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Quantum master equation for a system influencing its environment

Massimiliano Esposito and Pierre Gaspard
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~Received 16 June 2003; published 24 December 2003!

A perturbative quantum master equation is derived for a system interacting with its environment, which is
more general than the ones derived before. Our master equation takes into account the effect of the energy
exchanges between the system and the environment and the conservation of energy in the finite total system.
This master equation describes relaxation mechanisms in isolated nanoscopic quantum systems. In its most
general form, this equation is non-Markovian and a Markovian version of it rules the long-time relaxation. We
show that our equation reduces to the Redfield equation in the limit where the energy of the system does not
affect the density of state of its environment. This master equation and the Redfield one are applied to a
spin-environment model defined in terms of random matrices and compared with the solutions of the exact von
Neumann equation. The comparison proves the necessity to allow energy exchange between the subsystem and
the environment in order to correctly describe the relaxation in an isolated nanoscopic total system.
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I. INTRODUCTION

Studying the dynamics of a simple system interact
with its environment is a very important problem in physic
The theoretical description of this problem started a lo
time ago.

In the context of classical mechanics several master e
tions, such as the Boltzmann equation, the Chapm
Kolmogorov master equation, or the Fokker-Planck equat
were derived in order to describe the time evolution of
probability density of the system variables.

In the context of quantum mechanics, which interests
in this paper, the time evolution of a system interacting w
its environment is described in terms of a reduced den
matrix that is obtained by tracing out the degrees of freed
of the environment from the total~system plus environment!
density matrix. In this way, the first quantum master equat
was obtained by Pauli@1–3# in 1928. This equation is called
the Pauli equationand describes the evolution of the pop
lations ~i.e., the diagonal elements of the density matr!
when the system is weakly perturbed by an additional te
in its Hamiltonian. The transition rates between populatio
are given by the Fermi golden rule. In 1957, Redfield@4#
derived the so-calledRedfield equationin the context of
NMR for a system such as a spin interacting with its en
ronment. This equation has been widely used and applie
many systems where the dynamics of the environmen
faster than the dynamics of the system. This equation is M
kovian and has the defect of breaking the positivity on sh
time scales of the order of the environment correlation ti
for initial conditions near the border of the space of phy
cally admissible density matrices. Many similar master eq
tions for a system interacting with an environment have b
derived since then starting from the von Neumann equa
and making several assumptions~weak coupling limit, Mark-
ovianity, separation of time scale between system and e
ronment! @5–9#. In 1976 Lindblad@10# derived the most gen
eral quantum master equation which is Markovian and wh
preserves positivity. The Redfield equation has a Lindb
1063-651X/2003/68~6!/066112~18!/$20.00 68 0661
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form in the case ofd-correlated environments. More re
cently, anon-Markovian Redfield equationhas been obtained
that preserves positivity and reduces to the Redfield equa
in the Markovian limit@11#. It has also been shown@11,12#
that the Markovian Redfield equation can preserve positiv
if one applies a slippage of initial conditions that takes in
account the non-Markovian effects on the early dynam
Similar considerations have been proposed for different m
ter equations@13–15#. As far as one considers the wea
coupling regime, all the master equations derived till now
the literature at second order of perturbation theory can
deduced from the non-Markovian Redfield equation.

The problem is that the non-Markovian Redfield equat
as well as the other aforementioned master equations e
ing in the literature are based on the fundamental assump
that the environment does not feel the effect of the syst
This assumption seems realistic for macroscopic envir
ments but not in the case of nanoscopic isolated total syst
in which the density of states of the environment can vary
an energy scale of the order of the system energy scale.
cause nanoscopic physics is experimentally progressing
fast, we expect that such effects will become important a
measurable in future applications. Already, quantum diss
tion is being envisaged on the nanoscale for applicati
such as spin dynamics in quantum dots@16# or isomeriza-
tions in atomic or molecular clusters in microcanonical s
tistical ensembles@17#. Another possible application is th
intramolecular energy relaxation in polyatomic molecu
@18#.

The aim of the present paper is to systematically der
from the von Neumann equation a master equation wh
takes into account the fact that the energy of the total sys
~system plus environment! is finite and constant and, there
fore, that the energy distribution of the environment is
fected by energy exchanges with the system. The aforem
tioned equations can be derived from our master equat
which thus appears to be very general.

The plan of the paper is the following. In Sec. II w
systematically derive our master equation and the n
©2003 The American Physical Society12-1
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Markovian Redfield equation from the von Neumann eq
tion, by performing a second-order perturbative expansio
the coupling parameter~under the assumption of weak co
pling! for general environments. Thereafter, we consider
Markovian limit in both cases. We also show how, in th
limit and neglecting the coupling between the populatio
and the quantum coherences, our master equation reduc
a simple equation of Pauli type for the total system, tak
into account the modifications of the energy distribution
the environment due to the energy exchanges with the
tem. Finally, we compare our master equation to the Redfi
equation and discuss how the Redfield equation can be
as a particular case of our master equation. In Sec. III
apply our master equation and the Redfield equation to
case where the system is a two-level system interacting
a general environment. In Sec. IV we apply the master eq
tions to the case where the system is a two-level sys
interacting with a complex environment~such as a classi
cally chaotic or many-body environment! that is modeled by
random matrices from a Gaussian orthogonal ensem
which we call Gaussian orthogonal random matric
~GORM!. In Sec. V, we compare the solutions of the no
Markovian and Markovian master equations to the exact
lutions of the complete von Neumann equation in the cas
our spin-GORM model. Conclusions are finally drawn
Sec. VI.

II. DERIVATION OF THE FUNDAMENTAL EQUATIONS

The Hamiltonian of the total systems that we consid
here is made of the sum of the system HamiltonianĤS and
the environment HamiltonianĤB plus a coupling term tha
has the form of the product of a system operatorŜ and a
environment operatorB̂. The generalization to a couplin
term of the forml( i Ŝi B̂i is easy. The amplitude of the cou
pling term is determined by the coupling parameterl:

Ĥ tot5Ĥ01lV̂5ĤS1ĤB1lŜB̂. ~1!

The eigenstates ofĤS , respectively ofĤB , will be denoted
by us&, respectivelyub&. The eigenvalues ofĤS , respectively
of ĤB , will be denoted byEs , respectivelyEb . Finally, the
eigenstates ofĤ tot will be denoted byua& and its eigenvalues
by Ea .

The evolution of the total density matrix is described
the von Neumann equation:

ṙ̂~ t !52 i @Ĥ tot ,r̂~ t !#[Ltotr̂~ t !, ~2!

whereLtot is the so-called quantum Liouvillian or von Neu
mann operator of the total system. The interaction repres
tations of the operators are given by
06611
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r̂ I~ t !5eiĤ 0tr̂~ t !e2 iĤ 0t,

V̂~ t !5eiĤ 0tV̂e2 iĤ 0t,

B̂~ t !5eiĤ BtB̂e2 iĤ Bt,

Ŝ~ t !5eiĤ StŜe2 iĤ St. ~3!

In the interaction representation, the von Neumann equa
becomes

ṙ̂ I~ t !52 i @lV̂~ t !,r̂ I~ t !#[LI~ t !r̂ I~ t !, ~4!

with the interaction LiouvillianLI(t)5e2L0tLIe
L0t where

eL0tÂ5e2 iĤ 0tÂeiĤ 0t, the free Liouvillian L05LS1LB5

2 i @ĤS ,•#2 i @ĤB ,•#, and Â is an arbitrary operator. The
perturbative expression of the von Neumann equation in
interaction representation is given to orderl2 by

r̂ I~ t !5 r̂~0!1E
0

t

dt1LI~ t1!r̂~0!

1E
0

t

dt1E
0

t1
dt2LI~ t1!LI~ t2!r̂~0!1O~l3! ~5!

5 r̂~0!1E
0

t

dTe2L0TL Ie
L0Tr̂~0!

1E
0

t

dTE
0

T

dte2L0TL Ie
L0tL Ie

2L 0teL0Tr̂~0!

1O~l3!, ~6!

if we set T5t1 and t5t12t2. Equation~6! is the starting
point of all the derivations of a master equation in the we
coupling limit for a total system made of a system and
environment in mutual interaction.

