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Stabilization of one-dimensional periodic waves by saturation of the nonlinear response
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We address the properties of {1)-dimensional periodic waves in conservative saturable cubic nonlinear
media and discover that cnoidal- and snoidal-type waves are completely stable within a broad range of
parameters. The existence of stability bands is in sharp contrast with the previously known properties of
periodic waves in self-focusing Kerr nonlinear media. We also found that in self-defocusing media instability
bands occur, again in contrast to the case of Kerr media.
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Stationary periodic wave structures play an important role  We consider propagation of laser radiation in a medium
in a number of physical models and occur in media withwith saturable cubic nonlinear response that can be met for
various nonlinearities admitting existence of spatial or tem-example in photorefractive crystdl§,10,17. The evolution
poral solitons[1-6]. Nonlinear periodic waves by their na- of dimensionless field amplitude is described by nonlinear
ture are closely related to the phenomena of modulationa$chralinger equation:
instability and turbulence development. They describe the
eigenmodes of mechanical, molecular, and electrical chains, _dq 1%q oqlq|?
and are connected to Bloch-type waves in solid-state physics I a_g =73 (9—772 W (1)
and in diffraction or dispersion managed structures. Periodic
light-induced reconfigurable lattices are used for the formayq e transverse; and longitudinal¢ coordinates are scaled

tion of matrices of ultracold atoms and for trapping and guidsj, o;ms of the characteristic beamwidth and diffraction
ing of intense optical radiation. The properties of self-l

sustained periodic wave structures have been extensive gngth, respectivelyss is the saturation parametes;= — 1

y . . . .
studied in the past in the context of Langmuir plasma wave +1) for focusing (defocusing m_edla. In photorefractive
[5,7], deep-water gravity waveg,g], pulse trains in optical crystals the value of the saturation parameter can be con-

fibers[1—3,9, reconfigurable beam arrays in photorefractivetr_‘)”ed by adjusting the biasing static electric field, and the

crystals[6,10], matter waves in trapped Bose-Einstein con-Sign of nonlinearity depends on its polarty7]. Simple es-
densate§11], synchronously pumped optical parametric os-fimates show that for photorefractive SBN crystalectro-
cillators[12], optical cavitieg13], and in quadratic nonlinear Optic coefficientr =1.8x 10~ m/V, linear refractive index
media[14]. no=2.33) biased with dc static electric fieE,~10° V/m,

Only a few examples ofinearly stable periodic wave for laser beams with width 10um at wavelength\
patterns are known. Such stable waves arise in defocusing0.63um, the value of saturation parameter is given3y
cubic Kerr nonlinear medig8-5,7,8,15, in systems trapped ~0.2, propagation distancg=1 corresponds to 2.3 mm of
by external potentials, such as Bose-Einstein condensates &gtual crystal length, while dimensionless amplitugte 1
optically induced periodic tragd 1], or in dissipative optical corresponds to real peak intensities about 50 m\¥/@me
systems such as driven optical cavitjd8]. Recently it was should take care of the fact that in real experiments with bulk
discovered that stable multicolored periodic waves are poserystals periodic waves can be affected by transverse modu-
sible under suitable conditions in quadratic nonlinear medidational instability along uniforny axis [15].

[16]. To date, this is the only known example of stable self- Stationary periodic solutions of Eql) have the form
sustained periodic patterns in uniform conservative medi&l(7,$)=w(7)exp(b¢), wherew(n)=w(»+T) is the real
supporting bright solitons. periodic function,b is the propagation constant, and can be

Here we report the existence of stable cnoidal- andound only numerically. The periodic wave families are de-
snoidal-type periodic wave families in conservative mediafined by two mathematical parameters, the transverse period
with saturable Kerr-type nonlinearity. We have found stabil-T and the propagation constantat a fixed saturation param-
ity of periodic waves in self-focusing saturable media withineterS. Physicallyb is related to the energy flow
a broad range of parameters, as well as narrow band of in-
stability for waves in self-defocusing medium. This is in _fm 2

) X o ; ) U= w(#n)dzy (2
sharp contrast with the properties of periodic waves in cubic 2
nonlinear media that are stable in defocusing medium and
unstable in focusing mediuf®,15]. We show that periodic inside each transverse wave period. Note thaf( i, &,S) is
waves become stablaunstable in focusing (defocusing  the solution of Eq(1) thenxq(x 7, x%&,x~2S) (herex>0 is
saturable medium when field intensity exceeds the certaithe arbitrary scaling factois also a solution of this equation.
critical level. Since one can use scaling transformations to get various pe-
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FIG. 1. Energy flow(a) and integral width(b) of sn-type wave ) ]
vs propagation constantc) Profiles of sn waves with various en-  FIG- 2. Energy flow(a) and integral width(b) of cn-type wave
ergy flows atS=0.1. (d) Areas of existence of finite perturbations VS Propagation constant) Profiles of cn waves with various en-
with imaginary growth rates &= 0.25(shadedl (e) Maximum real ~ €rgy flows ats=0.1. (d) Maximum real part of complex growth
part of complex growth rate vs propagation constéfitAreas of ~ 'ate vs propagation constare) Curves at the complex plane show-
existence of stable and unstalihaded sn waves. All quantities "9 possible increment values for various propagation constants at
are plotted in dimensionless units. S=0.25. (f) Areas of existence of stable and unstatdbaded cn

waves. All quantities are plotted in dimensionless units.

