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Phase transitions of the anisotropic Ashkin-Teller model on a family
of diamond-type hierarchical lattices
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The phase transitions of the anisotropic Ashkin-Teller model on a family of diamond-type hierarchical
lattices is studied by means of the transfer-matrix method and the real-space renormalization-group transfor-
mation. We find that the phase diagram, for the ferromagnetic case, consists of five phases, i.e., the fully
disordered paramagnetic phaseP, the fully ordered ferromagnetic phaseF, and three partially ordered ferro-
magnetic phasesFs , Fs , and Fss , as well as ten nontrivial fixed points. The correlation length critical
exponents and the crossover exponents are also calculated. In addition, we also investigate the variations of the
critical exponents with the fractal dimensiondf , the number of branchesm, and the number of bonds per
branchb of the generator of the family of diamond-type hierarchical lattices. Finally we give a brief discussion
about universality.
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I. INTRODUCTION

The Ashkin-Teller~AT! model @1# is a generalization of
the Ising model to a four-component system. In this ca
each site of a lattice is occupied by one of the four differ
kinds of atomsA, B, C, or D. Two nearest-neighbor atom
interact with an energy;e0 for A2A, B2B, C2C, D
2D; e1 for A2B, C2D; e2 for A2C, B2D; ande3 for
A2D, B2C. Fan@2# associated each lattice sitei with two
spin variablessi ands i and represented the four statesA, B,
C, and D by the spin configurations (si ,s i): (1,1),
(1, 2), (2,1), and (2,2), correspondingly. Thus the AT
model can be expressed in terms of the Ising spins,
Hamiltonian for the magnetic system being

H52(̂
i j &

~Jssisj1Jss is j1J4sis isjs j1J0!, ~1!

where the sum(^ i j & runs over all the nearest-neighbor pa
of spins. In this sense, the AT model may be considered to
two superposed Ising models described by two spin varia
si and s i , respectively.Js and Js represent the two-spin
nearest-neighbor interaction strength within the two Is
models, respectively. In addition, the different Ising mod
are coupled by a four-spin interaction with strengthJ4. If
Js5Js , this corresponds to the isotropic case where the
Ising systems are identical with each other.

Wegner@3# has shown that the AT model is equivalent
a staggered eight-vertex model, which remains unsolved
actly. In two dimensions, the phase diagram for the isotro
AT model has been studied extensively by means of exp
mental technique@4#, Monte Carlo simulations@5–8#, and
various theoretical methods@9–13#. It can be found that the
phase diagram has a very rich structure, containing one p
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magnetic phase, one ferromagnetic phase, and one par
ordered phase, which are separated by two Ising-type crit
lines and a critical line of continuously varying exponen
known exactly@14#. Ditzian and his collaborators@15# found
that for the isotropic AT model, the phase diagram for t
three-dimensional system is much richer than, and quite
ferent from, that in two dimensions. There appear some fi
order phase transitions and continuous phase transiti
even anXY-like transition and a Heisenberg-like multicrit
cal point. With respect to the anisotropic AT model, in whi
the two Ising systems are not identical with each other,
phase diagram, however, is not so clear. Wu and Lin@16#
have employed exact duality relations to determine the ph
diagram for the anisotropic AT model on the square latti
In addition, some approaches, such as renormalization-g
transforamtion@17#, finite-size-scaling@18#, mean-field ap-
proximation, and Monte Carlo simulations@19#, have been
applied to the investigations of the phase diagram for
anisotropic AT model as well.

So far, most of the research on the AT model has b
focused on the translational symmetry lattices, i.e., Brav
lattices, whereas much less attention has been paid to
study of this model on the fractal lattices, e.g., the hierarc
cal lattices. As noted by Berker and Ostlund@20#, certain
renormalization-group transformations, which are only a
proximate on the translational symmetry lattices, become
act on the hierarchical lattices. On the other hand, the h
archical lattices are highly inhomogeneous@21#, and they
may provide insights into other low-symmetry problem
such as random magnets, surfaces, etc. Therefore, m
work on the hierarchical lattices has been motivated rece
@22–25#. It is worthwhile to mention that Bezerraet al. @26#
have investigated the anisotropic AT model on a kind of se
dual hierarchical lattice and obtained the phase diagram
well as the critical exponents.

