PHYSICAL REVIEW E 68, 066112 (2003

Quantum master equation for a system influencing its environment
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A perturbative quantum master equation is derived for a system interacting with its environment, which is
more general than the ones derived before. Our master equation takes into account the effect of the energy
exchanges between the system and the environment and the conservation of energy in the finite total system.
This master equation describes relaxation mechanisms in isolated nanoscopic quantum systems. In its most
general form, this equation is non-Markovian and a Markovian version of it rules the long-time relaxation. We
show that our equation reduces to the Redfield equation in the limit where the energy of the system does not
affect the density of state of its environment. This master equation and the Redfield one are applied to a
spin-environment model defined in terms of random matrices and compared with the solutions of the exact von
Neumann equation. The comparison proves the necessity to allow energy exchange between the subsystem and
the environment in order to correctly describe the relaxation in an isolated nanoscopic total system.
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[. INTRODUCTION form in the case ofé-correlated environments. More re-
cently, anon-Markovian Redfield equatidras been obtained

Studying the dynamics of a simple system interactingthat preserves positivity and reduces to the Redfield equation
with its environment is a very important problem in physics.in the Markovian limit[11]. It has also been showii1,12]
The theoretical description of this problem started a longhat the Markovian Redfield equation can preserve positivity
time ago. if one applies a slippage of initial conditions that takes into

In the context of classical mechanics several master equaccount the non-Markovian effects on the early dynamics.
tions, such as the Boltzmann equation, the ChapmanSimilar considerations have been proposed for different mas-
Kolmogorov master equation, or the Fokker-Planck equationter equation§13—-15. As far as one considers the weak-
were derived in order to describe the time evolution of thecoupling regime, all the master equations derived till now in
probability density of the system variables. the literature at second order of perturbation theory can be

In the context of quantum mechanics, which interests usleduced from the non-Markovian Redfield equation.
in this paper, the time evolution of a system interacting with  The problem is that the non-Markovian Redfield equation
its environment is described in terms of a reduced densitps well as the other aforementioned master equations exist-
matrix that is obtained by tracing out the degrees of freedoning in the literature are based on the fundamental assumption
of the environment from the totésystem plus environment that the environment does not feel the effect of the system.
density matrix. In this way, the first quantum master equatiorThis assumption seems realistic for macroscopic environ-
was obtained by PauJiL—3] in 1928. This equation is called ments but not in the case of nanoscopic isolated total systems
the Pauli equationand describes the evolution of the popu- in which the density of states of the environment can vary on
lations (i.e., the diagonal elements of the density matrix an energy scale of the order of the system energy scale. Be-
when the system is weakly perturbed by an additional terntause nanoscopic physics is experimentally progressing very
in its Hamiltonian. The transition rates between populationgast, we expect that such effects will become important and
are given by the Fermi golden rule. In 1957, Redfipdd  measurable in future applications. Already, quantum dissipa-
derived the so-calledRedfield equatiorin the context of tion is being envisaged on the nanoscale for applications
NMR for a system such as a spin interacting with its envi-such as spin dynamics in quantum dft$] or isomeriza-
ronment. This equation has been widely used and applied tions in atomic or molecular clusters in microcanonical sta-
many systems where the dynamics of the environment ifistical ensemble$17]. Another possible application is the
faster than the dynamics of the system. This equation is Maiintramolecular energy relaxation in polyatomic molecules
kovian and has the defect of breaking the positivity on shorf18].
time scales of the order of the environment correlation time The aim of the present paper is to systematically derive
for initial conditions near the border of the space of physi-from the von Neumann equation a master equation which
cally admissible density matrices. Many similar master equatakes into account the fact that the energy of the total system
tions for a system interacting with an environment have beeffsystem plus environmenis finite and constant and, there-
derived since then starting from the von Neumann equatioffore, that the energy distribution of the environment is af-
and making several assumptidmeeak coupling limit, Mark-  fected by energy exchanges with the system. The aforemen-
ovianity, separation of time scale between system and envtioned equations can be derived from our master equation,
ronmenj [5-9]. In 1976 Lindblad 10] derived the most gen- which thus appears to be very general.
eral guantum master equation which is Markovian and which The plan of the paper is the following. In Sec. Il we
preserves positivity. The Redfield equation has a Lindblacdsystematically derive our master equation and the non-
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Markovian Redfield equation from the von Neumann equa- bl(t):eiﬁotf)(t)e—iﬁot
tion, by performing a second-order perturbative expansion in '
the coupling parametgunder the assumption of weak cou- V(t)=e‘ﬁ0tVe‘iﬁ0t

pling) for general environments. Thereafter, we consider the
Markovian limit in both cases. We also show how, in this
limit and neglecting the coupling between the populations
and the quantum coherences, our master equation reduces to
a simple equation of Pauli type for the total system, taking
into account the modifications of the energy distribution of
the environment due to the energy exchanges with the sy
tem. Finally, we compare our master equation to the Redfiel
equation and discuss how the Redfield equation can be seen Ao N _ N
as a particular case of our master equation. In Sec. Il we pi(t)=—1[AV(1),p (D) ]=L(t)p (1), (4)
apply our master equati_on and the Redfield (_aquation to thﬁ/ith the interaction LiouvillianZ,(t)=e“otz,efet where
case where th_e system is a two-level system interacting W'tgﬁotA:e—iHotAeiHot, the free Liouvillian £o= Lot Lg=

a general environment. In Sec. IV we apply the master equa= _ "~ A . )

tions to the case where the system is a two-level systerm i[Hs.-]1—i[Hg,-], and A is an arbitrary operator. The
interacting with a complex environmefisuch as a classi- perturbatlve expression of_the_ von Neumann equation in the
cally chaotic or many-body environmerhat is modeled by ~ interaction representation is given to order by

random matrices from a Gaussian orthogonal ensemble, .

which we call Gaussian orthogonal rqndom matrices ﬁu(t)=f>(0)+f dt,£,(t1)p(0)

(GORM). In Sec. V, we compare the solutions of the non- 0

Markovian and Markovian master equations to the exact so-

é(t) — eil:iBtéefil-]Bt’
"S(t):eil:lstéefil:lst. (3)

In the interaction representation, the von Neumann equation
?ecomes

lutions of the complete von Neumann equation in the case of + Jtdtljtldt2£|(t1)£|(t2)b(0)+O()\3) (5)
our spin-GORM model. Conclusions are finally drawn in 0 0
Sec. VI.

t
=;3(O)+fodTe’ﬁoT[,,eLOTfJ(O)
Il. DERIVATION OF THE FUNDAMENTAL EQUATIONS

t T
The Hamiltonian of the total systems that we consider + fodTL dre” 7L e[ e”*07e"0Tj(0)
here is made of the sum of the system Hamiltorfanand 5
the environment Hamiltoniafig plus a coupling term that +O\), (6)

has.the form of the product of a system operaoand a if we setT=t; and 7=t;—t,. Equation(6) is the starting
environment operatoB. The generalization to a coupling point of all the derivations of a master equation in the weak

term of the form\=;5,B; is easy. The amplitude of the cou- coupling limit for a total system made of a system and its
pling term is determined by the coupling parameter environment in mutual interaction.

