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Nonlinear analysis of correlations in Alu repeat sequences in DNA
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We report on a nonlinear analysis of deterministic structures in Alu repeats, one of the richest repetitive DNA
sequences in the human genome. Alu repeats contain the recognition sites for the restriction endonuclease AluI,
which is what gives them their name. Using the nonlinear prediction method developed in chaos theory, we
find that all Alu repeats have novel deterministic structures and show strong nonlinear correlations that are
absent from exon and intron sequences. Furthermore, the deterministic structures of Alus of younger subfami-
lies show panlike shapes. As young Alus can be seen as mutation free copies from the ‘‘master genes,’’ it may
be suggested that the deterministic structures of the older subfamilies are results of an evolution from a
‘‘panlike’’ structure to a more diffuse correlation pattern due to mutation.
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I. INTRODUCTION

Correlation properties of biosequences~DNA and pro-
teins! may indicate their biological functions. A well-know
example is the period 3 in coding DNA sequences@1,2#. A
linear correlation analysis showed that the power spect
of the coding sequences shows a strong signal in perio
This is obviously related to the triplet genetic codes wh
compose the coding sequences.

DNA consists of coding~exons! and noncoding parts
~e.g., the intergenic regions and introns!. As the whole DNA
sequences of some organisms have been measured, it is
now that the coding sequences only consist of about 5%
the whole human genome and 95% are noncoding seque
We know much more about the organization and functions
the coding sequences, but we know little about the nonc
ing parts and they were considered as ‘‘junk.’’ Howev
more and more investigations show that they are not j
and they should have certain biological functions@3,4#, e.g.,
controlling gene regulation. So we expect that the analysi
correlation properties of noncoding sequences may pro
some useful information about their functions. In the pres
paper, we shall investigate the correlation properties of
of the richest noncoding sequences in the human geno
Alu repeats.

The genome of eukaryotes is known to contain vario
types of repetitive DNA. Repetitive DNA is any piece o
nucleotide sequence which is repeated several to many t
in the genome. The function of repetitive DNA is unknow
These repetitive sequences can be classified broadly
two principal components: tandem repeats and interspe
repeats. Alu repeats belong to middle repetitive sh
interspersed nucleic elements~SINEs!, and are specific to
primates@5#. Their copy number in a human genome ad
up to 500 000–1 000 000, which may account for appro
mately 10% of the whole human genome. Alu repeats
derived ancestrally from the 7SL RNA gene and mobil
through an RNA polymerase III-derived transcript in a pr
cess termed retroposition. Alu repeats share a recognition
for the restriction endonuclease AluI, which is what ga
their name.
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A typical Alu element is about 300 base pairs long a
composed of two halves~about 130 base pair! joined by a
middle A-rich region along with a 38 PolyA~Adenine! tail.
Alus are selfish DNA but not necessarily junk. Alus contri
ute to genetic diversity, are prone to gene conversion,
may be used in the modulation of protein expression. A
sequences accumulate preferentially in gene-rich reg
and are not uniformly distributed in the human genome@6#.
They may play some role in the regulation of gene expr
sion.

Although linear correlation methods were previously us
to study the correlation properties of DNA sequences@7#, in
the present paper we shall use a nonlinear correlation
proach, i.e., the nonlinear prediction technique@8,9#. The
nonlinear correlation method defines the correlation prope
by the determinism of similar segments in a sequence. T
method was developed for analyzing the correlation prop
ties of irregular time series and has been previously u
successfully to distinguish between chaos and noise in th
It can give specific information of how different regions a
characterized and can detect the determinism which is
detected by the standard methods, such as Fourier tran
mation and power spectrum. It can also give reasonable
sults for short sequences. Furthermore this method can
extended easily to treat symbolic sequences. So it is rea
able to apply it to analyze DNA sequences which are typi
irregular symbolic sequences. The theory of chaos has
ready been applied to investigate the behaviors of biom
ecules and biosequences by many authors@10–16#. In the
present paper, we use the nonlinear correlation metho
investigate the deterministic structures of Alu repeats. O
results indicate that most Alu repeats have determini
structures and show significant nonlinear correlations wh
are absent in exons and introns.

II. METHOD

The nonlinear prediction technique works as follow
@8,9,13#. For an arbitrary symbolic seriesx1 ,x2 ,x3 ,...,xN ,
one constructs a set ofd-dimensional vectors
©2003 The American Physical Society13-1
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X1[~x1 ,x2 ,...,xd!, ~1!

X25~x2 ,x3 ,...,xd11!,

¯ ,

XN2d11[~xN2d11 ,...,xN!

which correspond to all possible segments ofd consecutive
symbols. The set contains all possible subsequence
lengthd in the original symbolic series. Next, for each vect
Xp5(xp ,xp11 ,...,xp1d21) (1<p<N2d), one searches fo
its nearest neighborsXH(p)5(xH(p) ,xH(p)11 ,...,xH(p)1d21)
and then compares how close the symbolsxp1d andxH(p)1d
follow these two vectors. The closeness of a pair of symb
xi andxj is measured by the Hamming distance

h~xi ,xj !5H 0, xi5xj ,

1, xiÞxj
~2!

while the closeness of a pair of vectorsXi and Xj is mea-
sured by

H~Xi ,Xj !5 (
k50

d21

h~xi 1k ,xj 1k!. ~3!

