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From multiplicative noise to directed percolation in wetting transitions
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A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive
hard wall is introduced and investigated. Upon varying a control parameter, the critical behavior observed
along the transition line changes from a directed-percolation type to a multiplicative-noise type. Numerical
simulations allow for a quantitative study of the multicritical point separating the two regions. Mean-field
arguments and the mapping on yet a simpler model provide some further insight on the overall scenario.
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A variety of interesting physical phenomena correspo
to the unbinding transition of an interface from a flat surfa
This is the case of wetting processes~WP! taking place in the
thin liquid film which forms on a substrate exposed to a g
By varying external parameters such as temperature or p
sure, the liquid layerh(x,t) may either grow and becom
macroscopically thick or remain confined to the close vic
ity of the substrate@1,2#. Wetting phenomena can also tak
place under nonequilibrium conditions. Here one is int
ested, for example, in a growth process of a film ove
substrate. Depending on the dynamical rates controlling
growth process one can observe similar pinned or unpin
phases.

A question of general interest concerns the universality
the unbinding transition. While the equilibrium scenario
well established@1#, an overall understanding of nonequilib
rium wetting phenomena is still lacking. Numerical studi
of nonequilibrium systems have revealed a composite pic
that still needs to be fully disentangled. Here one consid
the dynamical equations of a moving interface interact
with a hard wall. In the simplest case, the unbinding tran
tion is signalled by the change of sign of the average velo
of the free interface. A pinned phase is obtained when
free interface moves towards the substrate and an unpin
phase is found when it moves away. This scenario is so
times referred to as the multiplicative noise~MN! and is well
described by a Kardar-Parisi-Zhang~KPZ! equation@3# with
a hard wall@4–6#. On the other hand, a study of some d
crete growth models has shown that for particular values
the growth rates the unbinding transition is of different n
ture, belonging to the directed-percolation universality cl
@7#.

More interesting is the scenario when the surface exe
in addition, a short-range attractive force that may prevenh
from growing even when the free interface would otherw
have a positive velocity. In WP such an effective interact
is obtained when the growth rate on the bare substrat
lower than the growth rate on the film itself. Some micr
scopic models, introduced to study this out-of-equilibriu
depinning transition@8,9#, indicate that for a sufficiently
strong attractive force, the unbinding transition may beco
discontinuous.
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This scenario is by no means restricted to WP. Sim
features have been, e.g., observed at the onset of com
synchronization in chains of coupled maps@10#, where two
replicas of the system are either affected by the same
chastic force or locally coupled. In this context, synchro
zation is quantified by the absolute differenceD( i ,t) be-
tween the state variables in thei th site and it can be easily
recognized that,( i ,t)52 ln„D( i ,t)/Dmax… plays the same
role ash(x,t). Indeed, the synchronized regime, charact
ized by an exponentially decayingD is equivalent to the
unpinned phase, with a linearly growing,. On the other
hand, the unsynchronized regime, characterized by a sta
ary distribution ofD values, corresponds to the pinned pha
with a wall in ,50 preventingD to be larger than the maxi
mum possible valueDmax. Finally, the amplification of small
but finite perturbations that may be induced by strong a
localized~in phase-space! nonlinearities@11# ~e.g., disconti-
nuities of the local map! is equivalent to an attractive forc
that drives the interface towards the wall in WP. However
variance with WP, in complete synchronization, the effect
a sufficiently strong ‘‘attractive force’’ is to bring the MN
transition into the directed-percolation~DP! universality
class@10,12# rather than making it first order.

In the absence of a sufficiently general field-theoretic
proach, able to reconcile all the various observed scena
into a common framework, the study of minimal models
very helpful for the identification of the basic mechanism
This is the main motivation for introducing hereafter
simple microscopic model. By numerically reconstructing
phase diagram, we shall be able to clearly recognize
both the MN and DP universality classes can be found an
quantitatively investigate the ‘‘multicritical’’ point separatin
the two scenarios. Moreover, an accurate reconstruction
the critical line will be proposed based partly on mean-fie
arguments and exploiting the exact mapping~in a limit case!
onto a genuine DP model.