A. Our quantum master equation

Hio=Ho+AV=Hs+Hg+\SB. oy We now derive our master equation which is the central

result of this paper. The main idea is to describe the time

R R evolution in terms of quantities which are distributed over

The eigenstates dfis, respectively oHg, will be denoted the energy of the environment. We thus define the following
by |s), respectivelyb). The eigenvalues 0%51 respectively  quantities in terms of which we intend to describe the prop-

of Ag, will be denoted byE,, respectivelyE, . Finally, the ~ €rties of the system:

E;;El:s.tates Ofl,,; Will be denoted byla) and its eigenvalues P (e)=Trp(t)|s')(s| 8(e— Ag). 7
The evolution of the total denSity matrix is described byThe diagona| e|emerf?ss(6;t) is the probabmty density to
the von Neumann equation: find the system in the statewhile the environment has the

energye. The off-diagonal elemen®Pgy(€;t) characterizes
. the density of the quantum coherence between the states
p(t)= —i[ﬂtot,ﬁ,(t)]sﬁtotﬁ(t), 2) ands’, density which is distributed over the energpf the
environment.
The matrix composed of the elemerRgy (€;t) is Her-

where L, is the so-called quantum Liouvillian or von Neu- Mitian
mann operator of the total system. The interaction represen- ' .
tations of the operators are given by Pss(6;1) =P (61). (8)
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Moreover, the normalization J(t)=1 of the total density We now have that
matrix implies that

Piss (6)=Trpy(t)|s")(s| 8(e—Hp). (15)
> f de P.(€;t)=1. (9)

Inserting the perturbative expansi@), we get

In order to obtain a closed description in terms of the o t T rTe
quantities(7), we suppose that the total density matrix can be ~ Piss'(€;1) =Tr Xp(0) + fodTTrXe 0L ,e~0"p(0)
described at all times by a density matrix of the following

form: t T -
+f de drTrXe “of
~ Pss’(HB ;t) ° °
)= "N——, 10 r —Lor “

p(1) E |s)(s'] R (10 X £,ef07L e Lo7efoTp(0)+O(N3),  (16)

where we have defined the energy density whereX=|s’)(s|(e—Hp). Differentiating with respect to
. time, we obtain the equation
n(e)=Trgd(e—Hg), (11

- b — v a— Lot Lot~
which is supposed to be smoothened on the energy scale of Piss (€)=TrXe =0'L,e70p(0)

the mean level spacing. The assumptid® has the effect of t .

neglecting the contributions from the environment coher- +f drTrXe %'z, eforL e Lomebolp(0)
ences to the system dynami@beit the system coherences 0

are kept in the descriptionWe remark that the formiL0) is +O(N\3), (17)

not supposed to strictly hold at all times but is an assumption

in order to obtain a closed set of equations for the quantitieg/here the initial density matrix takes the assumed f6t6)
Pss(€1). with t=0.

In order to better understand the meaning of the above The first term is thus explicitly given by
definitions, we notice that the reduced density matrix of the
system takes the form . .
Tr Xe ©ot L e“otp(0)=—i\ Tr|s')(s|(e—Hg)e'"o!

f)s(t)ITrBfJ(t)If de Trgd(e—Hpg)p(t) ><[\7,e_motf)(O)eiHOt]e_“:'Ot
=f de 9P (et)(s'], (12 =—ik§ e/ EY(s|Ss)
s,s’
which can be represented in the basis of the eigenstates of X Psy/(€:0)n(€)(B)

the system Hamiltonian as _ R
+inY e IEBESs)
S

Pll(e;t) Plz(f;t) PR P]_Ns(e;t)
Pau(et) Pofet) ... Panget) X Psf €;0)n(e)(B)., (18
pott)= [ de o | _ B
with the environment coupling operatBraveraged over the
Png(et) Pyo(et) .. Pyqu(€t) microcanonical state of the environment
(13

gy T 8(e—Hg)B
The goal of the precedent choice for the formpdf) is thus (B)e= n(e) '
to obtain a description in which the statef the system is

correlated with the energy of the environment. In other We now assume that this average vaniskB$,=0. Oth-
words, the density matrifg of the system is decomposed as erwise, the nonvanishing average is absorbed in the system

(19

a distribution over the energy of the environment. Hamiltonian by the following substitutions:
We now proceed to the derivation of the equations of
motion for our quantitiesPy(€;t) in the weak-coupling Hs—Hg+\(B).S, (20)

limit. We start from the perturbative expansigé) of the
total density matrix in the interaction representati@n We .
first define the interaction representation of our quantities V—V—(B).S, (21

(7):
Piss (€)= EsEp_(et). (14) Hg—Hg, (22)
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leaving unchanged the total Hamiltonian. Thanks to this simwhich we can substitute in E¢17) to get
plification, the first-order term of the perturbative expansion

vanishes
. t R
Tr Xe~ %o ,e%o'p(0) =O0. (23 Prs(€b= f AT TrXe 0L oL e F0eteih(0)
As a consequence, the time evolution of the total density +0(\3%)
matrix is given by the uncoupled Hamiltoniaﬁozﬂs
+Hpg up to correction of the order of?: _ _)\Zei(Es—ESr)tE fthTr[ |s'\(s| Se—HAg)
sg JO
p(1)=e5H(0) + O(N?). (24) o
it
According to our closure assumption that the total density x| SB,| S(— 7)B(—1),[s |_§<_'|—B) H
matrix keeps the form(10) during its time evolution, we n(Hg)
have that O3, (26)
Pss(Hg;t)
e“!p(0)=p(t)+O(\?)= SS—+o \2),
PO=p( ) Z S n(Hpg) (") Going back to the original representation with Et4) and

(25 expanding the two commutators, we obtain

Pe(&1)=—i(Es—Eg)Psy (&)= N2 Jtdr{<s|2°»é(—r>|§><?|s’>Tr55<s—ﬂB)BEs(—rw
55 0

n(He)
N ~ PSS (HB t) Sl
—(s|S[s)(S"|S(—7)|s") Trgd(e— HB)BT (—7)—(s|S(—N[s)(5|S]s")
B
P Pss ; Hg;t) . .
X Trgd(e—Hg)B(— )SS(—BB+(S|_§<_'|S(—T 3" ) Trgd(e— HB)LB)B(— B +0(\3).
n(Hg) n(Hg)
(27)
|
In order to evaluate the four last terms, we notice that, for a . .
quasicontinuous energy spectrum, we can write f de’ (e’ —Hp)=1, (31
Trgd(e—Hg)Bo(e' —Hg)B we can now write that
— _ r_ , RIh/\|2 o P H it
t%, 8(e—Ep)8(e' —Ey)|(b|Blb")| Trad(e—Fig)BB(— r o= Heit)
' n(Hg)
=n(e)n(e')F(e,€), (28
=P— (€ ' ' Natile—e)t
where the functiorF(e,€’) stands for s (6,'[)[ de'n(e")F(e,€")e . (32
Fe.e")="KelBle")P", (29 Ps (Flgst) .
TrB(S(G HB)B B(_ 7')
where |e) denotes the eigenstal®) of the environment n(Hg)
HamiltonianHg corresponding to the energy eigenvakig _ )
=e. Equation (29) supposes some smoothening of the =n(6)Jdf'Pa(f’;t)F(E,E')e“(FE)t, (33
squareg(e|B|e’)[? of the matrix elements dB over a dense
spectrum of eigenvalues around the energiesd €. The o P (Fg:t).
function (29) has the symmetry Trgé(e—Hg)B(—17) SS(A B)’
n(Hg
F(e,e')=F(€',e). (30
— "P— (€' NNa—i(e—e)t
With the definition(29) and the identity n(e) f de’Psy (e )F(e,e")e TG

066112-4



QUANTUM MASTER EQUATION FOR A SYSTEM.. ..

Tr=8 H )PSS’(HB;t)é é
I - E— =
sd(e—Hpg n(Flg) (=7

= §»(e;t)Jde’n(e’)F(e,e’)efi(rér)t. (35

Accordingly, our quantum master equation finally takes the

closed form

Po(€t)=—i(Es—Eg)Psg(€;t) N2>, f de'F(e,e’)

x [ dri(s/39)® 8P (<n(e)
0

xetilem e +EEn)T_ (o &5)(T|Ss)
X Psg(€';t)n(e)eti (e~ € *Es~Es)7_ (5| F5)
X(S'|§s')Pss(€’;t)n(e)e (=€ +Es~ BT
+(S'|S[S)(S[S|s")Psz (e:t)n(€")

xe e B TEIT L O(ND). (36)

pss’(f;t)z —1(Es— Es’)Pss’(f;t)_i)\ZE [

f de'n(e’)F(e,€’)

PHYSICAL REVIEW EB8, 066112 (2003

Equation(36) determines the time evolution of the distribu-
tion functionsP. (€;t) describing the populations and quan-
tum coherences of a system influencing its environment and
is the central result of this paper. It is a hon-Markovian equa-
tion because of the presence of the time integral in the right-
hand side.

