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Spin relaxation in a complex environment
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We report the study of a model of a two-level system interacting in a nondiagonal way with a complex
environment described by Gaussian orthogonal random mat@@RM). The effect of the interaction on the
total spectrum and its consequences on the dynamics of the two-level system is analyzed. We show the
existence of a critical value of the interaction, depending on the mean level spacing of the environment, above
which the dynamics is self-averaging and closely obey a master equation for the time evolution of the observ-
ables of the two-level system. Analytic results are also obtained in the strong coupling regimes. We finally
study the equilibrium values of the two-level system population and show under which condition it thermalizes
to the environment temperature.
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[. INTRODUCTION as, for instance, in NMR, in which case the density of states
of the other spins forming the environment also present a

The nonequilibrium statistical mechanics of small quan-maximum instead of a monotonous increase with energy.
tum systems has become a topic of fundamental importand@ur model may therefore constitute a simplification of such
for nanosciences. It is indeed very important to understan#finds of interacting spin systems. Our main purpose is to
What the minimum Sizes and Conditions are under Wthh éjnderstand the conditions under which a kinetic deSCI’iption
quantum System can dispiay a relaxation to an equiiibriun'pan be Used in Order to Understand the I‘elaxation Of the Spin
state. Isolated and finite quantum systems have a discreténder the effect of the coupling with the rest of the system,
energy spectrum, which has for consequence that all the o¥hich we refer to as a complex environment.
servables present almost periodic recurrences on long time The plan of the paper is the following. The model is pre-
scales. Nevertheless, their early time evolution may stilseénted in Sec. Il. The properties of the spectrum are de-
present relaxation types of behavior that is important toSC”bed n SeC ”I The relaxat|0n n the t|m.e eVO|utI0r! of the
study. Although tools have been developed in nonequilibriun®Pin is studied in Sec. IV. The very long time behavior and
statistical mechanics to describe such relaxations to a state #fe approach to the equilibrium is discussed in Sec. V. Con-
equilibrium by master and kinetic equations, the conditionsclusions are drawn in Sec. VI.
of validity of these equations remain little known.

It is the purpose of this paper to contribute to the clarifi- Il. THE MODEL
cation of these questions of validity of the kinetic description , )
by studying a simple model of a two-level system or spin We are interested in the study_ of a total system cor_nposed
coupled to a complex environment described by random ma2f @ simple systemiwith a few discrete levejsinteracting
trices. Indeed, work done during the last decade has showf{ith & complex environmengwith many levels. We con-
that the Hamiltonian of typical quantum systems present§ider @ two-level system as a prototype for the simple sys-
properties of random matrices on their small energy scaledem- o .

Here, we consider the Hamiltonian of the environment as FOr this kind of total system, the time-dependent Sehro
well as the operator of coupling between the spin and th&inger equation is of the following type:

environment to be given by random matrices taken in a sta- d|\If(~)) X
tistical ensemble of Gaussian orthogonal random matrices. . t = ~ . B~ 2 ~
This defines a model in which many results can be obtained i di :Ht°‘|‘1’(t)>:(502+HB+7‘UXB) (D),
analytically.

Similar models using Gaussian orthogonal random matri- @
ces[1,2] or using banded random matricke®-7] have been " oA A . . ~ oA
studied. In[5], it%as been shown that random matrices usec_yVhereax’ (_TY' gndaz are the X2 Pauli mfltr_|ces,4/2)az
as environment coupling operators have a universal featurdS the Hamiltonian of the two-level system, is the energy

The model we here consider differs from the spin-bosorspacing between the two levels of the systéty is the
model by the density of states of the environment. InsteatHamiltonian of the environmené, is the coupling operator

of monotonously increasing with energy as in the spin- < . ; ;
! . of the systemB is the coupling operator of the environment,
boson model, the density of states of the environment obeys y B Ping op

Wigner’s semicircular law in our model and is thus limited to and\ is the coupling parameter between the system and the

an interval of energy with a maximum density in bet\Neen.enVigonmel?tk in-b q ) iUl
We notice that such densities of states appear in systems '€ Well-knownspin-boson mo €l8-10] is a particular
where a spin is coupled to oth@uossibly dissimilar spins  case of the total system whelf; corresponds to an infinite
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harmonic oscillator lattice anB is linear in the degree of t=at,
freedom of the environment. Here, we want to define a new
model, thespin-GORM modelalso described by the Hamil- A
tonian (1) and for whichHg andB are Gaussian orthogonal A= & ’
random matricesGORM) (see Appendix A for some basic oyp V8N
property on GORM A
Let us discuss now the spin-GORM model in more detail. ~UED
As we said, we want to model a two-level system that inter- N=A—,
acts with an environment that has a complex dynamics. Here, oB
complex is used in a generic way. The complexity can come, ND
for example, from the fact that the corresponding classical N=N.

system is chaotic like in a quantum billiard or for the hydro-

gen atom in a strong magnetic figlitl,12. It can also come The time-dependent Schdimger equation of the spin-

from large coupling in an interacting many-body system assorM model becomes

in nuclear physicd11] or in interacting fermion systems

such as quantum computgdsl,13. Wigner in 1960 14-16§ dw)) .

was the first to develop random-matrix theory for the pur- IﬁT=Htotl‘I’(t)>. (4)

pose of modeling spectral fluctuations of complex quantum

systems containing many states interacting with each othefii, the rescaled total Hamiltonian

This tool has now become very common in many fields from

nuclear physics to quantum chaos. This is the reason why we A 1
> X+ Ny —=X".

V8N

consider random matrices to characterize the complexity of ﬂtot: |2|S+ |2|B+ )\axfgz
the environment operators.

The environment operators of the spin-GORM mogbg,

andB, are defined by As announced, we have ndidHg=DB=1.
In the following, without loss of generalityy will always
] He & be taken equal to unity. Notice that, to model an environment
with a quasicontinuous spectrum, the random matrix must be
a2 3o, very large N—©).
B=onpX', 2 In order to get ensemble averaged results, one has to per-
- - . ] form averages over the different results obtained for each
where X and X' are two different [N/2)<(N/2) Gaussian realization of Eq(5). When we use finite ensemble averages,
orthogonal random matrices with mean zero. Their nondithe number of members of the ensemble average will be
agonal(diagona) elements have standard deviatiofj,=1  denoted byy.
X We see that the Hamiltoniai®) is characterized by three
fferent parametersd, A, andN. We define three different
- Grameter domains in the reduced parameter space corre-
statistical propertiesgzg and o are the standard devia- sponding to a fixed\ in order to facilitate the following
discussion. These three regimes are represented in Fig. 1:

tions of the nondiagonal elementsfébg andﬁ, respectively. omain A with A A: domain B withA>1x: domain C
For these random matrices, the width of their averageqci/ith A>1A ” m

smoothed density of state is given by

. 1
O'Z+ \/ﬁ
)

(05=12). X and X’ are two different realizations of the
same random matrix ensemble and have therefore the sarB

- ¥ lll. THE SPECTRUM
DHg= 088N,
In this section we study the spectrum of the complete
=_ B o system for the different values of the parameters. This study
DB=0onp V8N @ is important in order to understand the different dynamical
(see Appendix A behaviors that we encounter in the model.
It is interesting to define the model in such a way that, L€t us begin defining the notations in the simple case

whenN is increased, the averaged smoothed density of stat¢here there is no coupling between the two parts of the total
of the environment increases without changing its widthSyStem(A—0). The isolated system has two levels separated
DHg . The width can be fixed to unity. This is equivalent to by the energy:

fixing the characteristic time scale of the environment. For A

Idoing this, it is necessary to rescale the parameters as fol- HS|S>:SE|S>’ (6)
OWS:

Fig wheres=*+1. The environment has the standard spectrum
a=o\p V8N, of a GORM
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the total Hamiltonian becomes
Ho=\5,B. (12

E., and|xn)=|x)®|n) are, respectively, the eigenvalues and
eigenvectors of the Hamiltonian

Holk 7) =NE | k) = NkE, |k 7), (13

where =1, ... N/2 and k=*1. After having defined the
notation in the two extreme cas&s-0 and\—o~, we will

FIG. 1. Representation of the three different domains in theStart the study of the spectrum with interactio#0.

space of the reduced parameterand A of the model for a fixed

numberN of states.

