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Resonant emergence of global and local spatiotemporal order in a nonlinear field model
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We investigate the nonequilibrium evolution of a scalar field2r-1) dimensions. The field is set in a
double-well potential in contadbper) or not (closed with a heat bath. For closed systems, we observe the
synchronized emergence of coherent spatiotemporal configurations, identified with oscillons. This initial global
ordering degenerates into localized order until all oscillons disappear. We show that the synchronization is
driven by resonant parametric oscillations of the field’s zero mode and that local ordering is only possible
outside equipartition. None of these orderings occur for open systems.
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The emergence of spatiotemporal ordered structures in We investigate opeftanonical and closedmicrocanoni-
nonlinear systems is an ideal laboratory for investigating theal) systems. In both cases, the field is initially thermalized
trend toward complexification observed in nature at thein a single-well potentialVg($)=(¢+1)?, symmetric
physical, chemical, and biological levgl]. For these or- about¢=—1, chosen so thaty,(—1)=Vg,(—1). The ther-
dered structures to survive, they must interact with an extermalization is achieved by coupling the field to an external
nal environment, which maintains the local nonequilibriumheat bath via a Langevin equation
conditions. Examples can be found in hydrodynamics, in net-
works of chemical reactior2], and in living organism§3]. P i

In field theory and cosmology, most of the interest in or- —+y——V2p=—V. () + &, 2)
dered configurations has focused on topological or nontopo- at? dt
logical static solutions of the equations of motiph]. An
exception to this trend are oscillons, long-lived time-where the viscosity coefficient is related to the stochastic
dependent localized field configurations that have been founfbrce of zero mearg(x,t) by the fluctuation-dissipation re-
in field theory[5,6], soft condensed-matter systef@§, and lation (kg=1 andT is the temperature of the heat bath
stellar interiorg8]. Here, we show how oscillons spontane- (£(x,t) &(x',t))=2yT&*(x—x")8(t—t’). The simulation is
ously emerge as a nonlinear scalar field approaches thermiahplemented on a square lattice with periodic boundary con-
equilibrium. We observe not only the local emergence ofditions, using a staggered leapfrog method, wéixa=0.1 and
spatiotemporal ordgoscillong, but also that this emergence §t=0.01 and 1024 lattice sites per side. The coupling to the
is initially synchronized(globa). Our results are applicable heat bath continues until equipartition is satisfied at tempera-
to any system modeled by a scalar order paramétterith  ture T. Results are ensemble averages from 50 independent
amplitude-dependent nonlinearities, if its potentiglp) sat-  realizations, which, given the large number of degrees of

isfies 9?V/d¢?< 0 for a range ofp. freedom, have energg within AE/E<10" 3,
Consider a Z-1-dimensional real scalar field(x,t), The potential is then switched froM;,, to Vg, and the
which evolves under the equation of motion system is tossed again out of equilibrium. This switch can be

interpreted as an instantaneous quench on the system, imple-
mented by varying some control parameteras is custom-
TP IV gw (1) arily done in many applications. To see this, shift-¢
ot2 ¢= ap - +1 so thatVg,= ¢? and Vg,= [ $%(adp—2)?|,-,. Note
that whena=0, V4,=Vg,. The quench then occurs instan-
taneously by sendinggv=0 to a=1 (or equivalently, Vg,
The double-well potentiaV/y,($)=;(¢°—1)? has minima v ).
at ¢==1. It has been shown that this system can generate For the closed system the coupling to the bath is removed
oscillons, characterized by a persistent oscillatory behaviogt the time of the switckby settingy=0), while for the open
at their corg5]. To see this, prepare the field with a Gaussiansystem it is kept on throughout the simulation. After the
profile, ¢(r)= p.exp(-r¥RP)—1, and let it evolve via Eq. switch occurs, energy exchange between the nonlinearly
(1). All that is needed is thafy,(¢,) <0 and that the initial  coupled modes will again drive the system to equipartition.
radiusR be larger than a bifurcation valug,s. [5,9]. The  (We note that the initial and final equilibrium temperatures
properties of these so-called deterministic oscillons haveever differ more than-0.15%. Thus, each experiment is
been extensively studied in tw®,11] and three dimensions referred to by its initial thermalization temperaturd-or
[5,10]. open systems, equilibrium is attained within a time scale of
O(y~ 1), without any emergence of ordered configurations.
This is in marked contrast with closed systems.
*Electronic address: mgleiser@dartmouth.edu Figure 1(lower halff shows the area-averaged fieg,(t)
"Electronic address: rhowell@dartmouth.edu for closed systems at various initialization temperatures. The
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FIG. 1. Bottom: lattice-averaged field for various temperatures.
Top: fraction of the field above the inflection point.

