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Thermal denaturation of a helicoidal DNA model
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We study the static and dynamical properties of DNA in the vicinity of its melting transition, i.e., the
separation of the two strands upon heating. The investigation is based on a simple mechanical model which
includes the helicoidal geometry of the molecule and allows an exact numerical evaluation of its thermody-
namical properties. Dynamical simulations of long-enough molecular segments allow the study of the structure
factors and of the properties of the denaturated regions. Simulations of finite chains display the hallmarks of a
first order transition for sufficiently long-ranged stacking forces although a study of the model’'s “universality
class” strongly suggests the presence of an “underlying” continuous transition.

DOI: 10.1103/PhysReVvE.68.061909 PACS nunier87.15.Aa, 05.20-y

[. INTRODUCTION tum) many-body dynamics of all the atoms. Clearly, an ap-
propriate choice of the relevant degrees of freedom, depend-
The study of simple dynamical models describing variousng on the specific problem at hand, is crucial. Models based
features of DNA dynamics has interested many authors foon the theory of polymers use self-avoiding walks to de-
almost 20 year§l]. This vivid interest arises of course from scribe the two strands.0—-12. They can be very successful
the biological relevance of DNA but also from its physical in studying the properties of the melting transition at the
properties which can now be probed through single-moleculéargest scale but, as they do not describe DNA at the level of
micromanipulation experiments like stress-induced transithe base pairs, they cannot be used to investigate properties
tions[2] or strand separatiof8]. This series of studies has that depend on the sequence, or probe DNA at a microscopic
clearly pointed out that DNA must be considered as a dyscale such as some recent single-molecule experiments. One
namical object, whosénonlineaj distortions could play a of the simplest models that investigates DNA at the scale of
major role in its functions. a base pair is the Peyrard-Bish@B) model[13—15. The
One feature of DNA that attracted a lot of attention from complex double-stranded molecule is described by postulat-
physicists is its thermal denaturation, i.e., the transition froming some simple effective interaction among the bases within
the native double-helix B-DNA to its melted form where the a pair and along the strands. The model has been success-
two strands spontaneously separate upon hedtgbe-  fully applied to analyze experiments on the melting of short
cause it provides an example ofame-dimensional phase DNA chains[16]. Furthermore, it allows to easily include the
transition. Experiments show that this transition is very effect of heterogeneitigd 7] yielding a sharp staircase struc-
sharp, which suggested that it could be first order and this leture of the melting curvénumber of open base pairs as a
to numerous investigations, first to justify the existence of &unction of the temperaturg€) [4]. Beyond its original mo-
transition in a one-dimensional system and second to detetivation to explain the denaturation transition, the PB model
mine its orde{5-12). In spite of these efforts the nature of has an intrinsic theoretical interest as one of the simplest
the transition is still unclear and moreover, as discussed bene-dimensional systems displaying a genuine phase transi-
low, the determination of its “true” order from experiments tion [8,9].
may turn out to be virtually impossible. The PB model has, however a serious shortcoming be-
In the theoretical approaches, the level of complexity iscause it does not take into account the helicoidal structure of
reduced to the minimum by taking into account only theDNA. In the following, we consider an extended version of
(classical motion of large subunits rather than the figuan-  the PB model that has been proposed to avoid this weakness
[18,19. The introduction of DNA geometry induces an im-
portant coupling between base pair opening and helical twist,

*Electronic address: barbi@Iptl.jussieu.fr largely substantiated for real DNAL8]. A modified version
TElectronic address: stefano.lepri@unifi.it of this helicoidal model has also been successfully applied to
*Electronic address: Michel.Peyrard@ens-lyon.fr describe the denaturation of the chain induced either ther-
$Electronic address: nth@eie.gr mally or mechanically by applying an external torque to the
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chain endq20]. Furthermore, its nonlinear excitations have
been studied: small amplitude breather-like solutions have
been analytically determing@®1] as well as large localized
bubbleq22]. Both types of excitations are of interest as they

may be thermally excited as precursors for the DNA strand / r,

(r,,9,)

separation. A first effect of the helicoidal structure, namely to
bring close to each other bases which are not consecutive i J

the sequence, was treated[ 28], by introducing an interac-
tion between these bases. This first approach however did nc
take into account the important geometrical effect that we
want to examine here, the coupling between opening anc
twist.

The aim of this work is to give further insight on the
r_ne,ltmg transition of the he“(_:O'dal r,nOdeI’ ,bOth from the ,Sta' FIG. 1. Schematic representation of the fixed-planes DNA heli-
tistical and from the dynamical point of view. After having .qijai model.
recalled the model and its state variab(&gcs. Il and lI},
the first part(Secs. IV and Vs devoted to its exact thermo- anaih ¢ ) that connects the attachment points of the bases
dynamics and to a simulation study of its statistical properyiong each strand. The ratiy/h fixes the strand slant and
ties. We find that the melting transition is extremely sharpyqrefore the resulting helicity of the structure. This helicity
b_e'arlng essentially all of the hal!marks of a first-order tran-ig 4ccounted for by the angle of rotation of a base-pair with
sition, at all temperature sampling steps studﬁdc_iwn to respect to the previous one, namely thguilibrium twist
0.01 K). However, a study of the model's *universality gnqie g equal to 2/10.4 in B-DNA at room temperature.
class,” using finite-size scaling techniques, allowing some ', y,6 model, bases are described as pointlike particles of

variation of the relevant physical parameters, and drawingq, | massesn joined by elastic rods along each strand.
from analogies with a Schdinger-like equatiorithe Appen- Bases lying on the same plane are coupled by hydrogen

dix), strongly suggests the presence of an “underlying” con-j,,qs |eading to an attractive force that tends to maintain

tinuous transition of the Kosterlitz-Thouless type in the ab'their equilibrium distance equal to the DNA diameteR,2

sence of nonlinear stacking. This should be contrasted witk\‘}ve assume that the two bases in each pair move symmetri-

the exact §econd-order transition obtained in the Zero(';ally. To describe base-pair opening and helical torsion under
stacking limit of the PB modd]9].

