
lunya,

exico

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 68, 065605~R! ~2003!
Stabilization of one-dimensional periodic waves by saturation of the nonlinear response
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We address the properties of (111)-dimensional periodic waves in conservative saturable cubic nonlinear
media and discover that cnoidal- and snoidal-type waves are completely stable within a broad range of
parameters. The existence of stability bands is in sharp contrast with the previously known properties of
periodic waves in self-focusing Kerr nonlinear media. We also found that in self-defocusing media instability
bands occur, again in contrast to the case of Kerr media.
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Stationary periodic wave structures play an important r
in a number of physical models and occur in media w
various nonlinearities admitting existence of spatial or te
poral solitons@1–6#. Nonlinear periodic waves by their na
ture are closely related to the phenomena of modulatio
instability and turbulence development. They describe
eigenmodes of mechanical, molecular, and electrical cha
and are connected to Bloch-type waves in solid-state phy
and in diffraction or dispersion managed structures. Perio
light-induced reconfigurable lattices are used for the form
tion of matrices of ultracold atoms and for trapping and gu
ing of intense optical radiation. The properties of se
sustained periodic wave structures have been extens
studied in the past in the context of Langmuir plasma wa
@5,7#, deep-water gravity waves@4,8#, pulse trains in optical
fibers@1–3,9#, reconfigurable beam arrays in photorefracti
crystals@6,10#, matter waves in trapped Bose-Einstein co
densates@11#, synchronously pumped optical parametric o
cillators@12#, optical cavities@13#, and in quadratic nonlinea
media@14#.

Only a few examples oflinearly stable periodic wave
patterns are known. Such stable waves arise in defocu
cubic Kerr nonlinear media@3–5,7,8,15#, in systems trapped
by external potentials, such as Bose-Einstein condensat
optically induced periodic traps@11#, or in dissipative optical
systems such as driven optical cavities@13#. Recently it was
discovered that stable multicolored periodic waves are p
sible under suitable conditions in quadratic nonlinear me
@16#. To date, this is the only known example of stable se
sustained periodic patterns in uniform conservative me
supporting bright solitons.

Here we report the existence of stable cnoidal- a
snoidal-type periodic wave families in conservative me
with saturable Kerr-type nonlinearity. We have found stab
ity of periodic waves in self-focusing saturable media with
a broad range of parameters, as well as narrow band o
stability for waves in self-defocusing medium. This is
sharp contrast with the properties of periodic waves in cu
nonlinear media that are stable in defocusing medium
unstable in focusing medium@9,15#. We show that periodic
waves become stable~unstable! in focusing ~defocusing!
saturable medium when field intensity exceeds the cer
critical level.
1063-651X/2003/68~6!/065605~4!/$20.00 68 0656
e

-

al
e
s,
cs
ic
-
-
-
ly
s

-
-

ng

in

s-
ia
-
ia

d
a
-

n-

ic
d

in

We consider propagation of laser radiation in a medi
with saturable cubic nonlinear response that can be met
example in photorefractive crystals@6,10,17#. The evolution
of dimensionless field amplitude is described by nonlin
Schrödinger equation:

i
]q

]j
52

1

2

]2q

]h2 1
sququ2

11Suqu2
. ~1!

Here transverseh and longitudinalj coordinates are scale
in terms of the characteristic beamwidth and diffracti
length, respectively;S is the saturation parameter;s521
(11) for focusing ~defocusing! media. In photorefractive
crystals the value of the saturation parameter can be c
trolled by adjusting the biasing static electric field, and t
sign of nonlinearity depends on its polarity@17#. Simple es-
timates show that for photorefractive SBN crystal~electro-
optic coefficientr 51.8310210 m/V, linear refractive index
n052.33) biased with dc static electric fieldE0;105 V/m,
for laser beams with width 10mm at wavelengthl
50.63mm, the value of saturation parameter is given byS
;0.2, propagation distancej51 corresponds to 2.3 mm o
actual crystal length, while dimensionless amplitudeq;1
corresponds to real peak intensities about 50 mW/cm2. One
should take care of the fact that in real experiments with b
crystals periodic waves can be affected by transverse mo
lational instability along uniformy axis @15#.

Stationary periodic solutions of Eq.~1! have the form
q(h,j)5w(h)exp(ibj), wherew(h)5w(h1T) is the real
periodic function,b is the propagation constant, and can
found only numerically. The periodic wave families are d
fined by two mathematical parameters, the transverse pe
T and the propagation constantb, at a fixed saturation param
eterS. Physicallyb is related to the energy flow

U5E
2T/2

T/2

w2~h!dh ~2!

inside each transverse wave period. Note that ifq(h,j,S) is
the solution of Eq.~1! thenxq(xh,x2j,x22S) ~herex.0 is
the arbitrary scaling factor! is also a solution of this equation
Since one can use scaling transformations to get various
©2003 The American Physical Society05-1
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riodic wave families from the known ones we choose
transverse scale so that periodT52p.

