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Nonequilibrium phase transition in a model for the propagation of innovations
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We characterize the different morphological phases that occur in a simple one-dimensional model of propa-
gation of innovations among economic aggi{sGuardiolaet al, Phys. Rev B66, 026121(2002]. We show
that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the
presence of a continuous roughening transition between dsffatem size independent fluctuatipasid a
rough phasdsystem size dependent fluctuatiprisinite-size scaling studies at the transition strongly suggest
that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not
seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an
explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is
responsible for the novel critical behavior.
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I. INTRODUCTION tion of innovations are considered. First, external pressure
can push an agent to adopt an innovation. This mechanism

In the past few years there has been an increasing intereisttends to mimic exogenous influence, such as advertising,
among theoretical physicists in complex phenomena occurand is independent of the network structure. Second, there is
ring in fields that are far apart from the traditional realm of interaction among agents, which depends on the underlying
physics like social and economic scien¢és-4]. The main  network structure and is introduced in the model by consid-
reason being that social and economic systems often exhibéring local coupling rules. A single tunable parametr
many instances of complex dynamics, including self-which is fixed and the same for all agents, accounts for the
organization, pattern formation, synchronization, and phasagents’ resistance to change, and controls the dynamical be-
transitionlike phenomena that closely resemble those obhavior of the system. In earlier studies, some of us have
served in nonequilibrium physical systefits-8]. Physicists already focused on the several outcomes of the model in the
approach to these systems usually provides insights into theocial and economic contef®,11,13. From the economic
basic ingredients that should be included in simple models ipoint of view, the main result is that the system presents an
order to obtain the dynamics observed. Although it is cleaioptimal behavior for an intermediate value@fand that this
that physics inspired models of socioeconomic phenomenean be quantified with a macroscopic observable. This fea-
are often very simplistic views of very complicated systemsjure is closely related with the statistical properties of the
the aim is to show how complex macroscopic dynamicsprofile of technological levels of the agents and its dynamical
might arise from rather simple rules operating at the “micro-evolution. A proper characterization of these properties can
scopic” level of individual agents and their mutual interac- be done with the tools of statistical mechanics and it is the
tions. main aim of this work.

In this paper we consider a very simple model of innova- In this paper we show that this model can be interpreted
tion propagation dynamics in an economic system formed bys a surface growth model. Such interpretation allows us to
agents[9,10]. The aim is to describe in a simple way the analyze the dynamical behavior of the model as a kinetic
adoption of innovations that occur among industries, firmsyoughening process akin to other nonequilibrium surface
or individuals. Once a brand new product appears in thg@rowth systems. We find that the model exhibits a continuous
market, the agents should decide whether or not they wilphase transition between a rough and a flat phase at a critical
incorporate the new technology. Adopting the new technolvalue Cy, of the control parameter. We focus on the scaling
ogy (in the form of a software, device, gadget, pteas a  properties at the threshold in order to determine the critical
cost, but at the same time it may improve business perforexponents at the transition. By defining a convenient order
mance in the case of firms, or may leveloff life quality for parameter and studying its finite-size scaling properties near
individuals. Innovations are regarded here in a broad senggiticality we are able to show that the horizontal correlation
and stand for any device or tool. For instance, a firm carength diverges ag~|C—C,,| ", where v=2.5. Close to
decide to incorporate world wide weWWWW) technology the threshold, relaxation dynamics to the stationary regime is
by creating or revamping its WWW page, or going into characterized by diverging correlation times &%, wherez
e-commerce for the first time. A layman observation is that~0.57 is the dynamic exponent. The existence of a nonequi-
if not always, in most cases, when the new technology actulibrium roughening transition in a#1 dimension model
ally improves performance its use will spread all over. makes it interesting also for statistical mechanics. It is

In this approach two main mechanisms for the propagaknown that phase transitions in nonequilibriunt 1L dimen-
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FIG. 1. Snapshots of the profile of a system wlitk 1024 forC=0.5, C=1.0, C=2.0, andC=5.0.

sional systems are usually associated with systems with albhat may lead an individual to spontaneously update by
sorbing stateg13]. In this case, the number of absorbing adopting a new technology. This mechanism keeps the sys-
states and symmetries among them determine the universaeém out of equilibrium.