In this paper, using the transfer-matrix method and
real-space renormalization-group transformation, we st
the phase transitions of the anisotropic Ashkin-Teller mo
©2003 The American Physical Society05-1
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on a family of diamond-type hierarchical lattices. It can
found that the phase diagram, for the ferromagnetic c
consists of five phases, i.e., the fully disordered param
netic phaseP, the fully ordered ferromagnetic phaseF, and
three partially ordered ferromagnetic phasesFs , Fs , and
Fss , as well as ten nontrivial fixed points. The correlati
length critical exponents and the crossover exponents
also calculated. In addition, we also investigate the variati
of the critical exponents with the fractal dimension and ot
geometrical parameters of the lattices. In the following s
tion, the recursion relations of the renormalization-gro
transformation are obtained. In Sec. III, the fixed points a
the phase diagrams are presented. The critical exponent
calculated in Sec. IV. Finally, we give a brief discussion a
conclusion in Sec. V.

II. THE RECURSION RELATIONS
OF RENORMALIZATION-GROUP TRANSFORMATION

As we know, the hierarchical lattices can be construc
in an iterative manner. Herein we shall restrict ourselves
family of diamond-type hierarchical lattices@27,28#, the con-
structions of which can be realized through iterative deco
tion of a two-point bond by a generator, which has two v
tices joined bym branches ofb bonds. Figure 1 shows th
constructions of a few members of the family. For the
structures, one can employ a well-defined fractal dimens
df to describe their geometrical features, i.e.,

(b)(a)

b=2
m=2

(c)

(d)

b=2
m=3

(e) ( f)

(h)(g)

b=3
m=2

(i)

(k)(j)

b=3
m=3

(l)

FIG. 1. First two stages of the constructions of a few memb
of the family of the diamond-type hierarchical lattices.
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ln~mb!

ln b
511

ln m

ln b
, ~2!

wherem andb denote the number of branches, and the nu
ber of bonds per branch of the generator of the hierarch
lattice, respectively.

For the reasons that the term(^ i j &J0 in expression~1! is
irrelevant to the spinss and s, and only contributes to the
nonsingular part of the free energy, one does not need
consider it in the process of the renormalization-group tra
formation. Thus, the effective HamiltonianH for the aniso-
tropic AT model can be expressed as

H5(̂
i j &

~Kssisj1Kss is j1K4sis isjs j !, ~3!

where Ks5bJs , Ks5bJs , K45bJ4 , b51/(kBT), kB is
the Boltzmann’s constant,T is the absolute temperature, an
the sum (^ i j & runs over all the nearest-neighbor pairs
spins. The partition function is written as

Z~Ks ,Ks ,K4!5 (
$s,s%

exp~H!, ~4!

where the summation($s,s% is over the values11 and21
of all site spins on the lattice.

In this case, the renormalization-group transformation
quires

A exp~H1,28 !5 (
$s3 ,s3%

(
$s4 ,s4%

. . .

3 (
$sm(b21)12 ,sm(b21)12%

exp~H1,2, . . . ,m(b21)12!,

~5!

whereH1,2, . . . ,m(b21)12 denotes the effective Hamiltonian o
the generator of the diamond-type hierarchical lattice,H1,28
represents the effective Hamiltonian of the two-vertex bo
after the renormalization-group transformation is perform
the subscripts 1 and 2 stand for the two vertices of the g
erator, the others3,4, . . . ,m(b21)12 are the internal sites
of the generator,m(b21) andm(b21)12 are the number
of the internal sites, and the number of the total sites of
generator, respectively,A is an additive constant produce
after the transformation, and the summations are over
values of all internal site spins of the generator of t
diamond-type hierarchical lattice.

By means of the transfer-matrix method, we can decim
all internal site spins on the hierarchical lattice. The eleme
of the transfer-matrixQ are defined as

^s i ,si uQusj ,s j&5exp~Kssisj1Kss is j1K4sis isjs j !.
~6!

Thus Eq.~5! becomes

A^s1 ,s1uQ8us2 ,s2&5~^s1 ,s1uQbus2 ,s2&!m. ~7!

From Eq.~7!, one can get that

s
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Ai exp~Ks
( i 21)1Ks

( i 21)1K4
( i 21)!5

1

4m
~q1

b1q2
b1q3

b1q4
b!m,

~8!

Ai exp~Ks
( i 21)2Ks

( i 21)2K4
( i 21)!5

1

4m
~q1

b2q2
b2q3

b1q4
b!m,

~9!

Ai exp~2Ks
( i 21)1Ks

( i 21)2K4
( i 21)!