A. Our quantum master equation

We now derive our master equation which is the cen
result of this paper. The main idea is to describe the ti
evolution in terms of quantities which are distributed ov
the energy of the environment. We thus define the follow
quantities in terms of which we intend to describe the pro
erties of the system:

Pss8~e;t ![Tr r̂~ t !us8&^sud~e2ĤB!. ~7!

The diagonal elementPss(e;t) is the probability density to
find the system in the states while the environment has th
energye. The off-diagonal elementPss8(e;t) characterizes
the density of the quantum coherence between the stats
ands8, density which is distributed over the energye of the
environment.

The matrix composed of the elementsPss8(e;t) is Her-
mitian

Pss8~e;t !5Ps8s
* ~e;t !. ~8!
2-2
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Moreover, the normalization Trr̂(t)51 of the total density
matrix implies that

(
s
E de Pss~e;t !51. ~9!

In order to obtain a closed description in terms of t
quantities~7!, we suppose that the total density matrix can
described at all times by a density matrix of the followin
form:

r̂~ t !5(
s,s8

us&^s8u
Pss8~ĤB ;t !

n~ĤB!
, ~10!

where we have defined the energy density

n~e!5TrBd~e2ĤB!, ~11!

which is supposed to be smoothened on the energy sca
the mean level spacing. The assumption~10! has the effect of
neglecting the contributions from the environment coh
ences to the system dynamics~albeit the system coherence
are kept in the description!. We remark that the form~10! is
not supposed to strictly hold at all times but is an assump
in order to obtain a closed set of equations for the quanti
Pss8(e;t).

In order to better understand the meaning of the ab
definitions, we notice that the reduced density matrix of
system takes the form

r̂S~ t !5TrBr̂~ t !5E de TrBd~e2ĤB!r̂~ t !

5E de (
s,s8

us&Pss8~e;t !^s8u, ~12!

which can be represented in the basis of the eigenstate
the system Hamiltonian as

r̂S~ t !5E deS P11~e;t ! P12~e;t ! . . . P1NS
~e;t !

P21~e;t ! P22~e;t ! . . . P2NS
~e;t !

A A � A

PNS1~e;t ! PNS2~e;t ! . . . PNSNS
~e;t !

D .

~13!

The goal of the precedent choice for the form ofr̂(t) is thus
to obtain a description in which the states of the system is
correlated with the energye of the environment. In othe
words, the density matrixr̂S of the system is decomposed
a distribution over the energye of the environment.

We now proceed to the derivation of the equations
motion for our quantitiesPss8(e;t) in the weak-coupling
limit. We start from the perturbative expansion~6! of the
total density matrix in the interaction representation~3!. We
first define the interaction representation of our quanti
~7!:

PIss8~e;t !5ei (Es2Es8)tPss8~e;t !. ~14!
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We now have that

PIss8~e;t !5Tr r̂ I~ t !us8&^sud~e2ĤB!. ~15!

Inserting the perturbative expansion~6!, we get

PIss8~e;t !5Tr X̂r̂~0!1E
0

t

dT Tr X̂e2L0TL Ie
L0Tr̂~0!

1E
0

t

dTE
0

T

dt Tr X̂e2L0T

3L Ie
L0tL Ie

2L 0teL0Tr̂~0!1O~l3!, ~16!

where X̂5us8&^sud(e2ĤB). Differentiating with respect to
time, we obtain the equation

ṖIss8~e;t !5Tr X̂e2L0tL Ie
L0tr̂~0!

1E
0

t

dt Tr X̂e2L0tL Ie
L0tL Ie

2L 0teL0tr̂~0!

1O~l3!, ~17!

where the initial density matrix takes the assumed form~10!
with t50.

The first term is thus explicitly given by

Tr X̂e2L0tL Ie
L0tr̂~0!52 il Trus8&^sud~e2ĤB!eiĤ 0t

3@V̂,e2 iĤ 0tr̂~0!eiĤ 0t#e2 iĤ 0t

52 il(
s̄

ei (Es2Es̄)t^suŜus̄&

3Ps̄s8~e;0!n~e!^B̂&e

1 il(
s̄

e2 i (Es82Es̄)t^s̄uŜus8&

3Pss̄~e;0!n~e!^B̂&e , ~18!

with the environment coupling operatorB̂ averaged over the
microcanonical state of the environment

^B̂&e[
Tr d~e2ĤB!B̂

n~e!
. ~19!

We now assume that this average vanishes,^B&e50. Oth-
erwise, the nonvanishing average is absorbed in the sys
Hamiltonian by the following substitutions:

ĤS→ĤS1l^B̂&eŜ, ~20!

V̂→V̂2^B̂&eŜ, ~21!

ĤB→ĤB , ~22!
2-3
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leaving unchanged the total Hamiltonian. Thanks to this s
plification, the first-order term of the perturbative expans
vanishes

Tr X̂e2L0tL Ie
L0tr̂~0!50. ~23!

As a consequence, the time evolution of the total den
matrix is given by the uncoupled HamiltonianĤ05ĤS

1ĤB up to correction of the order ofl2:

r̂~ t !5eL0tr̂~0!1O~l2!. ~24!

According to our closure assumption that the total den
matrix keeps the form~10! during its time evolution, we
have that

eL0tr̂~0!5 r̂~ t !1O~l2!5(
s̄,s̄8

us̄&^s̄8u
Ps̄s̄8~ĤB ;t !

n~ĤB!
1O~l2!,

~25!
r

he

06611
-
n

ty

y

which we can substitute in Eq.~17! to get

ṖIss8~e;t !5E
0

t

dt Tr X̂e2L0tL Ie
L0tL Ie

2L 0teL0tr̂~0!

1O~l3!

52l2ei (Es2Es8)t(
s̄,s̄8

E
0

t

dt TrH us8&^sud~e2ĤB!

3F ŜB̂,F Ŝ~2t!B̂~2t!,us̄&^s̄8u
Ps̄s̄8~ĤB ;t !

n~ĤB!
G G J

1O~l3!. ~26!

Going back to the original representation with Eq.~14! and
expanding the two commutators, we obtain
Ṗss8~e;t !52 i ~Es2Es8!Pss8~e;t !2l2(
s̄,s̄8

E
0

t

dtH ^suŜŜ~2t!us̄&^s̄8us8&TrBd~e2ĤB!B̂B̂~2t!
Ps̄s̄8~ĤB ;t !

n~ĤB!

2^suŜus̄&^s̄8uŜ~2t!us8&TrBd~e2ĤB!B̂
Ps̄s̄8~ĤB ;t !

n~ĤB!
B̂~2t!2^suŜ~2t!us̄&^s̄8uŜus8&

3TrBd~e2ĤB!B̂~2t!
Ps̄s̄8~ĤB ;t !

n~ĤB!
B̂1^sus̄&^s̄8uŜ~2t!Ŝus8&TrBd~e2ĤB!

Ps̄s̄8~ĤB ;t !

n~ĤB!
B̂~2t!B̂J 1O~l3!.

~27!
In order to evaluate the four last terms, we notice that, fo
quasicontinuous energy spectrum, we can write

TrBd~e2ĤB!B̂d~e82ĤB!B̂

5 (
b,b8

d~e2Eb!d~e82Eb8!z^buB̂ub8& z2

5n~e!n~e8!F~e,e8!, ~28!

where the functionF(e,e8) stands for

F~e,e8![ ‘‘ z^euB̂ue8& z2’’, ~29!

where ue& denotes the eigenstateub& of the environment
HamiltonianĤB corresponding to the energy eigenvalueEb
5e. Equation ~29! supposes some smoothening of t
squaresz^euB̂ue8& z2 of the matrix elements ofB̂ over a dense
spectrum of eigenvalues around the energiese and e8. The
function ~29! has the symmetry

F~e,e8!5F~e8,e!. ~30!

With the definition~29! and the identity
a E de8d~e82ĤB!5 Î , ~31!

we can now write that

TrBd~e2ĤB!B̂B̂~2t!
Ps̄s̄8~ĤB ;t !

n~ĤB!

5Ps̄s̄8~e;t !E de8n~e8!F~e,e8!e1 i (e2e8)t, ~32!

TrBd~e2ĤB!B̂
Ps̄s̄8~ĤB ;t !

n~ĤB!
B̂~2t!

5n~e!E de8Ps̄s̄8~e8;t !F~e,e8!e1 i (e2e8)t, ~33!