time is set so that the switch to the double-well potential
occurs att=0. Note that¢,(t) displays damped oscilla-

tures, such a§=0.1, the oscillations have small amplitude
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FIG. 2. Snapshots displaying synchronous emergence of oscil-
tions, indicating that the zero mode of the field transfers itdons in the two-dimensional field, starting &t 15.5 and spanning
energy to higher modes until it reaches its temperaturebalf the period of an oscillon. Simulations can be viewed in
dependent final equilibrium valugp);. At low tempera-  Ref.[14].

and remain nearly periodic. At higher temperatures, such albrary containing each large-amplitude fluctuation during
T=0.2, ¢p,(t) oscillates beyond the left inflection point and the entire evolution of the system £G<1500), from which
fluctuations in the field probe the unstable region of thewe can obtain their nucleation times, sizes, periods of oscil-
double-well potential. This can also be seen in the upper halktion, and lifetimes. A deterministic oscillon is characterized
of Fig. 1, where the time evolution of the fraction of the field both by its large-amplitude oscillatior{the field at its core
above the inflection point;(t) is shown. For temperatures probes the positive half of the potential,>1) and its ex-
aboveT=0.185, over half the field probes the unstable re-treme longevity. We thus establish two criteria to select the
gion. For even larger temperaturdsz0.25, the whole field subset of all configurations which correspond to oscillons:
goes above the inflection point, signaling the approach tehey must have a maximum amplitude above the background
criticality. Above this temperature the field separates intosatisfying¢,>1 and they must survive for at least ten oscil-

large, slowly evolving thin-walled domaingThe critical lations (> 60).
The inset in Fig. 3 shows the probability distribution func-

temperature of this system, whei,—0, is T,=0.270

+0.005) tions for the radiiR and periods of oscillatior®, for all the

Figure 2 shows a sequence of snapshots of the field at oscillons present throughout the simulations, with binwidth
=0.2, spanning in time about half an oscillation period of an6R= §P=0.1. The fitted curves are Gaussian functions with
oscillon. In order to generate this figure and relate the emerentersRy=2.86 andP,=6.12 and widthsog=0.33 and
gent configurations to oscillons, the field is smoothed with anrp=1.19, respectively.

optimal (Wienep filter [12]. This filtering technique is espe-
cially useful in our situation, since its implementation re-
quires knowledge of the unwanted thermal noise in the sys-
tem. With our choice of thermal initial conditions,
Boltzmann statistics provides us with the power spectrum at
the beginning of the experiment]¢(k,t=0)|?)=T/(k?
+2), which is to be removed by the filter. Throughout the
experiment, only modes with<gk|<0.8 amplify above the

noise, sometimes by as much as two orders of magnitude.

Their spectrum has a shape and width that coincide with
those of deterministic oscillons. The transformation back into
real space clearly reveals the emergence of localized field
configurations within a smooth background.

With the filtered field, we can catalog and track the loca-
tion of all local extrema at each instant in time, the vast
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majority of which are seen to correspond to the centers of F|G. 3. The number of oscillons nucleated betweeand t

localized configurations. We then measure the value of the st at T=0.2, with st=1. The global emergence is evident early
field at each extrema and the corresponding configuratiom the simulations. Inset: the probability distribution of radii and
radius(at half maximum. With ample sorting, we compile a periods of oscillation.
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In Fig. 3 we also show the distribution of nucleation times
for these oscillons at=0.2. This function gives the number
of oscillons nucleated betwedrmndt+ 6t, with st=1. The
sharp peaks at early times; .60, correspond to the synchro-
nous emergence of oscillons, while for 60 this global or-
dering gives way to local ordering, with oscillons emerging
at arbitrary times with similar probability. This local emer-
gence disappears @500 (discussed below Notice the
correlation between the nucleation activity of oscillons and
the energy loss from the zero modeig. 1) at early times.
This is observed for all temperatures within 0.£8b

=0.25. o _ 0 0z o4 _06 08 I
To understand the origin of this synchronous emergence,
we decompose the field ad(x,t) = ¢a(t) + dp(x,t) and FIG. 4. Lines of constant amplification rate for small-amplitude