In Eq. (36) the function n(e)F(e,e’) determines the
properties of the coupling to the environment and, in particu-
lar, the time scale of the environment. If this time scale is
supposed to be shorter then the system time scales
{27/(Es—Eg/)}, we can perform aMarkovian approxima-
tion in Eqg. (36). Such an approximation is justified for a
process evolving on time scales larger than the environment
time scale. The Markovian approximation consists in taking
the limit where the upper bound of the time integral goes to
infinity and using the following relations:

o ) 1
f dre'T=+iP— + 78(w), (37
0 w

where P denotes the principal part.
We finally obtain the Markovian version of our quantum
master equatio36) as

e—€ +Es—Eg

x[<s|é|?><?|é|§>P§s/<e;t>—@él?x?|é|s'>Ps—s<e:t>]—<s|é|§>@|é|s'>n<e>f de’F(e,€')Psg(e€';t)

1 1

Xn — P

e—€ +Eg—Eg e—€ +E,—Eg

J

—m\Z> {n(e+Es—Eg)F(€,e+Es—Eg)

S,S

X[(s|S[5")(S|S[s)Pss/ (€;1) +(SIS[S)(S|SIs") Psd €:1) ] —(s|S[S)(S'|S]s " In(e)

We notice that the use of this Markovian equation may re-
quire a slippage of initial conditions as shown in Refs.
[11,12. In Eq.(38), the last terms inTA\? typically describe
the relaxation to a stationary solution. The termsiit
modify the frequencies of oscillations and include the so-

X[F(E,E+Esr—Egr)Pgr(e'FES/—Egr;t)+F(G,E+Es_Eg)Pgr(E‘f‘Es_Eg;t)]}"‘O()\?’). (38)
[
Eq(e)=Es+\2>, |<s|“s|§>|2f de'n(e')F(e,€’)
S
XP——— +O(\3 40
e— € +Es—Eg () (49

called Lamb shifts of the zeroth-order energy eigenvalues.
Indeed, if we consider only the evolution of the off-diagonal

matrix elemenP. (e:t) by neglecting its coupling to all the and the damping rates

other matrix elements, we obtain the equation

Pss(et)={—i[Es(€)—Es(€)]-Tsg(€)}Pss(€1),
(39)

with the energies modified by the Lamb shifts

Teg(€)=m\2 > [[(s|S[S)fPn(e+Es—Eg)
s(#5)
X F(e,e+Es—Eg+|[(s'|3s)’n(e+Eg —Eg)
X F(e,e+Eg—Eg]+m\%((s|S|s)

—(s'|S]s"))2n(€e)F(€,€) + O(A3), (41)
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in agreement with the results of R¢&]. We notice that the during the whole time evolution, whefg;, does not depend
complete equations for the off-diagonal matrix elementon time. The Redfield master equation is derived in the
couple in general different energies because of the integralweak-coupling limit by a method similar to the one of the
over the environment energy. previous section to get
The evolution equations for the populations of the states
|s) of the system can be obtained by neglecting the contri- = .. ..~ . 28 Jt &\~
butions from the quantum coherences, i.e., by neglecting the ps(="1[Hs,ps(]=A"S odTa(T)S( Mps(t)
terms involving off-diagonal elements &f;y(€;t). This is
justified in the weak-coupling limit as long as the coherences 28 Jt xS
vanish or are negligible in the initial conditions, i.e., TATSPS(L) odm (NS(=7)
Psy(€;0)=0 for s#s’. Accordingly, we obtain the follow-

i luti tions for th lations: ‘ 2 PR
ing evolution equations for the populations +R2j0d7a(r)8(— Dp(1)8
Pode;t)=2m\2>, (s|S|s")?F(e,e+Es—Ey) SNyt tdm*(T)AS(_T)ASJFO()\g) (45
s/ Ps 0 ,

X[n(e)Psrs(e+Es—Eg t)
—N(etEs—Eg)Ps{e)]. (42)

with the correlation function of the environment operators
a(t)=(B(t)B(0))=TrgpsB(t)B(0). (46)

This equation is a kind of Pauli equation established with th%quation (45) is a non-Markovian Redfield equatiofThe

Fermi golden rule and the conversation of energy in the transon-Markovianity comes from the fact that the integrals over
sitions. Indeed, if a transition happens from a state in whichypressions containing the correlation function depend on
the energy of the system [, and the one of the environ-  time_ The density matrix of the system can be represented in

mente to a state in which the system has enekly, the  tne pasis of the system eigenstates as
final energy of the environment should b€ =e+E;

—Eg , which is well expressed by Ed42). Nevertheless, 7ss (1) =(s|pg(t)|s"). (47

Eq. (42) rules the populations of the state®f the system

with the extra information given by the distribution over the In this representation, the non-Markovian Redfield equation
environment energy, which is not a feature of the standard has the following form:

Pauli equation and which turns out to be of importance to

understand the relaxation inside a nanoscopic isolated sys- 7ss (1) =—1(Es—Eg/) 75¢/(1)
tem.
t
Our Markovian master equatid8) is more general than A2 J de’n(e’)F(e,e')f dr{(s|S[s")
an equation for the populations because it also describes the 58 0

time evolution of the distributions of the quantum coher- A i(e—e' +E—Eo)r .
ences over the energy of the environment, as shown in the X(s'|S[s) 7ss (V) s E)7—(s[S[s)

following sections. ~ . , A
g (S |8[s") s (D& (e TETEDT_ (5] g

B. Comparison with the Redfield master equation X(5'|S]s") e (1) (e~ *ES "B (S| S[5)
We now discuss the conceptual differences between our X(S[3Is) peg (1)o7 TETEIN L O()\3),
guantum master equation and another one known as the Red- 5s
field master equation. This equation is well known in the (48)

context of nuclear magnetic resonari®VR) where it de-
scribes the time evolution of nuclear spins interacting with,, . o -
P g tion in Eq. (45) goes to zero after a certain time. This time,

their environment. lled th ! i lation ti determi th
The Redfield master equation describes the time evolutioffd'€d the environment corretation limeg,,, determines the
time scale of the environment dynamics. If we perform the

of the system density matrix obtained tracing out from the ) C . .

total density matrix the degrees of freedom of the environMarkovian app_roxmjatlorthat_ consists of putting the upper

ment bound of the time integral in the non-Markovian Redfield

equation to infinity, one gets the standard Redfield equation.

ps(t)=Trgp(t). (43 We notice that, in doing so, the time evolution may be

spoiled on a time scale of ordeg,,, unless some use is made

of some slipped initial condition§l1,12. Performing this

Markovian approximation, one gets the standévthrkov-

ian) Redfield equatiogiven by Eq.(45) with [§ replaced by

[ - As shown in Refs[11,12], the use of this Redfield Mar-

p(t)=ps(t)®pg (44 kovian equation needs to be supplemented by a slippage of

If the environment is large enough, the correlation func-

The Redfield equation is derived by using the closure ap
proximation that the total density matrix keeps the form
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initial conditions. 1 A
In order to compare the Redfield equation with our master  a(7,€)= WTFB(S(G— Hg)B(7)B
equation derived in the previous section, we consider the

case where the environment is initially in thrécrocanonical 1 ~ A A
state: =mf de’' Trgé(e—Hg)B(7)8(e' —Hg)B

S(e—Hg)  d(e—Hp)
Tred(e—Hg)  N(e)