Hg|b)=Ep|b), (7)

The total spectrum is given by the eigenvalugs,}
which are solutions of the eigenvalue problem

Hiod @) =E,|a), (14)

wherea=1,2, ... N. It is very difficult to obtain analytical

whereb=1,2, ... N/2. The Hamiltonian of the total system resuits for this problem. We will therefore study the total
without interaction between the system and the environmengpectra using a method of numerical diagonalization of the

is thus

Ho=Hs+Hg, (8
and the spectrum is therefore given by

Holn)=EqIn), 9

withn=1,2,... N and

A
Eﬂ=s§+EE. (10)

The eigenvectors are tensorial products of both the system

and environment eigenvectors:

Iny=[s)®|b). (11

total Hamiltonian.

A. Smoothed density of states

In order to have a quantitative understanding of the global
aspect of the spectrufon large energy scalgsve will study
the total perturbed averaged smoothed density of states.
The environment-averaged smoothed density of states
obeys the semicircular Wigner lajgee Eq(A4) in Appen-

dix A]
4N [(1\% . 1
7 E —€ | |€|<§,
nY(e)= (19

o if !
=
fel=5,

wheree is the continuous variable corresponding to the en-

Let us now define the notations in the opposite simpleyironment energ)EE.

situation where the coupling term is so large that the Hamil- - Therefore, when\=0, the total averaged smoothed den-
tonian of the system and of the environment can both bejty of states is the sum of the two environment semicircular

neglected\—). Using the unitary matri¥J acting only on

the system degrees of freedom

(4N
A A 7
n(8)=nw(8—— +nY e+ —| =4 1
2 2 if

densities of states which correspond to both states of the
two-level systenisee Eq.(9)]:

\ 0 elsewhere,
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Smoothed density of state e e
n(e)=n" —|+n% ——)
overlapping zone A
N/2 levels 1
8N A\ 2 A
— —| —(e)? if |e|<=,
AT 2 2 17
: : Energy . A
T 0 0 if e|]=—=,
1 2
(@) A
wheree is the continuous variable corresponding to the total
o A Assl energyE,, . This result can be observed in Fig(aB for
m m /‘\ /‘\ A=10 (because\,1<\).
0 0 0 When\+#0, the total averaged smoothed density of states
_— is also plotted in Fig. 3. The main observation is that there is
Energy Energy Energy . .
®) a broadening of the complete spectrum when one increases

\. In Fig. 3@ we see that the averaged smoothed density of
N " states changes in a smooth way fr@b6) to (17). But in Fig.
FIG. 2. Smoothed densities of state¥[s—(A/2)] andn*“[e 3(b) and much more in Figs.(8) and 3d), the two semicir-
+(A/2)] for different values ofA. The total smoothed averaged cular densities[ £ — (A/2)] andn"[ &+ (A/2)] seem to re-

density of states of the nonperturbed spectrum is obtained by thﬁel each other ak increases. This is due to the fact that the
sum of themisee Eq/(16)]. levels of a given semicircular density do not interact with

each other but only interact with the levels of the other semi-
circular density. This is a consequence of the nondiagonal
form of the coupling. Therefore, having in mind the pertur-
bative expression of the energigsee Eq(C6) of Appendix
wheree is the continuous variable corresponding to the totalCl: one understands that whenis nonzero, the eigenvalues
energy Eg. The semicircular densities"[s—(A/2)] and that are repelling each other with the most efficiency are the
n"“[ e+ (A/2)] are schematically depicted in Fig. 2 for differ- ones closest to the center of the total spectrum.
ent values ofA. The numerical density of states of the total
system corresponding #0=0 is depicted in Fig. 3.
When N—0o (meaning that the coupling term becomes The global effect of the increase afon the eigenvalues
dominant in the Hamiltonian the averaged smoothed den- has been studied with the average smoothed density of states.
sity of states of the total systefsee Eq.(13)] is given by But in order to have an idea of what happens on a finer

B. Eigenvalue diagrams

@ — )
05t : %;8_1 : 0.25|
—A=1 i
@ 04r -A=10] 4 @02
= = L
Z 03F 4 Zols5-
% | %
E oo} 4 Eot
0,1-_ - 0.05- FIG. 3. Total smoothed aver-
b b aged density of states obtained nu-
0g 3 5 4 % 0g* merically for different values oA
and\. (a) corresponds ta=0.01,
(b) to A=0.5, and(c) and (d) to
Oy T 0.125[(d) A=5. For all of themN=500 and
0 —A=0 » x=50. Notice that then=0 and
04r 7‘:(1)'1 ] 0.1 the A=0.1 curves are not distin-
S - A=10 O guishable.
E 03 1 E0075-
z | A
% 02 . %o.os—
0.1 B 0.025-
B s %
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FIG. 4. Different parts of the
eigenvalue diagrams with N
=500, corresponding tda) and
(b) A=0.01, (c) and (d) A=0.5,
and (e) A=5. They represent the
eigenvalues of the total Hamil-
tonian(14) as a function of.

energy scale inside the spectrum, it is interesting to individu-This phenomenon is due to the fact that the eigenvalues of a
ally follow each eigenvalué€e, as a function ofA on an  given semicircular density do not interact with the eigenval-
eigenvalue diagram. ues of their own semicircular density but only with those of
The first thing to notdsee Fig. 4 is that the increase of the other semicircular density. It is the consequence of the
the coupling induces a repulsion between the eigenvalueg§ondiagonal nature of the coupling in the spin degrees of
This has as a result the broadening of the total spectrum d&eedom. When the coupling becomes large enolighl),
we already noticed on the smoothed averaged density ¢f€ avoided crossings also disappear inside the overlapping
states. If one looks closer inside the fine structure of theOn€- Around\=1 and inside the overlapping zone, there is
eigenvalue spectrum, we see that there is no crossing b& smooth transition from an avoided-crossing regime that

tween the eigenvalues. This is a consequence of the fact thgV€s fise to a turbulent and compl&xevolution to another
egime without much interaction between the eigenvalues

there is no symmetry in the total system. Therefore, the nony . . :
. ! ) . . that gives rise to a smooth evolution.
crossing rule is always working. Each time two eigenvalues
come close to each other, they repel each other and create an
avoided crossing. One can notice that there is a large number
of avoided crossings inside the region where the two semi- The eigenvalue diagrams only give us a qualitative under-
circular densitiemn"[e —(A/2)] andn"“[e+(A/2)] overlap  standing of the fine energy structure of the spectrum. For a
[see Fig. 2 in order to visualize the overlapping zone thatnore quantitative study, it is interesting to look at the spac-
extends from(A/2)—1 to 1-(A/2)]. But outside this overlap- ing distribution of the spectrum.
ping zone, there are very weak avoided crossitayed of When\=0, each semicircular distribution, corresponding
course no crossingand all the eigenvalues appear to moveto a different system level, has a Wignerian level spacing
in a regular and smooth way. The regions seen in Fig®, 4 distribution,
4(b), and 4d) are inside the overlapping zone and the one in
Fig. 4(e) is outside. In Fig. &) the lower part of the diagram
is inside the overlapping zone and the upper part is outside.

C. Spacing distribution

n
PY(s)= > se (T9s”, (18)
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FIG. 6. Diagram of the different regimes as a function of the
coupling parametex.

interaction between the nonperturbed level©{s\.?) (since
the first nonzero correction in perturbation theory is of sec-
ond order due to the nondiagonal coupling in our mpdel
becomes of the order of the mean level spad@/N) in

the total system. In this region the level repulsion is maximal
4 and effective among almost all the states.

s In the limit A—o the spectrum is again the superposition
of two semicircular distributions, one for ttg, ,'s and one

] for theE_,,’s according to Eq(13). As a consequence, one
| gets a Poissonian type of spacing distribution.