ity class to which a particular system belongs to. Thus, itis (2) The agentsjeI'(i), I'(i) being the set of nearest

of great interest to find models far from equilibrium which neighbors of agent, upgrade ifh;—h;=C. If the latter is

do not possess absorbing states but still display a phase tragatisfied, agent imitates agent by settingh;=h; . In this
sition. As we will see below, our model lacks absorbingWay the information of an update may spread beyond the
states and the measured critical exponents suggest that th1§ighbors of the originally perturbed site. This procedure is
model belongs to a different universality class. Finally, we'€Peated until no one else wants to change, concluding an

discuss the physical mechanisms behind the critical transBvalancheof imitation events. We thus assume that the time
tion in this model. scale of the imitation process is much shorter than the one

corresponding to the external driving.
Starting from a flat initial conditionh;=0 for all i, the
Il. THE MODEL system evolves to a stationary regime. In Fig. 1 we present
snapshots of the surface profile in the stationary regime for
We considerN agents placed at the sites of a one-four different values ofC.
dimensional lattice with periodic boundary conditions. Each The time scale separation—namely, slow driving versus
site (agenj i is characterized by a real varialtg. In gen-  fast relaxation in the form of avalanches of activity—is simi-
eral, we can consider this quantity asclaracteristicof a  lar to that occurring in self-organized criticé800 systems
given individual that other agents might want to imitate. and dynamically drives the system towards a stationary state
When an agent has adopted a new featimaovation, her  [14]. We will see below that, at variance with most SOC
neighbors become aware of the change and balance thejystems, two different stable phases are possible: an ordered
interest(quantified ash; —h;) with their resistance to change (flat) phase and a disorderéugh phase with scale invari-
C to decide if they would like to imitate this change. In this ant properties. For smal, the driving process easily trig-
way C controls the mechanism of imitation. This parametergers avalanches that cover the whole system, leading to a
is constant and the same for all the agents in the system. uniform advance and a flat phase. On the contrary, for large
The system is updated as followkl]: C, there are almost no avalanches, and the system advances
(1) At each time step an ageht is randomly selected and mostly due to the random updates, thus presenting an ex-
tremely heterogeneous and rough profile. For intermediate
h—h values ofC one can clearly see the presence of large ava-
i—h+A, (1) . . . .
lanches and new updates. In fact, in the intermediate regime
one can find the optimal growth regime in which the agents
whereA is a random variable uniformly distributed 0, 1] reach a given average level with a minimum number of up-
[23]. The driving process accounts for the external pressurgraded9].
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10°F =
F 1 may vary from a single onéwhich changes fronh to h
L i +A) to any number of agents in the system if the update
i =20 | generates an avalanche.

W | | In the following we report on the behavior of the width in
ot _ the two different phases. On the top panel of Fig. 2 we show
F —N=512 | | the behavior ofW(N,t) for C=0.5. The saturation value

r - N=1024| 1 does not depend on the system size, which indicates that the
r . -- N=2048| 1 system is in the smooth phase. On the bottom panel of Fig. 2
r 7 - N =4096| | we show the numerical results in the rough phase Gor
102 L ] ol ] i =2.0. In this case the saturation valM&,(N) scales with
10" 10° 10° 10" 10° 10' the system size, as is shown in the inset. We find that in the
UN rough phase the height fluctuations seem to fit reasonably

. ution of the widtW(t) ¢ i well with a scaling asVs,(N)~N%15 which actually cannot
Sys't:é% ;'ZGTS'?‘?E :i’g ul\tl"inlgzi EI_WZ'Ot48 (t;ndol\rl_fc;uorg(;) ‘xﬁga be distinguished from a possibly logarithmic dependence.
C=0.5 andC=2.0. Results correspond to averages over 500 realg;gﬁgﬁiéﬁsuns strongly suggest the presence of a roughening

;ig?ns of the noise. The inset shows thid scales with system In order to_ study the critical _behavior at the transition
threshold we introduce a convenient order parameter. When

IIl. CRITICAL ROUGHENING TRANSITION looking at the profile snapshots in the stationary regime in
Fig. 1, one can easily notice the presence of large plateaux,
A. Stationary regime i.e., finite connected regions of agents that have the same

In order to characterize the different morphological N€ight. The size of these flat regions decrease€ gsows,

phases we performed extensive numerical simulations of théince forC—o the model has to become equivalent to the
ndom deposition mod¢l5]. We found that the size of the

model. The fluctuations of the profile height are measured b
argest plateau can be used as an order parameter. In the

means of the global interface widft5], > ; .
following, we shall callM to the size of the largest plateau in
N - the system, normalized by the system dizen this way, a
W(N,t)=< \/(1/N)E [hi(t)—h(t)]2> (2 completely flat profile corresponds dd=1. We have also
=1 tried other common choices, as the often used Ising-like

