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Lipid membranes with free edges
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Lipid membrane with freely exposed edge is regarded as smooth surface with curved boundary. Exterior
differential forms are introduced to describe the surface and the boundary curve. The total free energy is
defined as the sum of Helfrich’s free energy and the surface and line tension energy. The equilibrium equation
and boundary conditions of the membrane are derived by taking the variation of the total free energy. These
equations can also be applied to the membrane with several freely exposed edges. Analytical and numerical
solutions to these equations are obtained under the axisymmetric condition. The numerical results can be used
to explain recent experimental results obtained by Sastohl. [Proc. Natl. Acad. Sci95, 1026(1998].
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[. INTRODUCTION to the equations are obtained and the corresponding shapes
are shown. They can be used to explain some known experi-

Theoretical study on shapes of closed lipid membranesental result$6].
made great progress two decades ago. The shape equation ofThis paper is organized as follows: In Sec. Il, we retro-
closed membranes was obtained in 1987 with which the  spect briefly the surface theory expressed by exterior differ-
biconcave discoidal shape of the red cell was naturally exential forms. In Sec. lll, we introduce some basic properties
plained[2], and a ratio ofy2 of the two radii of a torus ©Of Hodge star+. In Sec. IV, we construct the variational
vesicle membrane was predictg8] and confirmed by ex- theory of the surface and give some useful formulas. In Sec.
periment[4]. V, we derive the equilibrium equation and boundary condi-

During the formation process of the cell, either materialtions of the membrane from the variation of the total free
will be added to the edge or the edge will heal itself so as tenergy. In Sec. VI, we suggest some special solutions to the
form closed structure. There are also metastable cuplikequations and show their corresponding shapes. In Sec. VI,
equilibrium shapes of lipid membranes with free edffgls ~ Wwe put forward a numerical scheme to give some axisym-
Recently, opening-up process of liposomal membranes bgnetric solutions as well as their corresponding shapes to ex-
talin [6,7] has also been observed which noises the interest iflain some experimental results. In Sec. VIII, we give a brief
studying the equilibrium equation and boundary conditionsconclusion and prospect the challenging work.
of lipid membranes with free exposed edges. Capowillal.
first studied this problem and gave the equilibrium equation || SURFACE THEORY EXPRESSED BY EXTERIOR
and boundary conditiong8]. They also discussed the me- DIFFERENTIAL FORMS
chanical meaning of these equatid@s9].

The study of these cuplike structures enables us to under- In this section, we retrospect briefly the surface theory
stand the assembly process of vesiclediciar and Lip- €xpressed by exterior differential forms. The details can be
owsky suggest that a line tension can be associated with fgund in Ref.[11].
domain boundary between two different phases of an inho- We regard a membrane with freely exposed edge as a
mogeneous vesicle and leads to the buddit@]. For sim-  differentiable and orientational surface with a boundary
plicity, however, we will restrict our discussion on open ho- curve C, as shown in Fig. 1. At every point on the surface,
mogenous vesicles. we can choose an orthogonal franeg,e,,e; with g-¢

In this paper, a lipid membrane with freely exposed edge= 6;; ande; being the normal vector. For a point in cur@e
is regarded as a differentiable surface with a boundary curve; is the tangent vector €.

Exterior differential forms are introduced to describe the sur- An infinitesimal tangent vector of the surface is defined as
face and the curve. The total free energy is defined as the

sum of Helfrich’s free energy and the surface and line ten- dr=w.e,+ 0,6, D
sion energy. The equilibrium equation and the boundary con-

ditions of the membrane are derived from the variation of thevhered is an exterior differential operator anel,,w, are
total free energy. These equations can also be applied to tre-differential forms. Moreover, we define

membrane with several freely exposed edges. This is another

way to obtain the results of Capovilkt al. Some solutions de = wj€, (2
wherew;; satisfiesw;; = — w;; because o0& - ¢=J; .
*Email address: tzc@itp.ac.cn With dd=0 andd(w;\w,)=dwi\w,— i/ \dw,, we
TEmail address: oy@itp.ac.cn have
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AV,

FIG. 1. The surface with an eddga At every point of the sur-
face, we can construct an orthogonal framee,,e;, wheree; is
the normal vector of the surface. For a point on cuB/eg; is the
tangent vector oC.