0.2

0.85

i ] The otherA cases will have a Wignerian spacing distribu-
0.8 - tion outside the overlapping zone and a mixed dite for
L the caseA<1) inside. This can be visually seen on the ei-
U—0,75 . genvalue diagram that we studied before.
0.7 B .
I D. The shape of the eigenstate€SOE)
0.65 E We want now to have some information about the eigen-
i states of the total system inside the overlapping zone of the
0.6 7 two semicircular densities. Following6], we define the
10 quantity
FIG. 5. (a) Spacing distribution for different values of the cou- £(e,e%)= ;1 KalmPo(E.—e)8(E,—€%). (2D
pling parametei. (b) Fitted coefficientC, of Eq. (20). The closer '
is C, from unity, the closer is the spacing distribution to the Wigner
spacing distribution. In the two figurey=0.01, N=500, and If we fix £° and study¢(e,&°) as a function ok, we will
X=50. call it the local density of stated.DOS). If we fix ¢ and

study £(e,£°% as a function of°, we will call it the SOE
But the total spectrum is made by the superposition, with dshape of the eigenstajes
shift A, of two of such semicircular distributions. The shift ~ We here focus on the SOE. The SOE tells us how close a
creates a Poissonian component to the total spacing distribperturbed eigenstate#0) at energye is from the nonper-
tion in the overlapping zongA/2)—1 to —(A/2)+1]. APois-  turbed eigenstaté\=0) at energye°. If the SOE is a very

sonian distribution is given by narrow function centered arouns=¢°, the concept of a
o s nonperturbed eigenstate is still useful. This regime corre-
PP(s)=e "> (19 sponds to very small coupling, for which the interaction in-

tensity is lower than the mean level spacing 0°N=<1, and
Ywill be called to thelocalizedregime. In the limitN— o this
regime disappears. If one increases the coupling, the interac-
Pfit(s)=C,P"(s)+ (1—C,)PP(s). (20)  tion intensity between the nonperturbed states begins to be
larger than the mean level spacing between the stafés:
This choice of the form of the fit is empirical but reasonable>1. The nonperturbed levels start to be “mixed” by the
because the correlation coefficient of the fit is always close tinteraction and the SOE starts then to have a Lorentzian
one (between 0.963 and 0.982 shape with a finite widtH", centered around=¢°. This
We computed the spacing distribution and made the fitegime is called thd.orentzianregime. If one further in-
(20) in order to compute the mixing coefficieftt; for dif- creases the coupling parameter, the SOE begins to spread
ferent values of\ in the case where the overlapping zoneover almost the whole spectrum. This regime is called the
covers almost the whole spectrufd<1). The results are delocalizedregime.
plotted in Fig. 5. We see that there is a specific region of In the banded random matrix model (@], the regimes
values where the total spacing distribution is close to a purare classified according to a different terminology and there
Wignerian one. This region corresponds to the situations an additional regime corresponding to a spreading that
where \°N=0(1), i.e., when the typical intensity of the goes beyond the energy range where the coupling(dois

Therefore, we choose to fit the total spacing distribution b
the mixture

066113-6



SPIN RELAXATION IN A COMPLEX ENVIRONMENT PHYSICAL REVIEW E68, 066113 (2003

I'=3e typical shape of the SOE going from the perturbative regime
6000 T—— — " (A=0.01,0.05 to the beginning of the Lorentzian or@a
? —32N=1 | =0.1). In Fig. 8b) we see the SOE across the Lorentzian
22N=10 regime (0.2<\<0.8). We also see the delocalized regime,
_ when\— and the SOE gets completely flat=10). Figure
8(c) shows the width of the Lorentzian from a fit made on
the SOE curve. The correlation coefficient of the fit helps us
to determine the region of the Lorentzian regime where the
SOE is very well fitted by a Lorentzian. It has been verified
that the width of the Lorentzian is independentMin the
Lorentzian regime. Figure (8) (log-log) shows that the
: ’ width of the Lorentzian has a power-law dependence in the

%1 02 0.4 08 0.8 1 , X . )
localized N coupling parameter close to two in the Lorentzian regime.

4000|1

Lorentzian 2

delocalized

2000

“"Lorentzian 1

FIG. 7. Schematic representation of the different regimes in the
plane of the reduced parameteiandN. The Lorentzian 1 regime
corresponds td'<de and the Lorentzian 2 regime &> Se. An interesting quantity, which is close to the SOE, but

which has a nice physical interpretation, is the asymptotic
to the finite coupling range of the banded matrjcééhe transition probability kernelATPK). The transition probabil-
motivation for our change of terminology will become clear ity kernel (TPK) gives the probability at timé to be in the

E. Asymptotic transition probability kernel (ATPK)

in the study of the dynamics. level [n) if starting fromp(0). It is defined as
The Lorentzian regime can be separated into two parts. . "
For small coupling, the width of the Lorentzidhis smaller I1,(n|p(0))=(n|e"Huip(0)e'Hof|n). (22)

or of the order of magnitude of the typical energy scale of
variation of thg averaged smoothed density of state of thel.he ATPK is the time average of the TPK
environmentde: n(e+ de)~n(e). For larger coupling, the
Lorentzian width extends on an energy scale larger than the
typical energy scale of variation of the density of states of 1T
the environment. Therefore, one Has Se in the former case I1..(n|p(0))= lim ?fo dtIT,(n|p(0))
andI'>8e in the latter case. The different regimes are repre- H
sented in Figs. 6 and 7.
To represent the SOE of the spin-GORM model, we dis- =2 Kaln)[¥(a|p(0)| ). (23
cretize the energy axis in small cells of the order of the mean “
level spacing M and we average the SOE ovgrrealiza-
tions of the random matrix ensemble. We see in Fig) e The distribution of the ATPK in energy is given by

250 T T T 1

@ ] I
— A=0.01
200 - A=0.05} 0.8
L . ~ A=0.1

@ | =-acorrel. coef.

o S
=) st
WMo e = 0.4 B
J ] o FIG. 8. () SOE in the pertur-
,,,,,,,,,,,,, - bative regime.(b) SOE in the
- — 1 ohooer ! . Lorentzian regime(c) The width
050 001 o 0.01 0.02 0 025 05 075 i 125 15 175 2 and the correlation coefficient of
€

the fit of the SOE by a Lorentzian.

(d) Power-law dependence of the

(b) width of the Lorentzian SOE in

2=0.4
S0l — =06 A | P the coupling parameter. In all the
- 2=0.8 oil ’r‘_g-f@‘ | figures: A=0.01, N=500, x=50,
E - el ande=0.
w, < 0
=) = o
P o+ B

0.01F e
A

i _ 1.6950
7210 I(A) =0.3566 A

[PRaphgett easihons L A o 0.001 ' ‘
04 02 0 02 0.4 - 0.1 1
0
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IL.(%p(0))= > IL.(n[p(0)3(En—c).  (24) pO=~ilAwp(D)], (26)

whereH,, is given by Eq.(5). The system dynamics is ob-
The ATPK has an intuitive physical interpretation. It repre-tained from Eq.(26) using the reduced density matrix
sents the probability after a very long time to end up in apg(t)=Trgp(t). The total system has a finite and constant
nonperturbed stat@), having started from the initial condi- energy. At initial time, the environment has a given fixed
tion p(0). The ATPK is theconvolution of the SOE energye corresponding to a microcanonical distribution in-

side a energy shell centered atand of width de. ds is

chosen in such a way that it is large enough to contains many

0],.0"_ 2 2
M.(e%e )_nzm ; Kl m)(alm)] levels (to get a good statistitgsand small enough to be
smaller than or equal to the typical energy scale of variation
X 8(E,—€9) 5(Em_80’)a (25) of the averaged smoothed density of state of the environment
de. Therefore, the adequate choice for the width of the en-
with p(0)=3 .| m><m|5(Em—s°'). ergy shell corresponds to NK e <Se. The dynamics is

Because we are interested in a random matrix model ant'€" averaged over the realizations of the random matrix
for the purpose of studying the dynamics, we will perform epsemble. In the following, we consider in detal! the two
averages of two different kinds. The first kind of average is &iferent extreme cases of weak and strong couplings.
microcanonical average over states belonging to the same
given energy shell of widtl$e for a given realization of the A. The weak coupling regime(A<<1)
random matrix ensemble used in our total Hamiltonian. The \we derived in Ref[17] a perturbative equation for the
second kind of average is an ensemble average ovex the gescription of the evolution of a systefwith a discrete
d|ﬁerept reallzatllons of the random matrices ens_emble. Foépectrunjl weakly interacting with its environmertvith a
the microcanonical average, a choice of the width of theyyasicontinuous spectrunThis equation has been shown to
energy shellde has to be done in such a way that it is large e equivalent to the well-knowRedfield equatiofl0,18,19
enough to contains many levelt® get a good statlstm:i_md when the typical energy scale of the systégpical energy
small enough to be smaller than or equal to the typical eNgpacing between the system leyatan be considered small
ergy scale of var.iation of the averaged smoothed densi_ty Oéompared to the typical environment energy scilétypical
states of'the environmee. Therefore, the adequate choice energy scales on which the smoothed density of states of the
of the width of the energy shell corresponds tiN4/6s  environment varies In the spin-GORM model, this condi-
<0e. . o _ tion means thah(e+A)~n(e).