. o magnetization (M)=;(—1)"® and its variationd16,17.
v_vhere() stands for average over noise realizations. At eaCrl'—|ov§\]/ever, we fo(un<)j th(at Ol)Jr election has better sS[caIingﬂ prop-
time step the mean height value erties for this particular case, since it takes into account the

N singular behavior of the flat phase in this model.
i) — , Starting from a flat initial conditioM (t) evolves until it
h(®) (1/N)i:21 () ® reaches a stationary value. In Fig. 3 we show the behavior of
the stationary value of the order parametgy;,(N,C) vsC
is also calculated. It is important to stress here that time i$or four different system sizes. The order parameter allows
always measured in the external driving temporal scale, sas to distinguish the two phases discussed above. Note that
that one time step corresponds to an external update. As afor small values of the control parameter, the system gets
consequence, the number of agents that change their stadedered, implying a flat phase. On the contrary, the stationary
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FIG. 4. Order parameteM ¢, vs N for four different values of
the paramete€=0.90, C=0.95,C=1.00, andC=1.05. A power
law-decay M ¢o~N~%4 is observed forC=1.0. Results corre-
spond to averages over 500 realizations.
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FIG. 5. Data collapse of the order parametky;,; as given in
Eq. (5). Results correspond to averages over 500 realizations.

B. Dynamics

value of the order parameter goes to zero for large values of >iNc€ the model is out of equilibrium our study is com-

C as the system size becomes larger. Critical behavior i

expected close to the threshdly,, and, as usual, it can be
studied numerically by finite-size scaling techniq(&e8—-1§
as follows. For any value of the control parame@rthere
exists a horizontal correlation length which diverges as

é~¢e~ 7 when the distance to the critical threshold goes to

zero e=|C—C,|—0. In finite systems this actually occurs
for values ofC close to, but not exactly at, the threshol

since the finite-size critical behavior is encountered as IonJ

as é~N, or equivalently whene~N~%". Close to the
threshold,e—0, for sufficiently large values of the system
size, M5 cOnverges to a finite value obeyindg.(N,€)
~¢eP. Just at the critical poine=0 we expect the order
parameter to decay as a power law with the system size

MgialN,e=0)~N"#", (4)

In Fig. 4 we plot our numerical results fdd s;o(N,€) vS N
for different values of the distance to the thresheldOnly

for C=Cy, a power law with the system size can be obtainedM
and the slope of the straight line in a log-log plot gives an

estimation of the ratigd/v=0.44+0.05 between critical ex-
ponents. We can thus identify,,,= 1.0+ 0.1 with the critical

point. After having determined the critical point, numerical
data for different system sizes can be cast in the finite-size

scaling ansatz
Msiad(N,€)=N"#"g(eN'), (5

where the scaling functiog(y) ~const fory<1, andg(y)

~y#if y>1. In Fig. 5 we plot a data collapse that allows Us = 4096 are represented to better appreciate the deviations

to determine the values of the exponentg=10.40+0.05
and B/v=0.44+0.05. From these, we then hay~1.10
and v~ 2.50.

pleted next with an analysis of the dynamic behavior, which

contains much information about the universality of the
roughening transition. In Fig. 6 we show the temporal behav-
ior of the order parametevl (t,N,C) for three different val-
ues ofC (above, below, and at the critical threshpldgain,
only at the critical point we may expect to find a power-law
decayM(t,N,e=0)~t A" wherey, is the exponent asso-

g ciated with the diverging correlation time- e~ " ase—0.

he correlation time corresponds to the typical time that cor-
relations survive in the system and is givenby &, where

z is the dynamic exponent. The three exponents are related
by the usual scaling relatian= v,/ v provided dynamic scal-

ing holds. In Fig. 6 we can see that only at the critical point

10

10

10°

10

FIG. 6. Order parameter dynamics for three valuesCofC
=0.90 in the smooth phase, the critical val@e=1.00 andC
=2.00 in the rough phase. Two system si¢s-2048 andN
from