The nearest neighborsXH(p) of a given vectorXp areXj ,
such thatH(Xp ,Xj ) is a minimum forj Þp. Once the near-
est neighborsXH(p) are determined, we compute the me
local error«p5^h(xp1d ,xH(p)1d)&, where^¯& denotes the
average over all the nearest neighbors ofXp since there are
usually more than one nearest neighbor. From this, the o
all mean error in the chain is

E5
1

N2d (
p51

N2d
«p

« r
, ~4!

where we measure«p in the expected local error« r of a
random sequence with a composition identical to that of
Alu sequence. This make it easy to clarify how much t
correlation properties of an Alu sequence deviates from r
dom sequences.« r is calculated by

« r5~1/4!(
i 51

4

h~xp1d ,a i !p~a i !,

where$a i5A,C,G,T% is the alphabet taken byxi andp(a i)
is the probability of occurrence for the symbola i in the
sequence. Consequently, ifE for an Alu repeat is close to
zero, the Alu sequence is deterministic. IfE is close to or
larger than 1, the Alu sequence is a random one.

Furthermore, we need to define a value ofE on which we
consider that a ‘‘significant’’ correlation exits. To do this, w
calculated the correlation properties of the sequences of
domly shuffled Alu repeats, each of them with a composit
identical to that of original Alu repeats but also with a ra
domly permuted ordering of nucleotides. Figure 1 is the p
of the overall mean errorE versus the embedding dimensio
d for one Alu repeat and its ten randomly shuffled sequen
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It can be seen clearly that the values ofE of all ten randomly
shuffled sequences are around 1 and not less than 0.9.
we can define that a ‘‘significant’’ correlation exits ifE
<0.85.

III. RESULTS AND DISCUSSIONS

A. Alu repeats, exons, and introns

We first focus on the humanb globin region on chromo-
some 11@Genebank code HUMHBB, 73 308 bases#. The rea-
son we choose HUMHBB is that it contains three kinds
typical DNA sequences: exons, introns, and Alu repea
Therefore, we can give a comparative analysis of their c
relation properties.

In HUMHBB, there are six globin genes and eight A
family repeats. The six genes are the epsilon gene~hbe!,
G-gamma gene~hbgg!, A-gamma gene~hbga!, delta gene
~hbd!, beta gene~hbb!, and pseudo-beta-1 gene~hbp!. Every
gene in HUMHBB contains three exons and two introns. T
lengths of the exons are 93, 222, and 129 bases, respect
and those of the introns are about 120 and 850 bases, res
tively.

Figures 2–4 are the plots of the overall mean errorE
versus the embedding dimensiond for exons, introns, and
Alu repeats, respectively. In our calculations, the poly~A!
tails of the Alu repeats are removed. It can be seen tha
general, the values ofE of the exon and intron sequences a
close to or larger than 0.85 and show no significant deviat
from the random sequences. Some exon and intron
quences show very weak determinism. For only one e
sequence are their values ofE smaller than 0.7 ford.50 and
show significant correlation. However, most of the Alu r
peats have similar deterministic structures and show sig
cant nonlinear correlations ford between 5 and 50. This
behavior is very interesting and marks the existence o
common underlying deterministic rule in Alu sequence

FIG. 1. ErrorE versus the embedding dimensiond for an Alu
repeat~thick line! and its 10 randomly shuffled sequences~thin
lines! from the HUMHBB DNA sequence. It can be seen that t
values ofE of all of the randomly shuffled sequences are aroun
and not less than 0.9.
3-2
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These results indicate that the correlation properties of
repeats are very different from those of exons and intro
Furthermore, although the overall structures of the determ
ism of the Alu repeats are similar, their details are not
same. Alu repeats are not just exact copies of each othe

B. Right and left halves of Alu repeats

Alu repeats are composed of two halves~about 130 base
pair!. To see whether the nonlinear correlations shown ab
are those between the right and left halves, we also stu
the nonlinear correlations of them. Figure 5 shows that
right or left half alone does not have the nonlinear determ
istic structures of all of the Alu repeats. This indicates th
the nonlinear correlations of all the Alu repeats are mai
those between the two halves of the Alu repeats. The A
are thought to emerge by dimerization of a subfamily fr

FIG. 2. ErrorE versus the embedding dimensiond for 18 exons
from the HUMHBB DNA sequence. It is shown that most exo
show no significant deviation from the random sequences.