Different ATPK are depicted in Fig. 9 where there is N0 \ve will not perform in this paper the detailed derivation
random matrix ensemble average=1. In Fig. 9a) the o this equation and its application to the spin-GOE model.
ATPK is a microcanonical average inside the energy shell afhis has been done in RdfL7]. We will simply recall the
energy=?" and of widthse® . “Pin” denotes the total prob- main ideas and results of this paper and apply them to the
ability of staying inside the energy shell after a very longstudy of the dynamics of our model.
time.NA2=1 is on the border between the localized and the The main idea is to suppose that the total density matrix
Lorentzian regime ani=1,10 in the delocalized regime. We can be described at all time by a density matrix of the fol-
see that, untiNA?=1, the main probability stays in the ini- lowing form:
tial energy shell. But when the Lorentzian regime starts, the
probability spreads over energies larger th&n(here de ~ 1
~5¢%). In Figs. 9b) and 9c) no average has been done. p=
The initial condition is a nonperturbed pure stdt®rre-
sponding to an energy close to zem@nd one can see the \where the environment density of states is
individual probability of being on another nonperturbed state
for the different regimes. We can see that in the localized n(e)=Tr35(e—I:|B). (29)
regime the probability of staying on the initial state is much

more important than the probability of leaving it. We also seepging this, we neglect the contribution to the dynamics com-
that the Lorentzian regime starts when the initial state Ioseﬁ]g from the coherence of the environment but we keep those
its privileged position containing the main probability and, of the system. Therefore, the total density matrix is diagonal
therefore, when the neighboring levels begin to have an imy, the environment degrees of freedom but not in the system

N E |)(s'|Pss (A ;) 27)

portant fraction of the total probability. ones. For comparison, let us recall that in the derivation of
the well known Pauli equation, both types of coherences are
IV. TIME EVOLUTION neglected and the total density matrix is completely diagonal

[20-22.

We now want to understand the time evolution of our
model and more specifically the population dynamics of the
system. The exact evolution of the total system is described - . o~
by thevon Neumann equation Pss(Hg;1)=Pg (Hg;1). (29)

The matrix of eIement@SSI(ﬂB;t) is Hermitian,
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1 (é,) N DL T The reduced density matrix of the system becomes
i B NA’-0.1 Pin=99.5%
08 e .
I NA =1 Pin=94.6% - A
I t)=Trgp(t)
- NA’=10 Pin=68.8% Ps(t) =Trab(
0.6 == A=1 Pin=9.4% .
ﬁ ) - A=10 Pin=7.3% :f de Trgé(e—Hg)p(t)
= d
< 04f .
L . :E |S><S,|f de Psy(€1). (30
| s,s’
02f ! i
e oA ot i i
ol . N We see that each element of the reduced density matrix of
0.4 -0.2 00 0.2 0.4 the system depends on the environment energy. This is fun-
€ damental in order to take into account the finite energy ef-
fects of the total system.
1 oy e L A B A B B Using Eq.(27) and performing a perturbative expansion
: © 5 2 up to the second order ik on Eq.(26) (see Ref[17]), one
0.8+ N7‘2=0'1 gets for the population dynamics the equation
8 Nk2=1
06 4 NA'=10
el ] . R .
= g - Pode)=—2)\2 | +(s|S[')(S'|S[s)Ps(et)
< 04f - s
SiNEs—Eg+e—€')r
XJde’F(e,e')n(e’) "EsEs )
Es—Egt+e—¢€

(5 189n() [ de'Fiee

SINEs—Eg+e—¢€')r
E.—Eg+e—¢€

X Pggr(€';1) : (32)

0.01 T T T T T o T T ¥ T

where F(e,e')="|(¢|B|€e')|?,” where the quotes denote a
smoothening over a dense spectrum of eigenvalues areund

ande€’. We see that the probability(e;t), if initially con-
centrated in a given energy shell, can spread in energy under
the dynamics. This is a typical non-Markovian effect happen-
ing on a short-time scale. It is due to the presence in the
equation of the energy integral and of the(giV/¢ function
that has a finite width in energy at short time. This equation
is non-Markovian in the sense that the coefficients of the
differential evolution equation are time dependent and that
this time dependence can be neglected on long-time scales
(performing the Markovian approximatiprnvhen the envi-
ronment has a faster dynami@<., typically a larger energy
FIG. 9. (a) ATPK from the localized regime, through the Lorent- Scalg than the system.
zian regime, to the delocalized regime. The ATPK is microcanoni- The Markovian approximationconsists of taking the
cally averaged over the different initial conditions correspond-infinite-time limit of the time-dependent coefficients using
ing to the levels inside the energy shell centeredet=0  the property lim_ .[sin¢7)/é]=md(€). This approximation
with width 6s° =0.05. “Pin” denotes the proportion of the IS justified if the contribution of th&=0 value(if it exists)
ATPK that stays inside the initial energy shell after an infinite time.has the main and almost unique contribution to the energy
(b) and (c) ATPK for a single level as an initial condition, without integral. If one further neglects the contributions of the co-
any average. All the figures are obtained for very small systenherence to the population evolutithis is automatically sat-
energy A=0.01 with no random matrix ensemble averagel isfied for the spin-GORM model because of the nondiagonal
and forN=500. coupling, one gets a Pauli-type equatip?0—22
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. . and the relaxation rate by
Pet)=—2m\2 > [(s|S|s')[?F(€,Es—Eg +€)

s'#s L, \/1 ) \/1 )
X N(Es—Eq +€)Psd €51) YEMI Nz (@ Vg (era)T], (39
+2m\2Y, [(s|§)s')?F(e,Eq—Eg +€) where we adopted the convection that=0 if x<0.

s’ #s In the case of the spin-GORM model, the transition prob-

ability between states belonging to the same total energy
shell only depends on the smoothed density of states. This is

We see that the Markovian approximation strictly keeps thegrue o the fact that the environment coupling elements be-

dynamics of the total system inside an energy shell. Startin ween the environment nonperturbed states are randomly dis-

. ” . ibuted because the environment coupling operator is a ran-
with the probability located on a given energy shell, the dy- . ) S
namics will preserve the probability inside this shell. But of dom matrix. This has the consequence that the equilibrium

course, the probability of the different states inside the sheIYaIue of the population37) corresponds to a microcanoni-

. ; : ; : al distribution probability of the states belonging to the total
are varying. The dynamics described by this equation can b ergy shell independently of the initial distribution of these

seen as a random walk between nonperturbed states of t@?ates inside this enerav shell
total system belonging to the same energy shell with transi- 9y ‘

tion rates between these states given by the Fermi golden We.not|ce that, in the gengral case, the Markowan as-
rule. sumption made on our equation does not directly give a

We now apply our equation to the spin-GORM model in Pauli-type equation which is an equation for the populations

order to study of the population evolution through (the only. To get a Pauli equation, the further approximation,

difference between the probability of being in the upper stat%vr?ézg ignt?]l:ts OOfuT:t%ﬁcgngat;?cgoﬂggbLtjgobne OJJ;‘: (lzioor}etrr-]e
of the system minus the probability of being in the lower articular casg gf the s ir):—GORM’ model. this further an-
ong. Doing this, we suppose that the environment is quasi-p o P o . P
continuousN—s o and that the random matrix ensemble aV_proxmatlon is not necessary because it is automatically sat-

Xn(G)PS/S/(ES_ ES/+€;t). (32)

erage has been performeg-c. For the non-Markovian isfied.
equation(31), one gets
B. The strong coupling regime(A>1)
~ \NM/+) — / rey / . We are now interested in describing the dynamical regime
t)=| de'[P D—P__(e'+A;1)], . .
(67 f €'LP+i(eht) (e )] where the coupling parametgris very large and, therefore,

(33 dominant in front of 1 and\. We will again suppose that the
environment is continuoud— o and that the random matrix
ensemble average has been perforneer.