The main properties of periodic wave solutions of Eq.~1!
are summarized in Figs. 1~a!–1~c!, 2~a!–2~c!, 3~a!, and 3~b!.
There are three types of lowest order periodic waves:snoidal
~sn! wave in defocusing medium (s511), cnoidal ~cn! and
dnoidal ~dn! waves in focusing medium (s521). We use
these notations for wave types by analogy, despite the
that exact solutions of Eq.~1! are described by Jacobi ellipti
functions only in the limiting caseS→0. sn- and cn-type
waves periodically change their sign@Figs. 1~c! and 2~c!#,
whereas dn wave is always positive and contains a cons
pedestal@Fig. 3~b!#.

Dispersion diagrams for sn and cn waves are quite sim
@see Figs. 1~a! and 2~a!#. In the limit w→0 andw→` both
sn and cn waves are transformed into harmonic patterns.
corresponding low- and high-energy cutoffs are given
bw→0521/2 andbw→`521/22s/S. The domain of exis-
tence of dn-type wave is narrowed with growth of saturat
parameter@Fig. 3~a!#. Near the cutoffs the dn wave is clos
to plane wave. The integral width defined as

W52S E
2T/4

T/4

w2~h!h2dh D 1/2S E
2T/4

T/4

w2~h!dh D 21/2

~3!

reaches its maximum value for sn waves@Fig. 1~b!# and its
minimum value for cn waves@Fig. 2~b!# at intermediate en-
ergy levels, which correspond to the narrowest dark ho
and bright peaks~or strongestdegree of localization! for sn

FIG. 1. Energy flow~a! and integral width~b! of sn-type wave
vs propagation constant.~c! Profiles of sn waves with various en
ergy flows atS50.1. ~d! Areas of existence of finite perturbation
with imaginary growth rates atS50.25~shaded!. ~e! Maximum real
part of complex growth rate vs propagation constant.~f! Areas of
existence of stable and unstable~shaded! sn waves. All quantities
are plotted in dimensionless units.
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and cn waves, respectively. For strong localization cn wa
transform into arrays of out-of-phase bright solitons,
wave into arrays of in-phase bright solitons, and sn wave i
arrays of out-of-phase kinks, or dark solitons.

To analyze stability of periodic waves in the saturab

FIG. 2. Energy flow~a! and integral width~b! of cn-type wave
vs propagation constant.~c! Profiles of cn waves with various en
ergy flows atS50.1. ~d! Maximum real part of complex growth
rate vs propagation constant.~e! Curves at the complex plane show
ing possible increment values for various propagation constan
S50.25. ~f! Areas of existence of stable and unstable~shaded! cn
waves. All quantities are plotted in dimensionless units.

FIG. 3. ~a! Energy flow of a dn-type wave vs propagation co
stant. ~b! Profiles of dn waves with various energy flows atS
50.1. ~c! Areas of existence of finite perturbations with real grow
rates atS50.8 ~shaded!. Vertical lines in~c! stand for cutoffs.~d!
Propagation of dn-wave withb50.6 andS50.25 in the presence o
perturbation with growth rated50.1084. All quantities are plotted
in dimensionless units.
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medium we seek for perturbed solutions of Eq.~1! in the
form @15,16#

q~h,j!5@w~h!1U~h,j!1 iV~h,j!#exp~ ibj!, ~4!

with w(h) being the stationary solution of Eq.~1!, and
U and V real and imaginary parts of small perturbatio
respectively. We look for exponentially growin
perturbations U(h,j)5Re@u(h,d)exp(dj)# and V(h,j)
5Re@v(h,d)exp(dj)#, where d is the complex growth rate
Substitution of Eq.~4! into Eq. ~1! and linearization yields
the matrix equation

dF

dh
5BF, B5S O E

N OD ,

N5S 2b12s
3w21Sw4

~11Sw2!2 2d

22d 2b12s
w21Sw4

~11Sw2!2

D ~5!

for the perturbation vectorF(h)5$u,v,du/dh,dv/dh%T,
where O and E are zero and unity 232 matrices, respec
tively. The general solution of Eq.~5! can be expressed in th
form F(h)5J(h,h8)F(h8). Here J(h,h8) is the 434
Cauchy matrix, which is the solution of the initial valu
problem]J(h,h8)/]h5B(h)J(h,h8), J(h8,h8)5E.