Specifically, we consider a simple growth model, whic
for reasons that will become clear in a while, is calledsingle-
step-plus-wall~SSW! model. The starting point is the single
step~SS! model originally introduced to study the roughe
ing of one-dimensional~1d! interfaces@13,14#. It is well
©2003 The American Physical Society02-1
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known that the SS model can be exactly mapped onto th
KPZ equation@13#. The interface is described by a set
integer heightshi on the sitesi of a one-dimensional lattice
of length L, satisfying the ‘‘continuity’’ constraint uhi
2hi 11u51. At each time step,dt51/L a sitei is randomly
selected and its height increased,hi→hi12, provided that a
local minimum exists at sitei. In the thermodynamic limit,
since the dynamics does not introduce any spatial corr
tion, a generic interface with mean slopes moves with a
mean velocityv(s)5(12s2)/2. The exact knowledge o
v(s) will be crucial in the following, since it allows for an
exact determination of the critical line in the MN regime.

The second ingredient of the SSW model is an upwa
moving wall located at some integer heighthw(t) below the
SS interface. It moves with velocityvw and both ‘‘pushes’’
and attracts the interface. Altogether, the SSW dynam
amounts to the following evolution algorithm: at each tim
step, a sitei is randomly chosen and, if it is a local minimum
hi is increased by two units with probability 1 or (12q),
depending whetherhi.hw or hi5hw @see Fig. 1~a!#. After
nw5L/vw steps, the wall is moved upwards by one unit a
simultaneously, the height of the interfacial sites overtak
by the wall is increased by two units~see Fig. 1b!. Physi-
cally, the SSW describes a roughening and moving interfa
attracted by a short-range force to a hard wall. Its dynam
is determined by two parameters:~i! the relative velocity of
the wall with respect to the free-interface, which we cont
by modifying vw @15# and ~ii ! the stickiness of the wall
quantified byq. Since we are interested in characterizing t
phase diagram of SSW by locating the depinning transit
from the wall, the natural order parameter is the density
sites pinned at the wall

r~ t !5
2

L K (
i 51

L

si~ t !L , si~ t !5H 1 if hi~ t !5hw

0 if hi~ t !.hw ,
~1!

where^•& denotes an ensemble average over different r
izations of the stochastic process.

FIG. 1. Updating rule of the SSW model. The full line repr
sents the interface, while the shaded area identifies the wall. Da
segments indicate interface flips occurring in randomly chosen l
minima @seeA andB in panel~a!# and in all sites located below th
wall after it has been shifted upwards by one unit@seeC in panel
~b!#.
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A necessary condition for interface depinning to occur
vw,1/2, because 1/2 is the velocity of a free and flat int
faces. Forq small enough, this is also a sufficient conditio
since the attractive force is overcompensated by the fa
velocity of an almost straight interface. This can be seen
a simple mean-field argument: an interface completely
tached to the wall has a higher density of minima~1/2! than
a rough one~1/4!, so that its average velocityv5(12q) is
larger than 1/2 as long asq,q* 51/2. Accordingly, below
q* , a pinned interface detaches as soon asvw,1/2. Numeri-
cal simulations confirm that the transition indeed occurs
vw51/2, with the only slight difference thatq*
50.4445(5). Above q* the interface may remain pinne
even when its velocity is larger thanvw ~see Fig. 2!. In other
words there is a sort of bistable region, where an initia
pinned interface remains attached while a depinned
moves away from the wall. The transition line, located at
lowest border of the bistable region, is continuous and tu
out to belong to the DP universality class. This is at varian
with the discontinuous transition observed, e.g., in the so
on-solid model of Ref.@9#. Before commenting on the pos
sible reason of such a difference, it is necessary to explor
more quantitative way the critical behavior both above a
below q* .

