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The phase transitions of the anisotropic Ashkin-Teller model on a family of diamond-type hierarchical
lattices is studied by means of the transfer-matrix method and the real-space renormalization-group transfor-
mation. We find that the phase diagram, for the ferromagnetic case, consists of five phases, i.e., the fully
disordered paramagnetic phagethe fully ordered ferromagnetic phabe and three partially ordered ferro-
magnetic phasefg, F,, andF,, as well as ten nontrivial fixed points. The correlation length critical
exponents and the crossover exponents are also calculated. In addition, we also investigate the variations of the
critical exponents with the fractal dimensiaoly, the number of branches, and the number of bonds per
branchb of the generator of the family of diamond-type hierarchical lattices. Finally we give a brief discussion
about universality.
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[. INTRODUCTION magnetic phase, one ferromagnetic phase, and one partially
ordered phase, which are separated by two Ising-type critical
The Ashkin-Teller(AT) model[1] is a generalization of lines and a critical line of continuously varying exponents
the Ising model to a four-component system. In this caseknown exactly{14]. Ditzian and his collaboratofd 5] found
each site of a lattice is occupied by one of the four differenthat for the isotropic AT model, the phase diagram for the
kinds of atomsA, B, C, or D. Two nearest-neighbor atoms three-dimensional system is much richer than, and quite dif-
interact with an energyg, for A—A, B—B, C-C, D ferent from, that in two dimensions. There appear some first-
—D; €, for A—-B, C—D; €, for A—C, B—D; ande; for order phase transitions and continuous phase transitions,
A—D, B—C. Fan[2] associated each lattice sitavith two  even anXY-like transition and a Heisenberg-like multicriti-
spin variabless; ando; and represented the four statesB, cal point. With respect to the anisotropic AT model, in which
C, and D by the spin configurationss(,o;): (+,+), the two Ising systems are not identical with each other, the
(+, —), (—,+), and (—,—), correspondingly. Thus the AT phase diagram, however, is not so clear. Wu and [1i§]
model can be expressed in terms of the Ising spins, thBave employed exact duality relations to determine the phase
Hamiltonian for the magnetic system being diagram for the anisotropic AT model on the square lattice.
In addition, some approaches, such as renormalization-group
transforamtion[17], finite-size-scaling 18], mean-field ap-
H=—Z (JsSiSj+J,070)+ 148i0i8j0j + o), (1)  proximation, and Monte Carlo simulation&9], have been
(i applied to the investigations of the phase diagram for the
anisotropic AT model as well.
where the sunk ;;, runs over all the nearest-neighbor pairs  So far, most of the research on the AT model has been
of spins. In this sense, the AT model may be considered to biycused on the translational symmetry lattices, i.e., Bravais
two superposed Ising models described by two spin variablegittices, whereas much less attention has been paid to the
s and oy, respectively.Js and J,, represent the two-spin study of this model on the fractal lattices, e.g., the hierarchi-
nearest-neighbor interaction strength within the two lIsingcal lattices. As noted by Berker and Ostluf@D], certain
models, respectively. In addition, the different Ising modelsrenormalization-group transformations, which are only ap-
are coupled by a four-spin interaction with strength If  proximate on the translational symmetry lattices, become ex-
Js=1J,, this corresponds to the isotropic case where the twact on the hierarchical lattices. On the other hand, the hier-
Ising systems are identical with each other. archical lattices are highly inhomogeneof®l], and they
Wegner[3] has shown that the AT model is equivalent to may provide insights into other low-symmetry problems
a staggered eight-vertex model, which remains unsolved exsuch as random magnets, surfaces, etc. Therefore, much
actly. In two dimensions, the phase diagram for the isotropigvork on the hierarchical lattices has been motivated recently
AT model has been studied extensively by means of experi22—25. It is worthwhile to mention that Bezeret al. [26]
mental techniqug4], Monte Carlo simulation$5—-8], and  have investigated the anisotropic AT model on a kind of self-
various theoretical method$—-13]. It can be found that the dual hierarchical lattice and obtained the phase diagram as
phase diagram has a very rich structure, containing one paraell as the critical exponents.
In this paper, using the transfer-matrix method and the
real-space renormalization-group transformation, we study
*Electronic address: jianxinle@yahoo.com the phase transitions of the anisotropic Ashkin-Teller model
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i wherem andb denote the number of branches, and the num-
ber of bonds per branch of the generator of the hierarchical
@ ® © lattice, respectively.
o For the reasons that the terfy;;,Jo in expression(1) is
irrelevant to the spins and o, and only contributes to the
vy | — . nonsingular part of the free energy, one does not need to
m=3 consider it in the process of the renormalization-group trans-
formation. Thus, the effective Hamiltoniak for the aniso-
) © R tropic AT model can be expressed as
H:Z (KsSiSj+KO.O'iO'j+K4Si(TiSjO'j), (3)
s | B (ij)
m=2 where K=8Js, K,=BJ,, K,=BJ,, B=1/(kgT), kg is
the Boltzmann’s constant, is the absolute temperature, and
@ ) 0 the sumZ;, runs over all the nearest-neighbor pairs of
spins. The partition function is written as
Z(Ks Ky Ka)= 2 expH), @
b=3 . . {s,o
m=3
where the summatiol s ,, is over the values-1 and—1
0 ® 0 of all site spins on the lattice.