riodic wave families from the known ones we choose the _ o
transverse scale so that periber 2. and cn waves, respectively. For strong localization cn waves

The main properties of periodic wave solutions of Er).  transform into arrays of out-of-phase bright solitons, dn
are summarized in Figs(d-1(c), 2(a)—2(c), 3(a), and 3b). wave into arrays of in-phase bright solitons, and sn wave into
There are three types of lowest order periodic wasaesidal ~ arrays of out-of-phase kinks, or dark solitons.

(sn) wave in defocusing mediums(= + 1), cnoidal (cn) and To analyze stability of periodic waves in the saturable
dnoidal (dn) waves in focusing mediumo(=—1). We use
these notations for wave types by analogy, despite the fact 5 e ! ®) -1
that exact solutions of Eq1) are described by Jacobi elliptic S o 3
functions only in the limiting cas&—0. sn- and cn-type 2 %a 6
waves periodically change their sigfigs. 1c) and 2c)], ?w s
whereas dn wave is always positive and contains a constant 8 2
pedesta[Fig. 3(b)] T T E o 0503 01 06 08 10
Dispersion diagrams for sn and cn waves are quite similar parameter b n/(2m)

[see Figs. (@) and Za)]. In the limit w—0 andw—« both
sh and cn waves are transformed into harmonic patterns. The

c
corresponding low- and high-energy cutoffs are given by - L
by_.o=—1/2 andb,,_,..= — 1/2—¢/S. The domain of exis- 310-'6
tence of dn-type wave is narrowed with growth of saturation oo | [Nl=1
parametefFig. 3a@)]. Near the cutoffs the dn wave is close i

0.00 il . - !
to plane wave. The integral width defined as 02 050 075 100
parameter b

T/4 12( r1/4 -1/2
W= 2( j w2( ) n’d 77) ( j w( 77)d77> 3 FIG. 3. (a) Energy flow of a dn-type wave vs propagation con-
—Tia —Ti4 stant. (b) Profiles of dn waves with various energy flows &t

) ) ) ) =0.1.(c) Areas of existence of finite perturbations with real growth
reaches its maximum value for sn wav@sg. 1(b)] and its  rates atS=0.8 (shadegl Vertical lines in(c) stand for cutoffs(d)

minimum value for cn wavefFig. 2(b)] at intermediate en- Propagation of dn-wave with=0.6 andS=0.25 in the presence of
ergy levels, which correspond to the narrowest dark holegerturbation with growth raté=0.1084. All quantities are plotted
and bright peaksor strongestegree of localizationfor sn  in dimensionless units.
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medium we seek for perturbed solutions of Efj) in the
form [15,16]

a(7,8)=[w(n)+U(7,§) +iV(n,&lexpibé),  (4)

with w(#) being the stationary solution of Eql), and
U and V real and imaginary parts of small perturbation,
respectively. We look for exponentially growing
perturbations U(7,&)=Rdu(n,d0expé] and V(n,¢)
=Rduv(n,0)exp¢)], where § is the complex growth rate.
Substitution of Eq(4) into Eq. (1) and linearization yields
the matrix equation

v ol

—=Bd, B= N O
25

dzn

3w2+ Swh

w24 Swh ®)

—20 (1+Swh)?

2b+20

for the perturbation vecto®(7)={u,v,du/d»,dv/dz}",
where O and £ are zero and unity 2 matrices, respec-
tively. The general solution of E@5) can be expressed in the
form ®(n)=T(n,7")P(n"). Here J(n,7n') is the 4x4
Cauchy matrix, which is the solution of the initial value
problemdJ(n, ') dn=B(n) K n,n"), Hn',n')=E.
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FIG. 4. (a) Profile of stationary sn wave with=—2 and(b) its
long-term propagation in the presence of white input noise super-
imposed to the stationary solutioft) Profile of stationary cn wave
with b=3 and (d) its long-term propagation in the presence of
noise. Saturation paramet8r0.25. Noise variance>=0.01. All
quantities are plotted in dimensionless units.

growth rates and, hence, is of the oscillatory type. The maxi-
mum real part of the complex growth rate versus propagation
constant is shown in Fig.(&). The oscillatory instability of

the sn waves occurs in the narrow band of propagation con-
stants near the high-energy cutoff. The domains of existence
of stable p,<b=-1/2) and unstableh(,_,.<b=<b,) sn