5
1

4m
~2q1

b1q2
b2q3

b1q4
b!m, ~10!

and

Aiexp~2Ks
( i 21)2Ks

( i 21)1K4
( i 21)!

5
1

4m
~2q1

b2q2
b1q3

b1q4
b!m, ~11!

where

q15exp~Ks
( i )1Ks

( i )1K4
( i )!1exp~Ks

( i )2Ks
( i )2K4

( i )!

2exp~2Ks
( i )1Ks

( i )2K4
( i )!

2exp~2Ks
( i )2Ks

( i )1K4
( i )!, ~12!

q25exp~Ks
( i )1Ks

( i )1K4
( i )!2exp~Ks

( i )2Ks
( i )2K4

( i )!

1exp~2Ks
( i )1Ks

( i )2K4
( i )!

2exp~2Ks
( i )2Ks

( i )1K4
( i )!, ~13!

q35exp~Ks
( i )1Ks

( i )1K4
( i )!2exp~Ks

( i )2Ks
( i )2K4

( i )!

2exp~2Ks
( i )1Ks

( i )2K4
( i )!

1exp~2Ks
( i )2Ks

( i )1K4
( i )!, ~14!

and

q45exp~Ks
( i )1Ks

( i )1K4
( i )!1exp~Ks

( i )2Ks
( i )2K4

( i )!

1exp~2Ks
( i )1Ks

( i )2K4
( i )!

1exp~2Ks
( i )2Ks

( i )1K4
( i )!, ~15!

in which Ai is an additive constant associated with thei th
decimation procedure andKs

( i ) , Ks
( i ) , andK4

( i ) are the renor-
malized interaction parameters. From Eqs.~8!–~11!, one can
obtain that

Ai5
1

4m
~q1

b1q2
b1q3

b1q4
b!(m/4)~q1

b2q2
b2q3

b1q4
b!(m/4)

3~2q1
b1q2

b2q3
b1q4

b!(m/4)~2q1
b2q2

b1q3
b1q4

b!(m/4),

~16!
06610
Ks
( i 21)5

m

4
ln

~q1
b1q2

b1q3
b1q4

b!~q1
b2q2

b2q3
b1q4

b!

~2q1
b1q2

b2q3
b1q4

b!~2q1
b2q2

b1q3
b1q4

b!
,

~17!

Ks
( i 21)5

m

4
ln

~q1
b1q2

b1q3
b1q4

b!~2q1
b1q2

b2q3
b1q4

b!

~q1
b2q2

b2q3
b1q4

b!~2q1
b2q2

b1q3
b1q4

b!
,

~18!

and

K4
( i 21)5

m

4
ln

~q1
b1q2

b1q3
b1q4

b!~2q1
b2q2

b1q3
b1q4

b!

~q1
b2q2

b2q3
b1q4

b!~2q1
b1q2

b2q3
b1q4

b!
.

~19!

Equations ~17!–~19! are the recursion relations of th
renormalization-group transformation. If we consider, sim
taneously, the term related toJ0 in Hamiltonian expression
~1!, then the recursion relations~17!–~19! of the
renormalization-group transformation remain invariant
this case.

Furthermore, if we define three new parametersv1 , v2,
andv3 as

v15exp~22Ks22K4!, ~20!

v25exp~22Ks22K4!, ~21!

and

v35exp~22Ks22Ks!, ~22!

then, from Eqs.~8!–~11!, the following equations can be
obtained:

v1
( i 21)5

~g1
b2g2

b2g3
b1g4

b!m

~g1
b1g2

b1g3
b1g4

b!m
, ~23!

v2
( i 21)5

~2g1
b1g2

b2g3
b1g4

b!m

~g1
b1g2

b1g3
b1g4

b!m
, ~24!

and

v3
( i 21)5

~2g1
b2g2

b1g3
b1g4

b!m

~g1
b1g2

b1g3
b1g4

b!m
, ~25!

where

g1511v1
( i )2v2

( i )2v3
( i ) , ~26!

g2512v1
( i )1v2

( i )2v3
( i ) , ~27!

g3512v1
( i )2v2

( i )1v3
( i ) , ~28!

and

g4511v1
( i )1v2

( i )1v3
( i ) . ~29!

Equations~23!–~25! are a different version of the recur
sion relations, in the new parameter space (v1 ,v2 ,v3), of
5-3
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TABLE I. Nontrivial fixed points with eigenvalues and critical exponents form52 andb52.