The Cauchy matrix defines the matrix of translation of t
perturbation eigenvectorF on one wave period asP(h)
5J(h1T,h). It was rigorously proven in Refs.@15#, @16#
that the perturbation eigenvectorFk(h) is finite along the
transverseh axis when the corresponding eigenvalue of t
matrix of translation satisfies the conditionulku51 (k
51,...,4). This condition defines the algorithm of constru
tion of the areas of existence of finite perturbations. Th
eigenvalueslk are defined by the characteristic polynom
D(l)5det(P2lE)5(k50

4 pkl
42k50. The coefficients of

the polynomial are given by the traces of translation ma
Tk5Tr@Pk(h)#. One finds thatp05p451, p15p352T1 ,
andp25(T1

22T2)/2. Two of the four eigenvalueslk can be
excluded becauselk51/lk12 (k51,2), and corresponding
eigenvectors fulfill the symmetry relationsFk(h)5Fk12
(2h).

First we applied the method to sn waves. We have c
ered a broad interval of saturation parameter 0<S<10 and
considered perturbations with general complex growth ra
When searching for finite perturbations we scanned
whole d plane with fine meshes~typically the step in the
modulus of d was 0.001 and the step in the phase w
p/1000!. For periodic patterns the areas of existence of fin
perturbations have aband structureand one of the conditions
ul1,2u51 is fulfilled inside these bands. Figure 1~d! shows
such bands for perturbations with imaginaryd. In contrast to
the case of defocusing cubic medium, where sn waves
stable in the entire domain of their existence, we have fo
that in saturable media sn waves becomeweakly unstable
when their energy flow exceeds a certain critical value~i.e.,
when b>bcr). This instability corresponds to comple
06560
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growth rates and, hence, is of the oscillatory type. The ma
mum real part of the complex growth rate versus propaga
constant is shown in Fig. 1~e!. The oscillatory instability of
the sn waves occurs in the narrow band of propagation c
stants near the high-energy cutoff. The domains of existe
of stable (bcr,b<21/2) and unstable (bw→`<b<bcr) sn
waves are shown in Fig. 1~f!. Notice that forS→0 the width
of the instability band vanishes, a result that is in agreem
with the known results for sn waves in defocusing cub
medium.

Next we consider the case of cn waves. In Kerr me
such waves suffer from oscillatory instabilities in their ent
domain of existence. In contrast, the central result of
present paper is that cn waves in focusing saturable m
becomelinearly stable when their energy flow exceeds
certain critical level@Figs. 2~d! and 2~f!#. This is consistent
with the strong stabilizing action of saturation of nonline
response on propagation of self-sustained nonlinear wa
dramatically illustrated by the stabilization of bell-shap
bright soliton in bulk media@18#. The effect reported here
follows the stabilization of multicolor cn waves discovere
recently in quadratic nonlinear media@16#, and is the second
example of stable periodic pattern in uniform media suppo
ing bright solitons.

The oscillatory-type instability found for cn waves i
saturable media occurs for the band of propagation const
near the low-energy cutoff, i.e., for21/2<b<bcr . The
maximal real part of complex growth rate versus propagat
constant is shown in Fig. 2~d!. Notice that real parts of
growth rates quickly decrease with increase of saturation
rameter. This means that even periodic waves from the
stable region can be observed at high saturation levels
cause their typical decay length would exceed a
experimentally feasible crystal length. At fixedS and propa-
gation constant, the complex growth rates for the waves fr
unstable region form thecurves in the complex plane
„Re(d),Im(d)… shown in Fig. 2~e!. Areas of existence of

FIG. 4. ~a! Profile of stationary sn wave withb522 and~b! its
long-term propagation in the presence of white input noise su
imposed to the stationary solution.~c! Profile of stationary cn wave
with b53 and ~d! its long-term propagation in the presence
noise. Saturation parameterS50.25. Noise variances250.01. All
quantities are plotted in dimensionless units.
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stable~for bcr,b<bw→`) and unstable~for 21/2<b<bcr)
cn waves at~S,b! plane are shown in Fig. 2~f!. The width of
the stability band increases with decrease of saturation
rameter. In the limitS→0 results are in full agreement wit
those for unstable cn waves in cubic media.

For the sake of completeness, we have studied the ca
dn-type waves and found that they suffer from exponentia
growing instabilities. The typical structure of areas for fin
perturbations with real growth rates is shown in Fig. 3~c!.
Notice that the instability of dn wave typically manifes
itself in fusion of neighboring peaks@Fig. 3~d!#.