The Cauchy matrix defines the matrix of translation of the,5ves are shown in Fig(f). Notice that forS—0 the width

perturbation eigenvecto® on one wave period a®(7)
=J(n+T,7). It was rigorously proven in Ref§15], [16]
that the perturbation eigenvectdr,(») is finite along the

transversen axis when the corresponding eigenvalue of the

matrix of translation satisfies the condition, /=1 (k

=1,...,4). This condition defines the algorithm of construc-

tion of the areas of existence of finite perturbations. The
eigenvalues\, are defined by the characteristic polynomial
D(\)=det(P—\E)=Z¢_,p\* ¥=0. The coefficients of

of the instability band vanishes, a result that is in agreement
with the known results for sn waves in defocusing cubic
medium.

Next we consider the case of cn waves. In Kerr media
such waves suffer from oscillatory instabilities in their entire
domain of existence. In contrast, the central result of the
present paper is that cn waves in focusing saturable media
becomelinearly stablewhen their energy flow exceeds a
certain critical level[Figs. 2d) and 2Zf)]. This is consistent

the polynomial are given by the traces of translation matrixwith the strong stabilizing action of saturation of nonlinear

Te=Tr[P*(7)]. One finds thatp=ps=1, p1=p3z=—T1,
and p2=(T§—T2)/2. Two of the four eigenvalues, can be
excluded becausk,=1/\., (k=1,2), and corresponding
eigenvectors fulfill the symmetry relation®,(7)=®,,»

(—=n).

response on propagation of self-sustained nonlinear waves,
dramatically illustrated by the stabilization of bell-shaped
bright soliton in bulk medid18]. The effect reported here

follows the stabilization of multicolor cn waves discovered

recently in quadratic nonlinear medi&6], and is the second

First we applied the method to sn waves. We have covexample of stable periodic pattern in uniform media support-

ered a broad interval of saturation parameter®<10 and

ing bright solitons.

considered perturbations with general complex growth rates. The oscillatory-type instability found for cn waves in

When searching for finite perturbations we scanned theaturable media occurs for the band of propagation constants
whole § plane with fine meshetypically the step in the near the low-energy cutoff, i.e., for1/2<b=<b,. The
modulus of § was 0.001 and the step in the phase wasmaximal real part of complex growth rate versus propagation
7/1000. For periodic patterns the areas of existence of finiteconstant is shown in Fig. (&). Notice that real parts of
perturbations have laand structureand one of the conditions growth rates quickly decrease with increase of saturation pa-
N1 Jd=1 is fulfilled inside these bands. Figurédl shows rameter. This means that even periodic waves from the un-
such bands for perturbations with imaginaiyin contrast to  stable region can be observed at high saturation levels be-
the case of defocusing cubic medium, where sn waves areause their typical decay length would exceed any
stable in the entire domain of their existence, we have founé&xperimentally feasible crystal length. At fix&and propa-
that in saturable media sn waves becomweakly unstable gation constant, the complex growth rates for the waves from
when their energy flow exceeds a certain critical vaiue,  unstable region form thecurves in the complex plane
when b=b.). This instability corresponds to complex (Re(s),Im(5)) shown in Fig. 2e). Areas of existence of
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stable(for b,<b=<b,,_...) and unstabléfor —1/2<b=<b,,)
cn waves atS,b plane are shown in Fig.(®. The width of
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perturbed snoidal and cnoidal waves with parameters belong-
ing to stability bands. The periodic waves maintain their in-

the stability band increases with decrease of saturation p&ut structure over several thousand units, corresponding to
rameter. In the limitS—0 results are in full agreement with actual physical distances, more tha m in typical photore-

those for unstable cn waves in cubic media.

fractive crystals.

For the sake of completeness, we have studied the case of In conclusion, the linear stability analysis of periodic
dn-type waves and found that they suffer from exponentialljvaves in conservative saturable cubic nonlinear media, car-
growing instabilities. The typical structure of areas for finite ried with a powerful mathematical formalism, has revealed

perturbations with real growth rates is shown in Figc)3

the existence otompletely stablgatterns of both snoidal

Notice that the instability of dn wave typically manifests and cnoidal types. Such result is in contrast to the instability

itself in fusion of neighboring peak$ig. 3(d)].

of periodic waves in self-focusing Kerr media. The existence

To confirm the results of the linear stability analysis andof stable periodic wave arrays is thus of fundamental impor-
to elucidate its actual impact in the long-term evolution oftance. It might find applications in the formation of reconfig-

the periodic waves, we have also integrated @g.numeri-
cally with input conditions q(#,é=0)=w(7)[1
+p(7)]1G(7n), wherew(n) is the profile of the stationary
wave, p(7) is a Gaussian noise with the varianeé, and

urable light-induced periodic waveguide arrays in future
photonic circuits.
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