The population dynamics of the system is given by

where

. N2 [(+12  sin(=A+e—€)t
Pit(E;t):_J de’ N L a v A T L[(AR2)6, 4 Hgt AE, Bt
mJ 12 (*A+e—¢€") (o)(1)=Trp()o,=Tre 27 TBTRENp(0)
Xe—i[(A/2)<}2+l:iB+)\&XI§]ta.Z_ (39)
X|Ps(€:t)\/5— €
Using the following unitary transformation acting on the spin
degrees of freedom:
P..(et)\/-—€? (39
1 1
In the Markovian limit, Eq.(33) becomes 2 2
U= (40
(FIMO=P, (&) —P__(e+A;t), (35 11
which obeys a Pauli-type equation so that we get V2 V2
N N R N - we get
(GO =(GIX+(FIMO) ~(5)Y]e ", (36) 9
_ . L s — Ty ail(AR)5+ Hg+ 15,81t T~ 3
where the equilibrium value of the populations is given by (6,)(t)=Tr A2 He 0BG T 54 0) U
\/1 \/1 Xi)B(o)e—i[(A/z)&XJrHBHeré]ta_x
__ 2_ __ 2 . . TP N
2 (€) 2 (e+A) — Tr MM AR (WA + Bty 15 ()

A \M
0y) = (37) _ A A
(02) X pg(0)e MAN@RF+ IR+ Bt

°° \/1— 2+\/1— +A)2
bl g et (41)
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Using the following perturbative expansion of the evolution

operator to order zero in &/

. . 1IN—0 N 1
e~ NN (A7) + (IN)Fg+aBlt e—maZB+O(_>

A’ 1
(42)
we get
1M\—0 L A o 1
(G)(t) = TreM7BUTpg0)Upg(0)e B +0 X)
(43
Using the following notation:
7 Blrn)=d,|rk)®B|7)=KE,| k) (44)
and
Helb)=E|b), (45)
we find that

1N\—0
(TH() = 2 eM<En( 91 pe(0)| 7)(k|UTps(0) U] - k)

X eiMKEﬂ_’_ 0]

1
X) . (46)

Becauségyg is diagonal in the basis that diagonalizl%§, we
have

(7lpe(0)7) =2 Knlb)(blpelb). (47

PHYSICAL REVIEW E68, 066113 (2003

R 1/)\~>02
<a-z>(t)(HB) = N

e?MEn(k|UTps(0)U] ~ k)
K, 7

2 . N .
=§|(H07Bs(0)0]-1) > €M
n

+0

i)

(49

+(—1|07pg(0)0]1) > e 2NE,
n

Performing now the following ensemble average over differ-
ent realizations oB:

_ +1/2 _
2 @2IME,(B) — f de n(e)GZI)\ts
n —-1/2

N T
T )12 4

RN
=N—+— (50)

we finally get

. . 1In—0 ‘Jl()\t)

(G(0)e® = 2—=—[(1]07p5(0)0] - 1)

+(—1|0"pg(0)0|1)]+0 (51)

F .

It is easy to show that the term of ordemlis zero. This
explains the fact thaD(1/\) has been replaced (1/\?).
Choosing as an initial condition

10
ﬁs(O)I(O 0>, (52)

we get

_IN—0
BRSEIUL) +o()\12>. (53)

<&z>(t)(ﬁB'B) N

If we perform an ensemble average over different realizaWWe have found a well-defined behavior of the system dy-
tions ofHg and use the random matrix eigenvectors statistic§lamics when the coupling parameteris so large that the

[14-16, we find

(7pe(0)| 7)) = 2% (7] b)F"e) (b] e[ b)("e

2 .
=S {blpalb) e

[=2

_ 2
- (48)

Equation(46) therefore becomes

coupling term can be considered to contribute alone to the
dynamics.

C. Numerical results

We will now numerically study the validity of the ap-
proximated equation that we just derived in order to under-
stand the dynamical evolution of our model.

In our numerical simulations, the initial condition of the
system is always the upper std&?): (d,)(0)=1. The dif-
ferent parameter domains represented in Fig. 1 will play a
fundamental role in our discussion of the dynamics.

We begin by the comparison between the results of the
non-Markovian version(33) and (34) of our perturbative

066113-11
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it — NM 2=0.1 E :\9.., 0390?J - o
P
e 4 w002k ™ NM -
A P -M
o «
N 7000047 A .
7 00006 7 FIG. 10. Time evolution of the
‘ ‘ L , z component of the spin: compari-
6 8 10 12 I 18 20 son between the Markoviafivl)
At and non-Markovian (NM) ver-
(bj_ 0.02 , : @ sions of the perturbative equation

equation and the results of the Markovian versig6)—(38)

for different values of the cou-
pling parameter. In all the cases
A=0.01 ande=0.

acteristic energy of the system\) is different in Figs. 10a)

(of Pauli type in order to understand better the consequenceand 1@b). But we are in both cases in domain A of the

of the Markovian approximation. Figures (&) and 1Qb)
show the time evolution ofd,) for both equations at differ-

reduced parameter phase spésee Fig. 1 For such small
values ofA, we see almost no difference between Figgalo

ent values of the coupling parameter. The time axis has beesnd 1@b). The characteristic time scale of the environment is
scaled by the coupling parameten?(). This scaling is char-  of order 27, and is therefore in both cases much shorter than
acteristic of the Lorentzian SOE regime. The valueshof the system one. We are in situations where the Markovian
have of course to be reasonably small in order to remaimpproximation makes sense on times longer thanlZsing
consistent with the fact that these equations are obtained pehe A2t scaling, the Markovian equation is independenk of
turbatively. The time scale that we are observing is the globarhis is not the case for the non-Markovian equation. We see
one: from the initial condition to the equilibrium. The char- that the strongex is, the larger the deviation is between both

'(a)_ %N 1 (e
08F, 2 N =R
LA 099995
S 06F LA=001 q
gN e ' 0.9999 FIG. 11. Time evolution of the
v o04f —NM - z component of the spin@), (b),
- X‘;ﬁ ﬁzﬁﬁzﬁﬁ E;;ggoxg(l)o 0999851 - von Neumann N=500 %=50| | and (c) Comparison between the
02r YR — NM exact von Neumann equation and
N A=0.1 the non-Markovian(NM) version
S B 099980 s S T of the perturbative equation for
2% t different values of the coupling
parameter(a) and (b) correspond
! ! ' TS e T ' ' (d) to A=0.1 and(c) to A=0.5 and
N o e N300 5550 ol e A2001 ] A=0.1. (d) Comparison between
I - NM | s 33 the exact von Neumann equation
= 06- P - A=10 T and the Bessel strong coupling re-
:/%N : ~ ol s [Z2e0an ] sult given by Eq(53) for A=0.01,
9 oal 3 17, " A=0 1 N=500, andy=50. In all the fig-
| 02- LY . ures xy=50.
02 o-
% 1 2 3 4 ; 025 020 30 20
2t M
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equations. This is the consequence of the fact that\the

scaling that we use amplifies the non-Markovian short time Jegime a B C
behavior(that occurs on time of order of the characteristic Equation

time scale of the environment2 when\ increases. Figures

10(c) and 1@d) show us the long time behavior of the Mar- M pert. eq.| Yes No No

kovian and non-Markovian versions of our equation. We see
that the equilibrium value ofd,) depends on for the non-
Markovian equation. This is not the case for the Markovian NM pert. eq| Yes | ves No
equation. The differences between the equilibrium values are
small. But, comparing Figs. 1€) with plot 10(d), one no-
tices that when is larger, the differences are larger. This is
a consequence of the error made on short-time dynamics
using the Markovian approximation. Because this error is
more important when is large, the consequence on the long _ . 2
time dynamics is more important, even if globally small. time scalingl At t At
We now compare the non-Markovian versi¢d3) and

(34) of our perturbative equation with the exact von Neu- 5 15 Taple giving the validity of the approximated equation
mann equatiori26), staying in the parameter domain A. Fig- anq of the time scaling for the different parameter domains of the
ures 11a) and 11b) show the time evolution described by mogel. The parameter domains are defined in Fig. 1. “M pert. eq.”
both equations at different values using the.’t time scal-  means the Markovian verion of the perturbative equatid),

ing. In Fig. 1Xa) the Markovian and the non-Markovian ver- “NM pert. eq.” refers to the Markovian version of the perturbative
sions of our equation are so close that we only plotted th@quation(33), and “Bessel” refers to the equatid3) obtained in
second one. We see that the non-Markovian equation is valighe very strong coupling regime.

not only for values of\ below an upper bound, but also

above a lower bound. When is too small, the non- y,ceq this behavior with a very high accuracy. The frequency

M.arkowan version of our perturb.at_l\./e equation d.oes not fitot the oscillations corresponds to the system dynamics ones
with the exact result. The exact initial dynamics is well re-

duced b . but th | ) hand the damping of these oscillations occur on a time scale
produced by our equation, but the relaxation process to thg, ognonding to the environment characteristic time scale.

equilibrium value is not reproduced. This is due to the dis- Finallv. in Eio. 1%d) we are in the high coupling param-
crete nature of the spectrum and therefore depends on ﬂé‘?er don{,ain O(gs.ee](F)ig. 1 We see the%[ Wher;z bgczmes
numberN of states and disappears in the !th_m_ It large enough to make the coupling term dominant in the total
corresponds to the border between the localized and Lorenramiltonian, the dynamics obey the Bessel behavior derived

zian regimes of the SOE. This is one of the main results of, ¢ (53). |t is important to notice that this behavior scales
this paper. This phenomena is of course again related to thg time according to\t.