TrBd~e2ĤB!B̂~2t!
Ps̄s̄8~ĤB ;t !

n~ĤB!
B̂

5n~e!E de8Ps̄s̄8~e8;t !F~e,e8!e2 i (e2e8)t, ~34!
2-4
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TrBd~e2ĤB!
Ps̄s̄8~ĤB ;t !

n~ĤB!
B̂~2t!B̂

5Ps̄s̄8~e;t !E de8n~e8!F~e,e8!e2 i (e2e8)t. ~35!

Accordingly, our quantum master equation finally takes
closed form

Ṗss8~e;t !52 i ~Es2Es8!Pss8~e;t !2l2(
s̄,s̄8

E de8F~e,e8!

3E
0

t

dt$^suŜus̄8&^s̄8uŜus̄&Ps̄s8~e;t !n~e8!

3e1 i (e2e81Es̄2Es̄8)t2^suŜus̄&^s̄8uŜus8&

3Ps̄s̄8~e8;t !n~e!e1 i (e2e81Es82Es̄8)t2^suŜus̄&

3^s̄8uŜus8&Ps̄s̄8~e8;t !n~e!e2 i (e2e81Es2Es̄)t

1^ s̄8uŜus̄&^s̄uŜus8&Pss̄8~e;t !n~e8!

3e2 i (e2e81Es̄82Es̄)t%1O~l3!. ~36!
re
fs

so
e
a

06611
e

Equation~36! determines the time evolution of the distribu
tion functionsPss8(e;t) describing the populations and qua
tum coherences of a system influencing its environment
is the central result of this paper. It is a non-Markovian eq
tion because of the presence of the time integral in the rig
hand side.

In Eq. ~36! the function n(e)F(e,e8) determines the
properties of the coupling to the environment and, in parti
lar, the time scale of the environment. If this time scale
supposed to be shorter then the system time sc
$2p/(Es2Es8)%, we can perform aMarkovian approxima-
tion in Eq. ~36!. Such an approximation is justified for
process evolving on time scales larger than the environm
time scale. The Markovian approximation consists in tak
the limit where the upper bound of the time integral goes
infinity and using the following relations:

E
0

`

dt e6 ivt56 iP
1

v
1pd~v!, ~37!

where P denotes the principal part.
We finally obtain the Markovian version of our quantu

master equation~36! as
Ṗss8~e;t !52 i ~Es2Es8!Pss8~e;t !2 il2(
s̄,s̄8

H F E de8n~e8!F~e,e8!P
1

e2e81Es̄2Es̄8
G

3@^suŜus̄8&^s̄8uŜus̄&Ps̄s8~e;t !2^s̄uŜus̄8&^s̄8uŜus8&Pss̄~e;t !#2^suŜus̄&^s̄8uŜus8&n~e!E de8F~e,e8!Ps̄s̄8~e8;t !

3FP
1

e2e81Es82Es̄8

2P
1

e2e81Es2Es̄
G J 2pl2(

s̄,s̄8
$n~e1Es̄2Es̄8!F~e,e1Es̄2Es̄8!

3@^suŜus̄8&^s̄8uŜus̄&Ps̄s8~e;t !1^s̄uŜus̄8&^s̄8uŜus8&Pss̄~e;t !#2^suŜus̄&^s̄8uŜus8&n~e!

3@F~e,e1Es82Es̄8!Ps̄s̄8~e1Es82Es̄8 ;t !1F~e,e1Es2Es̄!Ps̄s̄8~e1Es2Es̄ ;t !#%1O~l3!. ~38!
We notice that the use of this Markovian equation may
quire a slippage of initial conditions as shown in Re
@11,12#. In Eq. ~38!, the last terms inpl2 typically describe
the relaxation to a stationary solution. The terms inil2

modify the frequencies of oscillations and include the
called Lamb shifts of the zeroth-order energy eigenvalu
Indeed, if we consider only the evolution of the off-diagon
matrix elementPss8(e;t) by neglecting its coupling to all the
other matrix elements, we obtain the equation

Ṗss8~e;t !.$2 i @Ẽs~e!2Ẽs8~e!#2Gss8~e!%Pss8~e;t !,
~39!

with the energies modified by the Lamb shifts
-
.

-
s.
l

Ẽs~e!5Es1l2(
s̄

z^suŜus̄& z2E de8n~e8!F~e,e8!

3P
1

e2e81Es2Es̄

1O~l3! ~40!

and the damping rates

Gss8~e!5pl2 (
s̄(Þs)

@ z^suŜus̄& z2n~e1Es2Es̄!

3F~e,e1Es2Es̄!1 z^s8uŜus̄& z2n~e1Es82Es̄!

3F~e,e1Es82Es̄!#1pl2~^suŜus&

2^s8uŜus8&!2n~e!F~e,e!1O~l3!, ~41!
2-5
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in agreement with the results of Ref.@5#. We notice that the
complete equations for the off-diagonal matrix eleme
couple in general different energies because of the integ
over the environment energye8.

The evolution equations for the populations of the sta
us& of the system can be obtained by neglecting the con
butions from the quantum coherences, i.e., by neglecting
terms involving off-diagonal elements ofPss8(e;t). This is
justified in the weak-coupling limit as long as the coheren
vanish or are negligible in the initial conditions, i.e
Pss8(e;0)50 for sÞs8. Accordingly, we obtain the follow-
ing evolution equations for the populations:

Ṗss~e;t !.2pl2(
s8

z^suŜus8& z2F~e,e1Es2Es8!

3@n~e!Ps8s8~e1Es2Es8 ;t !

2n~e1Es2Es8!Pss~e;t !#. ~42!

This equation is a kind of Pauli equation established with
Fermi golden rule and the conversation of energy in the tr
sitions. Indeed, if a transition happens from a state in wh
the energy of the system isEs and the one of the environ
ment e to a state in which the system has energyEs8 , the
final energy of the environment should bee85e1Es
2Es8 , which is well expressed by Eq.~42!. Nevertheless,
Eq. ~42! rules the populations of the statess of the system
with the extra information given by the distribution over th
environment energye, which is not a feature of the standa
Pauli equation and which turns out to be of importance
understand the relaxation inside a nanoscopic isolated
tem.

Our Markovian master equation~38! is more general than
an equation for the populations because it also describes
time evolution of the distributions of the quantum cohe
ences over the energy of the environment, as shown in
following sections.

B. Comparison with the Redfield master equation

We now discuss the conceptual differences between
quantum master equation and another one known as the
field master equation. This equation is well known in t
context of nuclear magnetic resonance~NMR! where it de-
scribes the time evolution of nuclear spins interacting w
their environment.

The Redfield master equation describes the time evolu
of the system density matrix obtained tracing out from
total density matrix the degrees of freedom of the envir
ment

r̂S~ t !5TrBr̂~ t !. ~43!

The Redfield equation is derived by using the closure
proximation that the total density matrix keeps the form

r̂~ t !5 r̂S~ t ! ^ r̂B ~44!
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during the whole time evolution, wherer̂B does not depend
on time. The Redfield master equation is derived in
weak-coupling limit by a method similar to the one of th
previous section to get

ṙ̂S~ t !52 i @ĤS ,r̂S~ t !#2l2ŜE
0

t

dt a~t!Ŝ~2t!r̂S~ t !

1l2Ŝr̂S~ t !E
0

t

dta* ~t!Ŝ~2t!

1l2E
0

t

dt a~t!Ŝ~2t!r̂S~ t !Ŝ

2l2r̂S~ t !E
0

t

dt a* ~t!Ŝ~2t!Ŝ1O~l3!, ~45!

with the correlation function of the environment operators

a~ t !5^B̂~ t !B̂~0!&5TrBr̂BB̂~ t !B̂~0!. ~46!

Equation ~45! is a non-Markovian Redfield equation. The
non-Markovianity comes from the fact that the integrals ov
expressions containing the correlation function depend
time. The density matrix of the system can be represente
the basis of the system eigenstates as

hss8~ t ![^sur̂S~ t !us8&. ~47!

In this representation, the non-Markovian Redfield equat
has the following form:

ḣss8~ t !52 i ~Es2Es8!hss8~ t !