In this case, the renormalization-group transformation re-
FIG. 1. First two stages of the constructions of a few membergjuires
of the family of the diamond-type hierarchical lattices.

AexpHi )= > .
on a family of diamond-type hierarchical lattices. It can be (83,3} {s4.04}
found that the phase diagram, for the ferromagnetic case,
consists of five phases, i.e., the fully disordered paramag- X 2 eXP(Hio, . mb—1)+2)
netic phaseP, the fully ordered ferromagnetic phabe and {Sm(o-1)+2:Tm(-1)+ 2}
three partially ordered ferromagnetic phases F,, and (5)

F<,, as well as ten nontrivial fixed points. The correlation . o
length critical exponents and the crossover exponents até€rétiz, .. mp-1)+2 denotes the effective Hamiltonian of
also calculated. In addition, we also investigate the variation$he generator of the diamond-type hierarchical lattit ,
of the critical exponents with the fractal dimension and otherepresents the effective Hamiltonian of the two-vertex bond
geometrical parameters of the lattices. In the following secafter the renormalization-group transformation is performed,
tion, the recursion relations of the renormalization-groupthe subscripts 1 and 2 stand for the two vertices of the gen-
transformation are obtained. In Sec. Ill, the fixed points ancrator, the other8,4,... ,m(b—1)+2 are the internal sites
the phase diagrams are presented. The critical exponents a&the generatorm(b—1) andm(b—1)+2 are the number
calculated in Sec. IV. Finally, we give a brief discussion andof the internal sites, and the number of the total sites of the
conclusion in Sec. V. generator, respectively is an additive constant produced
after the transformation, and the summations are over all
values of all internal site spins of the generator of the

Il. THE RECURSION RELATIONS diamond-type hierarchical lattice.

OF RENORMAL IZATION-GROUP TRANSFORMATION By means of the transfer—matrix njethod,.we can decimate
all internal site spins on the hierarchical lattice. The elements

As we know, the hierarchical lattices can be constructedf the transfer-matribxQ are defined as
in an iterative manner. Herein we shall restrict ourselves to a
family of diamond-type hierarchical latticé&7,28, the con- (07,5i|Qls; o)) =exp(Kssis; + K 070+ Kys,0i8{ 7).
structions of which can be realized through iterative decora- (6)
tion of a two-point bond by a generator, which has two ver-

tices joined bym branches ob bonds. Figure 1 shows the Thus Eq.(5) becomes

constructions of a few members of the family. For these Alo1,51|Q' 52,02y =({01,51|Qs5,05))™. 7
structures, one can employ a well-defined fractal dimension
d; to describe their geometrical features, i.e., From Eq.(7), one can get that
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A expl K DHKETHHKET) = (A g3+ ag+ad)™,