effect of the perturbation between the levels in the total spec- A summary of the validity of the different approximated

trum that we already observed in the spacing distribution, irbquations[Markovian (36)—(38) and non-Markovian(33)—
the SOE, and in the ATPK has to be large enought (34 versions of our perturbative equation and the strong
>1/N) to “mix” the nonperturbed levels in order for all the coupling Bessel equatiof53)] and of the different scalings,

states inside the total unperturbed energy shell to be mixeganending on the regime that one considers, is represented in
together. Remember that the equilibrium value of our Mar'Fig. 12.

kovian perturbative equation is given by a microcanonical
distribution in the total unperturbed energy shiglee Eq.
(37)]. One also sees in Fig. () that our perturbative equa-
tion loses again its validity above a certain valueNoflt An interesting point is the comparison, for the system
happens at value of that cannot be considered as perturba-dynamics, between the averag@édndom matrix ensemble
tive any more. It also corresponds to a value of the couplingiveraged or microcanonically averagetynamics and the
parameter corresponding in the SOE to the transition in thelynamics of an individual realization within the statistical
Lorentzian regime when the width of the Lorentzian starts toensembles. This latter corresponds to a dynamics generated
be larger than the typical variation energy scale of the enviby an initial condition that corresponds to a pure state and
ronment density of states. without any random-matrix averagg=1).

In Fig. 11(c) we deal with the parameter domain(Bee We see in Figs. 18)—13f) the dynamics of a system
Fig. 1). We again compare the non-Markovian version of ourwith small energy spacingh=0.1 for different values of
perturbative equation with the exact dynamics given by the\?N. The solid line represents the random-matrix and micro-
von Neumann equation. In this case, the system dynafics canonically averaged dynamics. The dashed lines depict
period 0.47) is faster than the environment oifef period some of the individual members of the random-matrix en-
2m). We are in a highly non-Markovian situation. The Mar- semble corresponding to an initial pure state inside the total
kovian version of our equatiofthat describes no evolution unperturbed energy shell. We see that the laigét is, the
in this case¢ completely misses the observed behavior ofcloser the individual trajectories are from the averaged tra-
damped oscillations. But the non-Markovian equation reprojectory. We therefore have, whextN is large enough, that

Bessel No No Yes

D. Average versus individual realizations
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FIG. 13. In all the figures
A=0.1, N=500, =0, and e
=0.05.(a) Variance between indi-
vidual trajectories and the aver-
aged ond =100 as a function of
time for different values of2N.
(b) Power-law dependence be-
tween the equilibrium value of
this variance and N. (c)—(f) In-
dividual trajectories of the en-
semble(dashed lingsand the en-
semble averaged trajectorgolid
line). In (¢) A2N=0.1, in (d)
AN=1, in (e) A2N=10, and in
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the individual realizations are self-averaging in the random- V. THE VERY LONG TIME BEHAVIOR

matrix and microcanonical ensembles. In order to quantify
this behavior, we plotted in Fig. 18 the variance between
the individual trajectories and the averaged trajectory as
function of time for different values of2N. We observe that

We here focus on the very long time behavior of our
gwodel, in other words on its equilibrium properties.

this variance decreases R8N—x. In Fig. 13b) we show A. Equilibrium values of the system observables
that the asymptotic value of the variance decreases with a | ¢t ys consider the spin observalite of the two-level
power-law dependence with respectMeN. system. This observable evolves in time according to

We again see the relation with the SOE regimes. In the
localized regime[Fig. 13c)] the dynamics is governed by <(}Z>(t):Trf,(o)eiﬁmtt(}ze—iﬁtott
very different individual trajectories oscillating with a very
few frequencies that differ from one individual trajectory to _ - N 1A (E —E.,
another. This is a consequence of the fact that the perturbed N 2, (alp(0)]a’)(a’|& ]| a)e Bt
levels are still close to the nonperturbed ones and are only o
slightly affected by neighboring nonperturbed levels. In the CAl ; ; )
Lorentzian regimgFigs. 13d) and 13¢)], each individual thT]ee ?grlivsi\;g?i?r?g Z‘ﬂ’\i‘#gg‘g&)(t) is obtained perform
trajectory follows roughly the averaged trajectory and con-
tains a very large number of different frequencies. This 1T
shows that the interaction .“m|xes” many of the nonper- (67)= lim TJ dt<6'2>(t)=2 (a|p(0)|a) a|d,|a).
turbed levels, deleting the discrete structure of the spectrum. Too! JO a

Therefore, we can say that our master equati®l) or (55
(32) holds with a given accuracy for a majority of individual
trajectories ifA is small enough satisfying=CN"~” with We see that this time averaged value clearly depends on the
p<3 and a constan€>0, in the limit N— . initial condition.

(54)
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FIG. 14. Comparison between
the equilibrium value of(d,).,
given by the Pauli equation and

g OO - NA%=100
A - Microcanonic
© oar 2
NA=1 e

2 . .
S NA'=10 the exact values given by the time
Oz ] averaged value for different val-
0.4 -02 0 0.2 04 ues of\. These equilibrium values

are depicted as a function of the
initial microcanonical energy of
the environment.5e=0.05 in all
figures. The parameter values are
(@ A=0.01 and N=500; (b)
A=0.5 andN=500; (c) A=0.01

o and N=200-2000; (d) A=0.5
Voo andN=200-2000.
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An important result, that holds everywhere on the parambative equation gives again bad results. The Markovian per-
eter space and for all kinds of initial conditions, is that theturbative equilibrium values are correct in a characteristic
observed equilibrium value given by the exact von Neumanmegion of\. The beginning of this region corresponds, in the
equation corresponds very well to the time-averaged valu§OE, to the critical value af at which the transition occurs
(55). Therefore, the study of the equilibrium properties of from the localized to the Lorentzian regimes. The end of this
systems as ours is equivalent to studying the time average@gion corresponds to values that cannot be considered any
quantities(55). more as perturbative. Figures (¥ and 14d) show that

Let us note that the standard initial condition we used till{5,).. scales likeA?N. This again confirms our precedent
now is a microcanonical distribution around eneegfor the  analysis.
environment and an upper state for the system formally

given by B. Thermalization of the system
5“:' —e) S(E,— €) One of the important questions is to understand the con-
p(0)=]1){1|® B =E n |1n)(1n|. ditions under which the system thermalizes under the effect
n(e) n n(e) of a weak contact with the environment, or in other words,

(56) under which conditions the system relaxes to a canonical
distribution corresponding to the microcanonical temperature
of the environment.

S(E,— ) We begin by recalling these conditions in the general case

(a|p(0)|a)y="2>, ———"|(a|1n)|2. (57)  of a small system weakly interacting with its environment.

m (e The isolated total system is composed of the system and the

. . o _environment and has the total energy
An interesting point is to understand when the Markovian

perturbative equation gives the correct equilibrium value. We Ei=€te. (58
want, therefore, to compar®5) with (37). This is done in

Fig. 14 where we plotted the time averaged valag),. asa e is the energy of the environment aedhe energy of the
function of the initial energy of the environmeafthe initial  system. We suppose that the contribution of the interaction
value of the total system bein(§6)]. The different curves in  energy between the environment and the system is negligible
Figs. 14a) and 14b) correspond to different values af We  compared to the total energy. The microcanonical environ-
compare these curves to theindependent curves given by ment entropy is defined as

the Markovian perturbative equati@87). As expected from

our precedent study of the dynamics, we find again that, Sg(e)=kInQg(e), (59
when\ is too small, the “mixing” between the nonperturbed

levels is not sufficient inside the microcanonical energy shelivhere Qg(€) is the number of states of the environment
and the Markovian perturbative results overestimate thevailable at energy. This number can be related to the den-
equilibrium values. If\ is too large, the Markovian pertur- sity of states of the environmemiz(€) using the fact that

Therefore, we have that
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QOg(€)=ng(€) e, where de is a small energy interval but 1 L - e . —
contains many states of the environment. The microcanonical ]
temperature of the environment is given by 0.8l i
1 dS(e) I |
N v (60) 0.6 .
Tg(e) de |£2_1/4l I
It can be expanded in the system energy as eG4l -
dTg(e=E)
TB(sztot_e):TB(sztot)_eTo+'-', 0.2
(61) J A
: R 0.2 0 0.2 0.4
because we suppose that the system energy is much smaller e
than the environment energy. The specific heat capacity of
the environment is FIG. 15. Representation of the region where the thermalization
condition|(e?—%)/(e?+ 3)|>A holds.
1 dTB( E) 62
Cuple)  de 62 whereZ=73 e [Es/kTa(Ea=Euo)]

We conclude that two conditions are necessary in order to
If the condition thermalize the system to a canonical probability distribution
due to the contact with the environment: a large heat capacity
€ (63  of the environmentC,g(€)|>|e/Tg(e€)| and a microcanoni-
Te(e) cal distribution on the total energy shell.
Let us apply this result to the spin-GORM model. The
nsity of states of the environment is

|CUB(E)|>

is satisfied, the temperature expansion can be truncated A
follows:
Te(e=Eir—€)=Tg(e=E). (64) AN, (68)

nB(E)Z? Z—G.

