very largel ~giving rise to SOE
spread over the whole spectrum!.

After the spectral study, we started the study of the d
namics of the system populations. We defined different
mains in the parameter space~see Fig. 1! and related them to
the different relaxation behaviors of the system populat
induced by the interaction with the environment. For each
these domains we tested the validity of approximated po
lation evolution equations. In the strong coupling limit, w
identified a population relaxation regime described by
Bessel function:;2@J1(lt)/lt# ~53! that scales in time ac
cording tolt and reaches an equilibrium distribution corr
sponding to the same probability of being in the upper a
lower states of the system. In the small coupling limit and
small system energy, we obtained a Pauli-type equa
~36!–~38! describing an exponential relaxation of the syste
population that scales in time according tol2t and that
reaches an equilibrium distribution depending on the sys
energy. The equilibrium value corresponds to a microcano
cal probability distribution of being in a nonperturbed sta
of the total system inside the total energy shell. Finally,
showed the necessity of taking into account the n
Markovian effects in the dynamics~which are important
when the system energy becomes non-negligible in fron

e
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SPIN RELAXATION IN A COMPLEX ENVIRONMENT PHYSICAL REVIEW E68, 066113 ~2003!
the environment energy! using a non-Markovian perturbativ
equation@~33! and~34!# derived by the authors in Ref.@17#.
This equation is perturbative and therefore only valid
small coupling parameters. This equation describes
highly non-Markovian dynamics of the population~made of
small and fast system oscillations damped on a time s
corresponding to the environment time scale! when the sys-
tem energy becomes large in front of the environment
ergy. This equation also reduces to the Pauli-type equatio
the opposite situation, when the system energy is small c
pared to the environment energy. The validity of these
proximated equations depend on the parameter domain
sidered and are summarized in Fig. 12. An important re
concerning the small coupling limit is that there exist low
and upper bounds on the coupling parameter values
which the perturbative equation holds. The lower bound
pends on the spacing between the states of the total sys
and therefore on the sizeN of the random matrices modelin
the environment. We showed that this lower bound is rela
to the transition between the localized and the Lorentz
regimes in the SOE and that this bound disappears wheN
→`.

Another important result concerns the equilibrium valu
of the spin-GORM model. We showed that they are very w
reproduced by the time averaged quantities. Moreover,
showed that the spin-GORM model can, under two con
tions, describe the thermalization of the system to a can
cal energy probability distribution corresponding to the en
ronment microcanonical temperature. The two conditions
this thermalization are a microcanonical probability distrib
tion on the energy shell of the total system~that occurs when
l2N.1) and a large heat capacity of the environment co
pared to the ratio between the characteristic system en
and the environment temperature.

Finally, we showed that the spin-GORM model can u
dergo an intrinsic thermalization due to the complex inter
tion between the states, and reach an overall thermal can
cal distribution. This thermalization again occurs when
coupling parameter is large enough~i.e., larger than the mea
level spacing of the total system! to ‘‘mix’’ the levels.

ACKNOWLEDGMENTS

The authors thank Professor G. Nicolis for support a
encouragement in this research, as well as D. Cohen for
eral very fruitful discussions during his visit to Brusse
M.E. also wants to thank I. de Vega for her interesting co
ments on the spin-GORM model. M.E. is supported by
Fond pour la Formation a` la Recherche dans l’Industrie e
dans l’Agriculture, and P.G. by the National Fund for Scie
tific Research~FNRS Belgium!.

APPENDIX A: GAUSSIAN ORTHOGONAL RANDOM
MATRICES „GORM …

A Gaussian orthogonal random matrix~GORM! Ŷ is char-
acterized byM, the size of the matrix, and by the parame
aŶ , which enters the Gaussian probability distributi
P(Ŷ)5Ce2(aŶ/2)Tr(Ŷ2) of the whole matrix. The statistica
06611
r
e

le

-
in
-
-
n-
lt

r
or
-
ms

d
n

s
ll
e

i-
i-
-
r

-

-
gy

-
-
ni-
e

d
v-

.
-
e

-

r

properties of a GORM are preserved under orthogonal tra
formations. Because the matrix is orthogonal, each non
agonal elementYi j is equal to its transposedYji . The
M (M11)/2 independent matrix elements ofŶ are Gaussian
random numbers of mean zero. The standard deviation of

nondiagonal matrix elementssND
Ŷ and the standard deviatio

of the diagonal matrix elementsD
Ŷ are related toaŶ by

sD
Ŷ5A2sND

Ŷ 5A 1

aŶ

. ~A1!

The density of statesof the GORMŶ is defined by

d~E!5(
i 51

M

d~E2Ei !, ~A2!

and thesmoothed density of statesby

d̄~E!5 lim
e→0

1

eEE2(e/2)

E1(e/2)

d~E!dE, ~A3!

wheree is a small energy interval which is large enough
contain many states in order ford̄(E) to be smooth. The
averaged smoothed density of statesis an ensemble averag
of x realizations of the GORM. Such an ensemble is cal
the Gaussian orthogonal ensemble~GOE!. It is well known
@14–16# that the ensemble averaged smoothed density
stateŝ d̄(E)&x obey theWigner semicircular lawin the limit
x→`:

^d̄~E!&`55
aŶ

p
A2M

aŶ

2E2 if uEu,A2M

aŶ

,

0 if uEu>A2M

aŶ

.

~A4!

The domain of energy where the eigenvalues are distribu
~i.e., the width of the semicircular law! is DY5A8M /aŶ.
Notice that whenM→`, d̄(E)→^d̄(E)&` , and therefore
d̄(E) follows the semicircular law. The following notation i
used in the present paper:nw(E)5^d̄(E)&` .