d(1)1: (1)12/\(1)2; d(l)z: (1)21/\(1)1; (1)1/\(1)13+ (1)2/\(1)23: 0,
(€)

and

(i,j=1,2,3, 4

where the symbol A\” represents the exterior product on
which the most excellent expatiation may be the R&2].
Equation(3) and Cartan lemma imply that

dwij = wik/\wkj

wiz=aw;+bw,, wy=bw;+cw,. (5)
Therefore, we have

(6)
()

area element: dA=w\w,,

first fundamental form:l =dr - dr = w?+ w3,
second fundamental form:

tS)

Il =—dr-de;=awi+2bww,+ cws,

a+c
mean curvatureH = — 9

Gaussian curvatureK =ac— b?. (10

Ill. HODGE STAR *

In this part, we briefly introduce basic properties rather

than the exact definition of Hodge staf13] because we just
use these properties in the following contents.

If g,h are functions defined on 2D smooth surfatethen
the following formulas are valid:

*f=fw;\w,; (11

*df=—f2wl+flw2 if df=f1w1+f2w2; (12)

d*df=V2f, V2 isthe Laplace-Beltrami operator.

(13

We can easily prove that
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J f (fd*dg—gd+df)= fﬁ (fxdg—g*df) (19
M M
through Stokes’s theorem and integration by parts.

IV. VARIATIONAL THEORY OF THE SURFACE
The variation of the surface is defined as
Sr=0,6,+036e;, (15

where the variation along; is unnecessary because it gives
only an identity. Furthermore, let
5Q:Qijej, Qij:_jS' (16)
Operatorsd and 6 are independent, thudé=6d. dér
= 4dr implies that

Ow1= Qw1+ Qzwz— wa{dy, 17

Swy=dO0s+ Qgwaz— w15, (19

dQ3=Q 301+ Qo305 Qpwys. (19
Furthermored de = 6de implies that

Owij=dQjj + Qo — @iy - (20

It is necessary to point out that the properties of the op-
erator ¢ are exactly similar to those of the ordinary differen-
tial.

V. EQUILIBRIUM EQUATION OF THE MEMBRANE
AND BOUNDARY CONDITIONS

The total free energf§ of a membrane with an edge is
defined as the sum of Helfrich's free enerfi4,15 F
= [[[k/2(2H+co)2+ kK]dA and the surface and line ten-
sion energyF¢ =\ [ [dA+ y$-ds. Herek., k, cg, \, andy
are constants. With the arc-length parametse w,, the
geodesic curvaturk;= w,,/ds on C and the Gauss-Bonnet
formula [ [KdA=27—$kyds, the total free energy and its
variation are given as

-

+277E

k _
EC(ZH-I-CO)Z-H\ wl/\wz-l-y% w,—k 3€ w12
C C

(21)

and
5F=kcf f (2H+co)5(2H)wl/\w2+f f [%(ZH

+Co)2+ A\

S(w 1 N\wy)+y éc&ul—? ﬁ:&ulz,
(22)

respectively. From Eqg17) and(18), we can easily obtain
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5(&)1/\(1)2) = 5(,01/\(1)2"’ (1)1/\5(1)2
=—d(92w1)—(2H)Q3w1/\w2 (23)

Equations(5), (17), (18), and(20) lead to

S(2H) w1 N\wy=8(a+C)wN\w,
=2(2H?=K) Q30 \wy+d(Q 130,
— O pewq) +aQ,dw; — bdQ, A\ w,
+bQydw,+cdQ N\ w; . (24)

Thus we have

(SF:kcf f (2H+C0)[2(2H2_K)stl/\w2+d(913w2

—Qz3w1)+a92dw1—bdﬂz/\w2+szdwz-l-CdQZ
k

/\wl]-l-f f (%(2H+Co)2+)\)[_d(92wl)

—(2H)Qz01\w, ]+ y fﬁc[ﬂzwzﬁﬂswsr w2{)7]

-k %C[dﬂ'lz'i'QlSwSZ_ w132 3;]. (25

|f QZZO, thend93=Ql3wl+ngw2, *dQ3:_Qz3wl
+Ql3(l)2. On CUrVeC, 0)2:0, w31=—aw1, (1)32:_b(.01,
Q3lc=Q3c. Thus Eq.(25) is reduced to

8F=J f [Ke(2H+cg) (2H2—coH—2K) — 2AH] Q304
/\w2+kcf f (2H+cg)d*dQz—y iawlﬂg
+F3§c(bnlg— a0 w;. (26)
In terms of Egs(13) and(14), we have
f f(2H+co)d*dQ3= §0(2H+co)*dﬂ3
- £93*d(2H+CO)

+f fQ3V2(2H+C0)0)1/\(02.