Pp= (49) :f de'n(e')F (e e )e e €T, (50)

Having chosen the microcanonical density mai@®) for In the basis of the system eigenstates, the Redfield equation
the environment, the correlation functiofo) takes the form  takes the form

1 N N N
[ derntenFiee)P———|(sI85) (5 8 ms (0~ (SIS

_, —
e—e +Es—Eg

7ss(1) = —I(Es—Eg) 755 () =N 2 |

(s|S[s)(5|SIs") 7ssr (1)

X(§'|AS|S’>775§t)]+J’ de’n(e’)F(e,s’)[P ! -P

e—€e'+Eg—Eg e— €' +Es—Eg
— A2, {n(e+Es—Eg)F(e,e+Es—Eg)[(s|S[S)(S|S[S) 7ss: (1) + (SIS[S)(F|SIs') ne( 1)]
—[n(e+Eg—Eg)F(e,e+Eg—Eg)+n(e+Es—Eg)F(e,e+Es—Eg)](s|S[5)(5'|3]s') 7s (1)} + O(A3).
(51)

The off-diagonal elements of the system density matrixent for Egs.(42) and (53). Let us focus on the evolution of

individually obey the equations the probability to be on a system state corresponding to the
) 5 5 system energ¥;. In both equations we see that for the loss
7sg (V) ={—1[Eg(€) —Eg(€)]-Tsg(€)}nss (1), (52 contributions to the evolution coming from the jumps from

an energykEg to an energyEg , the density of states of the

with the same Lamb shift€l0) and damping ratell) asin  environment is modified by the enery— Es, . This is con-

our master equation and as expected from R&f.There is  sjstent with the Fermi golden rule applied to the total system

no d|.fference between our quantum master equation and thg,q thus, keeps the total energy constant. We care now on

Redfield one at this stage. , _ the gain contributions to the evolution. In our equatidg),

On the other hand, the Redfield equation predicts an eVQge see that for these contributions due to jumps from the
'U“OT‘ of the populz_;\tlons ruled by_the_ followmg equation system energ¥. to Eg, the density of states of the envi-
obtained by neglecting all the contributions coming from the . - -
coherences in Eq51): ronment is n_10d|f|ed by t_he energy, —Eg. _Thls is also

consistent with the Fermi golden rule applied to the total
system and, thus, keeps the total energy constant. However,
nsd)=2mN2Y, [(s|S|s")[F(e,e+Eg—Es) for the Redfield equation we see that for the jumps from an
s’ energy Eg to an energyEg, the density of states of the
environment is not modified by the energy —E,, which
is not consistent with the Fermi golden rule applied to the
Xn(e+Es—Eg ) nsdt)]. (53  total system and does not keep the total energy constant.
One can represent, for the Markovian case, the transitions
This equation is the same as the master equation for tha@escribed by Eqs(42) and (53) in a plane of the system
populations derived by Cohen-Tannoudji and co-workers irenergy versus the environment energy. In Figs. 1 and 2 we
Ref.[5]. have depicted the energy exchanges described, respectively,

We notice that important differences now exists betweerby the Redfield equation and our equation in the Markovian
the population equatiorf53) obtained from the Redfield limit for two different systems. Transitions between the sys-
equation and the other population equati@?®) obtained tem and the environment have to preserve the energy of the
from our master equation. Both equations describe the evdetal system according to the Fermi golden rule and have
lution of the populations as a random walk process in theherefore to occur along diagonal lines of the plane. One can
spectrum. However, these processes are significantly diffesee in Figs. 1 and 2 that only our equation satisfies this

Xn(E“F ES’_ES) nS'S/(t)_F(€'6+ ES_ ES/)
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FIG. 1. Schematic representation of the energy exchanges de- .

scribed, respectively, by the Redfield and by our master equation in

the Markovian limit for a two-level system model, in the plane of

the system energkg versus the environment ener@g . The en- L i .

ergy splitting between the two levels of the system is denotetl.by FIG. 2. Generalization of the previous Fig. 1 for the case where

The energy spectrum of the system is disctet® levels while the (e System has more than two levéiere four levels One can see

one of the environment is a quasicontinuum represented by thH1at the syste_m Ieveléjorlzontal I|ne$'th_at do not_lntersect the

density of states given by the Wigner semicircular [&8) of width total energy dlagopa! lin&=Es+Eg within the enV|.r0nm.ent en-

equal to unity. The total energy of the system is givenEby Eq ergy §pectr_um dellmlted_ by the sparse-dotted vertical lines do not

+Eg, which corresponds to the diagonal line. The initial condition Participate in the dynamics.

is denoted by two empty superposed circles. We see that transitions

preserving the total energy have to occur along the diagonal line .

E=Es+Eg. Doing this, they satisfy the Fermi golden rule for the (s|ps(D)[s") = nse ()= f de Psg(€t). (56)

total system. One can see that only our master equation satisfies this

condition (dotted transition lings The Redfield equation describes . . .

transitions that occur along a vertical line at constant environmentVé Se€ that, in our master equation, the matrix elements of

energy and is therefore wror{dashed transition lings the system density matrix are decomposed on the energy of

the environment. This is not the case for the Redfield equa-

condition. The Redfield equation describes transitions thaion. The decomposition allows us to correlate the states of

occur along a vertical line at constant environment energyn€ system with the states of the environment. This is the

and is therefore not consistent with energy conservation ifn@in point of our master equation. The density matrix

the total system. This is acceptable if the environment jgdopted for the Redfield equation cannot describe such cor-

sufficiently large and has an arbitrarily large energy. HOW_reIa_tlons. In t_he Redfle!d equation, during the e_volutlon, the

ever, this is inadequate if the total energy of the system angnvironment is always in the same state while, in our master

the environment is finite as in nanoscopic systems, in whicigguation, the state of the environment is determined by the

case our master should replace the Redfield equation. state of the system. As a consequence, we obtain a descrip-
We can summarize as follows the differences between odion Which is consistent with energy conservation thanks to

quantum master equatiof88) and the Redfield equation OUr master equation.

(51). The derivation of both equations is based on the per-

turbative expansion of the total density matrix, but a specific

form is imposed in each equation to the total density matrix

[see Egs(10) and(44)]. The consequence of this choice can

be seen on the reduced density matrix of the system. In the

Redfield theory, we have

-------------- Pauli - - - - Redfield

Ill. APPLICATION TO THE SPIN-ENVIRONMENT
MODEL

In this section we consider a specific class of two-level

systems interacting with an environment. The two-level sys-

tem may be supposed to be a spin. An example is the spin-

ps(t) =2 [8) mss ()(S'], (54)  boson model in which the environment is a set of harmonic
s,s' oscillators behaving as phonofik9].

The Hamiltonian of the spin-environment model we con-

while, for our master equation, using Ed2) we have sider here is the following:

ps(t)= J'desP,e;t s'|. 55 . A - .

ps(t) 2 [8)Pss (€5t)(s'] (55) e 20+ lo 1. -
The system density matrix is related to the distribution func-
tions according to The eigenvalue equation of the system is
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. A A We observe that the diagonal and off-diagonal elements of
Hgls)= 552|S>:5§|3>, (58 P, (€;t) obey decoupled equations in the case of the spin-

environment model. Therefore, the time evolution of the

wheres=+1. Like in Sec. Il, we first derive our master Populations is independent of the time evolution of the quan-

equation and then the Redfield equation in order to compar&im coherences. We now perform tharkovian approxima-
both equations. tion that consists of putting the upper bound of the time

integral to infinity. Using Eq(37), we find
A. Using our master equation

- ) — 2 .
Let us now apply our master equation to the spin- Pri(e)=2m\F(e, e+ A)[n(e)P__(e+ A1)
environment model. In our theory and for a two-level sys- —n(e+A)P, (€1)], (63)
tem, the total density matrix becomes