8

- - . 1
A expK{ ™D -KID—K¢ ”>=ﬁ(q?—q2—qg+qﬁi>m,

9)
A exp— KD+ KD K (D)
1 b b b bym
:E(_Q1+Q2_Q3+Q4) ) (10
and
Aexp—K{TD—K D+ K1)
1 b b b bym
:E(_Q1_Q2+Q3+Q4) , (11
where
g =exp KO+ KO +KP) +exp KO -KD-K§)
—exp(— KO+ KO-k
—exp— KO —KO+K), (12)
qo=expKP+ KO+ K —exp KO- KD -k D)
+exp —KP+ KO-k
ey — KDk kD
exp—KO—KD+KD), (13
5= exeti -+ KO+ k)~ exeri - KO - k)
—exp( — KO+ KO-k
+exp —KO—KO+KM), (14
and
qa=exp KO+ KO+ K +exp KO —KD -k D)
+exp —KO+KO -k
+exp —KO—KO+ kD), (15

in which A; is an additive constant associated with tiie
decimation procedure arid’ , K© | andK{" are the renor-
malized interaction parameters. From E@~—(11), one can
obtain that

1
Ai=ﬁ(q?+ A+ a3+ a9 ™I (gt - g5 -3+ g3 ™
X (— a2+ a5— a8+ a) ™I(— g — g8+ a5+ qf ™,

(16)
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iy M (d2+a3+a3+a)(al-a3—ag+al)
Ks _Zln_b b_ b, bv,_b_ b, b, b’
(—07;+05—03+0,)(—d;—d,+03+0y)

17

(™ (q9+a5+a3+9) (—al+a5—a3+q})
o _Zn b_ b b, by,_b_ b, b, b’

(47— 02— 093+ ds)(—ay Q2+Q3+Q4)( )

18

and

o1 M (03+03+03+02)(—d7—dz+d3+ay)

K =—In .
AT (- B3+ ) (— g+ g — g3+l -
19

Equations (17)—(19) are the recursion relations of the
renormalization-group transformation. If we consider, simul-
taneously, the term related ty in Hamiltonian expression
(1), then the recursion relationg17)—(19) of the
renormalization-group transformation remain invariant in
this case.

Furthermore, if we define three new parametess w,,
and w3 as

w;=exp—2K,—2K,), (20)

wy=exp(—2Ks—2K,), (21)
and

wz=exp —2Ks—2K,), (22)

then, from Egs.(8)—(11), the following equations can be
obtained:

Li-n_ (9179303t g))"

, 23
(@ g+ girgd 29
ion_ (—93+g3-g3+gp"”
®W2 T b, b, b, bm’ (24)
(97+0s+093+gy)™
and
in (Cgi-g3tgd+gd”
®3 T b, b, b, bm ’ (29
(9:+92+t93+0,)
where
g1=1+ o) — i —wl), (26)
g2=1—w(1i)+w(2i)—w(3i), (27
gg=1—w(1i)—w(2i)+wg), (28)
and
s=1+ o'+ 0l +wl). (29

Equations(23)—(25) are a different version of the recur-
sion relations, in the new parameter spaeg ,(,,w3), of
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TABLE I. Nontrivial fixed points with eigenvalues and critical exponentsifor 2 andb=2.

Fixed point (@1,w5,w3) (N1:A5,0\3) v ¢

Iq 1,0.2956,0.2956 1.6786,0,0 1.3383

I, 0.2956,1,0.2956 1.6786,0,0 1.3383

I3 0.2956,0.2956,1 1.6786,0,0 1.3383

U, 0.2956,0,0 1.6786,0,0 1.3383

U, 0,0.2956,0 1.6786,0,0 1.3383

Us 0,0,0.2956 1.6786,0,0 1.3383

V, 0.2956,0.2956,0.08738 1.6786,1.6786,0.7044 1.3383 1
V, 0.2956,0.08738,0.2956 1.6786,1.6786,0.7044 1.3383 1
V, 0.08738,0.2956,0.2956 1.6786,1.6786,0.7044 1.3383 1
Potts 0.2203,0.2203,0.2203 1.8526,1.2778,1.2778 1.1242 0.3976

