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Starting from Maxwell's equations we derive a reciprocity theorem for photonic crystal waveguides. A set of
strongly coupled discrete equations results, which can be applied to the simulation of perturbed photonic
crystal waveguides. As an example we analytically study the influence of the dispersion of a two level system
on the band structure of a photonic crystal waveguide. In particular, the formation of polariton gaps is dis-
cussed.
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Photonic crystal§PC9 are regarded as a very promising In what follows we chose the boundaries of the unit cell
and variable material base of a future photonic integration. Irextends perpendicularly to the original waveguitey
particular photonic crystal waveguidéBCWS, which aré  pang. For a vanishing perturbatid®,.=0 the second field

alig_ne?j Qefelcts ig. F;ﬁ:s allow fgr ﬁn efficiler]t trgnsporé ofcan also be assumed to be a Bloch state with a wave number
optical signals in highly integrated all-optical circuits. Modes L S
of straight PCWSs are determined by band structure calculac-lz' Taking into account the periodicity of the Bloch states

. . + 0 + o = s 2%
tions [1,2]. However, to analyze the field evolution in per- W& obtain  sif(q;—p)L/2] [ “ dx/ Z..dy[€;, X hg + &
turbed, bent, or mutually interacting PCWs, the complete seih, ],=0, wherel is the extension of the unit cell and only
ZL(EAea)t(imﬂl ?jgr?]g?r?lggiB?Ssct:?]:rﬁes[%l]vegh\galz;tgpl?g 2|Xff_er- the z component of the respective vector products enters the
tremely time and memory consuming in particular becaus ntegratlo.n. Beca_use the actual position of a umt_cell is arbi-
rary the integration can be performed on each fixeGon-

stationary states appear only in the limit of temporally infi- . . .
nite calculations. Furthermore FDTD simulations do not of_sequently an orthogonality relation for PCW modes at a fixed
frequency can be expressed as

ten provide for a deeper insight into the physics of the inves
tigated structures. Therefore some simpler modeling or even bo be
analytical desqriptions of the field dynamics in perturbed f dxf dy[é’qzx ﬁ;1+ é’zlx ﬁqz]zz 5q1q25(ql)v 2)
PCWs are desirable. - -

Starting from a strict orthogonality relations for PCWs we i
derive a set of simple evolution equations, which allow oneVhere d is the Kronecker symbol ansldenotes the energy

to determine the field distribution in a PCW for a fixed fre- flux in the respective mode. Going back to the general case
quencyw and for given initial conditions. In analogy to the Ppe#0 We express the perturbed fieles andH, as super-
derivation of the reciprocity theorem for conventional positions of Bloch mode§2=2qaq(z)éq(F)+bq(z)é§(r*)
Waveguifjes{4] we start fer a set of stationary unperturbed and I:|2=2qaq(2) ﬁq(F)—bq(z) ﬁa‘(r”). In the case of unper-
electricE; and magnetidd; fields, which serves as a refer- tyrbed waveguides the amplitudes of forward and backward
ence. These fields belong to an ideal Bloch mode with thgyropagating fieldsa,(z) and by(z) simplify to expE-ig2).
Bloch vectorq, and the shape§1=éql(x,y,z)expaqlz) and  But in the presence of a perturbation the dynamics of these

|:|1=ﬁ (x,y,2)explq,2), which propagate along the PCW amplitudes changes. In order to obtain a respective evolution
ql 1 1 L

in the z direction. A second set of fields is subject to possible

perturbations, which influence respective electrigal and E os 1 10

magneticH, fields via an additional polarizatioRyeq. The & 04 ]_/ i

interaction is characterized by Maxwell’s equations such as—u 3 - -

(Ot(E,) =iwmoH, and  rotfi,) = —iwegeEr—ioPpey, o . Beese: | °

where ¢ defines the dielectric structure of the ideal unper- § “ ] lc”l \ o
turbed photonic crystal waveguide. Both electromagnetic 2 0.1 o seess, | Icl