1 i i P__(et)=2m\%F(e,e—A)[Nn(e)P, (e—A;t)
p(t)=n(HB)[P++(HB;t)I+><+I+P+_(HB;t)I+><—| Cn(e=AP__(eD)], 64)

+P_(Hgs)| = )(+[+P__(Hg:t)| = )(—[]. 59
) ) ) P+_(6;t):—iAP+_(6;t)+i)\2f de'F(e,€)

For the spin-environment model, our non-Markovian master
equation(36) is given by

2A
XP—————[n(e')P._(et)
P++(e;t):—>\2P++(e;t)f de'F(e e )n(e’) (e-e)?-a%
+n(e)P_.(e:t)]—mAn(e+A)F(e,e+A)
t ) , ) ,
X fodf[e'(e_f AT @Ti(em e AT +n(e—A)F(e,e—A)]P, _(e;t)+mA%n(e)

X[F(e,e+A)P__ (et+A;t)
HZ”(G)J de’F(e.€’)P__(e";1) +F(e,e—A)P_,(e—A;D)]. (65)

> fth[ei(e—e’+A)r+ e—i(e—5’+A)7] (60) We notice that during the time evolution of the populations,
0 the following quantity remains a constant of motion:

F’,,(e;t)z—)\zP,,(e;t)fde’F(e,e’)n(e’) P(e;t)=P,  (et)+P__(etA;t)=P(¢;0). (66

. Accordingly, the difference of the populations defined as
X f dT[ei(e—e'—A)7+ e—i(e—s'—A)T]
0 Z(et) =P, (et)—P__(et+Ast) (67)

+)\2n(e)f de'F(e, e )P, (€';t) obeys the differential equation

Z(E;t)=277)\2[n(6)—n(6+ A)]F(e,e+A)P(€;0)
—2mN[n(e)+n(e+A)]F(e,e+A)Z(€;t),
P, (et)=—iAP, _(et)—A\?P, _(€t) (68)

t f ’ f ’
Xf dT[el(575 *A)T+e*|(5*5 7A)T], (61)
0

Xf de'F(e e’)n(e’)ftdr[ei(f’f'”)f the solution of which is given by
, 0

_ Z(e;t)=Z(&;°)+[Z(€0)—Z(e;%)]e” TPait (69
+e (AT 4 \2n(e)
with the asymptotic equilibrium value
XJ de'F(e, e )P__(€';1)
n(e)—n(e+A)

Z(e;0)= —————=P(€0) (70)
t H ’ H ’
Xf dT[eNE?E 7A)T+efl(57e +A)T]’ (62) n(6)+n(€+A)
0
_ and the relaxation rate
and a further equation foP_, (€;t) given by the complex
conjugate of Eq(62). Yeaui= 2N [N(€)+n(e+ A)]F(e,e+A). (71
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Therefore, the populations relax to their asymptotic equilib- Here again, there is a decoupling between the time evo-

rium values for each pair of energiesand e+A of the en-  lutions of the populations and of the quantum coherences.

vironment, keeping constant the initial distribution of the  Taking the Markovian approximation by replacifig into

quantity Re0). J5 and using Eq(37), we get the Markovian Redfield equa-
The time evolution of the distribution functios. - (e;t) tions for the spin-environment model:

of the quantum coherences is more complicated because

there is now a coupling between a continuum of values of the

environment energy instead of only two values. Accordingly, 7.+ ()=2TNNn(e—A)F(e,e—A)p__(t)
the distributions of quantum coherence is ruled by a couple
of two integro-differential equations, instead of an ordinary —Nn(e+A)F(e,e+A)n. ()], (79)

differential equation.

n-_()=2m\’[n(e+A)F(e,e+A t
B. Using the Redfield equation 7--(1) mA (e JF(e.e )74+

For the spin-environment model, the non-Markovian and —n(e=A)F(e,e=A)n-_(1)], (76)
Markovian Redfield equations can be derived from E48)
and(51). Using Eq.(48), the non-Markovian Redfield equa- _
tions here write 7. _()= —iAn+_(t)+iA2f de'n(e')F(e,€’)
: _ 2 ’ ’ ' 2A
e ()==Nn, (1) [ de'n(e")F(e,€’) XPW[W+_(t)+7]_+(t)]_7T)\2
€E— € -
X ftdr[e‘(f’f'”)%e’i(f’f'“)f] X[n(e+A)F(e,e+A)+n(e—A)F(e,e—-A)]
0
X[n4-(1)=n- (D] (77)
2 ’ ’ ’
A ”——(t)f de'n(e’)F(e.€’) The populations of the two-level system are controlled by the

. z component of the spin defined as the difference
Xf dT[ei(efe'*A)T_{_e*i(fffrfA)TL (72)
0

Zredfield 1) = 7+ + (1) — 7 _(1). (79
According to the Markovian Redfield equatioiig5) and
n__(t)= —)\zn__(t)f de'n(e')F(e,€") (76), the z component obeys the differential equation
><fotdr[ei(f*f’ﬂme*“f*f’*A)f] Zrediiel™ 2N N(e— A)F(e,e—A)—n(e+A)F(e,e+A)]
—27\[n(e—A)F(e,e—A)
+)\277++(t)f de'n(e")F(e.€’) +n(e+A)F(€ e+ A)]Zpedsield- (79

% jth[ei(e—a+A)T+ e‘i(f‘é/”)T], (73) Its solution is given by
0
Zredfield t) = Zredfield )

7o (O=—id7. (N () [ den(eF(ee) +[Zredtied 0) = Zredtnd ) €7 Tretel, (80

. with the equilibrium value
Xf dT[ei(e—e’+A)T+e—i(s—e'—A)T]
0
N(e—A)F(e,e—A)—n(e+A)F(e,e+A)
ZRedfield ) = — — ,
N(e—A)F(e,e—A)+n(et+A)F(e,et+A)

+)\277,+(t)j de'n(e’)F(e,€’)

(82)
% fth[ei(reuA)”r e ileme'+0)7) (74p ~ and the relaxation rate
0
el 2T\ [N(e—A)F(e,e— A
and a further equation for_,(t) given by the complex Vredrer= 2mh[N(e~A)F(e,e=4)
conjugate of Eq(74). +n(e+A)F(e,e+A)]. (82
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We notice that the rate predicted by the Redfield equation A 1 .
coincides with the one predicted by our master equation only B=—X"'. (85)
in the limit A=0. A more important difference appears in the V8N

asymptotic equilibrium values for the component of the

spin predicted by both equations. These differences find their

origin in the problem of conservation of energy with the X andX’ are two statistically independeNt2x N/2 random
Redfield equation, as explained above. Comparison with numatrices belonging to the Gaussian orthogonal ensemble
merical data will confirm this explanation in a following sec- (GOE) of probability density

tion in the case of the spin-GORM model.

X)=Cexp —ai Tr X?), 86
IV. APPLICATION TO THE SPIN-GORM MODEL p( ) ¢ XF( X ) ( )

In order to confront our master equation and the Redfield L )
equation with numerical data and test their respective do?ith @x= 2 and a normalization constadit N/2 is the num-
mains of validity, we now apply our theory to a specific C|<,:1$Sber of states of the environment. The off-diagonal and diag-
of two-level systems interacting with an environment, foronal elements oK are independent Gaussian random num-
which the environment operators are Gaussian orthogonéﬂers with mean zero and standard deviatiogg o= 1 and
random matriceSGORM). We call this model the spin- 0 gag™ V2, respectively.

GORM model and its detailed properties will be described In the limit N—<, the density of states of the environ-
elsewherd20]. ment gets smooth and can be calculated by an average over

The system is a two-level system, while the environmenthe random-matrix ensemble
is supposed to be a system with a very complex dynamics.

Here, the term complex is used in a generic way. The com- A

plexity can come, for example, from the fact that the corre- _ _

sponding classical system is chaoticlike in a quantum billiard n(e)= E ole=Ep). @7

or for the hydrogen atom in a strong magnetic fig2d,22.