Continuous nonequilibrium phase transitions are char
terized by three independent critical exponents. At critica
(vw5vw

c ), the densityr(t) of pinned sites scales with tim
asr;t2d, while its stationary value depends on the the d
tance from criticality as,

lim
t→`

r~ t !;~vw2vw
c !b. ~2!

Very accurate numerical estimates of the DP critical ex
nents givebDP50.276 4866631026 and dDP50.159 464
6631026 @16#. Less accurate estimates are available for
MN scenario, namely,bMN51.760.1 anddMN51.160.1
@5#. The third exponent,z, can be defined with reference t

ed
al FIG. 2. Phase diagram of the SSW model. The depinning tr
sition takes place along the solid line; the dashed line is the resu
the analytic approximation discussed in the text. In the shaded a
stationary pinned interfaces exist even thoughvw is smaller than the
free-interface velocity (51/2).
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the scaling relationr(t,L)5L2dzg(tL2z) @2#, whereg is a
proper scaling function. It takes very similar values in D
and MN, namely,zDP51.580 74561026 while zMN51.53
60.07.

We have performed numerical simulations of the SS
model for differentq values starting from an initially pinned
„r(0)51… interface. The exponentsb andd have been mea
sured by studying large system sizes~from L5217 to L
5220) in order to minimize finite-size corrections, and b
averaging over a small number of different realizatio
~'10! to further decrease statistical fluctuations. Convers
it is sufficient to consider much smaller sizes (25,L,210)
for a reliable estimate ofz that has been determined by loo
ing for the optimal collapse of the variousr(t,L) curves@in
this case, however, it has been necessary to average o
much larger ensemble of realizations (.104–105)].

A complete summary of the resulting values of the critic
exponents is reported in Table I. Altogether, we find that
q,q* , the attracting force not only does leave the transit
point unaffected but also the universality class of the criti
behavior remains of MN type@17#. Forq.q* , the transition
line veers down, while the critical exponents signal a tran
tion of DP type.

The DP critical line can be best understood by analyz
the SSW model in the vicinity of the pointq51 and vw
50. Here, the dynamics is dominated by two slow mec
nisms: ~i! detachment of pinned sites during the asynch
nous part of the rule and~ii ! shrinking of the unpinned is
lands at the wall move. In comparison, the dynamics
detached regions between consecutive wall moves rap
leads them to assume a perfectly triangular shape wit
maximal slope equal to61. Therefore, such islands corre
spond to the dead phase in DP, since their shape prevent
occurrence of any pinning in their interior. It is now conv
nient to divide between attached (hi5hw) and detached (hi
.hw) sites, denoting them withA andD, respectively. Cor-
respondingly, the dynamics reduces to a simple probabili
cellular automaton:L/vw sites are first randomly selecte
transforming eachA into a D with probability 12q; next,
the wall move amounts to transforming allA’s into D ’s and
all D ’s neighboring anA into anA ~see Fig. 3!. Apart from
the peculiar presence of both an asynchronous and a
chronous part, this rule clearly belongs to the class of con
processes with an absorbing state~D! and, as such, it is ex
pected to exhibit a DP transition@18,19#. The only relevant

TABLE I. Critical exponents of the SSW model. In parenthes
we report the estimated uncertainty on the last figure.

q vw
c d b z

0 0.5 1.14(5) 1.70(5) 1.5(1)
0.2 0.5 1.13(5) 1.75(5) 1.5(1)
0.4 0.5 1.12(5) 1.5(1) 1.3(1)
0.4445(5) 0.5 0.50(1) 0.74(5) 1.5(1)
0.6 0.476 35(5) 0.15(1) 0.276(5) 1.5(1)
0.7 0.429 75(5) 0.16(1) 0.27(1) 1.5(1)
0.8 0.348 95(5) 0.17(1) 0.276(5) 1.5(1)
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parameter is the ratio between the rate (12q) and the wall
velocity vw , which corresponds to the slope of the critic
line atq51. In fact, numerical simulations of the automato
yield a ‘‘critical ratio’’ ac5 limq→0vw

c /(12q)52.866 . . . , in
very good agreement with the slope determined from dir
simulations of the SSW model.

