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Nonlinear analysis of correlations in Alu repeat sequences in DNA

Yi Xiao, Yanzhao Huang, Mingfeng Li, Ruizhen Xu, and Saifeng Xiao
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
(Received 11 June 2003; published 24 December P003

We report on a nonlinear analysis of deterministic structures in Alu repeats, one of the richest repetitive DNA
sequences in the human genome. Alu repeats contain the recognition sites for the restriction endonuclease Alul,
which is what gives them their name. Using the nonlinear prediction method developed in chaos theory, we
find that all Alu repeats have novel deterministic structures and show strong nonlinear correlations that are
absent from exon and intron sequences. Furthermore, the deterministic structures of Alus of younger subfami-
lies show panlike shapes. As young Alus can be seen as mutation free copies from the “master genes,” it may
be suggested that the deterministic structures of the older subfamilies are results of an evolution from a
“panlike” structure to a more diffuse correlation pattern due to mutation.
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[. INTRODUCTION A typical Alu element is about 300 base pairs long and
composed of two halve&@bout 130 base paijoined by a
Correlation properties of biosequencd3NA and pro- middle A-rich region along with a 3PolyA(Adenine tail.
teing may indicate their biological functions. A well-known Alus are selfish DNA but not necessarily junk. Alus contrib-
example is the period 3 in coding DNA sequenfg®]. A  ute to genetic diversity, are prone to gene conversion, and
linear correlation analysis showed that the power spectrutmay be used in the modulation of protein expression. Alu
of the coding sequences shows a strong signal in period 3equences accumulate preferentially in gene-rich regions
This is obviously related to the triplet genetic codes whichand are not uniformly distributed in the human gendi®k

compose the coding sequences. They may play some role in the regulation of gene expres-
DNA consists of coding(exong and noncoding parts sjon.
(e.g., the intergenic regions and intrgnds the whole DNA Although linear correlation methods were previously used

sequences of some organisms have been measured, it is clggistudy the correlation properties of DNA sequeni@sin
now that the coding sequences only consist of about 5% ohe present paper we shall use a nonlinear correlation ap-
the whole human genome and 95% are noncoding sequencgsioach, i.e., the nonlinear prediction technig@9]. The
We know much more about the organization and functions ohonlinear correlation method defines the correlation property
the coding sequences, but we know little about the noncodpy the determinism of similar segments in a sequence. This
ing parts and they were considered as “junk.” However, method was developed for analyzing the correlation proper-
more and more investigations show that they are not junkies of irregular time series and has been previously used
and they should have certain biological functi¢8s4], e.9.,  successfully to distinguish between chaos and noise in them.
controlling gene regulation. So we expect that the analysis oft can give specific information of how different regions are
correlation properties of noncoding sequences may providgharacterized and can detect the determinism which is not
some useful information about their functions. In the presengjetected by the standard methods, such as Fourier transfor-
paper, we shall investigate the correlation properties of onénation and power spectrum. It can also give reasonable re-
of the richest noncoding sequences in the human genomeyits for short sequences. Furthermore this method can be
Alu repeats. extended easily to treat symbolic sequences. So it is reason-
The genome of eukaryotes is known to contain variousable to apply it to analyze DNA sequences which are typical
types of repetitive DNA. Repetitive DNA is any piece of jrreqular symbolic sequences. The theory of chaos has al-
nucleotide sequence which is repeated several to many timegady been applied to investigate the behaviors of biomol-
in the genome. The function of repetitive DNA is unknown. ecules and biosequences by many autlﬁ@&.lq_ In the
These repetitive sequences can be classified broadly injresent paper, we use the nonlinear correlation method to
two principal components: tandem repeats and intersperseflvestigate the deterministic structures of Alu repeats. Our
repeats. Alu repeats belong to middle repetitive shortesults indicate that most Alu repeats have deterministic

interspersed nucleic elementSINES, and are specific t0 structures and show significant nonlinear correlations which
primates[5]. Their copy number in a human genome addsare absent in exons and introns.

up to 500 000-1 000000, which may account for approxi-
mately 10% of the whole human genome. Alu repeats are
derived ancestrally from the 7SL RNA gene and mobilize
through an RNA polymerase lll-derived transcript in a pro-
cess termed retroposition. Alu repeats share a recognition site The nonlinear prediction technique works as follows
for the restriction endonuclease Alul, which is what gave[8,9,13. For an arbitrary symbolic series; ,X,,X3,... Xy,
their name. one constructs a set ofdimensional vectors

IIl. METHOD

1063-651X/2003/6@)/0619135)/$20.00 68 061913-1 ©2003 The American Physical Society



XIAO et al. PHYSICAL REVIEW E 68, 061913 (2003

X1=(X1,X2,... . Xq), (1)
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which correspond to all possible segmentdafonsecutive 0.9r
symbols. The set contains all possible subsequences c L W\ ) ___
lengthd in the original symbolic series. Next, for each vector
Xp=(Xp:Xp+1,---Xp+d—1) (L=p<N—d), one searches for
its nearest neighborXy )= (Xn(p) :Xr(p)+ 11+ XH(p)+d—1)

