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From multiplicative noise to directed percolation in wetting transitions
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A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive
hard wall is introduced and investigated. Upon varying a control parameter, the critical behavior observed
along the transition line changes from a directed-percolation type to a multiplicative-noise type. Numerical
simulations allow for a quantitative study of the multicritical point separating the two regions. Mean-field
arguments and the mapping on yet a simpler model provide some further insight on the overall scenario.
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A variety of interesting physical phenomena corresponds This scenario is by no means restricted to WP. Similar
to the unbinding transition of an interface from a flat surface features have been, e.g., observed at the onset of complete
This is the case of wetting process®¢P) taking place in the  synchronization in chains of coupled magd], where two
thin |IQUId film which forms on a substrate eXposed toa gaSrepncaS Of the system are either affected by the same sto-
By varying external parameters such as temperature or pregnastic force or locally coupled. In this context, synchroni-
sure, the liquid layeih(x,t) may either grow and become 4iion is quantified by the absolute differenadi,t) be-
macroscoplcally thick or remain confined to the close ViCiN-wveen the state variables in thén site and it can be easily
ity of the substraté1,2]. Wetting phenomena can also take recognized thatt (i,t)=—In(A(i,t)/A,.,) plays the same

place under nonequilibrium conditions. Here one is mter-role ash(x,t). Indeed, the synchronized regime, character-

ested, for example, in a growth process of a film over a db tallv d Lo valent to th
substrate. Depending on the dynamical rates controlling thi€C Dy an exponentially ecaying is equivalent to the

growth process one can observe similar pinned or unpinnednPinnéd phase, with a linearly growiny On the other
phases. hand, the unsynchronized regime, characterized by a station-

A question of general interest concerns the universality oft"y distribution ofA values, corresponds to the pinned phase
the unbinding transition. While the equilibrium scenario isWith @ wall in€=0 preventingA to be larger than the maxi-
well established1], an overall understanding of nonequilib- mum possible valud .. Finally, the amplification of small
rium wetting phenomena is still lacking. Numerical studiesbut finite perturbations that may be induced by strong and
of nonequilibrium systems have revealed a composite picturtocalized(in phase-spagenonlinearities11] (e.g., disconti-
that still needs to be fully disentangled. Here one considersuities of the local mapis equivalent to an attractive force
the dynamical equations of a moving interface interactinghat drives the interface towards the wall in WP. However, at
with a hard wall. In the simplest case, the unbinding transivariance with WP, in complete synchronization, the effect of
tion is signalled by the change of sign of the average velocitya sufficiently strong “attractive force” is to bring the MN
of the free interface. A pinned phase is obtained when théransition into the directed-percolatioDP) universality
free interface moves towards the substrate and an unpinnadhss[10,12 rather than making it first order.
phase is found when it moves away. This scenario is some- In the absence of a sufficiently general field-theoretic ap-
times referred to as the multiplicative noiddN) and is well ~ proach, able to reconcile all the various observed scenarios
described by a Kardar-Parisi-Zhati§PZ) equation[3] with  into a common framework, the study of minimal models is
a hard wall[4—6]. On the other hand, a study of some dis- very helpful for the identification of the basic mechanisms.
crete growth models has shown that for particular values oThis is the main motivation for introducing hereafter a
the growth rates the unbinding transition is of different na-simple microscopic model. By numerically reconstructing its
ture, belonging to the directed-percolation universality clasphase diagram, we shall be able to clearly recognize that
[7]. both the MN and DP universality classes can be found and to