fields are linked together by the following relation: £ : 024 k 0 01 02 03
div(ExX HE +Ef XHy) =iwE} Ppe. After integrating over one 5 01 0 08 04 05 gt

unit cell [see the inset of Fig.(&)] and subsequent transfor- Bloch vector q L

mations, we obtain
FIG. 1. Unperturbed W1 photonic crystal wavegui@€W) and

(sz ﬁ{ + E’lf % ﬁz)d,&: i wf f j E*l« ﬁperldv- its sensitivity on per_tl_eration$a) _band s.trlljctur_e of a PCW; inset:
. | scheme of a PCWk: index of unit cells;L: period of the PC(b)
usnlftr i‘éﬁ J’,ﬁ)itu?e% self-coupling and cross-coupling coefficients as a function of the

1 Bloch vector; parameters: rods=12, radiusl. =0.2.
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equation we insert the mode expansion into the integraand
equation(1) and make use of the discrete translational sym- _ _
metry of the Bloch modes. In so doing we obtain a set of  bg(2)~{ByexpligkL)+ By, exdiq(k+1)L]}/2
discrete equations Xexp —iqz)
3l (k+ DL Jexg —iqk+ 1)L]-ag kL]exd ~igkL] In this way we map the evolution on a discrete set of fields.
iw (= o (k+1)L - Now Egs.(3) simplify to

=mf dxf dyj dz& Pperexp(—iqz),

Vime Jme Arcs1 €XP(—1GL) = Ay=i k[ At Ay €Xp(—igL)]

3
bol(k+1)L]exdiq(k+1)L]—bg[kL]exdigkL] ® +c[By+ By, expliql)],
LT P D (e L : B, eXp(iqL) — By= — i k[ Byt By, 1 expliql
= S(q) f_wdxf_wdyfkl_ dzequenexqu), k+1€xpiq k K[ By+ By 1 expligl)]

+C*[Act A exp—igl)],

where we have assumed tk#h unit cell to extend between . ) )
kL<z=(k+1)L. Equations(7) can be used to describe a Where the parameters in Eqd) are propor/tlonal to the di-
variety of problems with linear and/or nonlinear perturba-€l€ctric function of the perturbatior=Ae«x’, c=Aec’.
tions. The most significant frequency dependence is incorpo- we . . L
rated into the Bloch vectog(w). For an infinitesimally K =—0 f dxf dyJ dz|é|?
small period of the PCL{(—0) Eqgs.(3) pass over to the well 2s(q) J-="J-= "o
known coupled mode equations for conventional waveguides o .
of integrated optic§4]. Besides the discrete nature of Egs. IS the coefficient of the self-coupling and
(3) there is a further essential difference between the coupled | . . .
mode equatlons of P_CWS and conv_entlonal waveguides. For c'= Weo f dxf dyJ dz& 2 exp - 2iq2)
conventional waveguides the coupling between forward and 2s(q) J-= —w 0
backward propagating fields can usually be neglected, be-
cause of the big mismatch between respective propagatioepresents the cross-coupling between forward and backward
constants. In contrast, arbitrary perturbations induce a strongropagating waves. Both coefficients are exclusively deter-
coupling between forward and backward modes in PCWstnined by the band structure of the unperturbed PCW and do
especially close to thE point. not depend on the perturbation. They describe the sensitivity

To demonstrate some applications of E8). we investi- of the PCW on spatially homogeneous perturbatifsse
gate the influence of the material dispersion on the bandig. 1(b)]. Equation(4) can be rewritten in a matrix repre-
structure of a PCW. Conventional band structure calculationsentation as
[1,2] usually neglect the frequency dependence of the dielec-

tric function. Nowadays there are efficient numerical meth- (Ak+l) B M(Ak)

ods to include the dispersion of the media, such as the trans- Bur1/ By’

fer matrix method[5] or a plane wave formalisni6]. (5)
Nevertheless for a deeper physical insight into the influence . 1

of dispersion on the band structure of a PCW, analytical in-M= 1+ x2—|c]?
vestigations are helpful. Provided that the dispersios cdin

be regarded as a perturbation the discrete coupled mode
[Egs. (3)] can be applied. Here we assume homogeneously X
distributed two level dopants, as e.g., quantum dots with