XN-d+1=(XN—d+15---XN)

and then compares how close the symbglsy andX(p)+q 0.7} .
follow these two vectors. The closeness of a pair of symbols , , , ,
X; andx; is measured by the Hamming distance 0 20 40 60 80 100
d
0, Xi = Xj y ) ) .
h(x;,x;)= 2) FIG. 1. ErrorE versus the embedding dimensidrfor an Alu
1, X#X; repeat(thick line) and its 10 randomly shuffled sequendgisin

] ) ) lines) from the HUMHBB DNA sequence. It can be seen that the
while the closeness of a pair of vectos and X; is mea-  yajues ofE of all of the randomly shuffled sequences are around 1

sured by and not less than 0.9.
d-1
vV — A . It can be seen clearly that the valuesodf all ten randomly
HOXG%;) kgo NOG 1% 1) ©®  shuffled sequences are around 1 and not less than 0.9. Thus

we can define that a “significant” correlation exits &
The nearest neighbod&, ) of a given vectoiX, areX;, <0.85.
such thatH (X, X;) is a minimum forj #p. Once the near-
est neighborsXy, are determined, we compute the mean

Ill. RESULTS AND DISCUSSIONS
local errore,=(h(Xp4 4, Xn(p)+d)), Where(---) denotes the

average over all the nearest neighbors<gfsince there are A. Alu repeats, exons, and introns
usually more th_an one ne_ar_est neighbor. From this, the over- \ne first focus on the humag globin region on chromo-
all mean error in the chain is some 11 Genebank code HUMHBB, 73 308 bageEhe rea-
N—d son we choose HUMHBB is that it contains three kinds of
E= L 2 ﬂ, (4) typical DNA sequences: exons, introns, and Alu repeats.
—dp=1 g Therefore, we can give a comparative analysis of their cor-

relation properties.

where we measure, in the expected local erros, of a In HUMHBB, there are six globin genes and eight Alu
random sequence with a composition identical to that of th@amily repeats. The six genes are the epsilon géns),
Alu sequence. This make it easy to clarify how much theG-gamma genéhbgg, A-gamma geneghbga, delta gene
correlation properties of an Alu sequence deviates from ranthbd), beta genéhbb), and pseudo-beta-1 gefigbp). Every
dom sequences:, is calculated by gene in HUMHBB contains three exons and two introns. The
lengths of the exons are 93, 222, and 129 bases, respectively,
and those of the introns are about 120 and 850 bases, respec-
tively.

Figures 2—4 are the plots of the overall mean efor
where{a;=A,C,G,T} is the alphabet taken by andp(«;) versus the embedding dimensidnfor exons, introns, and
is the probability of occurrence for the symbal in the Alu repeats, respectively. In our calculations, the paly
sequence. Consequently, B for an Alu repeat is close to tails of the Alu repeats are removed. It can be seen that, in
zero, the Alu sequence is deterministic.Bfis close to or general, the values d of the exon and intron sequences are
larger than 1, the Alu sequence is a random one. close to or larger than 0.85 and show no significant deviation

Furthermore, we need to define a valuezadbn which we  from the random sequences. Some exon and intron se-
consider that a “significant” correlation exits. To do this, we quences show very weak determinism. For only one exon
calculated the correlation properties of the sequences of raisequence are their values®tmaller than 0.7 fod>50 and
domly shuffled Alu repeats, each of them with a compositionshow significant correlation. However, most of the Alu re-
identical to that of original Alu repeats but also with a ran- peats have similar deterministic structures and show signifi-
domly permuted ordering of nucleotides. Figure 1 is the plotcant nonlinear correlations fad between 5 and 50. This
of the overall mean errdg versus the embedding dimension behavior is very interesting and marks the existence of a
d for one Alu repeat and its ten randomly shuffled sequencesommon underlying deterministic rule in Alu sequences.

4
2r= (142, h(Xp.q,a@)P(a),
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FIG. 2. ErrorE versus the embedding dimensidrior 18 exons FIG. 4. ErrorE versus the embedding dimensidifor eight Alu
from the HUMHBB DNA sequence. It is shown that most exons repeats from the HUMHBB DNA sequence. It is shown that most
show no significant deviation from the random sequences. alus show significant deviation from the random sequences.

. . . left arm monomer(FLAM) and free right arm monomer
These results indicate that the correlation properties of AI‘{FRAM). FLAM and FRAM arose by a 42 and 11 bp dele-
repeats are very different from those of exons and intronstion, respectively, from the fossil Alu monomeFAM).
Furthermore, although the overall structures of the determinTnerefore, although the two arms of the Alus are not identi-
ism of the Alu repea'[S al’e_ Similar, their -details are not th%aL they share a common Origin and a Considerab|y sequence
same. Alu repeats are not just exact copies of each other. jdentity. So it is not surprising that correlations exist. How-
ever, it is noted that the significant correlations of all of the
B. Right and left halves of Alu repeats Alu repeats occur only fod between 5 and 50. For a dimeric
structure with two identical halves, the range of correlation

ai'?)luT;ess:tvSvhaerfhg?mgor?:riir?;;\:vgorr]?el\lgi%it slh3oc\)/v?1a:§ovwomd be identical to the length of one half. A detailed analy-
gre fhose between the riaht and left halves. we also studieg-s shows that the origin of the reduced correlation lengths
) €rng : i om 5 to 50 is complicated because the correlations occur in

the nonlinear correlations of them. Figure 5 shows that the,. :
. . . _different ranges of the two halves for different Alu repeats
right or left half alone does not have the nonlinear determin-

istic structures of all of the Alu repeats. This indicates thatand’ therefore, needs further investigation.