2l2(
s̄,s̄8

E de8n~e8!F~e,e8!E
0

t

dt$^suŜus̄8&

3^ s̄8uŜus̄&h s̄s8~ t !e1 i (e2e81Es̄2Es̄8)t2^suŜus̄&

3^ s̄8uŜus8&h s̄s̄8~ t !e1 i (e2e81Es̄2Es)t2^suŜus̄&

3^ s̄8uŜus8&h s̄s̄8~ t !e2 i (e2e81Es̄82Es8)t1^s̄8uŜus̄&

3^ s̄uŜus8&hss̄8~ t !e2 i (e2e81Es̄82Es̄)t%1O~l3!.

~48!

If the environment is large enough, the correlation fun
tion in Eq. ~45! goes to zero after a certain time. This tim
called the environment correlation timetcorr, determines the
time scale of the environment dynamics. If we perform t
Markovian approximationthat consists of putting the uppe
bound of the time integral in the non-Markovian Redfie
equation to infinity, one gets the standard Redfield equat
We notice that, in doing so, the time evolution may
spoiled on a time scale of ordertcorr unless some use is mad
of some slipped initial conditions@11,12#. Performing this
Markovian approximation, one gets the standard~Markov-
ian! Redfield equationgiven by Eq.~45! with *0

t replaced by
*0

` . As shown in Refs.@11,12#, the use of this Redfield Mar
kovian equation needs to be supplemented by a slippag
2-6
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initial conditions.
In order to compare the Redfield equation with our mas

equation derived in the previous section, we consider
case where the environment is initially in themicrocanonical
state:

r̂B5
d~e2ĤB!

TrBd~e2ĤB!
5

d~e2ĤB!

n~e!
. ~49!

Having chosen the microcanonical density matrix~49! for
the environment, the correlation function~46! takes the form
tri

t
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e

v
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ffe
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a~t,e!5
1

n~e!
TrBd~e2ĤB!B̂~t!B̂

5
1

n~e!
E de8 TrBd~e2ĤB!B̂~t!d~e82ĤB!B̂

5E de8n~e8!F~e,e8!ei (e2e8)t. ~50!

In the basis of the system eigenstates, the Redfield equa
takes the form
ḣss8~ t !52 i ~Es2Es8!hss8~ t !2 il2(
s̄,s̄8

H F E de8n~e8!F~e,e8!P
1

e2e81Es̄2Es̄8
G @^suŜus̄8&^s̄8uŜus̄&h s̄s8~ t !2^s̄uŜus̄8&

3^s̄8uŜus8&hss̄~ t !#1E de8n~e8!F~e,e8!FP
1

e2e81Es̄82Es8

2P
1

e2e81Es̄2Es
G ^suŜus̄&^s̄8uŜus8&h s̄s̄8~ t !J

2pl2(
s̄,s̄8

$n~e1Es̄2Es̄8!F~e,e1Es̄2Es̄8!@^suŜus̄8&^s̄8uŜus̄&h s̄s8~ t !1^s̄uŜus̄8&^s̄8uŜus8&hss̄~ t !#

2@n~e1Es̄82Es8!F~e,e1Es̄82Es8!1n~e1Es̄2Es!F~e,e1Es̄2Es!#^suŜus̄&^s̄8uŜus8&h s̄s̄8~ t !%1O~l3!.

~51!
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The off-diagonal elements of the system density ma
individually obey the equations

ḣss8~ t !.$2 i @Ẽs~e!2Ẽs8~e!#2Gss8~e!%hss8~ t !, ~52!

with the same Lamb shifts~40! and damping rates~41! as in
our master equation and as expected from Ref.@5#. There is
no difference between our quantum master equation and
Redfield one at this stage.

On the other hand, the Redfield equation predicts an e
lution of the populations ruled by the following equatio
obtained by neglecting all the contributions coming from t
coherences in Eq.~51!:

ḣss~ t !52pl2(
s8

z^suŜus8& z2@F~e,e1Es82Es!

3n~e1Es82Es!hs8s8~ t !2F~e,e1Es2Es8!

3n~e1Es2Es8!hss~ t !#. ~53!

This equation is the same as the master equation for
populations derived by Cohen-Tannoudji and co-workers
Ref. @5#.

We notice that important differences now exists betwe
the population equation~53! obtained from the Redfield
equation and the other population equation~42! obtained
from our master equation. Both equations describe the e
lution of the populations as a random walk process in
spectrum. However, these processes are significantly di
x

he

o-

he
n

n

o-
e
r-

ent for Eqs.~42! and ~53!. Let us focus on the evolution o
the probability to be on a system state corresponding to
system energyEs . In both equations we see that for the lo
contributions to the evolution coming from the jumps fro
an energyEs to an energyEs8 , the density of states of the
environment is modified by the energyEs2Es8 . This is con-
sistent with the Fermi golden rule applied to the total syst
and, thus, keeps the total energy constant. We care now
the gain contributions to the evolution. In our equation~42!,
we see that for these contributions due to jumps from
system energyEs8 to Es , the density of states of the env
ronment is modified by the energyEs82Es . This is also
consistent with the Fermi golden rule applied to the to
system and, thus, keeps the total energy constant. Howe
for the Redfield equation we see that for the jumps from
energy Es8 to an energyEs , the density of states of the
environment is not modified by the energyEs82Es , which
is not consistent with the Fermi golden rule applied to t
total system and does not keep the total energy constan

One can represent, for the Markovian case, the transit
described by Eqs.~42! and ~53! in a plane of the system
energy versus the environment energy. In Figs. 1 and 2
have depicted the energy exchanges described, respect
by the Redfield equation and our equation in the Markov
limit for two different systems. Transitions between the sy
tem and the environment have to preserve the energy of
total system according to the Fermi golden rule and h
therefore to occur along diagonal lines of the plane. One
see in Figs. 1 and 2 that only our equation satisfies
2-7
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condition. The Redfield equation describes transitions
occur along a vertical line at constant environment ene
and is therefore not consistent with energy conservation
the total system. This is acceptable if the environmen
sufficiently large and has an arbitrarily large energy. Ho
ever, this is inadequate if the total energy of the system
the environment is finite as in nanoscopic systems, in wh
case our master should replace the Redfield equation.

We can summarize as follows the differences between
quantum master equation~38! and the Redfield equatio
~51!. The derivation of both equations is based on the p
turbative expansion of the total density matrix, but a spec
form is imposed in each equation to the total density ma
@see Eqs.~10! and~44!#. The consequence of this choice c
be seen on the reduced density matrix of the system. In
Redfield theory, we have

r̂S~ t !5(
s,s8

us&hss8~ t !^s8u, ~54!

while, for our master equation, using Eq.~12! we have

r̂S~ t !5(
s,s8

E deus&Pss8~e;t !^s8u. ~55!

The system density matrix is related to the distribution fu
tions according to

FIG. 1. Schematic representation of the energy exchanges
scribed, respectively, by the Redfield and by our master equatio
the Markovian limit for a two-level system model, in the plane
the system energyES versus the environment energyEB . The en-
ergy splitting between the two levels of the system is denoted byD.
The energy spectrum of the system is discrete~two levels! while the
one of the environment is a quasicontinuum represented by
density of states given by the Wigner semicircular law~88! of width
equal to unity. The total energy of the system is given byE5ES

1EB , which corresponds to the diagonal line. The initial conditi
is denoted by two empty superposed circles. We see that transi
preserving the total energy have to occur along the diagonal
E5ES1EB . Doing this, they satisfy the Fermi golden rule for th
total system. One can see that only our master equation satisfie
condition ~dotted transition lines!. The Redfield equation describe
transitions that occur along a vertical line at constant environm
energy and is therefore wrong~dashed transition lines!.
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^sur̂S~ t !us8&5hss8~ t !5E de Pss8~e;t !. ~56!

We see that, in our master equation, the matrix element
the system density matrix are decomposed on the energ
the environment. This is not the case for the Redfield eq
tion. The decomposition allows us to correlate the states
the system with the states of the environment. This is
main point of our master equation. The density mat
adopted for the Redfield equation cannot describe such
relations. In the Redfield equation, during the evolution,
environment is always in the same state while, in our ma
equation, the state of the environment is determined by
state of the system. As a consequence, we obtain a des
tion which is consistent with energy conservation thanks
our master equation.

III. APPLICATION TO THE SPIN-ENVIRONMENT
MODEL

In this section we consider a specific class of two-le
systems interacting with an environment. The two-level s
tem may be supposed to be a spin. An example is the s
boson model in which the environment is a set of harmo
oscillators behaving as phonons@19#.