[(1+ix)%+]|c|?lexpligL) 2cexpiql)
2c* exp(—igL) [(1—ik)?+|c|?]exp—iqL)/"

Although spatially homogeneous, the perturbation couples
—_——, forward and backward propagating modes. Consequently
(wo— )+ new eigenmodes appear which can be expressed in terms of
the unperturbed ones. To do so we have to determine eigen-

where the induced perturbation polarization red@s.  yajues and eigenvectors of the matkix Finally we express

=80 e]aq(2)€4(F) +by(2)€(N)*]. Equation (3) suggests gach field in the perturbed PCW as a linear combination of
concentrating on a set of discrete amplitudes, which arg,ose new modes as

given at the boundaries of the elementary cell as

Ae(w)= 20— @)

Ay=a4(kL) and By=bg(kL). Assuming that deviations ‘ . 1
from a Bloch wave are small we approximate the field (Bk =a N g [tant]g ) (6)
within the kth unit cell by respective values at the -
boundaries as with X . = = \[Re() P~ 1+Re(),
aq(2)~{Acexp(—igkL) + A, 1+ 12— |c|?

xex —iq(k+1)L]}2 expiqz) =3¢ [ENIRep = 1=iIm(z)Jexp~iql),
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0 01 0.2 0.3 FIG. 3. Photonic crystal waveguide in the presence of a two
fe level polarization perturbation@) sensitivity of the band for the
FIG. 2. Bloch vecton,, of the mode of the PCW displayed in €mergence of evanescent waves due to an homogeneous perturba-
Fig. 1 as a function of the perturbatiake for a set of fixed fre-  tion of the dielectric functiors, shaded region: evanescent waves,

quencies(solid line: analytical theory; points: numerical simula- None-shaded region: propagating wavés, Comparison of the

tion). band structure in the presence of a two level polarization perturba-
tion (thick lines with an unperturbed band structutthin, dashed
and line); lower curves: two level resonance close to theoint (v,
=0.32); upper curves: two level resonance close to the boundary of
(1+ik)%+|c|? _ the band (,=0.415); parameters: same as in Fig.yk 7.7e-3,
= 1+K2—|C|2 exp(igL). f=7.7e-3.

a. are the amplitudes of the forward and backward propalS Yi€lded. Thus cross-coupling leads to the emergence of
gating modes. Two cases have to be distinguished: Fdfvanescentwaves and therefore causes sardkage Now

Re(p)=<1 the eigenvalues of the new modes are complex|€t US have a closer look at the symmetry points of the PC

- - fattice. At theT" point both coefficients diverges far—0
\.=Re(@)=*iV1-[Re(@)]? with an absolute value of 1. . poIr o ges 1
Therefore they can be expressed\as=exp(gyed), where Eljcfe Fig. 1b)_]' ?h5|m|lar b(ﬁha;(lor 'Sf (t)t?s?_rvlzdbat th@pomt.f th
the Bloch vector of the perturbed waveguidg. reads € reason IS the normaization of the field by means ot the
Uper= arctafiyi— Re(p)%Re(n)]/L. Hence, the field evolu- energy _quxs(q) which goes to zero at symmetry point. An
tion is characterized by a simple phase evolution of respecg)(p;]inst'jOn Off tEe self- and cross go:Jde!rE; '7 a small ndelgh-
tive modes. In contrast fofRe(s)|>1 eigenvalues become -°"°° oq of the symmetry point yields=a/q+--- an
purely real. Thus the former propagating modes pass over = 1aldq+:, where
an evanescent behavior. Figure 2 shows a comparison of our Ae w(q=0,m/L)eq (= o L
analytical theory with band structure calculations for the a=—_—J dxf dyJ dzé(q
PCW displayed in Fig. (). Obviously the results obtained Y2 AU(Q=0.m/L) J ") "7 Jo
with exact numerical calculations and with our quasianalyti- =0,m/L)|2.
cal perturbation theory coincide very well.