the renormalization-group transformation. For simplicity andsurfaces, corresponding to the domains of attraction of the
convenience hereafter we shall investigate fixed points, critithree singly unstable fixed points of the &ht, respectively,
cal exponents, and phase diagram in this space and restricbnstitute the boundaries of the phdseln the meantime,
ourselves to the ferromagnetic case, i.esd),w,,w3<1. the boundaries of the phaBeis composed of the other three
two-dimensional critical surfaces, corresponding to the do-
mains of attraction of the three singly unstable fixed points
of the setl,, respectively. These two-dimensional critical
The recursion relation€3)—(25) of the renormalization- surfaces join along three lines, corresponding to the domains
group transformation will produce all fixed points and resultof attraction of the three doubly unstable fixed points of the
in the phase diagram for the anisotropic AT model on thesetVy, respectively. The three lines meet at the completely
family of the diamond-type hierarchical lattices for any unstable fixed point, i.e., the Potts fixed point, located at
givenm andb. There are fifteen fixed points in total, includ- (wp,wp,wp). At this point, the anisotropic AT model has
ing five trivial (completely stablefixed points and ten non- the symmetry of a four-state Potts model.
trivial fixed points. As presented in Table I, these ten non- It is essential to point out that both, andwp are depen-
trivial fixed points can be divided into four sets according todent on the values afiandb. As presented in Figs. 4 and 5,
their locations in the parameter space, (w,,w3). The first ~ for a givenb, both o, and wp increase monotonically as
setl, contains three fixed points at(,w,1), (0;,10),
and (1w, ,w,), all of which are associated with only one
relevant eigenvalue of the renormalization-group transforma-
tion matrix; the second sé&i, includes three fixed points at
(0,,0,0), (0w,;,0), and (0,Qy,), all of which are related to
one relevant eigenvalue as well; the thifdconsists of three
fixed points at o, @, ,0?2), (0,0 ,0), and @, o)),
all of which are connected with two equal relevant eigenval-
ues; the fourth only contains one fixed point, i.e., Bats
fixed point, at wp,wp,wp), Which is associated with three o8
relevant eigenvalues. We present as examples, two phase dia-
grams, i.e., Figs. 2 and 3, for the anisotropic AT model on the
family of the diamond-type hierarchical lattices, which cor-  °¢
respond to the cases afi=2, b=2, andm=3, b=2, re- 0,
spectively. Both of them indicate that the phase diagram con- ,,
sists of five phases, i.€3) the fully disordered paramagnetic
phaseP, in which (sy=0, (o)=0, and(sc)=0; (b) the
fully ordered ferromagnetic phas$e in which (s)#0, (o)
#0, and({so)#0; (c) the partially ordered ferromagnetic
phaseFg, in which (s)#0, (o)=0, and({so)=0; (d) the o
partially ordered ferromagnetic phas$g,, in which (o)
#0, (s)=0, and(sc)=0; and(e) the partially ordered fer-
romagnetic phasgs,, in which(so)#0, (s)=0, and{o)
=0. The three-dimensional domains of attraction of these F|G. 2. Phase diagram for the anisotropic Ashkin-Teller model
five trivial fixed points, located at (0,0,0), (1,1,1), (1,0,0), on the family of the diamond-type hierarchical latticestier 2 and
(0,1,0), and (0,0,1), correspond to five phasesP, F,  m=2, wherew,=0.2956,wp=0.2203, and the symbd@ denotes
F,, andFg,, respectively. Three two-dimensional critical the five trivial fixed points.

IIl. FIXED POINTS AND PHASE DIAGRAMS

0.2
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FIG. 5. Dependence of one of the coordinates, of the Potts
fixed point on the number of branches and the number of bonds
per branchb of the generator of the family of the diamond-type
hierarchical lattices.

In general, the above results that the phase diagram for
FIG. 3. Phase diagram for the anisotropic Ashkin-Teller modelth® anisotropic AT model on the family of the diamond-type
on the family of the diamond-type hierarchical latticestier2 and ~ hierarchical lattices consists of five phases and fifteen fixed
m=3, wherew, =0.4859, wp=0.3689, and the symb@ denotes  POINts are consistent with those of Reff$7,18, where the
the five trivial fixed points. anisotropic AT model on the square lattice has been investi-
gated, as well as with those obtained by Bezetral.[26] in
increases. Whem becomes large, the curves may attain pla-the investigations of the anisotropic AT model on a kind of
teaux at well-defined values. But, for a givenbothw, and self-dual hierarchical lattice. However, in the phase diagram
wp decrease monotonically &sincreases. Wheh becomes ~ for the case otly=3, e.g.,b=2 andm=4, we cannot pro-
large, the curves may also reach the stable levels at welfuce the first-order transition lif®, which can be found in
defined values. Thus, for different setsrafandb, one can ~ R€fs.[15,19, concerning the AT model in three dimensions.
obtain different sets of fixed points and different phase dia\Vith regard to the locations of the nontrivial fixed points, it
grams. As shown in Figs. 2 and 3, the phase diagram for théan be found that,, = 1/(1+_\/§), wp=1/(1+4) in Ref.
anisotropic AT model on the family of the diamond-type hi- [17], @;=0.422, 0p=0.341 in Ref.[18], and v, =21,