. : . those constraints, it suffices to introduce two degrees of free-
In the second par{Sec. V) we investigate dynamical

. dom per base-pair: these argand ¢,, i.e., the radial and
structure factors that are of particular relevance to both ne P P e n

. . uémgular positions and of theth base. The total number of
tron [2.4] a'?d Ramari25] scattering expenments_._The under- degrees of freedom is thus\2 N being the total number of
lying idea is that, upon approaching the transition, the mol

. . b irs. Th triction i d by th ti f
ecule should display precursor effects in the form of a ase paws © Testriction Imposed by the assumption of &

. N . ._“symmetric motion preserves the essential feature of the heli-
”.“Ode softening,” i.e., a slowing-down of the _dynamlcs cal structure, the coupling between torsion and opening,
with appearance of a low-frequency component in the Spegz;ie jt keeps the model sufficiently simple to allow exact
trum. Slowing effects have been, to some extent, observed iﬁ‘eatment of its thermodynamics

the structure factors of the PB modél5] thus encouraging We consider the Lagrangie[ﬁGj

this type of investigation.

L£=m r24+r242)—D exd —a(r,—Ry)]—1)2
Il. THE HELICOIDAL MODEL En: (ratradn) ;( H-a(rh=Ro)]=1)

Two versions of the model have been proposed in earlier

studies. The first ongl8] describes an elastic backbone and - K; (ln,nfl_fo)z_sin: (rh=Tn-1)?
fixed base-pair planes while the secd@@] considers a rigid
backbone and moving base-pair planes. The two models dis- Xexg —b(rp+ry_1—2Rp) 1, (1)

play a very similar behavior with respect to denaturation as
the potentials associated to the base-base interactions inwere €= \/h2+4Rozsin2(0/2) andl,,_, are respectively
pair and along the strands are the same in both cases, attte equilibrium and the actual distance between the two
because both introduce a coupling between opening anbasesn andn—1 along a strand,
twist that results from the helicoidal geometry. In the follow-
ing, we will consider the fixed-planes model, sketched in lhn-1= Vh2+r2_ +r2=2r, _ir,cod dn—bn_1). (2)
Fig. 1.

The helical structure of DNA is introduced essentially by For later purposes, it is convenient to introduce the local
the competition between a stacking interaction that tends towist angle defined ag8,= ¢,— ¢,_1.
keep the base-pairs close to each otftggven by the fixed The first term in the Lagrangian is the kinetic energy. The
distanceh between the base planeand the lengtif;>h of  second term is intended to describe the hydrogen bond inter-
the backbone segmeiitlescribed as an elastic rod of rest action between the two bases in a pair. Following Reif3]
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TABLE |. The parameter set used throughout the paper. (a) (b) (c)
-c r r
Parameter Symbol Value
T=Tp
Morse potential range a 6.3 Al !
Stacking interaction range b 05 At O
Morse potential depth D 0.15 eV 0 :
Stacking interaction coupling S 0.65 eVA? T T T T o o
Interplane distance h 3.4 A ? ?
Elastic coupling K 0.04 eVA?2 FIG. 2. A sketch of the behavior of first-order transition curves
Equilibrium distance Ro 10 A in the three planes defined by the DNA model parametess I,
Twist angle 0 0.60707 rad andT. I'p and T represent the transition torque and temperature,
Base masses m 300 amu respectively;(a) thermally-induced denaturation “isobar” at zero

torque;(b) coexistence curve(c) torque-induced denaturation iso-
therm atT=Tp, corresponding to a zero critical torque.

and[18], a simple Morse potential form is chosen. The qua- As already pointed ou20], the applied torqud plays

dratic term in (n,n,l—€o)2 represents the elastic energy of - i
the backbone rods between neighboring base-pairs on eagﬁe role of the pressur for the liquid-gas system. Its con

strand. Finally, the last term models a stacking interactioHljgate variable is thelegree of supercoiling. Since we do

between neighboring base pairs. Its effect is to decrease thné)t consider the curvature of the axis of the helix, it reduces

stiffness of the open parts of the chain relatively to the closed imply to theaverage twist

ones and to stabilize the latter with respect to the denatur- N (6,)— 0)
ation of a single base-pair. Terms of this type increase the o= (3)
cooperative effects close to the melting transiti@s,27]. n N

In the present paper we restrict our attention to a chain_, . . .
with free boundary conditions, which corresponds to the exr—JrhIS variable thus plays the role of the voluiieFollowing

perimental situation when DNA denaturation is studied inthIS analogy we can therefore establish the following corre-

solution. However, the model described above can be easi@pondences.
modified to account for an external torgiieapplied at the DNA model liquid-gas
base pairs at the two enfi20], as it is done in some single-
molecule experiments. T - T
The geometrical parameters of the model can be straight- r — P

forwardly fixed according to the available structural data
[18]. Much more delicate is instead the choice of the param-