The Hamiltonian of the spin-environment model we co
sider here is the following:

Ĥ tot5
D

2
ŝz1ĤB1lŝxB̂. ~57!

The eigenvalue equation of the system is

FIG. 2. Generalization of the previous Fig. 1 for the case wh
the system has more than two levels~here four levels!. One can see
that the system levels~horizontal lines! that do not intersect the
total energy diagonal lineE5ES1EB within the environment en-
ergy spectrum delimited by the sparse-dotted vertical lines do
participate in the dynamics.
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ĤSus&5
D

2
ŝzus&5s

D

2
us&, ~58!

where s561. Like in Sec. II, we first derive our maste
equation and then the Redfield equation in order to comp
both equations.

A. Using our master equation

Let us now apply our master equation to the sp
environment model. In our theory and for a two-level sy
tem, the total density matrix becomes

r̂~ t !5
1

n~ĤB!
@P11~ĤB ;t !u1&^1u1P12~ĤB ;t !u1&^2u

1P21~ĤB ;t !u2&^1u1P22~ĤB ;t !u2&^2u#. ~59!

For the spin-environment model, our non-Markovian mas
equation~36! is given by

Ṗ11~e;t !52l2P11~e;t !E de8F~e,e8!n~e8!

3E
0

t

dt@ei (e2e81D)t1e2 i (e2e81D)t#

1l2n~e!E de8F~e,e8!P22~e8;t !

3E
0

t

dt@ei (e2e81D)t1e2 i (e2e81D)t#, ~60!

Ṗ22~e;t !52l2P22~e;t !E de8F~e,e8!n~e8!

3E
0

t

dt@ei (e2e82D)t1e2 i (e2e82D)t#

1l2n~e!E de8F~e,e8!P11~e8;t !

3E
0

t

dt@ei (e2e82D)t1e2 i (e2e82D)t#, ~61!

Ṗ12~e;t !52 iDP12~e;t !2l2P12~e;t !

3E de8F~e,e8!n~e8!E
0

t

dt@ei (e2e81D)t

1e2 i (e2e82D)t#1l2n~e!

3E de8F~e,e8!P21~e8;t !

3E
0

t

dt@ei (e2e82D)t1e2 i (e2e81D)t#, ~62!

and a further equation forṖ21(e;t) given by the complex
conjugate of Eq.~62!.
06611
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We observe that the diagonal and off-diagonal element
Pss8(e;t) obey decoupled equations in the case of the sp
environment model. Therefore, the time evolution of t
populations is independent of the time evolution of the qu
tum coherences. We now perform theMarkovian approxima-
tion that consists of putting the upper bound of the tim
integral to infinity. Using Eq.~37!, we find

Ṗ11~e;t !52pl2F~e,e1D!@n~e!P22~e1D;t !

2n~e1D!P11~e;t !#, ~63!

Ṗ22~e;t !52pl2F~e,e2D!@n~e!P11~e2D;t !

2n~e2D!P22~e;t !#, ~64!

Ṗ12~e;t !52 iDP12~e;t !1 il2E de8F~e,e8!

3P
2D

~e2e8!22D2
@n~e8!P12~e;t !

1n~e!P21~e8;t !#2pl2@n~e1D!F~e,e1D!

1n~e2D!F~e,e2D!#P12~e;t !1pl2n~e!

3@F~e,e1D!P21~e1D;t !

1F~e,e2D!P21~e2D;t !#. ~65!

We notice that during the time evolution of the population
the following quantity remains a constant of motion:

P~e;t ![P11~e;t !1P22~e1D;t !5P~e;0!. ~66!

Accordingly, the difference of the populations defined as

Z~e;t ![P11~e;t !2P22~e1D;t ! ~67!

obeys the differential equation

Ż~e;t !52pl2@n~e!2n~e1D!#F~e,e1D!P~e;0!

22pl2@n~e!1n~e1D!#F~e,e1D!Z~e;t !,

~68!

the solution of which is given by

Z~e;t !5Z~e;`!1@Z~e;0!2Z~e;`!#e2g Paulit ~69!

with the asymptotic equilibrium value

Z~e;`!5
n~e!2n~e1D!

n~e!1n~e1D!
P~e;0! ~70!

and the relaxation rate

gPauli52pl2@n~e!1n~e1D!#F~e,e1D!. ~71!
2-9
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Therefore, the populations relax to their asymptotic equi
rium values for each pair of energiese ande1D of the en-
vironment, keeping constant the initial distribution of th
quantity P~e;0!.

The time evolution of the distribution functionsP67(e;t)
of the quantum coherences is more complicated beca
there is now a coupling between a continuum of values of
environment energy instead of only two values. According
the distributions of quantum coherence is ruled by a cou
of two integro-differential equations, instead of an ordina
differential equation.

B. Using the Redfield equation

For the spin-environment model, the non-Markovian a
Markovian Redfield equations can be derived from Eqs.~48!
and~51!. Using Eq.~48!, the non-Markovian Redfield equa
tions here write

ḣ11~ t !52l2h11~ t !E de8n~e8!F~e,e8!

3E
0

t

dt@ei (e2e81D)t1e2 i (e2e81D)t#

1l2h22~ t !E de8n~e8!F~e,e8!

3E
0

t

dt@ei (e2e82D)t1e2 i (e2e82D)t#, ~72!

ḣ22~ t !52l2h22~ t !E de8n~e8!F~e,e8!

3E
0

t

dt@ei (e2e82D)t1e2 i (e2e82D)t#

1l2h11~ t !E de8n~e8!F~e,e8!

3E
0

t

dt@ei (e2e81D)t1e2 i (e2e81D)t#, ~73!

ḣ12~ t !52 iDh12~ t !2l2h12~ t !E de8n~e8!F~e,e8!

3E
0

t

dt@ei (e2e81D)t1e2 i (e2e82D)t#

1l2h21~ t !E de8n~e8!F~e,e8!

3E
0

t

dt@ei (e2e82D)t1e2 i (e2e81D)t#, ~74!

and a further equation forh21(t) given by the complex
conjugate of Eq.~74!.
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Here again, there is a decoupling between the time e
lutions of the populations and of the quantum coherence

Taking the Markovian approximation by replacing*0
t into

*0
` and using Eq.~37!, we get the Markovian Redfield equa

tions for the spin-environment model:

ḣ11~ t !52pl2@n~e2D!F~e,e2D!h22~ t !

2n~e1D!F~e,e1D!h11~ t !#, ~75!

ḣ22~ t !52pl2@n~e1D!F~e,e1D!h11~ t !

2n~e2D!F~e,e2D!h22~ t !#, ~76!

ḣ12~ t !52 iDh12~ t !1 il2E de8n~e8!F~e,e8!

3P
2D

~e2e8!22D2
@h12~ t !1h21~ t !#2pl2

3@n~e1D!F~e,e1D!1n~e2D!F~e,e2D!#

3@h12~ t !2h21~ t !#. ~77!

The populations of the two-level system are controlled by
z component of the spin defined as the difference

zRedfield~ t !5h11~ t !2h22~ t !. ~78!

According to the Markovian Redfield equations~75! and
~76!, thez component obeys the differential equation

żRedfield52pl2@n~e2D!F~e,e2D!2n~e1D!F~e,e1D!#

22pl2@n~e2D!F~e,e2D!

1n~e1D!F~e,e1D!#zRedfield. ~79!

Its solution is given by

zRedfield~ t !5zRedfield~`!

1@zRedfield~0!2zRedfield~`!#e2gRedfieldt, ~80!

with the equilibrium value

zRedfield~`!5
n~e2D!F~e,e2D!2n~e1D!F~e,e1D!

n~e2D!F~e,e2D!1n~e1D!F~e,e1D!
,

~81!

and the relaxation rate

gRedfield52pl2@n~e2D!F~e,e2D!

1n~e1D!F~e,e1D!#. ~82!
2-10
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QUANTUM MASTER EQUATION FOR A SYSTEM . . . PHYSICAL REVIEW E68, 066112 ~2003!
We notice that the rate predicted by the Redfield equa
coincides with the one predicted by our master equation o
in the limit D50. A more important difference appears in th
asymptotic equilibrium values for thez component of the
spin predicted by both equations. These differences find t
origin in the problem of conservation of energy with th
Redfield equation, as explained above. Comparison with
merical data will confirm this explanation in a following se
tion in the case of the spin-GORM model.