erarchical lattices possesses very rich variations. wp=1/3 in Ref.[26]. Because of the dependence«fand
wp on the parametenms andb of the hierarchical lattices, we
1.0 . — only take the case di=2 as an example. In this cassee

Figs. 4 and B ®,;=0.2956, wp=0.2203 whenm=2, i.e.,
di=2; 0;=0.4859, wp=0.3689 wherm=3; w,;=0.5933,

7 wp=0.4638 whenm=4. Therefore, one can find that the
] results ofw, and wp for the case ofb=2 andm=3 are
comparatively close to those already known in Refs.
[17,18,24.

0.9

0.8

0.7
0.6
0.5

04 7 IV. CRITICAL EXPONENTS

03 Using the recursion relations(23)—(25 of the

. renormalization-group transformation, one can calculate the
correlation length critical exponent and the crossover ex-
ponent¢ from the scaling factob and the relevant eigen-
values for any givemim andb [29-31]. It can be found that
two setsl, and U, of the nontrivial fixed points are in the
FIG. 4. Dependence of one of the coordinates, of the non-  Same case as the single identical relevant eigenvalue, thus all
trivial fixed points on the number of branchesand the number of  Of them have the same correlation length critical exponent
bonds per branch of the generator of the family of the diamond- as the Ising universality clag®7]. Having two equal rel-
type hierarchical lattices. evant eigenvalues identical with that of the former two sets

0.2

0.1

0.0
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TABLE II. Different critical exponents for the same fractal di-
mensiond; but differentm andb, and the invariance of the cross-
- over exponentpp under the interchange of the valuesrofandb.

T df =15 df =3
4 m 2 3 4 4 9 16
b 4 9 16 2 3 4
vp 18337 1.8749 19135 0.9168 0.9374 0.9567
v 2.1296 2.1597 2.1886 1.0648 1.0799 1.0943
. ¢, 0.5054 0.5133 0.5206 0.5054 0.5133 0.5206

FIG. 6. Variations of the correlation length critical exponent
with the number of branches), and the number of bonds per
branchb of the generator of the family of the diamond-type hierar-

chical lattices.

ciated with the same correlation length critical exponeas
well as the only one crossover exponénequal to 1. As far

20

7 nontrivial fixed points. As shown in Fig. 6, for a givén v,

decreases monotonically asincreases. One can observe a
convergence towards saturation values whenbecomes
large. However, for a givem, v, increases monotonically as

ence for the

b increases. Withl; increasing,», decreases monotonically,
but v, is not completely decided bg;, v, has some differ-

same; but differentb or m (see Fig. 7 and

Table Il). As presented in Fig. 8, for a givdn vp decreases
I, andU,, the setV, of the nontrivial fixed points are asso- Monotonically asm increases, but there is an exception for

m=7 whenb=2. Also, one can observe a convergence to-
wards saturation values whembecomes large. For a given

as the Potts fixed point is concerned, it is related to thre¢n, vp increases monotonically ds increases, but there is
relevant eigenvalues, among which the two smaller ones ar@so an exception fdo=2 whenm=12. Withd; increasing,
identical with each other, hence it possesses the correlation, decreases monotonically except for the casb-e2, but

length critical exponent which is identical with that of the

vp is not fully determined byl , vp has some difference for

four-state Potts model on the same lattice, as well as tWehe samal; but differentb or m (see Fig. 9 and Table)llAs
equal crossover exponengs As an example, the results in shown in Fig. 10, for a give (m), with m (b) increasing,

aS : . © al _ ¢p decreases first, reaches a minimunmatb (b<m), and
It is interesting to investigate the variations of the critical {hen increases except for the case wien2 (m=2) in

the case ob=2 andm=2 are presented in Table I.