It can also come from a large number of coupling betwee
states in an interacting many-body system like those appe
ing in nuclear physicd22] or in systems of interacting
fermions like quantum computer§22]. A well-known

it is known that the GOE level density is given by the
anner semicircular law

method, developed by Wigner in the 1950s, for modeling 4N

the energy spectrum of a complex quantum system contain- —V\i-—€ if |el<3

ing many states interacting with each other, consists of as- ne)=y 7 (89)
suming that their Hamiltonian is a random matf33—-25. 0 if |e|=%.

Here, we suppose that the Hamiltonian of the environment is
a Gaussian orthogonal random maii@&ORM). The interac-
tion between the spin and the environment is given by ahe random matrices are normalized so that the level density
coupling operator which is the product of a system and enef the environment has a width equal to unity. To simplify
vironment operators. The latter is also represented by ehe notations in the following, we use the convention
GORM because of its complex interaction with the many
degrees of freedom of the environment. Such random-matrix
models have recently turned out to be of great relevance for Jx if 0<x
the discussion of relaxation and dissipation in quantum sys- Vx= 0 if x<0 (89
tems[16,26—29. |

The spin-GORM model can therefore be considered as a
particular case of the spin-environment model in which the  For the following, we also need to evaluate the function
enV|r0nment Operators are GORM. The Ham|lt0n|an Of the‘F(e € ) for our random matnx mode| For th|s purpose we
spin-GORM model is thus given by need the random-matrix average of the quan@§). Since,

in the GOE, we have that

- A - «
HtOt:E&Z+ HB+ )\&XB (83)
— 1
KbIBIb)P= 75 (90)
where the Hamiltonian of the environment is
A TV
Hszﬁx, (84) Kb[B[b)= g (91
and the environment coupling operator by we find that
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Tred(e—Hg)Bo(e' —Fg)B= 2, 8(e—Ey)d(e’ —Ep)|(b|B[b)]?
b,b’

=E 8(e—Ep) 8(e' —Ep) [(b|B|b)[?+ E 8(e—Ep)8(e' —Epr) |(b|B[b")[?

E S(e—Ep) (€' = b)+8N 2 d(e=Ep)d(e' —Ep)
b#b’

——N Eb 5(e—Eb)6(e’—Eb)+8—N E S(e—Ep) (e —Ep)

1 1
28—N5(6—6’)n(6)+ 8—Nn(e)n(e’). (92

In the limit N—, the first term becomes negligible in front . A2 1
of the second term so that the comparison with E2f) P,,(e;t)=—?P,,(e;t)f de’ Z—e’z
shows that for the spin-GORM model,
sinfe—e'—A)t A% |1
X——+ —
(e—e'—A) ™ V4

F(e,e')zi. (93

8N sin(fe— e’ —A)t

jde P,.(€";t) (—e— 1) , (95
The total system contains states. The unperturbed den-
sity of states of the total system is schematically depicted in
Fig. 3, forn=0. The model has different regimes whether the .
splitting A between the two levels of the spin is larger or
smaller than the width of the environment level density. The

spin-GORM model can describe a large variety of physical % 1, td i(e—e'+A)7 | gile—e'~A)7
situations. In the present paper we focus on the perturbative 4 € o e € ]

regimes (\<I:|B). When A is larger than the width of the
semicircular density of states of the environment, we are in a N1 | ge .
highly non-Markovian regime. The dynamics of the system t5 Nz € | de'P(ehD)
is faster than that of the environment. On the other hand,
whenA is smaller th_an unity, we are in a Markovian regime > ftdq_[ei(reumur g i(eme'Ta)T] (96)
because the dynamics of the environment is much faster then
the one of the system.

Now, we apply our master equation and the Redfiel
equation to the spin-GORM model in both their Markovian
and non-Markovian versions.

)\2
P, (et)=—iAP, _(€t)— P+ (€;1) jde

c\Ne notice that the equations for the populations are decou-
pled from the ones for the quantum coherences.
Performing the Markovian approximationand using
lim,_, .. (sinot/w)=78w) and Eq.(37), we get
A. Using our master equation

We now apply our master equatiof36) to the spin- 1
GORM model. Using Eqs60)—(62), (88), and(93), we get P..(et)=—)\2" /——(e+A)2P++(e;t)
the non-Markovian equations 4

1
_ A2 1 +)\2\/Z—62P__(6+A;t), (97)
P++(e;t)=—?P++(e;t)J de’\/z—e’z
sinfe—e'+A)t A% |1 )
B A R S . 1
le—e+n) wVa € P__(e)= N5~ (e~ B)%P__(eit)

, , . Sin(e—€"+A)t 1
dee Pii(e’t)(e—e—'-l—A)’ (94) +2\2 Z—eZP++(6—A;t), (98)
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A P(e;t) =P, (et)+P__(e+A;t)=P(¢0) (100
is a constant of the motion for each enekggf the environ-

ment, as already noticed with E@6). The differencd67) of
populations obeys the differential equati@®). If the initial
distributionsP(e’;0) andZ(e';0) are Dirac delta distribu-

tions centered on the initial energy

A=3/2 T
P(e';0)=6(€'—e), (101
Z(€';0)= (€'~ €)Zpauf 0). (102
The z component of the spin defined as
TTR=12
I Zoaul) = [ dez(en (103

obeys the same differential equation as the distribution
Z(€1),
) 1 1
A=0 ZPauI(t):)\z[ \/Z_ - \/Z_(6+A)2J

. —xz[ \/%—e% \/Ll—l—(e+A)2

FIG. 3. Schematic representation of the smooth density of states (104
(DOS) of the unperturbed spin-GORM model=0) for different
values of the energy splitting of the spin. The horizontal axis is The solution of Eq(104) is given by
the environment energywhile the vertical axis is the energy split-
ting A. In the lower and central parts, the splittings smaller than _ _ —y
the width of the environment DOS. In the upper part, the spliting Zeaul 1) = Zeaul ) * [ Zpauf 0) = Zauf <) Je 7ok, (109
is larger than the width of the DOS.

ZPauI(t)-

with the asymptotic equilibrium value

: L RS , A

Yo e . o, . Zpaul( ®) = . (109
X 7€ P, _(et)+ 7 eP__(€";1) \/E_EZ+\/E_(6+A)2

N A1 1 ‘ N
- 7[ \/Z_(E+A)2+ \/Z_(G_A)ZJ and the relaxation rate

N

XP,_(e)+ 5 \7—€lP_i(e+A;D) o\ \/%—62+\/%—(6+A)2_ 107
+P__ (e—A;t)], (99

With the convention89), the expressions are nonvanishing
where the expressions and integrals over energy extend ovghly over the interval of definition of their argument. Figure
the interval of definition of the level densit)(E) and of the 4 he|ps us to represent the different values that take Eqs
distributionsPs¢ (E;t) which is always—1/2<E<+1/2,E  (106) and(107) in the space of the environment enekggnd

being the argument of these functions. of the splitting energyA of the two-level system.
We now focus our attention on the evolution of the popu-

lations. We see from Eq$97) and (98) that the transitions
conserve the total energy of the system and environment so
that the transitions occur between the only two energies  For the spin-GORM model, the correlation functiGt6)
ande+A of the environment. As a consequence, the quantitican be calculated by performing a GOE average. Using the

B. Using the Redfield equation
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e+1/2

-1/2 0 172

FIG. 4. Schematic representation of the different regimes of the
spin-GORM model for situations where the initial state of the spin

iss=+1, in the plane of the environment energyersus the spin

energy splittingA. The different regions correspond to different

values of the functions(e), n(e+A), andn(e—A), wheren(E)
denotes the DOS defined by the semicircular (88). One can take
a value of the environment energy anywhere betweeﬁ% and
e=3, wheren(e)#0. In region 1:n(e+A)#0 andn(e—A)=0.
In region 2:n(e+A)=0 andn(e—A)#0. In region 3:n(e+A)
#0 andn(e—A)#0. In region 4:n(e+A)=0 andn(e—A)=0.
This figure is useful to evaluate equations such as Ef¥ and
(107 and (115 and(116).