first investigate the behavior @f,(t), prior to relinquishing  modes at various temperatures, beginning with'=27 for the
its energy to higher modes, by approximatidg(x,t) as  bottom-most contour and increasing in incrementsp#0.05.
remaining statistically equivalent to its initial symmetric
state. Upon substituting this form @f(x,t) into Eq.(1) and lier findings: for temperatures 0.185<0.25, oscillations
performing a statistical average over the fluctuations, we aref the zero-mode drive, via parametric resonance, amplifica-
rive at the mean-field equation of motion fgr,(t): ¢, tion of the modes comprising oscillon configurations, ulti-
=[1-3 8¢ bay— ¢2v’ where( S¢?) is the two-point cor- matgly leading to the usual breakdown of the linear approxi-
relation function at=0 and depends linearly on the tem- Mation. The growth of these modes corresponds to large-
peratureT. Thus, ¢.(t) starts até¢=—1 and oscillates an- amplltl_Jde fiuctuaglons that _probe the_ unstable regions of the
harmonically in the left-hand well of an effective double- Potential ¢“V/d¢=<0), which coordinate to form the ob-
well potential, with minima atg. = + V1—3(6¢?). This  Served coherent structures. o
mean-field approximation works very well at describing the = Finally, we introduce a measure of the partitioning of the
evolution of ¢,(t) at temperatures sufficiently far from, ~ Kinetic energyll(t), which we use to describe the nonequi-
(c.f. T=0.1in Fig. 1. It also gives(¢);~¢_ to within 49  lorium evolution of the system:
even at the highest temperatures we considered.

We now examine the behavior of small fluctuations about (t)= _j d2kp(k,t)In p(k,t), (4)
¢(1). Linearizing Eq.(1) with respect toS¢(x,t) and tak-

ing the Fourier transform we obtaifor k>0
nd url we obtal ) wherep(k,t) =K (k,t)/fd?kK(k,t) andK (k,t) is the kinetic

. 5w energy of thekth mode.II(t) attains its maximuni Il ..
S (k1) +[k™+ Vau(dad )] db(k,1)=0. (3 —In(N) on a lattice withN degrees of freedohwhen equi-
partition is satisfied. This occurs both at the initial thermali-

Equations of this type, generalized Mathieu equations, argation ¢=0) and final equilibrium states, since in this case
known to exhibit parametric resonance, which can lead tall modes carry the same fractional kinetic energy. In Fig. 5
exponential amplification {exp#t) in the oscillations of we show the change ofl(t) from the initial state,IT(t
d¢(k,t) at certain wavelengths, in response to the time-=0)—II(t), for the closed system at=0.2. At late times
dependent harmonic term. These equations have been (f=150), we have found that the system equilibrates expo-
great interest in reheating studies of inflationary cosmologies
[13]. To verify that this is the mechanism behind the syn- o3fF T T T T T
chronous amplification of oscillon modes early in the simu- o
lations, we use in E(3) the anharmonic solution fap,(t) I
obtained in the mean-field approximation above. o

Figure 4 shows lines of constant amplification rateof = 0z r
the fluctuationsS¢(k,t) for variousk andT. At low tempera- 'i 0
tures, T<<0.165, no modes are ever amplified. As the tem- =

o
s

perature is increased, so is the amplitude of oscillation in
¢a(1), eventually causing the band &&=0.9 to resonate.
We note that the characteristic wave number of oscillon con-
figurations iskos= 2/R [5]. Using the result in Fig. 3 for the B I
average configuration radil®,=2.86, we obtairk,;~=0.7. 0 500
From Fig. 4, modes withk,,~0.7 are excited folf =0.18, t
the temperatures above which we see the synchronized emer- F|G. 5. The change ofI(t) from the initial state for closed
gence of oscillons. Folf>0.22, a second band of longer systems aT =0.2. The exponential approach to equilibrium is clear
wavelength modes becomes excited as well, signaling theat late times. The inset illustrates the role of oscillons as a bottle-
onset of criticality. These general results corroborate our eameck to equipartition.
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nentially in a time scale=500. At early times, the localiza- We have investigated the nonequilibrium evolution of a
tion of energy at lowek modes, corresponding to the global scalar field with a double-well potential. For a range of tem-
emergence of oscillons, prolongs this approach to equipartiPeratures, the approach to equilibrium is characterized by
tion. The inset of Fig. 5 shows the large variationsfit) three stages: first, the synchronized emergence of oscillons;

. . I . second, the loss of the initial synchronicity, but the persis-
(dotted ling that arise due to the synchronous oscillations INence of oscillons: and third, their disappearance as the sys-

the kinetic energy of these configurations. Also shasalid  tem approaches equipartition. It would be interesting to in-
line) is the average between successive peald (@], with  vestigate the possibility of controlling the duration of the
a plateau at 28t=<70 that coincides with the maximum os- synchronization stage and search for this emergent behavior

cillon presence in the system. Thus, oscillon configurationén laboratory systems, ranging from vibrating grains to fer-
serve as early bottlenecks to equipartition, temporarily suptomagnetic materials.

pressing the diffusion of energy from low<|k|<0.8) to M.G. was supported in part by NSF Grant Nos. PHY-
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