PHYSICAL REVIEW B8, 061915 (2003
5F=j f[kc(2H+c0)(2H2—coH—2K)—2)\H
+kCV2(2H+Co)]Q3(D1/\w2_ é [kc(2H+Co)
C

+?a]923w1— % Qgc[kc* d(2H + Co) + 'yawl
C

+kdb]. (27)
It follows that

Ke(2H +cg)(2H2—coH—2K) — 2\H + k V2(2H) =0,

(28
[Ke(2H+co) +ka]|c=0, (29)
[ke*d(2H) + yaw, + kdb]|c=0. (30)

The mechanical meanings of the above three equations
are: Eq.(28) is the equilibrium equation of the membrane;
Eqg. (29 is the moment equilibrium equation of points Gn
around the axise;; and Eq.(30) is the force equilibrium
equation of points o€ along the direction og; [8,9]. It is

not surprising that Eq29) contains the factok because it is
related to the bend energy in Helfrich’s free energy. How-
ever, it is difficult to understand whyis also included in Eq.
(30). In fact, the termkdb in Eq. (30) represents the shear
stress which also contributes to the bend energy in Helfrich’s
free energy.

In fact,a=k, andb= 74 are the normal curvature and the
geodesic torsion of curveC, respectively, and d(2H)
=—e,-V(2H)w,. Thus Egs(29) and(30) become

[Ke(2H +co) +KK,]|c=0, (31)
—dTg
—ke&-V(2H)+ yk,+ k—=—|| =0, (32
ds c
respectively.
|f 03:0, then d932913w1+923w2—92w23=(ng

—sz)w1+(923—CQZ)w2=O. It |eadS tOQB: bQZ and
923:C92.

5F:kcf f (ZH +C0)[a92dw1—bdﬂz/\w2+ bﬂzdwz

+ Csz/\wl-i- d(913w2—923w1)]

+f”%(2H+co)2+>\

+’y % Qzﬂ)z]__?% KQQ(,U]_. (33)
C C

[-d(Q204)]

Using integration by parts and Stokes’s theorem, we arrive at Otherwise,w,3=aw;+bw, implies thatadw; +db\w,

§Cb913(1)1: §deQ3C: - §CQ3Cd b. Thus

+ 2bd(1)2_ Cd(!)]_: - da/\ﬁ)l Thus
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aﬂzdwl_ bsz/\&)z"‘ szd(Uz'f‘ Csz/\wl
+d(Qg30;— Qo)

—d(a+c)AQ o,

—d(2H+cy)/\Qyw; (Cpis aconstant (34)

Therefore

k —
oF= 35 [_?C(ZH+CO)292w1_kKQZw1_)‘Q2w1
c

+vQowy|. (39
It follows that
K¢ , =
?(2H+C°) + KK+ X+ kg C=O, (36

because ofw,= —kgw, on C. This equation is the force
equilibrium equation of points 0@ along the direction oé,
[8,9].

Equations(28), (31), (32), and (36) are the equilibrium

equation and boundary conditions of the membrane. They

correspond to Eqs(17), (60), (59), and (58) in Ref. [8],

respectively. In fact, these equations can be applied to th

membrane with several edges also, because in above disc
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+cosydyidv] on curveC. For curveC, k,=—sinyfv, 74
=0, andky=—sncosyfv. Thus we can reduce Eq&8),
(31), (32, and(36) to

siny dy 1(siny dy\?
kC(T‘FCOSlﬂE—CO) E(T‘FCOSlﬁa)
1 [sinyg di\ 2 singcosy dir
T T*COSwa)‘fa
siny dyy cosy d d [sinyg
—)\(T+cos¢$>+kc—$ UCOS‘/’%( >
dy| |
+cos¢/$ =0, (37)
sinys dy —siny B
kc(le'COSlﬂ%_CO) +kT C—O, (38)
— d [sing sings|
—snlcoswa(—) Ty C—O, (39
K2 [sing\2 _singcosy dy cosyy|
[Z_kC( 5 >+k 5 $+)\—sny =
(40)