Fixed point (v1 ,v2 ,v3) (l1 ,l2 ,l3) n f

I 1 1,0.2956,0.2956 1.6786,0,0 1.3383
I 2 0.2956,1,0.2956 1.6786,0,0 1.3383
I 3 0.2956,0.2956,1 1.6786,0,0 1.3383
U1 0.2956,0,0 1.6786,0,0 1.3383
U2 0,0.2956,0 1.6786,0,0 1.3383
U3 0,0,0.2956 1.6786,0,0 1.3383
V1 0.2956,0.2956,0.08738 1.6786,1.6786,0.7044 1.3383 1
V2 0.2956,0.08738,0.2956 1.6786,1.6786,0.7044 1.3383 1
V3 0.08738,0.2956,0.2956 1.6786,1.6786,0.7044 1.3383 1
Potts 0.2203,0.2203,0.2203 1.8526,1.2778,1.2778 1.1242 0.39
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the renormalization-group transformation. For simplicity a
convenience hereafter we shall investigate fixed points, c
cal exponents, and phase diagram in this space and re
ourselves to the ferromagnetic case, i.e., 0<v1 ,v2 ,v3<1.

III. FIXED POINTS AND PHASE DIAGRAMS

The recursion relations~23!–~25! of the renormalization-
group transformation will produce all fixed points and res
in the phase diagram for the anisotropic AT model on
family of the diamond-type hierarchical lattices for an
givenm andb. There are fifteen fixed points in total, includ
ing five trivial ~completely stable! fixed points and ten non
trivial fixed points. As presented in Table I, these ten no
trivial fixed points can be divided into four sets according
their locations in the parameter space (v1 ,v2 ,v3). The first
set I k contains three fixed points at (v I ,v I ,1), (v I ,1,v I),
and (1,v I ,v I), all of which are associated with only on
relevant eigenvalue of the renormalization-group transform
tion matrix; the second setUk includes three fixed points a
(v I ,0,0), (0,v I ,0), and (0,0,v I), all of which are related to
one relevant eigenvalue as well; the thirdVk consists of three
fixed points at (v I ,v I ,v I

2), (v I ,v I
2 ,v I), and (v I

2 ,v I ,v I),
all of which are connected with two equal relevant eigenv
ues; the fourth only contains one fixed point, i.e., thePotts
fixed point, at (vP ,vP ,vP), which is associated with thre
relevant eigenvalues. We present as examples, two phase
grams, i.e., Figs. 2 and 3, for the anisotropic AT model on
family of the diamond-type hierarchical lattices, which co
respond to the cases ofm52, b52, andm53, b52, re-
spectively. Both of them indicate that the phase diagram c
sists of five phases, i.e.,~a! the fully disordered paramagnet
phaseP, in which ^s&50, ^s&50, and ^ss&50; ~b! the
fully ordered ferromagnetic phaseF, in which ^s&Þ0, ^s&
Þ0, and ^ss&Þ0; ~c! the partially ordered ferromagneti
phaseFs , in which ^s&Þ0, ^s&50, and^ss&50; ~d! the
partially ordered ferromagnetic phaseFs , in which ^s&
Þ0, ^s&50, and^ss&50; and~e! the partially ordered fer-
romagnetic phaseFss , in which ^ss&Þ0, ^s&50, and^s&
50. The three-dimensional domains of attraction of the
five trivial fixed points, located at (0,0,0), (1,1,1), (1,0,0
(0,1,0), and (0,0,1), correspond to five phasesF, P, Fs ,
Fs , and Fss , respectively. Three two-dimensional critic
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surfaces, corresponding to the domains of attraction of
three singly unstable fixed points of the setUk , respectively,
constitute the boundaries of the phaseF. In the meantime,
the boundaries of the phaseP is composed of the other thre
two-dimensional critical surfaces, corresponding to the
mains of attraction of the three singly unstable fixed poi
of the setI k , respectively. These two-dimensional critic
surfaces join along three lines, corresponding to the dom
of attraction of the three doubly unstable fixed points of t
setVk , respectively. The three lines meet at the complet
unstable fixed point, i.e., the Potts fixed point, located
(vP ,vP ,vP). At this point, the anisotropic AT model ha
the symmetry of a four-state Potts model.