To confirm the results of the linear stability analysis a
to elucidate its actual impact in the long-term evolution
the periodic waves, we have also integrated Eq.~1! numeri-
cally with input conditions q(h,j50)5w(h)@1
1r(h)#G(h), wherew(h) is the profile of the stationary
wave, r~h! is a Gaussian noise with the variances2, and
G(h) is a broad Gaussian envelope imposed on the infi
periodic pattern. Results of numerical integration are in f
agreement with results of linear stability analysis. For e
ample, Figs. 4~a!–4~d! illustrate the stable propagation o
r

d

-
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perturbed snoidal and cnoidal waves with parameters belo
ing to stability bands. The periodic waves maintain their
put structure over several thousand units, correspondin
actual physical distances, more than 2 m in typical photore-
fractive crystals.

In conclusion, the linear stability analysis of period
waves in conservative saturable cubic nonlinear media,
ried with a powerful mathematical formalism, has revea
the existence ofcompletely stablepatterns of both snoida
and cnoidal types. Such result is in contrast to the instab
of periodic waves in self-focusing Kerr media. The existen
of stable periodic wave arrays is thus of fundamental imp
tance. It might find applications in the formation of reconfi
urable light-induced periodic waveguide arrays in futu
photonic circuits.

ACKNOWLEDGMENTS

Y.V.K. and L.T. acknowledge support by the Generali
de Catalonya and by the Spanish Government under Con
No. TIC2000-1010.
,

@1# N. N. Akhmediev and A. Ankiewicz,Solitons~Chapman-Hall,
London, 1997!. Yu. S. Kivshar and G. Agrawal,Optical Soli-
tons ~Academic, New York, 2003!.

@2# A. M. Kamchatnov, Nonlinear Periodic Waves and thei
Modulations~Kluwer Academic, Dordrecht, 2000!.

@3# E. Infeld and R. Rowlands,Nonlinear Waves, Solitons an
Chaos~Cambridge University Press, Cambridge, 1990!.

@4# H. C. Yuen and B. M. Lake,Nonlinear Dynamics of Deep
Water Gravity Waves~Academic, New York, 1982!.

@5# E. A. Kuznetsovet al., Phys. Rep.142, 103 ~1986!.
@6# J. W. Fleischeret al., Nature~London! 422, 147 ~2003!.
@7# S. E. Fil’chenkovet al., Sov. J. Plasma Phys.13, 554 ~1987!;

V. P. Pavlenko and V. I. Petviashvili,ibid. 8, 117 ~1982!.
@8# D. U. Martin et al., Wave Motion2, 215 ~1980!.
@9# V. P. Kudashev and A. B. Mikhailovsky, Sov. Phys. JETP63,

972 ~1986!; N. N. Akhmedievet al., Teor. Mat. Fiz.72, 183
~1987!; M. Florjanczyk and R. Tremblay, Phys. Lett. A141, 34
~1989!; V. M. Petnikovaet al., Phys. Rev. E60, 1 ~1999!; F. T.
Hioe, Phys. Rev. Lett.82, 1152~1999!.

@10# V. A. Aleshkevichet al., Quantum Electron.31, 257 ~2001!.
@11# J. C. Bronskiet al., Phys. Rev. Lett.86, 1402 ~2001!; Phys.

Rev. E63, 036612~2001!; 64, 056615~2001!; P. J. Y. Louis
et al., Phys. Rev. A67, 013602~2003!; N. K. Efremidis and D.
N. Christodoulides,ibid. 67, 063608~2003!.

@12# A. Ankiewicz et al., Phys. Lett. A308, 397 ~2003!; K.-I.
Marunoet al., Physica D176, 44 ~2003!.

@13# G. K. Harknesset al., Phys. Rev. E66, 046605 ~2002!; S.
Longhi, Phys. Rev. A59, 4021~1999!.

@14# P. Ferro and S. Trillo, Phys. Rev. E51, 4994 ~1995!; D. F.
Parker, J. Opt. Soc. Am. B15, 1061 ~1998!; S. Lafortune
et al., Phys. Rev. E58, 2518 ~1998!; Y. V. Kartashovet al.,
ibid. 67, 066612~2003!.

@15# Y. V. Kartashovet al., Phys. Rev. E67, 036613~2003!; J. Opt.
Soc. Am. B20, 1273~2003!; Phys. Rev. E67, 066605~2003!.

@16# Y. V. Kartashovet al., Phys. Rev. Lett.~to be published!; Y. V.
Kartashovet al., Phys. Rev. E68, 046609~2003!.

@17# G. Dureeet al., Phys. Rev. Lett.71, 533 ~1993!; M. Segev
et al., Opt. Photonics News4, 8 ~1993!; Phys. Rev. Lett.73,
3211 ~1994!; G. Dureeet al., Opt. Lett.19, 1195 ~1994!; M.
Shihet al., ibid. 21, 324~1996!; G. I. Stegeman and M. Segev
Science286, 1518~1999!.

@18# M. G. Vakhitov and A. A. Kolokolov, Radiophys. Quantum
Electron.16, 783 ~1973!.
5-4