power-law behavior, indicated with a dashed line, for the values
outside the critical region. The curves correspond to an average
over 500 realizations.
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10° e ——r e examples of roughening transitions far from equilibrium that
have been linked to DP, examples include polynuclear
C=1.00 growth modelq 18], solid-on-solid models with evaporation
at the edges of terrac¢46], and the fungal growth model
[17]. In all these systems, the DP process emerges at a par-
ticular reference height of the interface. In this case, the criti-
cal exponents characterizing the roughening transition can be
obtained from those of DP, which in411 dimension are
X given by v=1"P=1.10 for the correlation length exponent,
077 V= g'fp=1.73 for the time correlation exponent, amd
=2zPP=1.58 the dynamic exponeft3]. Our results clearly
. suggest that the roughening transition occurring in the inno-
vation propagation model does not belong to the DP class.
10°5 D o e The relation of many nonequilibrium critical models to
10 10 t 10 1 DP has led to the proposal of the conjecture due to Janssen
and Grassbergdil9,20, which states that a model belongs
FIG. 7. Order parameter dynamics for six increasing values of© DP under the fqllowmg assumptloﬁ$3]: .
the system siz&l, from top to bottom, 2—214. A power-law behav- (1) The_ mOde! displays a continuous phase transition from
ior M~t~%77 is observed in the transient regime. Results corre-2 fluctuating active phase into a unique absorbing state.
spond to averages over 500 realizations. (2) The transition is characterized by a positive one-
component order parameter.
a power-law behavior is observed, while deviations occur for  (3) The dynamic rules involve only short-range interac-
C+#Cy,. The fit to a straight line in a log-log plot, as shown tions.

M 10*

Fig. 7, leads to a determination of the ratig/v,=0.77 (4) Finally, the system has no special attributes like addi-
+0.05. One can write the dynamic scaling ansatz tional symmetries or quenched randomness.

Any model satisfying all above four conditions has been

M(t,N,e)=N"PF"D (et t/N?) (6)  found to belong to DP universality class, with no exception

to date. However, it is known that at least some of the above
for the order parameter, which at the critical paint0 reads  DP conditions can be relaxed. In fact, there are a few ex-
P , amples of systems that, despite exhibiting no absorbing
M(t,N,e=0)=N f(t/N%), () state§ 16—14 or having quenched disordg21,22 also dis-
play nonequilibrium phase transitions that belong to the DP
universality class. Our model does not have absorbing states,
ince in both the rough and the flat phase the interface keeps
uctuating. Also and perhaps most importantly, interaction is
not short ranged, because of the avalanches of activity that
‘give rise to nonlocal effects with finite probability. Their in-
fluence on the dynamics is reflected by the extremely low
value of the dynamic exponerg=0.57 <2, signature of a
highly super diffusive behavior. It appears that this nonlocal
interaction mechanism is responsible for the deviation of the

where the scaling functiofi(u)~const foru>1 andf(u)
~u~ A" for u<1. We can then use the values of the expo-
nents just obtained to collapse our data as shown in Fig.
with exponents;~1.43 andz~0.57.

Nonequilibrium phase transitions have been mostly re
lated to the universality class of directed percolati@P),
with very few exception$13]. In particular, there are many

— N=512 1  DP critical behavior.

N = 1024 1 We believe that the transition takes place exactlyCat
- N = 2048 =1.0. This is directly related to the dynamical evolution
-— N =4096 rules of the model. We have defined the external driving by
- N =8192 choosing a random number from a uniform distribution in

[0,1]. As a consequence, f@8<1.0, a random update on

any site can generate an avalanche. On the other hand, for
C>1.0, only a small fraction of sites will be able to generate
an avalanche with a single update. In order to quantify this
effect we have studied the fraction of sites which can gener-
ate an avalanche with a single update. A siteith this
property will satisfy

105 -1
10 10 05710
t/N hi—h.;+1>C. ®)

FIG. 8. Dynamical data collapse of the order parameter at the

critical point, as given by Eq7). The exponents used correspond to In Fig. 9 we present the fraction of sitésvhich are able to
the ones obtained abovg/v~0.44, andz~0.57. generate an avalanche as a function of C. The figure clearly
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% & 8 8 8 o o . ‘ . ‘ ] face growth model. This has allowed us to characterize dif-
¢ . ferent morphological phases and also to analyze the
0sl ' ; | dynamical behavior of the model as a kinetic roughening
process. We have characterized a roughening transition and
determined its critical exponents by finite-size scaling tech-
fo‘ef | niques. The values of the exponents do not coincide with
known universality classes. We believe that the avalanche
04r e N =100 7 driven dynamics with its long-range effects is the reason why
I : N . 421% 1 this model does not belong to the DP universality class. We
021 1 : ] B e have also presented a possible mechanism for the transition
occurring exactly aC,,=1.
00 0‘.5 2‘]. 15
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