etersb,D,S andK gauging the effective forces. We selected The sign of o is chosen for convenience as the degree of
values similar to those previously considered for the ﬁxed'supercoiling vanishes for B-DNA and is negative for a par-
planes case, which have been discussed elsewhere: tBSIIy denaturated chaifsee also Eq(4) below].
choice of theK parameter can be independently deriy2d| Two natural scenarios may thus be expected: an isother-
from the twist persistence lengfti8], while the choice of the mal, torque-induced denaturationlat I'p or a fixed-torque,
other two parameters was bad@9] on a comparison with  thermally-induced one at=Tg. For the liquid-gas case,
recent mechanical denaturation experimg@ls In particu-  these two situations correspond to crossing of the coexist-
lar, the important parametdd which sets the main energy ence curve in theR,T) plane with an horizontal or a vertical
scale, has been tuned to reproduce as closely as possible ifig,  |eading to the transitions classically described by iso-
experimental value of the denaturation temperatli®  therms in the P,V) plane or by isobars in theV(T) one,
=350 K: The. full set of parameters used in the following arerespectively. In both cases, the presence of a constant-
summarized in Table 1. . o _ temperature or a constant-pressure/torque domain is associ-
For the numerics it is convenient to work in dimension- gte( to the phase coexistence.
less units. A suitable choice is to measure lengths and ener- \wjthin this analogy, the transition isotherms correspond to
gies in the natural units of the Morse potential,” andD,  the curves in Fig. 3 of Ref20], and reproduced schemati-
respectively, whereby time is expressed in units/of/Da?. cally, on the {,— o) plane, in Fig. 2c). Conversely, the
With the parameters of Table I, one time uftit) =2.3 ps.  thermal denaturation at constant torqlie0 are correctly
described in the € o,T) plane[Fig. 2(a)]. Notice that, with
the convention that a negatité corresponds to an untwist-
ing torque, bothl'y and Ty must increase upon increasing
temperature and torque respectividge Fig. 2b)]. However
Before going on, it is instructive to briefly discuss the the negative torque cannot exceed some critical value with-
thermodynamic state variables of the chain as well as theut leading to an instability of the helix associated to a
(possible analogies between denaturation and the more fachange of the sign of the helicity. In the following, we will
miliar liquid-gas transition. focus on the thermal denaturation transitiol’at0.

Ill. THE DENATURATION TRANSITION: A
QUALITATIVE DISCUSSION
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It is important to remark that the helical constraints in-for the evaluation of the function according to the number of
cluded in the model roughly impose, at vanishing externapoints involved in the calculation, are also useful to integrate
torque,8,~ 6 for a closed chain segment, afg~0 for the  over a large domain with a reasonable number of points. For
denatured one. This follows from the geometry of the helixthis first study, in order to ensure that all integrals are evalu-
and the stiffness of the strands: since the distance betweerted with the same discretization error, we have computed
consecutive bases is constrained by the elastic rods to ibem with a 10th order Bode's methd@0] with a fixed
approximately equal td,, 6, is of order€,/r,, and hence spatial step 6r=0.032 A and a minimum valuer ,;,
very small forr ,>R,. Let us denote by, the average num- =9.7 A (due to the strong repulsion between bases described
ber of open bases in a chain of lengdhProvided that open by the Morse potentialy cannot take values significantly
and closed regions coexist along the helix, and that they areelow the equilibrium length of 10 A The maximumr .,
spatially well separatedthis is well confirmed by simula- of the integration range depends on the number of integration
tions as we show belowthen, to a good approximation, we points, which has been varied from 631 to 3601 leading to

have 29.9<r,,.,=124.9 A. The eigenvalues of the transfer inte-
gral operator have been obtained either by diagonalization of
Ng(—6) ng the equivalent matrix problem or by the Kellog’s method
7T TN N ) [31] to get the two lowest eigenvalues.

The eigenvalues\ of the Tl operator will henceforth be
The latter quantity in nothing but the average fraction ofwritten asA =exp(—e/kgT) wherekg is the Boltzmann con-
open base pairs=ny4/N and the “isobar”— ¢ (T) can thus stant. With this notation the free energy per particle is deter-
be identified with the familiar denaturation curgg€T). In mined by the smallest eigenvaluee, and is given by
other words, the supercoiling and the fraction of open base
pairs are equivalent order parameters. f=—kgTIn(47mkT) + €. 5

Before going further there is one crucial issue that should . L
be addressed. One may argue that for a one-dimensiongleleva”t thermodynamic quantities like the entropy and spe-

model like the one at hand no phase transition of any typ(gfic heat are then evaluated from the standard relations

should be observed. However, all usual arguments against )

the existence of singularities in thermodynamic potentials S:_ﬂ c =—T£ 6)
have been showedot to holdfor the PB mode[9]. Since aT’ v JT2"

the latter is in many respects similar to the helicoidal model,

the same arguments apply and a genuine phase transition e mean base-pair stretching is given by

not forbiddena priori. This is confirmed by the transfer in-

tegral approach which can be carried exa@dighough partly _ f e 2
numerically for this simple model. (= 0 rlo(r)[*dr, @)

IV. TRANSFER INTEGRAL APPROACH where ¢ is the eigenfunction associated wigh.
} X . The free energyf and the mean value of the base pair
A. “Apparent” thermodynamics stretching(r) for our model are shown in Fig. 3, for tem-

Because the model is one dimensional, a direct calculaperatures going from 349 to 352 K with a step of 0.02 K.
tion of the partition function can be performed by the trans-Within the accuracy of the calculation, a cuspfirat Tp
fer integral(TI) method, as it was done for the simpler PB =350.74 K is distinctly seen. It is associated with a sharp
model[15]. The calculation proceeds along the same linesjump of the entropy at the transition. A jump in the specific
but it is more involved because the model has two degrees dfeat is also observed. Evaluating numerically the first and
freedom ¢, and ¢,,) per unit cell. It nevertheless reduces to second left and right derivatives of the free energy, one ob-
a one-dimensional TI equation because the contribution intains the jump in entropyAs=4.40kg, or 8.75 cal/K/mol,
troduced by the angular part can be diagonalized by a Fouand the jump in specific heatc,=0.64kg. The specific
rier transform[20,29. As the calculation has already been heat drops from 2.14&g below Ty to ¢,=1.5kg for T
presented in these earlier studies we do not discuss theTp as expected from equipartition because after denatur-
method here and we confine our attention on its resultsation only the harmonic contributions of the hamiltonian stay
which point out new aspects of the transition that had beesignificant.
overlooked. Figure 3b) shows that, within numerical accurady)