In fact, in the above four equations only three are inde-
endent. We usually keep Eg&7), (38), and (40) for the
(ial symmetric surface. For the general case, we conjecture

sion the edge is a general edge. But it is necessary t0 notiGRa¢ there are also three independent equations among Egs.
the right direction of the edges. We call these equations theyg) (31), (32) and (36). Equation(37) is the same as the

basic equations.

VI. SPECIAL SOLUTIONS TO BASIC EQUATIONS
AND THEIR CORRESPONDING SHAPES

equilibrium equation of axisymmetrical closed membranes
[17,18. In Ref.[18], a large number of numerical solutions
to Eqg.(37) as well as their classifications are discussed.
Next, let us consider some analytical solutions and their
corresponding shapes. We merely try to show that these

In this section, we will give some Special solutions to theshapes exist, but not to compare with experiments' There-
basic equations together with their corresponding shapes. Fe@sre, we only consider analytical solutions for some specific
convenience, we consider the axial symmetric surface witlvalues of parameters.
axial symmetric edges. Zhou has considered the similar

problem in his Ph.D. thes{46]. If we express the surface in
3-dimensional space as-{v cosu,v sinu,z(v)} we obtain

B sinys dy _sin¢cos¢d¢
n=- T*COS%)' T A
B r, d[sinyg dy
V(ZH)——Seéwﬁ(T-FCOSl/lE),
and
cosy d d [sing dy
V2(2H)=——$ vcos://a(TJrcos(/fE”,

whereys= arctafidzv)/dv], r,= dr/dv. Definet as the direc-
tion of curveC andr,;=dr/du. Obviously,t is parallel or
antiparallel tor, on curveC. Introduce a notatiosn, such
thatsn=+1 if t is parallel tor,, andsn=—1 if not. Thus
e=snry/secy and &-V(2H)=—sncosy(ddv)[(sinylv)

A. The constant mean curvature surface

The constant mean curvature surfaces satisfy(#8). for
proper values ok, co, K, and\. But Egs.(31), (32), and
(36) imply 2H +¢,=0, k,=0, andkK + yky=0 on curveC
if k., k, and+y are nonzero.

For axial symmetric surfacek,=0 requires sins=0.
ThereforeK =0 which requiresky=0. Only straight line can
satisfy these conditions. It contradicts the fact thats a

closed curve. Therefore, there is no axial symmetric open
membrane with constant mean curvature.

B. The central part of a torus

When A=0, c,=0, the condition si=av+2
satisfies Eq(37). It corresponds to a toryd5]. Equations
(38) and (40) determine the position of the edge.
—2(ke+K)/a(2ke+K), where a=—y(k.
+K) V2(2K2+ 4k k+K2)/ (2k+ K) K K. If we let k.=k and
kC/y=2\/ﬂ/3 (the unit is the length dimensipnit leads to
lla=-1 andve=2\/§/3 (the unit is the length dimension
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FIG. 2. The central part of a torus.

Thus the shape is the central part of a torus as shown in Fi
2. This shape is topologically equivalent to a ring as show

in Fig. 3.

C.Acup

If we let sing="V, according to Hu’s methol19] Eq.
(37) reduces to

d3w
(P2—1)——+V

d>¥ d¥  1/d¥ 3+2(\p2_1) d?v
dov? dp2 dv 2

3\If(d\lf)2 cd 2co¥ N 3W2-2\d¥
+ | e | —
2v \ dv 2 v K 202 | dv

+

2 ke 2

550 (41)

5 A 1)\1/ Lo

Now, we will consider the case thdt=0 for v=0. Asv
—0, Eq.(41) approaches tod®¥/dv3) + (1kv)(d*W¥/dv?)
—(1?)(dW¥/dv)+ (¥/v?)=0. lts solution isV=a;/v

+asv+azv Inv where =0, a, and a3 are three con-

stants. IfA=0 andcy>0, we find that¥ = sing=B(v/v0)

+cguin(vivg) satisfies Eq(37). The shapes of closed mem-
branes corresponding to this solution are fully discussed by
Liu et al. [20]. Equations(38) and (40) determine the posi-

tion of the edge that satisfies tev)=—y/2k.cO if k

FIG. 3. Aring (left) and a disk(right).
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FIG. 4. A cup.