level density(88) and the valug(93), the microcanonical
correlation function’50) becomes

“(’“f):f de'n(e')F(e,e")ele )7

+12 4N [1 , 1 eme)
Zﬁmdf7 2 ¢ 8ne

T

Jli
— ier

= eer (108

in the limit N—oc, whereJ,(t) is the Bessel function of the

first kind.
Therefore, using the Redfield equatiti?)—(74) and the

microcanonical correlation function of the spin-GORM

i
12

,,(t)f drcog(e—A)7] ,

7]++(t)— 7\277++(t)J drcog(e+A)7]

(109

PHYSICAL REVIEW E8, 066112 (2003

. t
7--(1)= —?\zﬂ——(t)fodTCOS{(f—A)T]

A 77++ J’dTCOi(G"‘A)T] y (110)
T)
. o 2 t iAT Jl(z
- (D=—1An, ()—\ m_(t)fodre coden)—
A=
_ 2
Zn,+(t)f;dfe*'%os{e¢) > (111)

These are the non-Markovian Redfield equations for the
spin-GORM model. The Markovian Redfield equations for
the spin-GORM model take the following forms:

\l__(f"'A) 744+ (1)

77++
1
xz\/z—(e—mzn__(t), (112
1
“AZ\ 7 (e= APy (D)
1
AP\ 7 (eF AP (D), (113
ne-()=—iAn, ( |_j de’ \/
XP;[ t)+ (1]
(6—6’)2—A2 7+-( -+
A2 1 1
_? \/Z—(E+A)2+ \/Z—(G—A)ZJ
X[ne ()= n_ (D] (114

We focus on the evolution of the populations. The popu-
lation of the two-level system is controlled by theompo-
nent of the spin by Eq(78). According to the Markovian
Redfield equation§l12) and(113), the time evolution of the
z component is given by E¢80) with the equilibrium value
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1 1 1 ' ' ]
\/——(e—A)Z— \/——(«H—A)2 ‘ — von Neumann
4 4 B - Redfield M I
ZRedfield ) = , 0.75 — Pauli M -
\/E—(G—A)Z-F \/}—(G'FA)Z Redf_ieldNM
4 4 _ r - Pauli NM
115  Los .
and the relaxation rate
0.25 -
2 1 2 1 2
Yredfiel= M| \/ 7 ~(€7A)"+ \[7—(e+4)7).
(110 U . ! . . ! . i
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Figure 4 depicts the different regimes predicted by this equa- t
tion in the space of the environment energgnd the split- i _ .
FIG. 5. Relaxation of the component of the spin for the spin-

ting energyA. X >F X
We observe that in the limis—0, where the energy scale SORM model for a very small spin energy splittidg=0.01 with
A=0.1, e=0.25,N=2000, andy=10. The exact curve is given by

of the system is much smaller than the one of the environ- . . o )

ment, both our master equation and the Redfield equatio'rrfteg.ratlng the von Neumann equation, which IS compared with the
. . . .. solutions of the Pauli and Redfield Markovigivl) and non-

predict a similar value for the relaxation rate._However, dlf'Markovian(NM) equations. We see that all the perturbative equa-

ferences appear for th_e value of the asymptotic value of thetions give similar results in the present case.

component of the spin. As we explained here above, the

reason is that our master equation is consistent with energy

conservation in the total system albeit the Redfield equatiofging of the signal ovex = 10 individual systems. Besides

is not. This problem spoils the applicability of the Redfield the conditionNA?>1, the coupling parameter should also be

master equation if the environment is not arbitrarily large assmall enough to justify the perturbative treatment, typically

we shall see in the next section. A<<0.3.
The equations we are comparing are the following.
V. NUMERICAL RESULTS AND DISCUSSION (i) The von Neumann equation describes zttdmponent

of the spin using Eq(2) with the Hamiltonian(83). Averag-

The purpose of the present section is to compare the difl’ng is carried out withy realizations of the GORM Hamil-

ferent master equations with exact numerical results obtaineg nian. This calculation does not involve any approximation
for the _relaxa!nor_l of the_z component of the_ spin due to the and, therefore, gives the exact solution of the problem. All
interaction with its environment in the spin-GORM model. ; . : .

the following equations will be compared to this one.

The initial condition of the spin is always the state). The i Th i | Markovi . f
environment is always taken in a microcanonical distribution (i) € méDGS ge_nerz no;z ardo;gan vr(]a_rs;]on N c:cur mas-
at a given energy. The width of the energy shell of this tef €duation36) using Eqs(94) and(95), which we refer to

microcanonical distribution is always equal &e=0.05. as the Pauli non-MarkoviafNM) equation. ,

A general comment is here in order concerning the appli- (i) The Markovian versiori38) of our master equation,
cability of a master equation to a quantum system with avhich we refer to as the Pauli Markoviah) equation. For
discrete energy spectrum. Indeed, beyond a time longer thdh€ SpPin-GORM model, this equation is given by E(&7)
the Heisenberg timéwhich is defined as the level density of and(98) and its solutions by Eq$105—(107).
the total systemy quantum beats and recurrences appear due (iv) The Redfield non-Markovian equatidd8) is given
to the discreteness of the energy spectrum. Only, the decdyy Egs.(109 and(110) for the spin-GORM model.
before the Heisenberg time can be compared with the predic- (v) The standard Redfield Markovian equati@hl) is
tion of a quantum master equation. It turns out that the furgiven by Egqs(112) and(113) and its solutions by Eq$80)
ther conditionNA?>1 should also be satisfied, which re- with Egs.(115 and(116).
quires that the coupling parameter should not be too small The results of the numerical calculation of the time evo-
with respect to the mean level spacing which goes Bs If/  |ution of the z component of the spin are depicted in Figs.
this condition is not satisfiedNA?< 1) the time evolution of 510 for different regimes of the spin-GORM model, i.e., for
individual systems present large quantum oscillations whicldifferent values of the energy splitting of the two-level
widely deviate from the prediction of the master equation.system as well as of the environment enekgyin all the
On the other hand, i\2>1, the deviations with respect to cases, the coupling parameter is equak t0.1.
the predictions of the master equation are smaller than the Figures 5, 7, and 8 depict the global relaxation of the
signal itself and tend to decreaseMs-« [20]. In the limit  component of the spin for increasing values of the energy
N—o, the decay curve which is the solution of the mastersplitting A. In accordance with what we argued before on
equation is approximately followed by a majority of realiza- theoretical grounds, we see in these figures that the larger the
tions of the process by individual systems. In the figuresnergy splittingA of the system is, the bigger is the differ-
given here, these deviations are not seen because of an avence between the Redfield and our master equation. We also
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t t
FIG. 6. Relaxation of the component of the spin for the spin-  FIG. 8. Relaxation of the component of the spin for the spin-

GORM model in the same conditioms=0.01,A=0.1, e=0.25,N GORM model for an intermediate spin energy splittihg 0.5 with

=2000, andy=10 as in Fig. 5 in order to show that, on a short time A=0.1, e=—0.25,N=2000, andy=10. The exact solution of the
scale of the order of the correlation time of the environmegt. ~ von Neumann equation is compared with the solutions of the Pauli

=10, the non-Markovian equatiotidenoted by NM describe very ~ and Redfield MarkoviariM) and non-Markoviar(NM) equations.
accurately the dynamics although the Markovian oftesioted by ~ Here, we see that the Redfield equations give completely wrong
M) is exponential and deviate from the exact behavior. On a longefesults after a short time. The Pauli equations give much better
time scale(fmuch longer tharr,,,), the solutions of the Markovian results than the Redfield ones.