IV. APPLICATION TO THE SPIN-GORM MODEL

In order to confront our master equation and the Redfi
equation with numerical data and test their respective
mains of validity, we now apply our theory to a specific cla
of two-level systems interacting with an environment, f
which the environment operators are Gaussian orthog
random matrices~GORM!. We call this model the spin
GORM model and its detailed properties will be describ
elsewhere@20#.

The system is a two-level system, while the environm
is supposed to be a system with a very complex dynam
Here, the term complex is used in a generic way. The co
plexity can come, for example, from the fact that the cor
sponding classical system is chaoticlike in a quantum billi
or for the hydrogen atom in a strong magnetic field@21,22#.
It can also come from a large number of coupling betwe
states in an interacting many-body system like those app
ing in nuclear physics@22# or in systems of interacting
fermions like quantum computers@22#. A well-known
method, developed by Wigner in the 1950s, for model
the energy spectrum of a complex quantum system cont
ing many states interacting with each other, consists of
suming that their Hamiltonian is a random matrix@23–25#.
Here, we suppose that the Hamiltonian of the environmen
a Gaussian orthogonal random matrix~GORM!. The interac-
tion between the spin and the environment is given b
coupling operator which is the product of a system and
vironment operators. The latter is also represented b
GORM because of its complex interaction with the ma
degrees of freedom of the environment. Such random-ma
models have recently turned out to be of great relevance
the discussion of relaxation and dissipation in quantum s
tems@16,26–29#.

The spin-GORM model can therefore be considered a
particular case of the spin-environment model in which
environment operators are GORM. The Hamiltonian of
spin-GORM model is thus given by

Ĥ tot5
D

2
ŝz1ĤB1lŝxB̂ ~83!

where the Hamiltonian of the environment is

ĤB5
1

A8N
X̂, ~84!

and the environment coupling operator by
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B̂5
1

A8N
X̂8. ~85!

X̂ andX̂8 are two statistically independentN/23N/2 random
matrices belonging to the Gaussian orthogonal ensem
~GOE! of probability density

p~X̂!5C exp~2aX̂ Tr X̂2!, ~86!

with aX̂5 1
2 and a normalization constantC. N/2 is the num-

ber of states of the environment. The off-diagonal and di
onal elements ofX̂ are independent Gaussian random nu
bers with mean zero and standard deviationssoff-diag.51 and
sdiag5A2, respectively.

In the limit N→`, the density of states of the environ
ment gets smooth and can be calculated by an average
the random-matrix ensemble

n~e!5 (
b51

N/2

d~e2Eb!. ~87!

It is known that the GOE level density is given by th
Wigner semicircular law

n~e!5H 4N

p
A 1

4 2e2 if ueu, 1
2

0 if ueu> 1
2 .

~88!

The random matrices are normalized so that the level den
of the environment has a width equal to unity. To simpli
the notations in the following, we use the convention

Ax[HAx if 0 ,x

0 if x<0.
~89!

For the following, we also need to evaluate the functi
F(e,e8) for our random-matrix model. For this purpose, w
need the random-matrix average of the quantity~28!. Since,
in the GOE, we have that

z^buB̂ub& z25
1

4N
, ~90!

z^buB̂ub8& z25
1

8N
, ~91!

we find that
2-11
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TrBd~e2ĤB!B̂d~e82ĤB!B̂5 (
b,b8

d~e2Eb!d~e82Eb8!z^buB̂ub8& z2

5(
b

d~e2Eb!d~e82Eb! z^buB̂ub& z21 (
bÞb8

d~e2Eb!d~e82Eb8! z^buB̂ub8& z2

5
1

4N (
b

d~e2Eb!d~e82Eb!1
1

8N (
bÞb8

d~e2Eb!d~e82Eb8!

5
1

8N (
b

d~e2Eb!d~e82Eb!1
1

8N (
b,b8

d~e2Eb!d~e82Eb8!

.
1

8N
d~e2e8!n~e!1

1

8N
n~e!n~e8!. ~92!
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In the limit N→`, the first term becomes negligible in fron
of the second term so that the comparison with Eq.~28!
shows that for the spin-GORM model,

F~e,e8!.
1

8N
. ~93!

The total system containsN states. The unperturbed de
sity of states of the total system is schematically depicted
Fig. 3, forl50. The model has different regimes whether t
splitting D between the two levels of the spin is larger
smaller than the width of the environment level density. T
spin-GORM model can describe a large variety of physi
situations. In the present paper we focus on the perturba
regimes (l!ĤB). When D is larger than the width of the
semicircular density of states of the environment, we are
highly non-Markovian regime. The dynamics of the syste
is faster than that of the environment. On the other ha
whenD is smaller than unity, we are in a Markovian regim
because the dynamics of the environment is much faster
the one of the system.

Now, we apply our master equation and the Redfi
equation to the spin-GORM model in both their Markovi
and non-Markovian versions.

A. Using our master equation

We now apply our master equation~36! to the spin-
GORM model. Using Eqs.~60!–~62!, ~88!, and~93!, we get
the non-Markovian equations

Ṗ11~e;t !52
l2

p
P11~e;t !E de8A1

4
2e82

3
sin~e2e81D!t

~e2e81D!
1

l2

p
A1

4
2e2

3E de8P22~e8;t !
sin~e2e81D!t

~e2e81D!
, ~94!
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Ṗ22~e;t !52
l2

p
P22~e;t !E de8A1

4
2e82

3
sin~e2e82D!t

~e2e82D!
1

l2

p
A1

4
2e2

3E de8P11~e8;t !
sin~e2e82D!t

~e2e82D!
, ~95!

Ṗ12~e;t !52 iDP12~e;t !2
l2

2p
P12~e;t !E de8

3A1

4
2e82E

0

t

dt@ei (e2e81D)t1e2 i (e2e82D)t #

1
l2

2p
A1

4
2e2E de8P21~e8;t !

3E
0

t

dt@ei (e2e82D)t1e2 i (e2e81D)t #. ~96!

We notice that the equations for the populations are dec
pled from the ones for the quantum coherences.

Performing the Markovian approximationand using
limt→`(sinvt/v)5pd(v) and Eq.~37!, we get

Ṗ11~e;t !52l2A1

4
2~e1D!2P11~e;t !

1l2A1

4
2e2P22~e1D;t !, ~97!

Ṗ22~e;t !52l2A1

4
2~e2D!2P22~e;t !

1l2A1

4
2e2P11~e2D;t !, ~98!
2-12
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Ṗ12~e;t !52 iDP12~e;t !1 i
l2

p E de8P
D

~e2e8!22D2

3FA1

4
2e82P12~e;t !1A1

4
2e2P21~e8;t !G

2
l2

2 FA1

4
2~e1D!21A1

4
2~e2D!2G

3P12~e;t !1
l2

2
A1

4
2e2@P21~e1D;t !

1P21~e2D;t !#, ~99!

where the expressions and integrals over energy extend
the interval of definition of the level densityn(E) and of the
distributionsPss8(E;t) which is always21/2,E,11/2, E
being the argument of these functions.

We now focus our attention on the evolution of the pop
lations. We see from Eqs.~97! and ~98! that the transitions
conserve the total energy of the system and environmen
that the transitions occur between the only two energiee
ande1D of the environment. As a consequence, the quan

FIG. 3. Schematic representation of the smooth density of st
~DOS! of the unperturbed spin-GORM model~l50! for different
values of the energy splittingD of the spin. The horizontal axis is
the environment energye while the vertical axis is the energy spli
ting D. In the lower and central parts, the splittingD is smaller than
the width of the environment DOS. In the upper part, the splittingD
is larger than the width of the DOS.
06611
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P~e;t ![P11~e;t !1P22~e1D;t !5P~e;0! ~100!

is a constant of the motion for each energye of the environ-
ment, as already noticed with Eq.~66!. The difference~67! of
populations obeys the differential equation~68!. If the initial
distributionsP(e8;0) andZ(e8;0) are Dirac delta distribu-
tions centered on the initial energye:

P~e8;0!5d~e82e!, ~101!

Z~e8;0!5d~e82e!zPauli~0!. ~102!

The z component of the spin defined as

zPauli~ t !5E de Z~e;t ! ~103!

obeys the same differential equation as the distribut
Z(e;t),

żPauli~ t !5l2FA1

4
2e22A1

4
2~e1D!2G

2l2FA1

4
2e21A1

4
2~e1D!2GzPauli~ t !.