exponents’ and ¢ with b, m, andd;, which may be helpful

which casepp increases monotonically. We also find tlygt

to the discussion about the universality class. For the sake @ invariant under the interchange of the valuesroénd b

convenience, letvp and ¢p denote the correlation length
critical exponent and the crossover exponent associated wi
the Potts fixed point, respectively, amgl represent the cor-

relation length critical exponent associated with the other

28

é‘sree Table . For a givenb (m), with d; increasing(de-
easing, ¢p decreases first, comes to a minimum, and then
increases except for the case whHen2 (m=2) in which

26|
24 -
22 .—
20 -—
1.8 -—
1.6 -
14 _—
1.2 -

1.0

12 14

FIG. 7. The correlation length critical exponentvs the fractal

1.6

1.8

20

FIG. 8. Variations of the correlation length critical exponept

with the number of branches, and the number of bonds per

dimensiond; of the family of the diamond-type hierarchical lat- branchb of the generator of the family of the diamond-type hierar-

tices.

chical lattices.
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24 -

22

1.8 -
16 -

14

1.0 -

0.8

FIG. 9. The correlation length critical exponent vs the fractal
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FIG. 11. The crossover critical exponegt vs the fractal di-

dimensiond; of the family of the diamond-type hierarchical lat- mensiond; of the family of the diamond-type hierarchical lattices.

tices.

¢p increases monotonically. Butpp is not completely

an example. In this casesee Figs. 6 and)8 v,=1.3383,
vp=1.1242 whenm=2, ie., d;=2; »=1.1227, vp

decided byd¢, ¢p has some difference in the case of =0.9534 wherm=3; ...; »,=1.0276, vp,=0.9062 when

the samed; but differentb or m (see Fig. 11 and Table)ll

m=6; v,=1.0201,»,=0.9083 whemm=7. Therefore, one

It can be concluded from the above investigations thatan find that the results of, and vp for the cases ob=2,

the critical exponents(the correlation length critical
exponent v and the crossover exponenp) for the

anisotropic AT model on the family of the diamond-type

m=6 andb=2,m=3 are comparatively close to those of
Ref.[14] and Ref.[26], respectively.

hierarchical lattices not only depend on the fractal dimension

d¢ but also the concrete geometrical parameters, b.a@nd
m, of the lattices.

V. CONCLUSION AND DISCUSSION

In this paper, by means of the transfer-matrix method and

For the square lattice, the exact values of the correlatiom@he real-space renormalization-group transformation, we

length critical exponent are,=1 andvp=2/3 for the Ising
and Potts universality class, respectivél]. In addition,
for a kind of self-dual hierarchical lattice, Bezegtal.[26]
have obtained that,=1.149 andvp=0.948. Due to reasons
that bothv, andvp are dependent on the parameterandb
of the hierarchical lattices, we only take the casdef2 as

L o e A B S S B B B

0.8 -

0.7 |-

0.5 -

0.4

FIG. 10. Variations of the crossover critical exponeit with
the number of branchemg, and the number of bonds per brarichf

study the phase transitions of the anisotropic Ashkin-Teller
model on a family of diamond-type hierarchical lattices. It
can be found that for different sets of and b, the phase
diagram for the ferromagnetic case consists of five phases,
i.e., the fully disordered paramagnetic ph#sehe fully or-
dered ferromagnetic phase and three partially ordered fer-
romagnetic phasegg, F,, andF,,, as well as ten non-
trivial fixed points. The correlation length critical exponents
and the crossover exponents are also calculated. In addition,
as we know, universality is one of the three pillars of modern
critical phenomen&32], and it depends on a number of fac-
tors. On a Bravais lattice, the universality criteria are dimen-
sionality and symmetry. However, through the investigations
of the variations of the critical exponents with the fractal
dimensiond;, the number of branches), as well as the
number of bonds per brandhof the generator of the hierar-
chical lattices, we have shown the difficulties in searching
for the complete set of universality criteria on a hierarchical
lattice. This problem deserves further attention.
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