APPENDIX B: EQUIVALENCE BETWEEN ENSEMBLES
FOR THE ENVIRONMENT

Let us consider a system interacting with its environme
The environment is in a canonical distribution at temperat
Tcan51/kb. The evolution of a system observable is giv
by

^ÂS&
b~ t !5Tr r̂S~0!

e2bĤB

ZB
eiĤ tottÂSe2 iĤ tott. ~B1!

On the other hand, if the environment is in a microcanoni
ensemble, the evolution of the system observable is given
3-19



cr

ti

d

ls
-

rg
ur

be
It
no
ow
e

um

he
q

th
i-

p

are

nd

er-

nce
.

s

-
tur-

the
ey

M. ESPOSITO AND P. GASPARD PHYSICAL REVIEW E68, 066113 ~2003!
^ÂS&
e~ t !5Tr r̂S~0!

d~e2ĤB!

n~ĤB!
eiĤ tottÂSe2 iĤ tott. ~B2!

One therefore sees that

^ÂS&
b~ t !5E de n~e!

e2be

ZB
^ÂS&

e~ t !. ~B3!

The statistical equivalence between the canonical and mi
canonical ensembles,̂ ÂS&

b(t)5^ÂS&
e8(t), thus occurs

when

n~e!
e2be

ZB
'd~e2e8!. ~B4!

One understands that this equivalence is qualitatively sa
fied whenn(e) is an increasing function ofe. In this case,
n(e)(e2be/ZB) is a sharply peaked function. In order to fin
the maximum ofn(e)(e2be/ZB), we require the vanishing
of the derivative of its logarithm (]/]e)ln@n(e)(e2be/ZB)#
50. We find that

]

]e
S~emax![

1

Tmicro~emax!
'

1

Tcan
, ~B5!

where the microcanonical entropy is given by

S~e!5k ln n~e!de. ~B6!

where de is a small energy shell containing many leve
This shows that ifn(e)(e2be/ZB) is a sharply peaked func
tion aroundemax, the canonical average at temperatureTcan
is equivalent to the microcanonical average at the ene
emax corresponding to the microcanonical temperat
Tmicro(e)5Tcan.

For the spin-GORM model, there is no equivalence
tween the canonical and the microcanonical ensembles.
due to the fact that the semicircular energy distribution is
an increasing function of the energy. In this sense, this sh
that the semicircular energy distribution does not describ
usual environment.

To complete our reasoning, we notice that the maxim
of n(e)(e2be/ZB) is given by

emax5
12A11b2

2b
, ~B7!

so thatemax50 for b→0 andemax52 1
2 for b→`.

APPENDIX C: PERTURBATION THEORY

There is no analytical way of getting a general form of t
eigenvaluesEa of the total system, but the three terms in E
~5! have different orders of magnitude depending of
value of the parametersD and l. The system and the env
ronment Hamiltonians are, respectively, of orderD and 1
while the coupling term is of orderl. Therefore, we can
examine the different extreme cases that can be treated
turbatively.
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1. D,1šl

When the system and the environment Hamiltonians
larger than the interaction term in Eq.~5!, we can treat the
interaction term in a perturbative way, taking the system a
the environment Hamiltonian as reference,

Ĥ0usb&5Esb
0 usb&, ~C1!

where we replaced the indexn by the two indicess,b. The
perturbed energy is given to the second order by

Ea5Es,b5
D

2
s1Eb

B1l2 (
b8Þb

z^b8uB̂ub& z2

Eb
B2Eb8

B
1sD

1O~l4!.

~C2!

We notice that the first nonzero correction to the nonp
turbed eigenstate is of orderl2.

2. lš1,D

When l is large compared toD and 1 in Eq.~5!, it is
possible to consider the interaction term as the refere
Hamiltonian and to treatĤS and ĤB as small perturbation
Transforming Eq.~5! by a unitary matrix acting only on the
system degree of freedom, we get

Ĥ tot5
D

2
ŝx1ĤB1lŝzB̂. ~C3!

The nonperturbed reference Hamiltonian is, therefore,

Ĥ̃05lŝzB̂. ~C4!

Let Ekh and ukh&5uk&^uh& be, respectively, the eigenvalue

and eigenvectors ofĤ̃0:

Ĥ̃0ukh&5lB̂szukh&5lEkhukh&5lkEhukh&, ~C5!

where h51, . . . ,N/2 and k561. The energy of the per
turbed Hamiltonian is thus given to the second order per
bation in 1/l by

Ea

l
5kEh1

1

l
^huĤBuh&

1
1

l2 (
Þk,h
k8,h8

UD2 1^huĤBuh&U2

Ekh
0 2Ek8h8

0 1OS 1

l3D . ~C6!

3. 1šD,l

In this case, the bath Hamiltonian is large compared to
system Hamiltonian and the interaction term so that th
both can be considered as perturbations. We get
3-20
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Ea5Es,b5
D

2
s1Eb

B1l2 (
b8Þb

z^b8uB̂ub& z2

Eb
B2Eb8

B

1O~D2!1O~l2!. ~C7!

4. Dš1,l

We now suppose that the system Hamiltonian, taken
reference, is large compared to the environment Hamilton
and the interaction term, so that these last two terms ca
considered as perturbations. We then get
A.

06611
s
n

be

Ea5Es,b5
D

2
s1Eb

B1s
l2

D (
b8Þb

z^b8uB̂ub& z2

1O~1!1O~l2!. ~C8!

Two more situations, 1,l@D andD,l@1, could be consid-
ered but cannot be treated perturbatively because no re

ence basis exists in whichĤB and B̂ are simultaneously di-
agonal.
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