~104!

The solution of Eq.~104! is given by

zPauli~ t !5zPauli~`!1@zPauli~0!2zPauli~`!#e2gPaulit, ~105!

with the asymptotic equilibrium value

zPauli~`!5

A1

4
2e22A1

4
2~e1D!2

A1

4
2e21A1

4
2~e1D!2

, ~106!

and the relaxation rate

gPauli5l2FA1

4
2e21A1

4
2~e1D!2G . ~107!

With the convention~89!, the expressions are nonvanishin
only over the interval of definition of their argument. Figu
4 helps us to represent the different values that take E
~106! and~107! in the space of the environment energye and
of the splitting energyD of the two-level system.

B. Using the Redfield equation

For the spin-GORM model, the correlation function~46!
can be calculated by performing a GOE average. Using

es
2-13
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level density ~88! and the value~93!, the microcanonical
correlation function~50! becomes

a~t,e!5E de8n~e8!F~e,e8!ei (e2e8)t

.E
21/2

11/2

de8
4N

p
A1

4
2e82

1

8N
ei (e2e8)t

5

J1S t

2D
4t

ei et, ~108!

in the limit N→`, whereJ1(t) is the Bessel function of the
first kind.

Therefore, using the Redfield equation~72!–~74! and the
microcanonical correlation function of the spin-GOR
model, we get

ḣ11~ t !52l2h11~ t !E
0

t

dt cos@~e1D!t#

J1S t

2D
2t

1l2h22~ t !E
0

t

dt cos@~e2D!t#

J1S t

2D
2t

, ~109!

FIG. 4. Schematic representation of the different regimes of
spin-GORM model for situations where the initial state of the s
is s511, in the plane of the environment energye versus the spin
energy splittingD. The different regions correspond to differe
values of the functionsn(e), n(e1D), andn(e2D), wheren(E)
denotes the DOS defined by the semicircular law~88!. One can take
a value of the environment energy anywhere betweene52

1
2 and

e5
1
2, wheren(e)Þ0. In region 1:n(e1D)Þ0 andn(e2D)50.

In region 2:n(e1D)50 andn(e2D)Þ0. In region 3:n(e1D)
Þ0 andn(e2D)Þ0. In region 4:n(e1D)50 andn(e2D)50.
This figure is useful to evaluate equations such as Eqs.~106! and
~107! and ~115! and ~116!.
06611
ḣ22~ t !52l2h22~ t !E
0

t

dt cos@~e2D!t#

J1S t

2D
2t

1l2h11~ t !E
0

t

dt cos@~e1D!t#

J1S t

2D
2t

, ~110!

ḣ12~ t !52 iDh12~ t !2l2h12~ t !E
0

t

dteiDtcos~et!

J1S t

2D
2t

1l2h21~ t !E
0

t

dte2 iDtcos~et!

J1S t

2D
2t

. ~111!

These are the non-Markovian Redfield equations for
spin-GORM model. The Markovian Redfield equations f
the spin-GORM model take the following forms:

ḣ11~ t !52l2A1

4
2~e1D!2h11~ t !

1l2A1

4
2~e2D!2h22~ t !, ~112!

ḣ22~ t !52l2A1

4
2~e2D!2h22~ t !

1l2A1

4
2~e1D!2h11~ t !, ~113!

ḣ12~ t !52 iDh12~ t !1 i
l2

p E de8A1

4
2e82

3P
D

~e2e8!22D2
@h12~ t !1h21~ t !#

2
l2

2 FA1

4
2~e1D!21A1

4
2~e2D!2G

3@h12~ t !2h21~ t !#. ~114!

We focus on the evolution of the populations. The pop
lation of the two-level system is controlled by thez compo-
nent of the spin by Eq.~78!. According to the Markovian
Redfield equations~112! and~113!, the time evolution of the
z component is given by Eq.~80! with the equilibrium value

e

2-14
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zRedfield~`!5

A1

4
2~e2D!22A1

4
2~e1D!2

A1

4
2~e2D!21A1

4
2~e1D!2

,

~115!

and the relaxation rate

gRedfield5l2FA1

4
2~e2D!21A1

4
2~e1D!2G .

~116!

Figure 4 depicts the different regimes predicted by this eq
tion in the space of the environment energye and the split-
ting energyD.

We observe that in the limitD→0, where the energy scal
of the system is much smaller than the one of the envir
ment, both our master equation and the Redfield equa
predict a similar value for the relaxation rate. However, d
ferences appear for the value of the asymptotic value of tz
component of the spin. As we explained here above,
reason is that our master equation is consistent with en
conservation in the total system albeit the Redfield equa
is not. This problem spoils the applicability of the Redfie
master equation if the environment is not arbitrarily large
we shall see in the next section.

V. NUMERICAL RESULTS AND DISCUSSION

The purpose of the present section is to compare the
ferent master equations with exact numerical results obta
for the relaxation of thez component of the spin due to th
interaction with its environment in the spin-GORM mode
The initial condition of the spin is always the stateu1&. The
environment is always taken in a microcanonical distribut
at a given energye. The width of the energy shell of thi
microcanonical distribution is always equal tode50.05.

A general comment is here in order concerning the ap
cability of a master equation to a quantum system with
discrete energy spectrum. Indeed, beyond a time longer
the Heisenberg time~which is defined as the level density o
the total system!, quantum beats and recurrences appear
to the discreteness of the energy spectrum. Only, the de
before the Heisenberg time can be compared with the pre
tion of a quantum master equation. It turns out that the
ther conditionNl2.1 should also be satisfied, which re
quires that the coupling parameter should not be too sm
with respect to the mean level spacing which goes as 1/N. If
this condition is not satisfied (Nl2,1) the time evolution of
individual systems present large quantum oscillations wh
widely deviate from the prediction of the master equatio
On the other hand, ifNl2.1, the deviations with respect t
the predictions of the master equation are smaller than
signal itself and tend to decrease asN→` @20#. In the limit
N→`, the decay curve which is the solution of the mas
equation is approximately followed by a majority of realiz
tions of the process by individual systems. In the figu
given here, these deviations are not seen because of an
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aging of the signal overx510 individual systems. Beside
the conditionNl2.1, the coupling parameter should also
small enough to justify the perturbative treatment, typica
l,0.3.

The equations we are comparing are the following.
~i! The von Neumann equation describes thez component

of the spin using Eq.~2! with the Hamiltonian~83!. Averag-
ing is carried out withx realizations of the GORM Hamil-
tonian. This calculation does not involve any approximati
and, therefore, gives the exact solution of the problem.
the following equations will be compared to this one.

~ii ! The most general non-Markovian version of our ma
ter equation~36! using Eqs.~94! and~95!, which we refer to
as the Pauli non-Markovian~NM! equation.

~iii ! The Markovian version~38! of our master equation
which we refer to as the Pauli Markovian~M! equation. For
the spin-GORM model, this equation is given by Eqs.~97!
and ~98! and its solutions by Eqs.~105!–~107!.

~iv! The Redfield non-Markovian equation~48! is given
by Eqs.~109! and ~110! for the spin-GORM model.

~v! The standard Redfield Markovian equation~51! is
given by Eqs.~112! and~113! and its solutions by Eqs.~80!
with Eqs.~115! and ~116!.

The results of the numerical calculation of the time ev
lution of the z component of the spin are depicted in Fig
5–10 for different regimes of the spin-GORM model, i.e., f
different values of the energy splittingD of the two-level
system as well as of the environment energye. In all the
cases, the coupling parameter is equal tol50.1.

Figures 5, 7, and 8 depict the global relaxation of thez
component of the spin for increasing values of the ene
splitting D. In accordance with what we argued before
theoretical grounds, we see in these figures that the large
energy splittingD of the system is, the bigger is the diffe
ence between the Redfield and our master equation. We

FIG. 5. Relaxation of thez component of the spin for the spin
GORM model for a very small spin energy splittingD50.01 with
l50.1, e50.25,N52000, andx510. The exact curve is given by
integrating the von Neumann equation, which is compared with
solutions of the Pauli and Redfield Markovian~M! and non-
Markovian ~NM! equations. We see that all the perturbative eq
tions give similar results in the present case.
2-15
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see that our equation always fits very well with the exact v
Neumann equation, which is not the case of the Redfi
equation. As argued before, this is due to the fact that
Redfield equation does not take into account the change
the energy distribution of the environment induced by
system transitions. When the system energy is very small
makes almost no difference, but when it increases, this ha
be taken into account and our master equation becomes
essary.