In this subsection we restrict ourselves to results obtaineéxhibits a discontinuous transition from a finite constant
via numerical solution of the TI equation. The accuracy ofvalue (very close to the equilibrium valug,) to a value of
this approach is limited first by discretization errors in thethe order of the system size; in other words, the eigenfunc-
integrations and by the need to numerically evaluate intetion ¢4 appears to become suddenly delocalized. The picture
grals over an infinite domain. As discussed in the next subef a sharp transition persists down to a temperature sampling
section, this second restriction can be partially lifted by aof 0.01 K.
finite size scaling analysis, which involves a properly con- Although the numerical results strongly suggest the occur-
trolled approach to infinity. Integration methods, such as theence of a first order transition, caution is necessary: previous
Gauss-Legendre quadrature which select appropriate absisstudies of the related PB model have shown that the nonlin-
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(a) mum at a certain temperature. Before we proceed to analyze
the data obtained in detail, it is necessary to provide some
background and notation.

The order of the phase transition of the ideal system of
unconstrained transverse spatial extent is determined by the
critical exponentr which characterizes the gafie=e¢;

— €0 (Tp—T)” at temperatures belowy; a valuev=1
implies a cusp in the free energy and a discontinuous en-
tropy; a value equal to 2 implies a discontinuity in the spe-
cific heat, i.e., a usual 2nd order transition, etc.

The “raw” data provided by numerical solution of the Tl
equation refer to a particular transverse system dize
=TI max determined by the imposition of an upper cutoff to
the integration. On the other hand, near a critical point of the
infinite system, the transverse fluctuations of the order pa-
rameter also diverge. The quantify= (r?) —(r)? provides
a measure of the distance from the critical point with dimen-
sions of length. According to the finite-size scaling hypoth-
(b) esis[34], size-dependent properties of a system in the vicin-

ity of the transition should depend solely on the ratig, ,

T ] ie.

-0.099 -0.0985

—0.0995

-0.1

60

L
AeL(T)=L_"fg(a), ()

where the exponent characterizes the rounding of the gap
(cf. below, f4(0) is a nonzero constant, arfg(x)=x” as
x>1 guarantees size independence in the llmitoc. In the
simplest cases, the positions of the minima of the gap are
related to the type of divergence @f ; according to the
above scaling scenario, the temperaffiggL) where the gap
minimum occurs, is such that

<r>
40
T
1

20
T
1

349 350 351 352
T

£ (Tp—Tm(L))~L. 9

FIG. 3. The free energy per partidiéa), and the mean value of We have numerically solved the Tl equation for a wide range
the base pair stretching) (b) of the model evaluated by the trans- of system sizes, using Gauss-Legendre quadratures, Wwhere
fer integral method in the temperature range849<352 Kwitha  is defined as the largest grid point value provided by the
stepAT=0.02 K. The model parameters are those listed in Table IGauss-Legendre algorithm for the numtéf grid points
(calculation with the Bode’s methodir =0.032 A, rin=9.7 A, chosen for the calculation. Again, in order to ensure uniform
andr = 124.9 A). accuracy,N grows proportionately to the system size, with

rmax=350 A corresponding tdN=2048 points. Figure 4
ear stacking produces an extremely sharp, first-order-like beshows the dependence of the minimal geq (T,,), and the
havior which masks the underlying second-order transitiorcorresponding temperatufie, on L. The gap appears to de-
as long as one stays out of a very narrow domain in thgend quadratically on IL/[i.e., c=2 in Eq. (8)], to very
immediate vicinity of the critical temperatui, (exponen- good accuracy, with an estimated limit of X40 ° (with a
tial crossovef32,33). A more complete picture of the prop- standard deviation 0:810 °) asL—o. We note in passing
erties of the transition will therefore be given in what fol- that the disappearance of the gap between the bound state
lows. eigenvalue and the one belonging to the bottom of the con-
tinuum band provides numerical evidence for the true occur-
rence of an exact, thermodynamic phase transitg#). The

temperatures which correspond to the gap minima can be
We first address the question of what happens in the ahyell fitted to the function

sence of the nonlinear stacking, i.e., &t 0. Preliminary

numerical investigations suggest a smooth behavior, both of

the lowest eigenvalue, and of the next-to-loweste;, as T(L)=Tp| 1— 2
functions of temperature; an “avoided crossing” between In<i)
them appears, with a small, but finite gap which has a mini- RoC

B. The “underlying” transition

(10

061909-5



BARBI et al. PHYSICAL REVIEW E 68, 061909 (2003

T T T T T T ] l.m T Ty L L T 1

1560 Ae/D (LR )°
0.004 - ]
10 [SOV v, §ay, ]
| 555
550 6.4
0.002 S=0 17
[T ] P o
] L |T,=577.8K Eil
4e (T D 545 c=0.94
r 1 a,=0.17

Tr

| 540
0.000 | ]

1 L 1 L 1 L 1
0.000 0.002 0.004 0.006

LOOV & >, BBy

)

(R/LY? 0.01 0.1 1 10
o ) L/(cR,) exp(-a, / [<|)
FIG. 4. Dependence of the minimal difference between the low-
est eigenvalues of the transfer integral operaief (T,) (open FIG. 5. Scaling of the difference between the two lowest eigen-
squares, lefty %X'S) and temperature$, (closed circles, righy  yajyes of the transfer integral operatopen symbols, lefy scal,
axis) versus 1UL°. and the order paramet&solid symbols, righy scalé. The different

points have been obtained by transfer integral calculations per-
with Tp=577.8 K,a,=0.170 andc=0.94. This type of de-  formed with 5 values ofL/R,=16, 35, 70, 100, and 140. The
pendence off ,, on L immediately suggesf{sf. Eq.(9)] that  dotted lines have slopes 2 ardL, respectively, in accordance with
the finite-size scaling hypothesis.
£ =CcRoe2/l", (1D

wherer=T/Tp— 1.