Therefore, we understand that if E(3) is satisfied, the
environment plays the role of a heat bath because its tenFherefore the microcanonical temperature of the environ-
perature is almost not affected by the system energy. ment is

We suppose further that the interaction between the sys-
tem and the environment, even if small, is able to make the -1
total probability distribution microcanonical on the total en- Tg(e)= (69)
ergy shell at energ¥,;. We suppose also that the energy
levels are discrete and, therefore, thg}=Es+E,, wheres
andb are discrete index’s, respectively, for the system an
the environment. Therefore, the probabili®g(Es) for the
system being at enerdy; is given by C,5(€)=

d’;md the heat capacity is

(70

Qg(Ep=Ei—Es) 65)
Qo B The canonical distribution of the populations of the system,

. . at the microcanonical temperature of the environment, is
where Qg(Ep) is the number of states of the envwonmentgiven by

available at energl,,, andQ,,(E;.) the number of states of
the total system available at enerfgy;;,. Using Eqs(60) and

PS( Es) =

A Ae
(63), one gets that (&Z>$":‘;(‘€)= —tanhm = —tanhm. (72
(1K) Sg(Ep=Erg E9 €
Ps(E9= Qo Eqop) The first condition(63) in order to thermalize the system to a
(1K) Sg(Ep=Eto) ~[Eg/kTg(Ep=Eto)] o canonical probability distribution becomes
- Qo Eror) ' €2 — ‘_11
. o . ICoale)Ta(e)|=| 5—|>A (72)
Using the normalizationPg(E)=1, one finally gets the €+73

well-known canonical probability distribution for the system
B and is depicted in Fig. 15. The second condition to have a
e [Es/kTg(Eg=Eqqy] ; ical distributi the total hell i ti
67) microcanonical distribution on the total energy shell is satis-
Z 1

Ps(Bo)= fied (as we discussed in Sec. jAvhen \2N>1. In this
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1 @ T T | . that the smaller the system energy is the better the compari-
A <<;Z>£““‘c son is. Therefore, we can conclude that under these two con-
05k <>, Cm ditions [|(e®>—1)/(e?+3)|>A and A?N>1], the random
' ZTe matrices of the spin-GORM model can model an environ-
R <O J ment that behaves as a heat bath.
o oF 3
v (K C. Thermalization of the total system
05% . Until now, we have chosen initial conditions where the
system is in the upper state with a microcanonical environ-
. l ‘ ' ment at a given energy, like in Eq&6) or (57). We now
i Tz 0 0z = o4 want to consider initial conditions where the system is again
€ in the upper state but where the environment is at a given
canonical temperature:
1 7 T T T T
)] mic i A
F <oz>£ o —BgHg E efﬁBEn
can p(0)=|1)(1|® = 1n){1n|. (74
0.5F — <02>Tb(e) p(0)=[1)(1] Zs ~ 74 [1n)(1n|. (74)
- <G > mic A7
Ao 2 etAl2 - Therefore
o or 7
\ e~ BgEn ,
(alp(0)[a)=2 ——Kal1n)P (75
0.5¢: b n B
It is important to notice that there is no statistical equiva-
R 1 o3 0 o2 04 lence between the canonical and the microcanonical en-
£ sembles in the spin-GORM modgdee Appendix B There-
fore, it is interesting to ask how the probability distribution
! ©" ' 1 looks like at equilibrium after the interaction.
. <O> One can clarify this point by plottinge|p(0)| @) versus
05l —<0> (E)ca“ energy. One uses the following energy representation:
<G > i mic
A, — P(e)=2 8(E,—e)(alp(0)]a). (76)
g T | «
S If the total system thermalizes and reaches a canonical
0.5p P 7 distribution for the total system at an effective temperature
P Bait» one would have that
T H - ¥ o Beir®
€ P(e)= : (77)
Ztot

FIG. 16. Comparison between Eq31) and (73) for different
values ofA. The narrow dotted lines are plotted to show the unde-because
termination around the environment energy. The parameter values
are (a) A=0.01; (b) A=0.05; (c¢) A=0.1. “mic” means micro-
canonic and “can” means canonic.

~ BeftEa
(alp(0)]a)y=—g—. (79

case, the populations of the system obey the microcanonical As we shall see, it is the case if, agalis large enough
equilibrium value of the Markovian version of our perturba- to induce “mixing” between the states”’N>1.
tive equation(37), i.e., Indeed, one sees in Fig. (& that, forA=0, the states of
the total system corresponding to the upper level of the sys-
2 tem are exponentially populated and the ones corresponding
to the lower level are not. When the interaction is turned on
and increased, one can notice that the probability distribution
€ \/1 ( A)z \/1 A2 (73 starts to accumulate around a mean effective canonical dis-
B Z_

tribution. As expected, this accumulation becomes significant
when\?N>1 and, in this case, the total system can be con-
sidered as having thermalized. One can calculate the final
If the two conditions are satisfied, then E¢g1) and (73) effective temperature that the total system has reached after
should be equal. The comparison between EfB.and(73)  interaction. This effective temperature is depicted in Fig.
can be seen in Fig. 16 for different system energies. We set7(b) as a function oh. The correlation coefficient indicates
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whether the exponential fit of the final effective temperature
is good or not. The effective temperature obeys the following
law: Berr=Bi/(1+\2). We also show in Fig. 1) the com-
parison between the time-averaged value(@f) and his
canonical average computed with the effective temperature.
One sees that, whex?N>1, both coincide.

This thermalization is not statistical in the sense of the
equivalence between the ensembles. It is an intrinsic ther-
malization due to the complexity of the interaction between
the states. This thermalization appears at a critical value of
the coupling parameter when the interaction term becomes of
the order of or larger than the mean level spacing of the total
system.

VI. CONCLUSIONS

In this paper, we have studied a system made of two parts:
a two-level system interacting in a nondiagonal way with a
complex environment modeled by Gaussian orthogonal ran-
dom matrices. We began our study by analyzing the spectral
properties of this model. We investigated the spectrum on a
large energy scale with the averaged smooth density of states
and on a finer energy scale with the eigenvalue diagrams, the
shape of the eigenstatéSOB), the spacing distribution, and
the asymptotic transition probability kernéATPK). We
found a global repulsion as well as avoided crossings be-
tween the eigenvalues when the coupling parametamas
increased. We also showed the existence of three regimes
(easy to distinguish in the SQEhat are important to de-
scribe the different qualitative behaviors of the model: the
localized regime when the interaction between the levels is
weaker than the mean level spacingN=<1 (giving rise to
very narrow SOE the Lorentzian regime when the interac-
tion between the levels becomes larger than the mean level
spacingh?N>1 (giving rise to a Lorentzian SOEand the
delocalized regime for very largg (giving rise to SOE
spread over the whole spectrum

After the spectral study, we started the study of the dy-
namics of the system populations. We defined different do-
mains in the parameter spa@®e Fig. 1 and related them to
the different relaxation behaviors of the system population
induced by the interaction with the environment. For each of
these domains we tested the validity of approximated popu-
lation evolution equations. In the strong coupling limit, we
identified a population relaxation regime described by a
Bessel function~2[J;(At)/\t] (53) that scales in time ac-
cording to\t and reaches an equilibrium distribution corre-
sponding to the same probability of being in the upper and
lower states of the system. In the small coupling limit and for
small system energy, we obtained a Pauli-type equation
(36)—(38) describing an exponential relaxation of the system