More interesting is the scenario when the surface exertgjuantitatively investigate the “multicritical” point separating
in addition, a short-range attractive force that may prevent the two scenarios. Moreover, an accurate reconstruction of
from growing even when the free interface would otherwisethe critical line will be proposed based partly on mean-field
have a positive velocity. In WP such an effective interactionarguments and exploiting the exact mappiima limit case
is obtained when the growth rate on the bare substrate ignto a genuine DP model.
lower than the growth rate on the film itself. Some micro- Specifically, we consider a simple growth model, which,
scopic models, introduced to study this out-of-equilibriumfor reasons that will become clear in a while, is caléugle-
depinning transition[8,9], indicate that for a sufficiently step-plus-wal(SSW model. The starting point is the single-
strong attractive force, the unbinding transition may becomestep(SS model originally introduced to study the roughen-
discontinuous. ing of one-dimensionalld) interfaces[13,14]. It is well
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FIG. 1. Updating rule of the SSW model. The full line repre- q
sents the interface, while the shaded area identifies the wall. Dashed FIG. 2. Ph di f the SSW del. The depinni
segments indicate interface flips occurring in randomly chosen local . . - €. Fhase diagram o t_ € mode’. The depinning tran-
minima[seeA andB in panel(a)] and in all sites located below the sition takes place along the solid line; the dashed line is the result of
wall after it has been shifted upwards by one UsieC in panel the analytic approximation discussed in the text. In the shaded area,
(0] stationary pinned interfaces exist even thoughs smaller than the

' free-interface velocity € 1/2).

known that the SS model can be exactly mapped onto the 1d
KPZ equation[13]. The interface is described by a set of
integer heightd; on the sites of a one-dimensional lattice
of length L, satisfying the “continuity” constraint|h;
—h;,.1/=1. At each time stepdt=1/L a sitei is randomly

A necessary condition for interface depinning to occur is
vw<1/2, because 1/2 is the velocity of a free and flat inter-
faces. Forg small enough, this is also a sufficient condition,
since the attractive force is overcompensated by the faster
selected and its height increaség:—h; + 2, provided that a velc_)city of an a'”.‘OSt straight in.terfa(.:e. This can be seen by
a simple mean-field argument: an interface completely at-

local minimum exists at sité In the thermodynamic limit, . . -
since the dynamics does not introduce any spatial correIa{[—aChEEOI to the wall has a higher density of minif@#2) than

tion, a generic interface with mean slogemoves with a ?roug:\hondﬁ/;), scl) that |tial/e_r?g/1§ \'/&alocné/f(ll—g)lls
mean velocityv(s)=(1—s?)/2. The exact knowledge of arger than as long &p=g- = L. Accoraingly, below

" ) . .
v(s) will be crucial in the following, since it allows for an q. qplnngd mterfac_e detaches as soqpvaslllz. Numeri
exact determination of the critical line in the MN regime. cal simulations confirm that the transition indeed occurs at

: . ; =1/2, with the only slight difference thatg*
The second ingredient of the SSW model is an upward®" « . S
moving wall located at some integer heidhj(t) below the _0'44455).‘ Above_q . the interface may remain pinned
SS interface. It moves with velocity,, and both “pushes” even when its velocity is larger thanr, (see Fig. 2 In other

and attracts the interface. Altogether, the SSW dynamicg\'.Ords there Is a sort gf bistable region., where an initially
amounts to the following evolution algorithm: at each timepmned interface remains attached .V.Vh'le. a depinned one
step, a sité is randomly chosen and, if it is a local minimum, moves away from the wall. The transition line, located at the

s . . . lowest border of the bistable region, is continuous and turns

h; is increased by two units with probability 1 or {1g), . o o .
; . T . out to belong to the DP universality class. This is at variance
depending whetheh;>h,, or hy=h,, [see Fig. 18)]. After with the discontinuous transition observed, e.g., in the solid-

n,=L/v, steps, the wall is moved upwards by one unitand, " . . i
simultaneously, the height of the interfacial sites overtakerp ! solid model of Ref[9]. Before commenting on the pos

by the wall is increased by two unitsee Fig. 1h Physi- sible reason of such a difference, it is necessary to explore in
cally, the SSW describes a roughening and rﬁoving interfacdnore qliantitative way the critical behavior both above and
attracted by a short-range force to a hard wall. Its dynamic elowg®.