Figure 5 shows that data taken from a wide range of sys-
tem sizes scale well if plotted according to E@.and(11).
The numerical evidence thus strongly suggests that the un-
derlying transition manifests itself as an essential singularity
of the gap, of the Kosterlitz-Thoule$KT) type. Equations
(11) and(8) then imply that, in the limit. — oo,

Aexe222/l7, (12

In the Appendix, it will be possible to identify the origin of
this particular behavior as an inverse-square attractive inter-
action between the stretching coordinates of successive base
pairs.

C. Finite stacking revisited

It is now reasonable to conjecture, by analogy with what
happens in the PB model, that the effects of the nonlinear
stacking interaction will depend on its range. For the stan-
dard parameter set of Table I, the rabita=0.079 is very
small indeed. What happens at a less extreme reditee,
=0.190, is shown in Fig. 6. Scaling according to the ansatz .

(12) holds within a fairly narrow rangér| <0.05 around the (LicRy) exp (-a/kk])

denaturation point; note that it is the smaller magnitude of g 6. Scaling of gagopen symbols, lefy scalg, and order

the nonuniversal parametes which is responsible for the parametetsolid symbols, righy scale; model parameters are those
narrowing of the asymptotic critical region. Figure 7 summa-of Table I, with the exception di=1.2 A~1. The different points
rizes what happens &=0.9 A%, i.e., b/a=0.143, only  have been obtained by transfer integral calculations performed at
slightly above the value of Table I. The gap exhibits an ap4/R,=25, 35, and 50. The dashed lines have slopes 2 -atg
parent critical exponent very close to unity down 0 respectively, in accordance with the finite-size scaling hypothesis.
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DNA model is of infinite order(essential singulariyy the
actual temperature range over which it manifests its continu-
ous character is far beyond the limits of either experimental
or numerical observation.

V. MOLECULAR DYNAMICS

In this section we report the results of direct simulations
of the model. They bring complementary information on the
nature of the transition and allow us to study its dynamics as
discussed in Sec. VI. As said above, we consider the case of
thermal denaturation fdr =0 and free boundary conditions.
Microcanonical and canonical simulations were performed
because they allow the observation of the phase space from
different viewpoints.

In the microcanonical ensemble, the Euler-Lagrange
equations derived from Eq1) were integrated directly with
] the standard fourth-order Runge-Kutta method with a small
T 32 S — enough time steftypically 0.02 t.u) in order to insure that

10* 16-3 16-2 1 0" a the relative energy drift is negligibléusually better than
107%) on the time scales of each run, i.e.*10 1 t.u.

[T/T_(L)-1] [39]. Initially, all particles are set in their equilibrium posi-

tions (r,=Ry, ¢,=n#) with random Gaussian distributed

FIG. 7. Dependence of the gap on the reduced temperatuiGe|ocities (with zero averagein the radial direction. The
T/Tp—1forb=0.9 A"* and system sizes/Ry=12,49, 17.5, 25, ariance of the distribution serves to fix the energy per de-
f;pSe?:'t SZS ?bggin(:aﬁgfirzg: Sgﬁ:\\?icl:rni?e?/z\illg ;éﬁg%soia”d éree of freedone. The averaging of the quantities of interest

R : ) : 7 js only started after a long enough transient to let the system
closer to the critical point there is a clear increase in the slopee ilibrate. Aft ilibrati the th | T
before the onset of finite size rounding. quil " er equiibration, ? erma ener%. IS.‘

computed in the usual way as twice the average kinetic en-

=0.01; closer to the denaturation point, the effective slopeergy per degree of freedom.
increases significantly; it is reasonable to conjecture that at Constant-temperaturécanonical results were obtained
temperatures even closerTg , the asymptotic behavior will through an extended Nog¢oover method using a thermo-
be dominated by the underlying essential singularity. At thestat chair{40] which is specifically designed to constrain the
physically relevant value ob=0.5 A~1, crossover to the total kinetic energy to fluctuate arouttkgT, insuring at the
KT regime has moved below= 10 ° and is practically un- Same time the correc¢tanonical distribution of its fluctua-
observable. tions. A chain of 3 thermostats was employed with