It is essential to point out that bothv I andvP are depen-
dent on the values ofm andb. As presented in Figs. 4 and 5
for a givenb, both v I andvP increase monotonically asm

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0
0.2

0.4
0.6

0.8

ω1

ω2

ω3

Potts

I1

I2

I3

U1

U2

U3

V1

V3

V2

FIG. 2. Phase diagram for the anisotropic Ashkin-Teller mo
on the family of the diamond-type hierarchical lattices forb52 and
m52, wherev I50.2956,vP50.2203, and the symbolj denotes
the five trivial fixed points.
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increases. Whenm becomes large, the curves may attain p
teaux at well-defined values. But, for a givenm, bothv I and
vP decrease monotonically asb increases. Whenb becomes
large, the curves may also reach the stable levels at w
defined values. Thus, for different sets ofm andb, one can
obtain different sets of fixed points and different phase d
grams. As shown in Figs. 2 and 3, the phase diagram for
anisotropic AT model on the family of the diamond-type h
erarchical lattices possesses very rich variations.

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0
0.2

0.4
0.6

0.8

ω3

ω1

ω2

Potts

I1

I2

I3

U1

U2

U3

V1

V2 V3

FIG. 3. Phase diagram for the anisotropic Ashkin-Teller mo
on the family of the diamond-type hierarchical lattices forb52 and
m53, wherev I50.4859,vP50.3689, and the symbolj denotes
the five trivial fixed points.

FIG. 4. Dependence of one of the coordinates,v I , of the non-
trivial fixed points on the number of branchesm, and the number of
bonds per branchb of the generator of the family of the diamond
type hierarchical lattices.
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In general, the above results that the phase diagram
the anisotropic AT model on the family of the diamond-ty
hierarchical lattices consists of five phases and fifteen fi
points are consistent with those of Refs.@17,18#, where the
anisotropic AT model on the square lattice has been inve
gated, as well as with those obtained by Bezerraet al. @26# in
the investigations of the anisotropic AT model on a kind
self-dual hierarchical lattice. However, in the phase diagr
for the case ofdf53, e.g.,b52 andm54, we cannot pro-
duce the first-order transition line~s!, which can be found in
Refs.@15,19#, concerning the AT model in three dimension
With regard to the locations of the nontrivial fixed points,
can be found thatv I51/(11A2), vP51/(11A4) in Ref.
@17#, v I50.422, vP50.341 in Ref.@18#, and v I5A221,
vP51/3 in Ref.@26#. Because of the dependence ofv I and
vP on the parametersm andb of the hierarchical lattices, we
only take the case ofb52 as an example. In this case~see
Figs. 4 and 5!, v I50.2956, vP50.2203 whenm52, i.e.,
df52; v I50.4859, vP50.3689 whenm53; v I50.5933,
vP50.4638 whenm54. Therefore, one can find that th
results ofv I and vP for the case ofb52 and m53 are
comparatively close to those already known in Re
@17,18,26#.

IV. CRITICAL EXPONENTS

Using the recursion relations~23!–~25! of the
renormalization-group transformation, one can calculate
correlation length critical exponentn and the crossover ex
ponentf from the scaling factorb and the relevant eigen
values for any givenm andb @29–31#. It can be found that
two setsI k and Uk of the nontrivial fixed points are in the
same case as the single identical relevant eigenvalue, thu
of them have the same correlation length critical exponenn
as the Ising universality class@27#. Having two equal rel-
evant eigenvalues identical with that of the former two s

l

FIG. 5. Dependence of one of the coordinates,vP , of the Potts
fixed point on the number of branchesm, and the number of bonds
per branchb of the generator of the family of the diamond-typ
hierarchical lattices.
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I k andUk , the setVk of the nontrivial fixed points are asso
ciated with the same correlation length critical exponentn as
well as the only one crossover exponentf equal to 1. As far
as the Potts fixed point is concerned, it is related to th
relevant eigenvalues, among which the two smaller ones
identical with each other, hence it possesses the correla
length critical exponentn which is identical with that of the
four-state Potts model on the same lattice, as well as
equal crossover exponentsf. As an example, the results i
the case ofb52 andm52 are presented in Table I.

It is interesting to investigate the variations of the critic
exponentsn andf with b, m, anddf , which may be helpful
to the discussion about the universality class. For the sak
convenience, letnP and fP denote the correlation lengt
critical exponent and the crossover exponent associated
the Potts fixed point, respectively, andn I represent the cor
relation length critical exponent associated with the ot

FIG. 6. Variations of the correlation length critical exponentn I

with the number of branchesm, and the number of bonds pe
branchb of the generator of the family of the diamond-type hiera
chical lattices.