the nonlinear correlations of all the Alu repeats are mainly C. Alu repeats in larger dataset

those between the two halves of the Alu repeats. The Alus
are thought to emerge by dimerization of a subfamily free 1€ Alu repeats above are only come from one short seg-
ment of human DNA. In order to see whether the determin-
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FIG. 3. ErrorE versus the embedding dimensidrfor 12 in- FIG. 5. Average erroE versus the embedding dimensidrfor

trons from the HUMHBB DNA sequence. It is shown that all in- the left and right halves of the Alu repeats from the HUMHBB
trons show no significant deviation from the random sequences. DNA sequence.
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FIG. 6. ErrorE versus the embedding dimensidrfor the Alu FIG. 8. ErrorE versus the embedding dimensidrfor the Alu
repeats of thel subfamily. It is shown that most alus show signifi- repeats of the Yb8 subfamily. Most alus of this subfamily show
cant correlations but their values Bfand the lengths of the corre- sjgnificant correlations but their lengths of the correlation segments
lation segments are diverse. become short in comparision with the older subfamilies.

istic structures occur generally, we used a large dataset
human Alu repeat$17]. In our calculation, we randomly
selected 50 sequences from each of the five subfamilies: Al
J, Alu S, Alu Yb8, Alu Ya5, and Alu Ya5a2. The major sub-
family branchegJ, S, and Y appeared at different evolution-

%forrelation segments also extend over almost the whole
range of calculated's. But for the Alu Y subfamilies, the
Hituation is different. The lengths of the correlation segments
are short and less than about 50 bases. The degrees of the

ary times, with J being older than S, and S being older thaﬁorrelations for each of the Y subfamilies are not as diverse
Y Figureé 6—10 show the overall n’1ean erlbversus the @S the old subfamilies but tend to be similar and most of the

embedding dimensiod for Alu repeats of the five subfami- S€duences show significant correlations betweters tod
lies, respectively. The results show that the correlations exist 20 Furthermore, Figs. 610 show that the deterministic
in most of the Alu repeats in the five subfamilies. However,structures of the Alu repeats changed gradually, from J to S
the degree$E) of the correlations and the lengttd) of the ~ t0 Y subfamilies, into panlike shapes of the youngest Ya5a2
correlation segments are different. For the Alu sequences §ubfamily. The flat bottoms of the pans mean that the overall
the old subfamiliegJ and 3, the degrees and lengths of the mean errorsE and in turn the degrees of the correlations

correlations are diverse. The degrees of the correlations afémain almost unchanging for this rangefThis implies
from zero to the case witE~0.5. The lengthgd) of the that similar segments exist in the two arms and their lengths
are about 50 bases. The detailed analysis of the Alus of the
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FIG. 7. ErrorE versus the embedding dimensidrfor the Alu FIG. 9. ErrorE versus the embedding dimensidrfor the Alu
repeats of theS subfamily. Similar to the) subfamiliy, most alus repeats of the Yb8 subfamily. Most Alus of this subfamily show
show significant correlations but their valuesto&nd the lengths of  significant correlations and their lengths of the correlation segments
the correlation segments are diverse. are similar to the subfamily Yb8.
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relation segments are less than those of the two arms.

(3) The deterministic structures of the Alu sequences of
the old Alu subfamiliegJ and $ are diverse but those of the
young subfamiliegYb8, Ya5, Ya5a2tend to be similar. Fur-
thermore, from the younger to older subfamilies, the deter-
ministic structures gradually evolved from a panlike struc-
tures to a more diffuse correlation pattern. The lengths of the
correlation segments of the young subfamilies are shorter
and less than about 50 bases. As young Alus can be seen as
mutation free copies of the “master gendgf their respec-
tive family consensus sequentédsseems very likely that the
old AluJ subgroup members showed the same panlike struc-
ture when they where “young” or mutation free.

It is known that all the members of the Alu repeat super-
family have common tRNA-like secondary structure. It may
d be possible that the deterministic structures of the Alus are

FIG. 10. ErrorE versus the embedding dimensidrior the Al 'élated to this since the base paring of the two arms are
repeats of the Ya5a2 subfamily. Most Alus of this subfamily showneeded to form the tRNA-like secondary_structures or the_
significant correlations and also panlike deterministic structures. base sequences of the two arms are required to have certain

) o ~ similarity or correlation. But this needs further investiga-
Ya5a2 subfamily shows that the similar segments are mainlygns.

the first part of the two arms. Its biological significance

needs furthe( investigation. . ' ACKNOWLEDGMENTS
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