The analysis of this section demonstrates that, in spite othe first thermostat typical frequency equal to the highest
the very different mathematical properties of their “bare” phonon frequency of the latticepy ={aD+2K(Ry(1
versions, both the “straight(PB) and the helicoidal DNA —cos6)/{,)?]/m}¥2 The integration of the corresponding
models, are effectively dominated by the stacking interactiorequations of motion was again performed with a fourth-order
when the latter is of sufficiently long range; because of it, forRunge-Kutta scheme with typical time step of 0.01 t.u., and
all practical purposes, the transition has all the characteristidhiermalization is achieved by a long-enough transient.
of a first order transition, including a practically infinite dis- Changes in temperature were performed in a sequential way
continuity of the mean base pair stretching, and a latent heatipon heating the chain with a temperature ramp and relaxing
Similarly, at the transition temperature, a very small temperaafterward.
ture gradient(of the order of the width of the transition re-  As discussed in Sec. 1V, strictly speaking the transition is
gion, i.e.,AT<0.001 K) leads to an apparent phase coexistsmooth. However the temperature range of the crossover re-
ence and hence to many features that one would be temptgion to a smooth behavior is so smalless thanAT
to qualify as “typical of a first-order transition” as shown in =0.001 K for a stacking parametdr=0.5 A™1) that the
the next sections. These properties are very reminiscent afumerical experiments, as well as actual denaturation experi-
some results found on models of martensitic phase transiments on DNA, show all the character of a first order tran-
tions [36—38, but because we are dealing with a one-sition. Therefore in this section we shall use the language of
dimensional model that has a genuine phase transition, tHést order transitions which is the appropriate language to
phenomenon is more remarkable here. discuss the results.

Our results provide an excellent example of the distinc- Measured caloric curves showing the temperafuresn-
tion between the “experimental” perspective and the “theo-ergy unitg as a function of the energy per degree of freedom,
retical” one, regarding the definition of the order of a phasekgT(€), for a chain ofN= 128 base pairs are reported in Fig.
transition: although, in theory, the transition of the helicoidal8. They distinctly show a flat part &;T=0.201D corre-
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0.6 - T - T - T - T signed factor smaller than (we set it equal to 0)8 The
F|Q mam=0 1 averages are thus computed after a further trandiseg
05| | o Anncaodio, ransed o again Fig. 8. Similar results can be obtained for the thermo-

L | A Annealedic, trans=6 10° 1 stated chain by artificially imposing on standard initial con-
+ Canonical N=128 s .
0.4]- | x_Canonical N=128 bubble L. =120 8 = ditions the presence of a denaturated bubble of given length

€ in the middle of the chain at temperatufe- T, . We will

EO.S— a . give more details on this procedure at the end of this section.
? Canonical and microcanonical results are therefore con-
0.2 4 . sistent, apart from some deviations at high temperatures, for
- & 1 T>Tp, which can be expected because after denaturation
0.1 o . the model becomes almost purely harmonic as the Morse
: potential linking the bases plays no role for base-pair dis-
L | L | L 1 2 |
0§ 05 0d 05 o8 tancer corresponding to the plateau of the potential, and the

e/D stacking contribution also tends to vanish. Therefore Tor
>Tp a microcanonical equilibrium cannot be achieved, un-
FIG. 8. Result of microcanonical simulatiofispen symbols  |ess we force it by averaging over thermalized initial condi-
kinetic temperature as a function of the energy per degree of fregjgng (for instance obtained by a Monte Carlo procedwe
dom for a molecule oN= 128 base pairs. To show the convergencepy 5 temporary switch to a canonical simulation during a run.
of averages, data for two transient durations are reported. Pluses The results were checked to be robust with respect to the
and crosses respectively refer to canonical simulations with closef,sient duration as well as to the rate at which temperature
initial conditions and V\{Ith the.lnltlal |n.sert|on.0f an Z%I’tlf.ICIa{ bubble is changed through the ramp. Alternative thermalization
?r;fsl}gtrhinltigrgﬁfgsﬂﬁéﬁa?es;f?;rlgeg}i unity. Solid line is the - .o mes do not change the outcomes as well. For example,
simulations where microcanonical runs are alternated to ca-
nonical ones, yield the same resulexcept atT>Tp as
mentioned above In such a case the computed averages are
microcanonical as the thermostated dynamics only serves as
a way to change the system energy.
Obviously, a crucial issue is the dependence of the results
the chain size. We observed that upon increasing the chain
length up toN= 256 or 512, the only difference with respect
should be equal to 2/ (the factor 2 appears becabﬁee”' to theN=128 case is a slower convergence of the averages
ergy per degree of freedom isof the energy per unit coll ;) e high and intermediate energy region. Nonetheless, the
The figure shows that this is in good agreement with the,,eyistence line is practically reached within comparable
values given by the Tl calculation, i.ec,=2.2 belowTp  gimylation times. This is presumably influenced by the initial
and 1.5 abovel, . We have also compared the melting en-qngitions and could be improved by a more sensible choice.
tropy per particle As=—A(Jf/dT), as obtained from the In order to precise the nature of the transition from a view
transfer integral calculatiolsy,, with that obtained from  gint close to experiments, we measured the average fraction
Fhe mlcrocanonlcal simulationds,,,, for the finite chain, ¢ open base pairg. This is indeed a quantity which is
i.e., the ratio 2€p—eg)/Tp: measurable by UV absorption. As in previous studies
AS,=3.70<10°4 eVIK, Asy=3.80<10°% eVIK. [15:18,29, we considgr a base pair to bg open Whengver the
(13) radial dlsplaceme_nr(n_ls larger than the inflection point of
the Morse potential, i.e., when,/Ry,>81n2, and we aver-
The two quantities are in very good agreement. age the counting during the run. A simple reasoning shows
In addition, the transition markedly displays a signature ofthat the order parametgr should obey a “lever ruleT41]
metastability and hysteretic effecténdeed, the B-DNA
branch extends well aboVE, (up to about 500 K Marked e=(1-p)egt+pep, eg<e<ep, (14)
hysteretic effect upon heating are also observed for the ther-
mostated chairicrosses in Fig. B Either in microcanonical thus implying thatp(e) increases linearly between 0 and 1
and canonical simulations, the system appears to be spontalong the coexistence line. In a similar way, we expect that
neously “trapped” into this metastable state for low enoughthe average twist per base pgdif,)={¢dn— d1)/N=6(1
energieqor temperaturgsover the transition one. Direct in- + o) should decrease linearly from a value closedtto 0.
spection of the system configuration reveals that the chain i$his is illustrated in Fig. 9. Notice once again the hysteretic
completely closed and we can refer to it as an overheatedffects.
state. From Fig. 8 it is clear that the microcanonical ensemble
An undercooled branch exists as well below the denaturhas the merit of allowing to investigate the dynamics of the
ation temperature. To detect it in the microcanonical schemeshain in the coexistence region. For illustration, Fig. 10
we employed the following procedure. The initial condition, shows a snapshot of the state of the chain é0D=0.5
in the B phase, is evolved for a certain time after which thewhere, from formulg14), we expect around 40% of the base
chain is “annealed” by multiplying all velocities by an as- pairs to be denaturated. The fact that the chain opens at the