FIG. 7. The correlation length critical exponentn I vs the fractal
dimensiondf of the family of the diamond-type hierarchical la
tices.
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nontrivial fixed points. As shown in Fig. 6, for a givenb, n I

decreases monotonically asm increases. One can observe
convergence towards saturation values whenm becomes
large. However, for a givenm, n I increases monotonically a
b increases. Withdf increasing,n I decreases monotonically
but n I is not completely decided bydf , n I has some differ-
ence for the samedf but different b or m ~see Fig. 7 and
Table II!. As presented in Fig. 8, for a givenb, nP decreases
monotonically asm increases, but there is an exception f
m>7 whenb52. Also, one can observe a convergence
wards saturation values whenm becomes large. For a give
m, nP increases monotonically asb increases, but there i
also an exception forb52 whenm>12. Withdf increasing,
nP decreases monotonically except for the case ofb52, but
nP is not fully determined bydf , nP has some difference fo
the samedf but differentb or m ~see Fig. 9 and Table II!. As
shown in Fig. 10, for a givenb (m), with m ~b! increasing,
fP decreases first, reaches a minimum atm<b (b<m), and
then increases except for the case whenb52 (m52) in
which casefP increases monotonically. We also find thatfP
is invariant under the interchange of the values ofm and b
~see Table II!. For a givenb (m), with df increasing~de-
creasing!, fP decreases first, comes to a minimum, and th
increases except for the case whenb52 (m52) in which

TABLE II. Different critical exponents for the same fractal d
mensiondf but differentm andb, and the invariance of the cross
over exponentfP under the interchange of the values ofm andb.

df51.5 df53
m 2 3 4 4 9 16
b 4 9 16 2 3 4

vp 1.8337 1.8749 1.9135 0.9168 0.9374 0.956
v I 2.1296 2.1597 2.1886 1.0648 1.0799 1.094
fp 0.5054 0.5133 0.5206 0.5054 0.5133 0.520

FIG. 8. Variations of the correlation length critical exponentnP

with the number of branchesm, and the number of bonds pe
branchb of the generator of the family of the diamond-type hiera
chical lattices.
5-6
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fP increases monotonically. ButfP is not completely
decided bydf , fP has some difference in the case
the samedf but differentb or m ~see Fig. 11 and Table II!.
It can be concluded from the above investigations t
the critical exponents ~the correlation length critica
exponent n and the crossover exponentf) for the
anisotropic AT model on the family of the diamond-typ
hierarchical lattices not only depend on the fractal dimens
df but also the concrete geometrical parameters, i.e.,b and
m, of the lattices.

For the square lattice, the exact values of the correla
length critical exponent aren I51 andnP52/3 for the Ising
and Potts universality class, respectively@14#. In addition,
for a kind of self-dual hierarchical lattice, Bezerraet al. @26#
have obtained thatn I51.149 andnP50.948. Due to reason
that bothn I andnP are dependent on the parametersm andb
of the hierarchical lattices, we only take the case ofb52 as

FIG. 9. The correlation length critical exponentnP vs the fractal
dimensiondf of the family of the diamond-type hierarchical la
tices.

FIG. 10. Variations of the crossover critical exponentfP with
the number of branchesm, and the number of bonds per branchb of
the generator of the family of the diamond-type hierarchical lattic
06610
t

n

n

an example. In this case~see Figs. 6 and 8!, n I51.3383,
nP51.1242 when m52, i.e., df52; n I51.1227, nP
50.9534 whenm53; . . . ; n I51.0276,nP50.9062 when
m56; n I51.0201,nP50.9083 whenm57. Therefore, one
can find that the results ofn I andnP for the cases ofb52,
m56 and b52,m53 are comparatively close to those
Ref. @14# and Ref.@26#, respectively.