At a finite distance fromq51, the automaton does n
longer describe exactly the SSW dynamics, since fluctuati
of the interface within an unpinned island can both induc
faster shrinking of the island and the generation of pinn
sites in its interior. The first effect amounts to increasing
some factor ofa the average number ofD ’s turned intoA’s
at the island borders, so that the critical point would be
termined by the equation

avw
c

12q
5ac . ~3!

In the configuration plotted in Fig. 1, the island border ide
tified by C shifts by three units, thus implyinga53. The
average value ofa can be determined by noticing that,
criticality, in the SSW model, the typical slopes of the in-
terface inside an island must be such that its velocity co
cides with the wall velocityvw

c . The value ofa can be
determined by assuming that the profile is a biased rand
walk with probabilitiespu and 12pu of up and down moves
respectively, and neglecting the contribution due to the on
of isolated pinnings inside the islands. Under these hypo
eses,a coincides with the average number of steps made
one such biased walker~starting at the wall heighthw) be-
fore it reachesh5hw12 for the first time, i.e.,a5112(1
2pu)/pu . Sincepu is simply related to the slopes by pu
5(s11)/2, one finally obtainsa5112(12s)/(11s). In-
serting this expression into Eq.~3! and eliminatings with the
help of the relationvw

c 5(12s2)/2, one obtainsvw
c (q)

52A112ac(12q)2ac(12q)22. Although approximate,
this formula reproduces very accurately the DP critical li
not only in the vicinity ofq51 but also up to the multicriti-

s

FIG. 3. The interface before@panel~a!# and after@~b!# the wall
move, with the same settings as in Fig. 1. The corresponding c
figurations read asADADDDDDADDDDDDDADAD and
DADADDDADADDDDDADADA~see text for the definition of
A andD.!
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cal point, where it touches the MN critical line~see Fig. 2!,
providing a good approximation for its position as we
@qmax5123/(2ac)50.477 . . . #. Evidently, the quality of the
theoretical formula implies that even close to the multicr
cal point, the sudden appearance of pinned sites inside
pinned islands does not significantly modify the transiti
point. A deeper understanding of this point is left to futu
investigations.

The correspondence with MN and DP critical phenome
unveiled for small and largeq values, respectively, is no
sufficient to make predictions about the scaling behavio
the vicinity of the multicritical point@20#. There, in the ab-
sence of a convincing field-theoretic approach, a chance
understanding how the two out-of-equilibrium critical ph
nomena may be connected to one another is offered by
merical investigation. However, even this is not a straightf
ward task, since three levels of criticality mix togethe
criticality of the free rough interface, criticality of the depin
ning transition, and, finally, that one connected with t
MN-DP transition. While approachingq* from the left along
the critical linevw

c 51/2, the power-law decay of the densi
of pinned sitesr(t) turns out to be first governed by th
exponentd* '1/2, which crosses over todMN . As the cross-
over time appears to diverge whenq→q* , it can be safely
stated thatd* characterizes the critical behavior atq* . The
,

s.

v.

v.
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same scaling is expected forq approachingq* from the right
along the critical line, with a crossover fromd* to dDP .
However, the difficulty of locating the critical line with a
sufficient accuracy prevents an effective numerical verifi
tion. The other two critical exponents areb* '3/4 andz*
'3/2 at q* , so that both theb* and thed* values are
intermediate between the correspondingMN andDP critical
exponents, whilez* is compatible with bothzMN andzDP .

In conclusion, with reference to a simple microscop
model, we have shown that MN and DP can be differe
facets of the same wetting process. The connection betw
these two different universality classes strongly hints at
possibility that both out-of-equilibrium transitions may b
described within a single field-theoretic approach. So
progress has been recently made in this direction in R
@21#, where the authors have found DP behavior in a K
equation with attractive wall.
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