sponding to the temperatuilg,= 350 K that has been found
to be the denaturation transition by the transfer integral cal
culation. In analogy with a liquid-gas transition, the flat re-
gion occurring betweerg=0.2D and ep=0.64D is thus
identified as the curve of coexistence between the closed ang,
the denatured phases. The slope of the two branéhdde
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FIG. 9. Fraction of open base paipsand average twist6,)
from microcanonical simulations. The simulation parameters are the - -+ .
same as in Fig. 8. The circles were obtained with an initially closed
chain while the squares refer to annealed initial conditions. . ' . . .
a 0 25 0 25 50
bubble length

i/ll(z)?;o\llst’er,cﬁ?srl);igﬁgssgn tgi/véhg kl:lrr?te ogovl\jﬂsav% gggg:,t\llznz' F_IG. 11. I_Distrib_utions of th_e lengths o_f the denaturz_zlted regions
transition that has all the features of a true first order '[ransiEit d'ﬁer.en.t times in the coexistence regier 0.50. To improve
. . - the statistics, histograms were cumulated over a time window of
tion (coexistence of phases, metastabjl@jthough the tran- round 18 time units

sition is actually second order. From a theoretical point ofa '

view, the order is determined in the thermodynamic limit,complete the transfer integral study, and to provide results
i.e., for an infinite system. This correspond to the identificathat can be compared with experiments.

tion, in the transfer integral method, of the free energy with  Another interesting aspect which can be studied through
the lowest eigenvalue,, Eq.(5). In numerical simulations, simulation is the dynamics of opening events. This allows to
as well as in experiments, one is dealing with a finite systemiook for analogies with the classical nucleation mechanisms
When the thermodynamic transition is extremely sh@spit  that drives relaxation from metastable states at ordinary first-
is the case for the stacking parameber0.5 A™!), the in-  order transitiong41]. Figure 11 reports the distribution of
homogeneity caused by the free ends is sufficient to lead tghe length of denaturated bubbles for subsequent times dur-
an apparent coexistence of phases, i.e., a first-order-like traihg the same run of Fig. 10. There is a clear tendency for
sition, presumably because the boundary effects induce gémaller bubbles to closér mergé until only a few large
perturbation(in particular on the average local torquehich  ones remain. A similar measure in the overheated metastable
is sufficient to change the local transition temperature by thehase shows instead that the size of bubbles is pretty small
very small amount which separates the domain of closednd decrease systematically in time.

DNA from the domain where the molecule denaturates. This To further investigate this aspect, we performed simula-
is why the molecular dynamics simulations are useful totions in the canonical ensemble, starting from a thermalized
state at temperatur€ and artificially seeding a denaturated
bubble of given length¢ in the middle of the chain. To

300 accomplish this, given the geometry of the model, we set
. 0,=0 in the central region and impose a triangular profile
< 200 for ther s designed in such a way that the resulting stress on
= the backbone springs is approximatively zero. The flanking

L 100 regions are initially at equilibrium and free from any addi-

tional supercoiling.

In a first series of simulations we checked that for
<Tp the B-DNA form is very robust with respect to such
local perturbation: for instance, @t=200 or 300 K bubbles
of length€ <12 base pairs on a chain 128 base-pair long tend
to shrink and the system rapidly returns to its completely
closed state. Very large bubbleg~110 base paijsmay
tend to close as well, although on longer times. However,
several cases are found where perturbations as large as
=120 base pairs are able to drive the system into the meta-
stable, undercooled, denaturated state. These experiment al-
low the observation of the second metastable state in the
canonical scheme: thus completing the correspondence with

FIG. 10. Snapshot of the chain of 128 bps in the coexistencéhe microcanonical resulisee again data shown in Fig). 8
regione=0.5D. The situation is, as expected, the opposite in the over-

N | . |
0 50 100
lattice site
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heated regioM<T=<600 K. Here, the insertion of a short [ o ]
bubble suffices to destabilize the B-DNA form and let the 5 i
system switch to its equilibrium state, i.e., the completely
open chain. For instance, @t=400 or 500 K a bubble of
length€>8 on a chain of 128 base pairs is generally enough.
Approximated estimates seem to indicate that the minimal
length of the bubble tend to decrease with temperature, as
intuitively expected, but this behavior is not very systematic.
Statistics over a very large number of events would be nec-
essary to conclude quantitatively.

r

S (g,w) (arb. units)