equations join those of the non-Markovian equations.
of the Redfield equation in Fig. 8 although the solution of

see that our equation always fits very well with the exact vorPYr master equation continues to be in agreement with the

Neumann equation, which is not the case of the Redfield*@Ct time evolution. This can be understand with E26)

equation. As argued before, this is due to the fact that th@nd(ll‘r’) fo_r the asy_mptotlc eqt_ullbrlum values of taeom-
Redfield equation does not take into account the changes pponent, which predict, respectively,

the energy distribution of the environment induced by the — (117)
system transitions. When the system energy is very small this Pauli™ >
makes almost no difference, but when it increases, this has to 7o =1 (118
be taken into account and our master equation becomes nec- Redfield™ — =

essary. : . . - T . T

In particular, a large discrepancy happens for the solution 1k

— von Neumann

- Redfield M
1 b ot ] - Pauli M 1
— von Neumann 05k ) ll){edlf_“leld NM
AU Redfield M i > auli NM
075 A — Pauli M A =
Redfield NM Nt
- -~ Pauli NM ]
) 0.6
< 0.5F
L . | . I . | R SO
02 045 20 40 60 80 100
I t
0O ' 1(|)0 ' 2(|)0 ' 3(1)0 ' 460 ' 5(')0 600 FIG. 9. Relaxation of the component of the spin for the spin-
t GORM model in the same condition$=0.5, A=0.1, e=—0.25,

N=2000, andy=10 as in Fig. 8. We focus here on the short time

FIG. 7. Relaxation of the component of the spin for the spin- dynamics in order to see that only the non-Markovian equations
GORM model for a small spin energy splittilg=0.1 withA=0.1, (NM) reproduce the initial behavior of the system which is not the
€=0.25,N=2000, andy=10. The exact solution of the von Neu- case for the Markovian equatioriM). After 7.,,~10, the non-
mann equation is compared with the solutions of the Pauli andMarkovian Redfield equatiofiRedfield NM becomes wrong but
Redfield Markovian(M) and non-Markovianf(NM) equations. We our master equatioiPauli NM) is still valid. On a longer time
see that our master equatiéPauli NM) gives the best results and scale, the solution of the Markovian version of our master equation
that the solutions of the Markovian equations remain very close tdPauli M) joins the one of the non-Markovian version of our equa-
those of the non-Markovian equations. tion (Pauli NM).
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£ ' | L A L B Pauli non-Markovian equation gives better results than the
— von Neumann Redfield non-Markovian equation not only on long time
Redfield NM | 1 scales but also on short ones, even if their solutions essen-
- Pauli NM tially coincide on a very short time of order,,, but not
0.99995 - . !
- more. Again, when the energy of the system is to small to
t;/ affect the density of state of the environment, this difference
between our non-Markovian equation and the Redfield non-
e Markovian equation disappeafsee Figs. 6 and)9
We see in Fig. 10 the relaxation of ta@omponent of the
spin in a highly non-Markovian regime. The energy differ-
0.99985 ence between the two levels is here much larger than the

| width of the level density of the environment. The Markov-
e ian equations are not plotted here because they describe a
0 5 015 20 25 30 35 constant value equal to unity for all times and, therefore,

t completely miss the dynamics. The whole spin dynamics

FIG. 10. Relaxation of the component of the spin for the NaPPeNs on a time scale of ordeg,,. We also see that, in
spin-GORM model for a large spin energy splittifg=5 with this highly non-Markovian regime, there_ is almost_ no differ-
A=0.1,€e=0.25,N=2000, andy=10. The exact solution of the von €NCe between the non-Markovian Redfield equation and our
Neumann equation is compared with the solutions of the Pauli andnaster equation on the short time scale that we plotted. The
Redfield non-MarkoviariNM) equations. We are in a highly non- non-Markovian Redfield equation as well as our non-
Markovian regime. The Markovian equations are not plotted herdMarkovian master equation continue to fit with the exact
because their solutions are a constant equal to unity at all times ardynamics even on longer time scales not represented here.
therefore miss the whole dynamics. We see that in this highly nonThe special structure seen in Fig. 10 can be understand by
Markovian regime and on the short time scalg, there is almost  using Eqs(109 and(110). Indeed, the curve is the result of
no difference between the non-Markovian Redfield equatRed-  some time integrations of the Bessel functiyi(t/2) divided
field NM) and our master equatidauli NM). by t and modulated by cast. Since the modulations of

cosAt have a period 2/A shorter than the decay time,,

for A=0.5 ande=—0.25. The discrepancy of the Redfield =10 of the Bessel functiod,(t/2), a shape reminiscent of a
equation finds its origin in the violation of energy conserva-Bessel function only appears as an envelope of the oscilla-
tion between the system and its environment by this equations of the decay curve.
tion. The Pauli equation has the advantage of allowing a We conclude that, as expected from theoretical arguments,
correct energy exchange between the spin and its envirorur master equation gives excellent predictions, especially in
ment, which is crucial for obtaining the correct asymptoticsituations where the system energy is greater than or of the
equilibrium value of thez component. same order of magnitude as the typical energy scale of varia-
We can also notice in Figs. 5, 7, and 8 that, on the globation of the density of states of the environment. We also
time scale, the non-Markovian and Markovian equations ar@otice that for non-Markovian dynamics that happen on a
very close to each other. But if we look on a shorter timetime scale of ordetr,,, the non-Markovian Redfield equa-
scale, we see in Figs. 6 and 9 small differences between tHiN gives the same result as our master equation for short
non-Markovian and Markovian equations in the early stagdime scales. But for longer time scales our equation is the
of the decay. The solutions of the non-Markovian equation®nly one that correctly describes the dynamics.
are in best agreement with the exact time evolution and
present a nonexponential early decay on the time scale of the
environment correlation timer{,,=10). In contrast, the so-
lution of the Markovian equation immediately enters in an We derived in this paper a master equation to study the
exponential decay and, thus slightly deviates from the exaaynamics of a quantum system interacting with its environ-
solution. This observation concerns both the Redfield andnent. This equation is obtained by a perturbative expansion
Pauli equations. This suggests that, as explained in Refsvith respect to the coupling parameter between the system
[11,12, a slippage of initial conditions is required for both and its environment. Our equation is more general than the
Markovian equations in order to avoid this small early-decaypreviously obtained perturbative master equations because
discrepancy. We also observe that this discrepancy decreasesr equation explicitly takes into account the exchange of
with the energy splitting\. This is expected since the Mar- energy between the system and its environment. This effect
kovian approximation is valid if the time scale of the systemis important when the density of state of the environment
dynamics 2r/A is longer than the environment time scale varies in a significant way on energy scales of the order of
(7cor=10). Therefore, the smalléx is, the better is the Mar- the system energy scales.
kovian approximation. If one wants to make a correct de- We showed how the well-known master equations of the
scription of the system dynamics on a time scale of ordetiterature can be derived from our equati(@®) by perform-
Teorr» the non-Markovian equations should be ugedthe ing different types of approximations. Our equation reduces
Markovian equations should be supplemented by a slippag® the non-Markovian Redfield equati¢f8) if one neglects
of initial conditions[11,12). We also see, in Fig. 9, that the the changes in the density of states of the environment in-

VI. CONCLUSIONS
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duced by the system. Moreover, we showed that by performwe have carried out numerical simulations of the spin-

ing the Markovian approximation on our equation and ne-GORM model(for which one can compute the exact solu-

glecting the coherence contribution to the populationtions) that show the greater accuracy of our master equation

dynamics, we get a Pauli-type equatio#?) for the total  with respect to the other well-known master equations in

system(systemtenvironmenk that describes the time evolu- Markovian and non-Markovian situations.

tion in terms of distributions defined on the energy spectrum

of the en_wrgnment. When one neglects the chang_es in the ACKNOWLEDGMENTS
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