5 determined by o ptametes he relate veloy of  COTIPSUS nonesulbru phase ansiions e harac
the wall with respect to the free-interface, which we control y P P ' y

~t-% while i i is-
quantified byg. Since we are interested in characterizing the@SP~1 % Wh."? Its stationary value depends on the the dis
ance from criticality as,

phase diagram of SSW by locating the depinning transitior}
from the wall, the natural order parameter is the density of

. . _ (o] B
sites pinned at the wall tlmp(t) (w=vw)” @
L .
()= 2 S s, s(t)= 1 it h(t)=hy (1) Ver accurate numerical estimates of the DP critical expo-
PRUTT\ & o "o if h(t)>hy, nents giveBpp=0.276486-6x10 ° and 8pp=0.159 464

+6X10 °[16]. Less accurate estimates are available for the
where(-) denotes an ensemble average over different realMN scenario, namely8yn=1.7+0.1 and §yy=1.1+0.1
izations of the stochastic process. [5]. The third exponentz, can be defined with reference to
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FROM MULTIPLICATIVE NOISE TO DIRECTED. ..

TABLE I. Critical exponents of the SSW model. In parentheses
we report the estimated uncertainty on the last figure.

q vy 8 B z

0 0.5 1.14(5)  1.70(5)  1.5(1)
0.2 0.5 1.13(5)  1.75(5)  1.5(1)
0.4 0.5 1.12(5) 1.5(1) 1.3(1)
0.4445(5) 0.5 0.50(1)  0.74(5)  1.5(1)
0.6 0.47635(5) 0.15(1) 0.276(5)  1.5(1)
0.7 0.42975(5) 0.16(1) 0.27(1)  1.5(1)
0.8 0.34895(5)  0.17(1) 0.276(5)  1.5(1)

the scaling relatiorp(t,L) =L~ %g(tL"?) [2], whereg is a

proper scaling function. It takes very similar values in DPmove, with the same settings as in Fig. 1. The corresponding con-
and MN, namely,zpp=1.580745-10 ° while z,,y=1.53

+0.07.
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FIG. 3. The interface beforganel(a)] and after{(b)] the wall

figurations read asADADDDDDADDDDDDDADAD and
DADADDDADADDDDDADADA(see text for the definition of

We have performed numerical simulations of the SSWA andD.)

model for differentq values starting from an initially pinned
(p(0)=1) interface. The exponenf3 and § have been mea-

sured by studying large system sizéfsom L=2'" to L
=229 in order to minimize finite-size corrections, and by line atg=1. In fact, numerical simulations of the automaton
averaging over a small number of different realizationsyield a “critical ratio” acznmqﬁov\fv/(l_q)zz_gw ..., in

(=10) to further decrease statistical fluctuations. Converselyery good agreement with the slope determined from direct
it is sufficient to consider much smaller sizes’ €2 <29

for a reliable estimate af that has been determined by look-

ing for the optimal collapse of the varioypgt,L) curves[in

this case, however, it has been necessary to average ovepfithe interface within an unpinned island can both induce a

much larger ensemble of realizations 10*—1)].
A complete summary of the resulting values of the criticalsites in its interior. The first effect amounts to increasing by

exponents is reported in Table I. Altogether, we find that forsome factor ofx the average number @'s turned intoA’s

q<q*, the attracting force not only does leave the transitionat the island borders, so that the critical point would be de-
point unaffected but also the universality class of the criticatermined by the equation

behavior remains of MN typEL7]. Forg>q*, the transition

line veers down, while the critical exponents signal a transi-

tion of DP type.

The DP critical line can be best understood by analyzing

the SSW model in the vicinity of the poij=1 anduv,, _ _ o ) )
—0. Here, the dynamics is dominated by two slow mecha—',”,the conf|gu_rat|on plotted |n.F|g. 1, the |slqnd border iden-
nisms: (i) detachment of pinned sites during the asynchrofified by C shifts by three units, thus implying=3. The

nous part of the rule andi) shrinking of the unpinned is-

parameter is the ratio between the rate-({) and the wall
velocity v,,, which corresponds to the slope of the critical

simulations of the SSW model.
At a finite distance frorg=1, the automaton does no
longer describe exactly the SSW dynamics, since fluctuations

faster shrinking of the island and the generation of pinned

c
avy,

1-q

=a,. (©)