In order to study the effect of self- and cross-coupling ony(q) is the spatially averaged electromagnetic energy den-
the band structure of perturbed PCWs we look at some limsijty andy, is the curvature of the band at the corresponding
iting cases. Let us first assume a vanishing cross-couplingymmetry point  w(q=0,7/L+ 8q)=w(q=0,7/L)

¢’=0. In this case the eigenvalues have the simple form 4 y,(5q)2+---. For a first order approximation of the ei-
1+ ok genvalues indq and Ae close to the symmetry points one

L =———exp(*iql), gets )\i(q=0)=1—2aLt\/[1—2aL]2—1 and N.(q
1xix =m/L)=—1+2aL*+\[1-2aL]?—1. Therefore, evanes-

cent waves occur for any negatiwefactor, i.e., if the change

of the dielectric functiom\e and the curvature, of the band
fave opposite signs. As a consequence any negging-
tive) Ae perturbation will shift the mode to highdtower)
frequencies provided the curvature of the band is positive

with an absolute value of 1. Therefore self-coupling exclu-
sively leads to a change of the Bloch vector and therefor
causes &hift or adeformationof the original band. In con-
trast for dominant cross-coupling<(=0) the eigenvalues

reads (negative. In other words, a band with a positiyeegative
1+]c|? 1+|c[? 2 curvature at a symmetry point is_ sensitive for th_e emergence
N.=—mcogqlL)+ \/ ———cogql)| —1 of evanescent waves close to this symmetry point if an nega-
1-Ic] 1—|c tive (positive) Ae perturbation occurs. Figurgd illustrates

this fact for the PCW of Fig. (). The shaded regions rep-
fesent evanescent waves whereas the white region stands for
propagating ones. One clearly sees that close td tpeint

the band is sensitive for the emergence of evanescent waves
1+]c|? if an negativeAe perturbation occurs, because the curvature

‘1_—|C|2cos{qi"e'l_)’>1 of the band is positive aj=0. In the center of the band it

At gL= /2 the Bloch vector remains at the same value, i.e.
the new eigenvalue is.. = *=i. But, evanescent waves sym-
metric toqL= 7/2 will occur at Bloch vectors, for which
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becomes rather insensitive for any kind of perturbationgap, but for positivele, i.e., below the resonance frequency
whereas the sensitivity for positivies perturbation increases [see Fig. &)], opposite to polaritons in homogeneous media
for larger Bloch vectors. The reason for this is that the band9]. In addition, new propagating Bloch modes may appear
now has a negative curvature and becomes close toXthe for Bloch vectors at the edge of the Brillouin zof®ose to
point. the X point) where the unperturbed PCW has no bound
Consequently polaritons can have a considerably differerigenmodes. . o

influence[7,8] on the band structure. Although propagation !N conclusion, we have derived a reciprocity theorem and
can be suppressed due to strong absorption in the center 8P Orthogonality relation for photonic crystal waveguide

the resonancgshaded area in Fig.(B)] additional gaps can Modes. A set of strongly coupled, discrete equations is con-
open up. If the two-level resonance is close to Ehgoint a structed, which can be applied to the simulation of various

polariton gap occurs even for a very small oscillation YP€S of perturbed PCWs. As an example, we studied the

influences of polaritons on a PCW band structure analyti-
strength. .It emerges _apove the two Ie\(el resonance becau glly. The eigeﬁmodes of the PCWs were computed usingythe
the band is very sensitive for any negative [see Fig. &)]. freely available software package of M[T]
For a two level resonance in the center of the PCW band a '
rather huge oscillation strength is required to create a gap, The authors gratefully acknowledge support from the
and in most cases only a slight deformation of the band i8undesministerium fuBildung und Forschung and Verein
observed. Again a two level resonance close to the uppddeutscher Ingenieure in the frame of the projects No.
band edgeX point) of the PCW mode creates a polariton 13N8249 and No. 01BK256.
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