=—2k.. If we let B=1, vg=1/cy=1 (the unit is the length
dimension, and y>k.cy, we obtainv/vy~1 and its corre-
sponding shape likes a cup as shown in Fig. 4. This shape is

rE}fi)pologically equivalent to a disk as shown in Fig. 3.

VII. AXISYMMETRICAL NUMERICAL SOLUTIONS

It is extremely difficult to find analytical solutions to Eq.
(37). We attempt to find the numerical solutions in this sec-
tion. But there is a difficulty that sif{v) is multivalued. To
overcome this obstacle, we use the arc length as the param-
eter and express the surfaceras{v(s)cosu,v(s)sinu,z(s)}.

The geometrical constraint and E@28), (31), and(36) now
become

v'(s)=cosy(s), z'(s)=siny(s), (42
(2—3 sirfg) ' v —siny(1+coSy) + [ (ci+ 2N/ ko) ¢’
—(")3=2¢" w3+ [ (c3+ 2N/ k) sin— Acysin gy’

+3siny (' )2—4cosyy" Jv?=0, (43
sinys —siny B
kc( Co— T— ) - v C—01 (44)
— sinyg k \sirty cosy
kcoT—F<1+2—kc)—U2 +)\—sny—v =0.
(45)

We can numerically solve Eq$42) and (43) with initial
conditions v(0)=0, z(0)=0, ¥(0)=0, ¥'(0)=«, and
#/"(0)=0 and then find the edge position through Edsl)
and (45). The shape corresponding to the solution is topo-
logically equivalent to a disk as shown in Fig. 3. In fact, Eq.
(43) can be reduced to a second order differential equation
[8,9,21], but we still use the third order differential equation
(43) in our numerical scheme.

In Fig. 5, we depict the outline of the cup-like membrane
with a wide orifice. The solid line corresponds to the numeri-
cal result with parametersa=c,=0.8um 1, M\/k;
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FIG. 5. The outline of the cuplike membrane with a wide orifice. £, 6. The outline of the cuplike membrane with a narrow
The solid line is the numerical result with parameters=co  grifice. The solid line is the numerical result with parameters

=08um*, Mk;=0.08um 2, y/k=0.20um *, and _?/kc =co=0.86um L, Ak, =0.26um 2 y/k.,=0.36um %, and
=0.38. The squares come from FigdlLof Ref.[6]. zaxis is the ;i — —0.033. The squares come from FigkBof Ref.[6]. z axis
revolving axis and is the revolving radius. is the revolving axis and is the revolving radius.

freely exposed edges. A numerical scheme to give some axi-

— -2 — -1 T/l —
=0.08pum ™", y/k;=0.20pum *, and kik;=0.38. The symmetric solutions and their corresponding shapes do agree

squares come from Fig.(d) of Ref. [6]. with some experimental results.

_In Fig. 6, we depict the outline of the cuplike membrane " 1o method that combines exterior differential forms with
with a narrow orifice. The solid line correspont{sl to the NU-the variation of surface is of important mathematical signifi-
merical result with parametera=co=0.86um ", MKc  cance. It is easy to be generalized to deal with and to sim-
=0.26 um 2, y/k;=0.36 um !, andk/k.=—0.033. The plify the difficult variational problems on high-dimensional
squares come from Fig(l® of Ref.[6]. Obviously, the nu- manifolds.
merical results agree quite well with the experimental results Although we have given some axisymmetric numerical
of Ref.[6]. solutions that agree with experimental results obtained by

Saitohet al,, up to now, we still cannot find any unsymmetri-
cal solution. A large number of unsymmetrical shapes are
VIIl. CONCLUSION found in experiments, which will be a challenge to the the-

In the above discussion, we introduce exterior diﬁ‘erentialorGtIcal study.

forms to describe a lipid membrane with freely exposed

edge. The total free energy is defined as the Helfrich’s free ACKNOWLEDGMENTS
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