average value ofr can be determined by noticing that, at

lands at the wall move. In comparison, the dynamics ofctiticality, in the SSW model, the typical slogeof the in-
detached regions between consecutive wall moves rapidﬁprface inside an island must be such that its velocity coin-
leads them to assume a perfectly triangular shape with @ides with the wall velocityvy,. The value ofa can be
maximal slope equal ta-1. Therefore, such islands corre- determined by assuming that the profile is a biased random
spond to the dead phase in DP, since their shape prevents th@lk with probabilitiesp, and 1~ p, of up and down moves,
occurrence of any pinning in their interior. It is now conve- respectively, and neglecting the contribution due to the onset
nient to divide between attachet; & h,,) and detachedh|
>h,,) sites, denoting them with andD, respectively. Cor-
respondingly, the dynamics reduces to a simple probabilisti®ne such biased walkéstarting at the wall height,,) be-
cellular automatoni_/v,, sites are first randomly selected, fore it reachesi=h,,+2 for the first time, i.e.a=1+2(1
transforming eaclA into a D with probability 1—q; next,
the wall move amounts to transforming &lls into D’s and
all D’s neighboring am into anA (see Fig. 3. Apart from
the peculiar presence of both an asynchronous and a syhelp of the relationvy,=(1—-s%/2, one obtainsvy(q)
chronous part, this rule clearly belongs to the class of contact2\1+2a.(1—q)—a.(1—qg)—2. Although approximate,
processes with an absorbing sté® and, as such, it is ex- this formula reproduces very accurately the DP critical line
pected to exhibit a DP transitidri8,19. The only relevant
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of isolated pinnings inside the islands. Under these hypoth-
esesa coincides with the average number of steps made by

—puw/py. Sincep, is simply related to the slops by p,
=(s+1)/2, one finally obtaingg=1+2(1—s)/(1+5s). In-
serting this expression into E(B) and eliminatings with the

not only in the vicinity ofg=1 but also up to the multicriti-
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cal point, where it touches the MN critical lifgee Fig. 2, same scaling is expected fgrapproachingy* from the right
providing a good approximation for its position as well along the critical line, with a crossover frod* to Spp.
[Amax=1—3/(2a.;)=0.477 . . .]. Evidently, the quality of the However, the difficulty of locating the critical line with a
theoretical formula implies that even close to the multicriti- sufficient accuracy prevents an effective numerical verifica-
cal point, the sudden appearance of pinned sites inside ufion. The other two critical exponents agf ~3/4 andz*
pinned islands does not significantly modify the transition~3/2 at q*, so that both thes* and the 5* values are
point. A deeper understanding of this point is left to futurejntermediate between the correspondgl andDP critical

investigations. e . .
. . exponents, while* is compatible with bottzy,y andzpp .
The correspondence with MN and DP critical phenomena | | conclusion, with reference to a simple microscopic

unveiled for small and largq values, respectively, is not. model, we have shown that MN and DP can be different

Nacets of the same wetting process. The connection between

sence of a convincing field-theoretic approach, a chance fo ese FV.VO different universality .cllasses strong_ly hints at the
understanding how the two out-of-equilibrium critical phe- possibility that both out-of-equilibrium transitions may be

nomena may be connected to one another is offered by mg_escribed within a single field-theqretiq ap_proqch. _Some
merical investigation. However, even this is notastraightforprogress has been recently made in this dwgctpn in Rei.
ward task, since three levels of criticality mix together: [21], where_ the auth_ors have found DP behavior in a KPZ
criticality of the free rough interface, criticality of the depin- equation with attractive wall.

ning transition, and, finally, that one connected with the e are grateful to P. Grassberger for his contributions in
MN-DP transition. While approachingi® from the left along  the early stages of this work. A. Giacometti and L. Giada are
the critical linevy,= 1/2, the power-law decay of the density acknowledged for useful discussions. CINECA in Bologna
of pinned sitesp(t) turns out to be first governed by the provided us access to the parallel Cray T3 computer under
exponents* ~1/2, which crosses over ), . As the cross- the INFM-grant “Iniziativa Calcolo Parallelo.” This work
over time appears to diverge wher-q*, it can be safely has been partially funded by the FIRB-Contract No.
stated thats* characterizes the critical behaviorgt. The RBNEO01CW3M_001 and the Israeli Science Foundation.

the vicinity of the multicritical poin{20]. There, in the ab-
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