FIG. 17. In all the figured =0.01,N=500, and3=2. (a) Prob- ~ population that scales in time according X3t and that
ability P(e)=Dist(e) of being in an eigenstate of the total system reaches an equilibrium distribution depending on the system
at equilibrium starting from the initial conditio(0)=]1){1] energy. The equilibrium value corresponds to a microcanoni-
®e s/ Zg with 1/8=0.5. (b) Effective temperature of the equilib- Cal probability distribution of being in a nonperturbed state
rium probability distribution obtained by fitting a canonical distri- Of the total system inside the total energy shell. Finally, we
bution to the data ofa). (c) Comparison between the exact equilib- Showed the necessity of taking into account the non-
rium population value and the canonical one computed with théeMarkovian effects in the dynamicévhich are important
effective temperature of pldb). when the system energy becomes non-negligible in front of
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the environment energysing a non-Markovian perturbative properties of a GORM are preserved under orthogonal trans-
equation[(33) and(34)] derived by the authors in R€fl7].  formations. Because the matrix is orthogonal, each nondi-
This equation is perturbative and therefore only valid foragonal elementy;; is equal to its transposed;. The

small coupling parameters. This equation describes th&j(m+1)/2 independent matrix elements bfare Gaussian
highly non-Markovian dynamics of the populatiomade of  random numbers of mean zero. The standard deviation of the

small and f.aSt system o§C|IIat|0ns _damped on a time Scalﬁondiagonal matrix elements),, and the standard deviation
corresponding to the environment time sg¢aiden the sys- ;

H H Y ~
tem energy becomes large in front of the environment en®f the diagonal matrix elementy, are related tayg by
ergy. This equation also reduces to the Pauli-type equation in
the opposite situation, when the system energy is small com- S o 1

. . . (TY = \/EO'Y = —_—
pared to the environment energy. The validity of these ap- D ND .
proximated equations depend on the parameter domain con-
sidered .and are summarlzgd in F_|g: 12. An important resull'l.he density of statesf the GORMY is defined by
concerning the small coupling limit is that there exist lower
and upper bounds on the coupling parameter values for M
which the perturba_nve equation holds. The lower bound de- d(E):E S(E—E;), (A2)
pends on the spacing between the states of the total systems i=1
and therefore on the si2¢ of the random matrices modeling _
the environment. We showed that this lower bound is relate@nd thesmoothed density of statey
to the transition between the localized and the Lorentzian
regimes in the SOE and that this bound disappears wWhen 1JE+(€’2)

(A1)
ay

d(E)=lim=

d(E)dE, (A3)
€JE—(el2)

— 00,
Another important result concerns the equilibrium values

of the spin-GORM model. We showed that they are very wellyhere e is a small energy interval which is large enough to

reproduced by the time averaged quantities. Moreover, Weontain many states in order fai(E) to be smooth. The

showed that the spin-GORM model can, under two condixyeraged smoothed density of staesn ensemble average

tions, describe the thermalization of the system to a canonis x realizations of the GORM. Such an ensemble is called
the Gaussian orthogonal ensemil€O0E). It is well known

[14—1@ that the ensemble averaged smoothed density of
stategd(E)), obey theWigner semicircular lawn the limit

e—0

this thermalization are a microcanonical probability distribu-
tion on the energy shell of the total systéthat occurs when .
A?N>1) and a large heat capacity of the environment comX ™"

pared to the ratio between the characteristic system energy

and the environment temperature. ay [2M E2 if |E|< [2M
Finally, we showed that the spin-GORM model can un- o T ag ! ag

dergo an intrinsic thermalization due to the complex interac- (d(E))s= (A4)

tion between the states, and reach an overall thermal canoni- 0 ) [2M

cal distribution. This thermalization again occurs when the if |E[= o

; X ) a
coupling parameter is large enoug@le., larger than the mean v

level spacing of the total systgrto “mix” the levels. The domain of energy where the eigenvalues are distributed

(i.e., the width of the semicircular lawis DY =\8M/ay.
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Tea=1/KkB. The evolution of a system observable is given
APPENDIX A: GAUSSIAN ORTHOGONAL RANDOM by
MATRICES (GORM) .
A e Fe iH ot A iH ot
~ — ~ I =1
A Gaussian orthogonal random matf@ORM) Y is char- (A9P(t)=Trpg(0) Zs © efAge” et (BD)

acterized byM, the size of the matrix, and by the parameter

ay, which enters the Gaussian probability distribution On the other hand, if the environment is in a microcanonical
P(Y)=Ce @&2T) of the whole matrix. The statistical ensemble, the evolution of the system observable is given by
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A \€E+) — ~ 6(€_HB) i|:|t0ttA 7i|:|mt’( 2 LA
(Ag)“(1)=Trps(0) (o) ererAge . (B2) When the system and the environment Hamiltonians are
B larger than the interaction term in E€), we can treat the
One therefore sees that interaction term in a perturbative way, taking the system and

the environment Hamiltonian as reference,

e

(A= [ den(o

Be
(Ag“(1). (B3)

B Holsby=Eg/sh), (Cy

The statistical equivalence between the canonical and micrayhere we replaced the indexby the two indicess,b. The
canonical ensembles{Ag)?(t)=(As)¢ (t), thus occurs perturbed energy is given to the second order by
when

e Be
Zg

A b’|B|b)[?
Eo=Esp=5STEE+N\2 Y uLH L

— 1+ O(\Y.
2 b’ #b EE—EE,-FSA (%

n(e) ~8(e—¢€'). (B4)

(C2
One understands that this equivalence is qualitatively satis-
fied whenn(e) is an increasing function oé. In this case, We notice that the first nonzero correction to the nonper-
n(e) (e P¢/Zg) is a sharply peaked function. In order to find turbed eigenstate is of ordar.
the maximum ofn(e)(e #€/Zg), we require the vanishing
of the derivative of its logarithm &/ de)In[n(e)(e P4/ Zg)] 2.0>1A

=0. We find that
! When \ is large compared t& and 1 in Eq.(5), it is

J 1 1 possible to consider the interaction term as the reference
@S(fmax)z T microl €mand) =~ ﬂ] (BS) Hamiltonian and to treakls and Hg as small perturbation.
Transforming Eq(5) by a unitary matrix acting only on the
where the microcanonical entropy is given by system degree of freedom, we get
S(e)=kInn(e)de. (B6) A
i L. Htot:_a'x"_HB_")\a'ZB. (C3)
where e is a small energy shell containing many levels. 2

This shows that ifi(e) (e #¢/Zg) is a sharply peaked func-
tion arounde, 5, the canonical average at temperatligg,  The nonperturbed reference Hamiltonian is, therefore,
is equivalent to the microcanonical average at the energy
€max Corresponding to the microcanonical temperature
Tmicro( €) = Tcan-

For the spin-GORM model, there is no equivalence be- . .
tween the canonical and the microcanonical ensembles. It <€t Ex7 and|m7>:|’i>®|"> be, respectively, the eigenvalues
due to the fact that the semicircular energy distribution is noeind eigenvectors dfiy:
an increasing function of the energy. In this sense, this shows
that the semicircular energy distribution does not describe a
usual environment.

To complete our reasoning, we notice that the maximum
of n(€)(e #€/Z;) is given by where n=1,... N/2 and k=*x1. The energy of the per-

turbed Hamiltonian is thus given to the second order pertur-

To

0=NG,B. (C4)

HolKﬂ>=)\EO'Z|K77>:)\EK7]|K7]>=)\KE,?|K7]>, (Ch)

1— \/1+—32 bation in 1A by
N (B7)
E, 1 .
S0 thate,=0 for B—0 andep= — 5 for B—oe. N Eat 7\<7]|HB| 7
A ~ 2
APPENDIX C: PERTURBATION THEORY 1 ‘E +< 77| HB| 17> 1
There is no analytical way of getting a general form of the + p 2 WJFO F) - (CH
eigenvalueE , of the total system, but the three terms in Eq. ;';(fi;] Km Tk
(5) have different orders of magnitude depending of the
value of the parameters andA. The system and the envi- 3 A
ronment Hamiltonians are, respectively, of orderand 1 : ’
while the coupling term is of ordek. Therefore, we can In this case, the bath Hamiltonian is large compared to the
examine the different extreme cases that can be treated pesystem Hamiltonian and the interaction term so that they
turbatively. both can be considered as perturbations. We get
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s 2
(b’ |B[b)? A A

A . -
E =E.,=—s+EB+\2 Eo=Esp=>StEf+s— > [(b'|B|b)|
a s,b 2 b b%b EE—EE, S 2 b A “h
+0O(A?%)+0(\?). (C7) +0(1)+0(\?). (e::)

4, ASI AN
We now suppose that the system Hamiltonian, taken as 'I('ng more S|tuat:|ons, l>dA andAi))\%l, Icogld be consid-
reference, is large compared to the environment Hamiltonia"€d Put cannot be treated perturbatively because no refer-

and the interaction term, so that these last two terms can b@nce basis exists in whidHg andB are simultaneously di-
considered as perturbations. We then get agonal.
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