In particular, a large discrepancy happens for the solu

FIG. 6. Relaxation of thez component of the spin for the spin
GORM model in the same conditionsD50.01,l50.1, e50.25,N
52000, andx510 as in Fig. 5 in order to show that, on a short tim
scale of the order of the correlation time of the environmenttcorr

.10, the non-Markovian equations~denoted by NM! describe very
accurately the dynamics although the Markovian ones~denoted by
M! is exponential and deviate from the exact behavior. On a lon
time scale~much longer thantcorr), the solutions of the Markovian
equations join those of the non-Markovian equations.

FIG. 7. Relaxation of thez component of the spin for the spin
GORM model for a small spin energy splittingD50.1 with l50.1,
e50.25,N52000, andx510. The exact solution of the von Neu
mann equation is compared with the solutions of the Pauli
Redfield Markovian~M! and non-Markovian~NM! equations. We
see that our master equation~Pauli NM! gives the best results an
that the solutions of the Markovian equations remain very clos
those of the non-Markovian equations.
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of the Redfield equation in Fig. 8 although the solution
our master equation continues to be in agreement with
exact time evolution. This can be understand with Eqs.~106!
and~115! for the asymptotic equilibrium values of thez com-
ponent, which predict, respectively,

zPauli50, ~117!

zRedfield521, ~118!

er

d

to

FIG. 8. Relaxation of thez component of the spin for the spin
GORM model for an intermediate spin energy splittingD50.5 with
l50.1, e520.25, N52000, andx510. The exact solution of the
von Neumann equation is compared with the solutions of the P
and Redfield Markovian~M! and non-Markovian~NM! equations.
Here, we see that the Redfield equations give completely wr
results after a short time. The Pauli equations give much be
results than the Redfield ones.

FIG. 9. Relaxation of thez component of the spin for the spin
GORM model in the same conditionsD50.5, l50.1, e520.25,
N52000, andx510 as in Fig. 8. We focus here on the short tim
dynamics in order to see that only the non-Markovian equati
~NM! reproduce the initial behavior of the system which is not t
case for the Markovian equations~M!. After tcorr.10, the non-
Markovian Redfield equation~Redfield NM! becomes wrong but
our master equation~Pauli NM! is still valid. On a longer time
scale, the solution of the Markovian version of our master equa
~Pauli M! joins the one of the non-Markovian version of our equ
tion ~Pauli NM!.
2-16
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QUANTUM MASTER EQUATION FOR A SYSTEM . . . PHYSICAL REVIEW E68, 066112 ~2003!
for D50.5 ande520.25. The discrepancy of the Redfie
equation finds its origin in the violation of energy conserv
tion between the system and its environment by this eq
tion. The Pauli equation has the advantage of allowin
correct energy exchange between the spin and its envi
ment, which is crucial for obtaining the correct asympto
equilibrium value of thez component.

We can also notice in Figs. 5, 7, and 8 that, on the glo
time scale, the non-Markovian and Markovian equations
very close to each other. But if we look on a shorter tim
scale, we see in Figs. 6 and 9 small differences between
non-Markovian and Markovian equations in the early sta
of the decay. The solutions of the non-Markovian equatio
are in best agreement with the exact time evolution a
present a nonexponential early decay on the time scale o
environment correlation time (tcorr.10). In contrast, the so
lution of the Markovian equation immediately enters in
exponential decay and, thus slightly deviates from the ex
solution. This observation concerns both the Redfield
Pauli equations. This suggests that, as explained in R
@11,12#, a slippage of initial conditions is required for bo
Markovian equations in order to avoid this small early-dec
discrepancy. We also observe that this discrepancy decre
with the energy splittingD. This is expected since the Ma
kovian approximation is valid if the time scale of the syste
dynamics 2p/D is longer than the environment time sca
(tcorr.10). Therefore, the smallerD is, the better is the Mar-
kovian approximation. If one wants to make a correct d
scription of the system dynamics on a time scale of or
tcorr, the non-Markovian equations should be used~or the
Markovian equations should be supplemented by a slipp
of initial conditions@11,12#!. We also see, in Fig. 9, that th

FIG. 10. Relaxation of thez component of the spin for the
spin-GORM model for a large spin energy splittingD55 with
l50.1,e50.25,N52000, andx510. The exact solution of the von
Neumann equation is compared with the solutions of the Pauli
Redfield non-Markovian~NM! equations. We are in a highly non
Markovian regime. The Markovian equations are not plotted h
because their solutions are a constant equal to unity at all times
therefore miss the whole dynamics. We see that in this highly n
Markovian regime and on the short time scaletcorr there is almost
no difference between the non-Markovian Redfield equation~Red-
field NM! and our master equation~Pauli NM!.
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Pauli non-Markovian equation gives better results than
Redfield non-Markovian equation not only on long tim
scales but also on short ones, even if their solutions es
tially coincide on a very short time of ordertcorr but not
more. Again, when the energy of the system is to smal
affect the density of state of the environment, this differen
between our non-Markovian equation and the Redfield n
Markovian equation disappears~see Figs. 6 and 9!.

We see in Fig. 10 the relaxation of thez component of the
spin in a highly non-Markovian regime. The energy diffe
ence between the two levels is here much larger than
width of the level density of the environment. The Marko
ian equations are not plotted here because they descri
constant value equal to unity for all times and, therefo
completely miss the dynamics. The whole spin dynam
happens on a time scale of ordertcorr. We also see that, in
this highly non-Markovian regime, there is almost no diffe
ence between the non-Markovian Redfield equation and
master equation on the short time scale that we plotted.
non-Markovian Redfield equation as well as our no
Markovian master equation continue to fit with the exa
dynamics even on longer time scales not represented h
The special structure seen in Fig. 10 can be understand
using Eqs.~109! and~110!. Indeed, the curve is the result o
some time integrations of the Bessel functionJ1(t/2) divided
by t and modulated by cosDt. Since the modulations o
cosDt have a period 2p/D shorter than the decay timetcorr
.10 of the Bessel functionJ1(t/2), a shape reminiscent of
Bessel function only appears as an envelope of the osc
tions of the decay curve.

We conclude that, as expected from theoretical argume
our master equation gives excellent predictions, especiall
situations where the system energy is greater than or of
same order of magnitude as the typical energy scale of va
tion of the density of states of the environment. We a
notice that for non-Markovian dynamics that happen on
time scale of ordertcorr, the non-Markovian Redfield equa
tion gives the same result as our master equation for s
time scales. But for longer time scales our equation is
only one that correctly describes the dynamics.

VI. CONCLUSIONS

We derived in this paper a master equation to study
dynamics of a quantum system interacting with its enviro
ment. This equation is obtained by a perturbative expans
with respect to the coupling parameter between the sys
and its environment. Our equation is more general than
previously obtained perturbative master equations beca
our equation explicitly takes into account the exchange
energy between the system and its environment. This ef
is important when the density of state of the environm
varies in a significant way on energy scales of the order
the system energy scales.

We showed how the well-known master equations of
literature can be derived from our equation~36! by perform-
ing different types of approximations. Our equation reduc
to the non-Markovian Redfield equation~48! if one neglects
the changes in the density of states of the environment

d
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duced by the system. Moreover, we showed that by perfo
ing the Markovian approximation on our equation and n
glecting the coherence contribution to the populat
dynamics, we get a Pauli-type equation~42! for the total
system~system1environment! that describes the time evolu
tion in terms of distributions defined on the energy spectr
of the environment. When one neglects the changes in
energy distribution of the environment, the Markovian v
sion of our equation~that is now equivalent to the Redfiel
equation! reduces to the master equation derived by Coh
Tannoudji and co-workers in Ref.@5#.

We have applied our equation to a two-level system in
acting with a general environment~spin-environment
model!, especially, in the case where the environment ope
tors are random matrices~spin-GORM model!. In this case,
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we have carried out numerical simulations of the sp
GORM model~for which one can compute the exact sol
tions! that show the greater accuracy of our master equa
with respect to the other well-known master equations
Markovian and non-Markovian situations.
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