FIG. 3. ErrorE versus the embedding dimensiond for 12 in-
trons from the HUMHBB DNA sequence. It is shown that all i
trons show no significant deviation from the random sequence
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left arm monomer~FLAM ! and free right arm monome
~FRAM!. FLAM and FRAM arose by a 42 and 11 bp del
tion, respectively, from the fossil Alu monomer~FAM!.
Therefore, although the two arms of the Alus are not iden
cal, they share a common origin and a considerably seque
identity. So it is not surprising that correlations exist. Ho
ever, it is noted that the significant correlations of all of t
Alu repeats occur only ford between 5 and 50. For a dimeri
structure with two identical halves, the range of correlati
would be identical to the length of one half. A detailed ana
sis shows that the origin of the reduced correlation leng
from 5 to 50 is complicated because the correlations occu
different ranges of the two halves for different Alu repea
and, therefore, needs further investigation.

C. Alu repeats in larger dataset

The Alu repeats above are only come from one short s
ment of human DNA. In order to see whether the determ

FIG. 4. ErrorE versus the embedding dimensiond for eight Alu
repeats from the HUMHBB DNA sequence. It is shown that m
alus show significant deviation from the random sequences.

FIG. 5. Average errorE versus the embedding dimensiond for
the left and right halves of the Alu repeats from the HUMHB
DNA sequence.
3-3
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istic structures occur generally, we used a large datase
human Alu repeats@17#. In our calculation, we randomly
selected 50 sequences from each of the five subfamilies:
J, Alu S, Alu Yb8, Alu Ya5, and Alu Ya5a2. The major sub
family branches~J, S, and Y! appeared at different evolution
ary times, with J being older than S, and S being older t
Y. Figures 6–10 show the overall mean errorE versus the
embedding dimensiond for Alu repeats of the five subfami
lies, respectively. The results show that the correlations e
in most of the Alu repeats in the five subfamilies. Howev
the degrees~E! of the correlations and the lengths~d! of the
correlation segments are different. For the Alu sequence
the old subfamilies~J and S!, the degrees and lengths of th
correlations are diverse. The degrees of the correlations
from zero to the case withE'0.5. The lengths~d! of the

FIG. 6. ErrorE versus the embedding dimensiond for the Alu
repeats of theJ subfamily. It is shown that most alus show signi
cant correlations but their values ofE and the lengths of the corre
lation segments are diverse.

FIG. 7. ErrorE versus the embedding dimensiond for the Alu
repeats of theS subfamily. Similar to theJ subfamiliy, most alus
show significant correlations but their values ofE and the lengths of
the correlation segments are diverse.
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correlation segments also extend over almost the wh
range of calculatedd’s. But for the Alu Y subfamilies, the
situation is different. The lengths of the correlation segme
are short and less than about 50 bases. The degrees o
correlations for each of the Y subfamilies are not as dive
as the old subfamilies but tend to be similar and most of
sequences show significant correlations betweend'5 to d
'50. Furthermore, Figs. 6–10 show that the determinis
structures of the Alu repeats changed gradually, from J t
to Y subfamilies, into panlike shapes of the youngest Ya5
subfamily. The flat bottoms of the pans mean that the ove
mean errorsE and in turn the degrees of the correlatio
remain almost unchanging for this range ofd. This implies
that similar segments exist in the two arms and their leng
are about 50 bases. The detailed analysis of the Alus of

FIG. 8. ErrorE versus the embedding dimensiond for the Alu
repeats of the Yb8 subfamily. Most alus of this subfamily sho
significant correlations but their lengths of the correlation segme
become short in comparision with the older subfamilies.

FIG. 9. ErrorE versus the embedding dimensiond for the Alu
repeats of the Yb8 subfamily. Most Alus of this subfamily sho
significant correlations and their lengths of the correlation segm
are similar to the subfamily Yb8.
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Ya5a2 subfamily shows that the similar segments are ma
the first part of the two arms. Its biological significan
needs further investigation.

In conclusion, we calculated the nonlinear correlations
Alu repeats. The results can be summarized as follows.

~1! Most of the Alu repeats show deterministic structur
which are clearly absent from those of random sequen
and also different from those in exons and introns.

~2! The nonlinear correlations in the Alu repeats are d
to their dimeric structures. However, the lengths of the c

FIG. 10. ErrorE versus the embedding dimensiond for the Alu
repeats of the Ya5a2 subfamily. Most Alus of this subfamily sh
significant correlations and also panlike deterministic structures
06191
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relation segments are less than those of the two arms.
~3! The deterministic structures of the Alu sequences

the old Alu subfamilies~J and S! are diverse but those of th
young subfamilies~Yb8, Ya5, Ya5a2! tend to be similar. Fur-
thermore, from the younger to older subfamilies, the de
ministic structures gradually evolved from a panlike stru
tures to a more diffuse correlation pattern. The lengths of
correlation segments of the young subfamilies are sho
and less than about 50 bases. As young Alus can be see
mutation free copies of the ‘‘master genes’’~of their respec-
tive family consensus sequences! it seems very likely that the
old AluJ subgroup members showed the same panlike st
ture when they where ‘‘young’’ or mutation free.

It is known that all the members of the Alu repeat sup
family have common tRNA-like secondary structure. It m
be possible that the deterministic structures of the Alus
related to this since the base paring of the two arms
needed to form the tRNA-like secondary structures or
base sequences of the two arms are required to have ce
similarity or correlation. But this needs further investig
tions.
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