V. CONCLUSION AND DISCUSSION

In this paper, by means of the transfer-matrix method a
the real-space renormalization-group transformation,
study the phase transitions of the anisotropic Ashkin-Te
model on a family of diamond-type hierarchical lattices.
can be found that for different sets ofm and b, the phase
diagram for the ferromagnetic case consists of five pha
i.e., the fully disordered paramagnetic phaseP, the fully or-
dered ferromagnetic phaseF, and three partially ordered fer
romagnetic phasesFs , Fs , and Fss , as well as ten non-
trivial fixed points. The correlation length critical exponen
and the crossover exponents are also calculated. In addi
as we know, universality is one of the three pillars of mode
critical phenomena@32#, and it depends on a number of fa
tors. On a Bravais lattice, the universality criteria are dime
sionality and symmetry. However, through the investigatio
of the variations of the critical exponents with the frac
dimensiondf , the number of branchesm, as well as the
number of bonds per branchb of the generator of the hierar
chical lattices, we have shown the difficulties in search
for the complete set of universality criteria on a hierarchi
lattice. This problem deserves further attention.
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FIG. 11. The crossover critical exponentfP vs the fractal di-
mensiondf of the family of the diamond-type hierarchical lattice
5-7



.

.

. E

cs

off

ni,

u-

.

J.-X. LE AND Z. R. YANG PHYSICAL REVIEW E68, 066105 ~2003!
@1# J. Ashkin and E. Teller, Phys. Rev.64, 178 ~1944!.
@2# C. Fan, Phys. Lett.39A, 136 ~1972!.
@3# F.J. Wegner, J. Phys. C5, L131 ~1972!.
@4# P. Bak, P. Kleban, W.N. Unertl, J. Ochab, G. Akinci, N.C

Bartelt, and T.L. Einstein, Phys. Rev. Lett.54, 1539~1985!.
@5# J. Chahine, J.R. Drugowich de Felı´cio, and N. Caticha, J. Phys

A 22, 1639~1989!.
@6# S. Wiseman and E. Domany, Phys. Rev. E48, 4080~1993!.
@7# S. Wiseman and E. Domany, Phys. Rev. E51, 3074~1995!.
@8# G. Kamieniarz, P. Kozlowski, and R. Dekeyser, Phys. Rev

55, 3724~1997!.
@9# L.P. Kadanoff, Phys. Rev. Lett.39, 903 ~1977!.

@10# H.J.F. Knops, Ann. Phys.~N.Y.! 128, 448 ~1980!.
@11# M.P.M. den Nijs, Phys. Rev. B23, 6111~1981!.
@12# A.M. Mariz, C. Tsallis, and P. Fulco, Phys. Rev. B32, 6055

~1985!.
@13# J.A. Plascak and F.C. Sa´ Barreto, J. Phys. A19, 2195~1986!.
@14# R.J. Baxter,Exactly Solved Models in Statistical Mechani

~Academic, New York, 1982!.
@15# R.V. Ditzian, J.R. Banavar, G.S. Grest, and L.P. Kadan

Phys. Rev. B22, 2542~1980!.
@16# F.Y. Wu and K.Y. Lin, J. Phys. C7, L181 ~1974!.
06610
,

@17# E. Domany and E.K. Riedel, Phys. Rev. B19, 5817~1979!.
@18# M. Badehdah, S. Bekhechi, A. Benyoussef, and M. Touza

Physica B291, 394 ~2000!.
@19# S. Bekhechi, A. Benyoussef, A. Elkenz, B. Ettaki, and M. Lo

lidi, Physica A264, 503 ~1999!.
@20# A.N. Berker and S. Ostlund, J. Phys. C12, 4961~1979!.
@21# M. Kaufman and R.B. Griffiths, Phys. Rev. B24, 496 ~1981!.
@22# A. Efrat and M. Schwartz, Phys. Rev. E63, 036124~2001!.
@23# A. Efrat, Phys. Rev. E63, 066112~2001!.
@24# F.D. Nobre and E.M.F. Curado, Phys. Rev. E66, 036107

~2002!.
@25# J. Török, S. Krishnamurthy, J. Kerte´sz, and S. Roux, Phys

Rev. E67, 026108~2003!.
@26# C.G. Bezerra, A.M. Mariz, J.M. de Arau´jo, and F.A. da Costa,

Physica A292, 429 ~2001!.
@27# Z.R. Yang, Phys. Rev. B38, 728 ~1988!.
@28# Y. Qin and Z.R. Yang, Phys. Rev. B43, 8576~1991!.
@29# J.R. Melrose, J. Phys. A16, 3077~1983!.
@30# B. Hu, Phys. Rev. Lett.55, 2316~1985!.
@31# C. Tsallis and A.C.N. de Magalha˜es, Phys. Rep.268, 305

~1996!.
@32# H.E. Stanley, Rev. Mod. Phys.71, S358~1999!.
5-8