VI. DYNAMICAL STRUCTURE FACTORS

0.6
One of the motivations for considering mechanical mod- @
els is the possibility to probe microscopic and collective mo-
tion in different phases. In this section, we focus on dynami-
cal correlation functions that usually reflect different types of
excitations. More precisely, we computed the radial structure 0
factor S
2}
a<q,w>=<‘ f 2 o0t > (15 3
n g |
oL
and the angular ong,(q,w) where ;= ¢,—né is the an- '
gular displacement from the equilibrium position. Brackets
denote an average over an ensemble of independent molecu- P . . :
lar dynamics trajectorie@ypically hundreds All the results 0 0.05 0.1 0.15 02
reported in this section are obtained in the microcanonical (b)
ensemble. FIG. 12. Structure factorS,(q,w) (a) andS,(q,w) (b) for N

Let us first consider the low temperature native phase. As- 56 at very low energye=0.01D (corresponding ta =18 K).
shown in Fig. 12, the spectral analysis display, as expectetthe different curves correspond to wave numbers 2.5676,
sharp lines at the frequencies of the two phonon branchege6896, 0.88356, and 0.09812ght to left).

w-(q) that can be computed d=0 in the harmonic ap-

proximation[27] (see the vertical lines in Fig. 12Acoustic  peak, also found in the simpler PB model, and its properties
vibrations in the angular variables are only weakly coupledare still unclear although it is tempting to assign it to the
to the radial(optica) ones. Interesting enough, the radial slow dynamics of the bubble boundaries.

spectra also displays a large peak at a frequency lying in the An even more sizable central component appears when
phonon gap and independent on the wave nurfiber, the  closed and open form coexigdee Fig. 1% This is accom-
large peak atw=0.7 in Fig. 12a)]. Its origin can be traced
back to the excitation of a localized surface mode. This is
confirmed by direct inspection of the chain configuration.
Actually, the mode is found to slowly decay in time due to
nonlinear interaction leading to a systematic decrease of its
spectral component.

Upon increasing the energy, the optical branch gradually
shifts towards lower values of the frequenspftening and
higher-harmonics appear. Furthermore, the resonances in
both the radial and angular peaks are substantially broadened
due to increasing anharmonicity that enhances the effective
damping. More importantly, a large low-frequency compo-
nent, acentral peak arises in the radial structure function.
The temperature dependenceSq,w) across the denatur-
ation transition is illustrated in Fig. 13. The three different
energies correspond ©=300, 357, and 535 K. The latter
value is well into the metastable overheated region. For fixed F|G. 13. Radial structure facto® (q,) for N=256 and dif-

g, the position of the central peak is unchanged upon increaserent energiee=0.17, 0.2M, and 0.3® (solid, dashed, and

ing temperature but its width broadens. Furthermore, thelot-dashed lines, respectivilyio reduce fluctuations, a smoothing
o~ 2 behavior at low frequencie@ee the inset of Fig. 23  of the data has been performed by averaging over 10 consecutive
suggests a Lorentzian line shape. The origin of this centrathannels.

S(q,m) (arb. units)
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9=0.073

[ q=0.859

1
qm
- q=2.423 4\\\\
|

o point of view, dealing with a one-dimensional modelith
i two degrees of freedom per base pairned out to be par-

ticularly convenient as it allows an exact evaluation of the
partition function. Indeed, the angular variables can be elimi-
nated by Fourier transform, yielding a more tractable one-
variable transfer integral problem. The latter cannot be
solved analytically but the numerical and approximate results
presented above provide a complete insight on the nature of
the transition. In particular, the finite-size scaling analysis of
the transfer integral turned out to be essential to take into
account the finiteness of the integration range. Such an
analysis strongly suggests that the underlying transition is
continuous, of the Kosterlitz-Thouless type. This behavior
can be related to the existence of an effective attractive force
which is directly connected to the helicoidal geometrg-
cause it appears when the angular degree of freedom is inte-
grated out. Qualitatively it can be understood as coming
from the difficulty to disentangle the two helices. On the
other hand, for physically relevant values of the parameters,
the temperature range over which the continuous aspect of
the transition can be detected may become extremely narrow
(less thamT=0.001 K). For all practical purposes the tran-
sition appears to be perfectly sharp, and bears the hallmarks
of a first order transition, in agreement with experiments. In
our view, this result is remarkable and attracts attention on
how numerical or experimental observations on finite sys-
tems and with a limited resolution may dramatically differ
from theoretical expectations.

Molecular dynamics simulations confirm this apparent
first-order character. They show hysteresis and metastability
as well as a coexistence region between an open and a closed

the coexistence regioe= 0.5D. Vertical lines are the phonon fre- rshs;e aanrda, dggl \::?g:]nge Tfetheensg?grr?ee?rigi(;ﬂ ;[)f:iucrilggalla

guenciegone from the acoustic and one from the optical branch forthg " ’ gh' hi 9 t of the liquid Ft) Oy
eachq valug calculated atT=0. Graphs have been arbitrarily .e WO which IS reminiscent of, say, the fiquid-gas transi-

shifted for clarity. tions. .. .

In addition to the very sharp transition found by the the-
panied by a stronger coupling between angular and radiaﬁret'?al analysis, the finite-size effects certal_nly. play a major
degrees of freedom, as manifested by the peaks at acousﬂ%le n the.‘i‘b""e phenom_enol_ogy. The helicoidal [”0‘2‘,3' IS
frequencies irS, . The birth of large low-frequency compo- more sensitive to these finite size effects than the “flat PB
nents bears strong resemblance with heterophase quctuatioWOdel because the free ends allow a release of the torsional

S . .
observed in other lattice models wiitpseudo first-order energy which appears when a segment of the chain opens.
transition characterized by large entropy barr[@8—38§. In

One can understand the crucial role of boundary effects if
other words, the motion of the interface between the Moggﬁng?njéizrtigzt gt fg;llt%ecé:iiz It?]%p t\?\fohgt“r;(r)]lc?:l a[r)elz\lin-
phases should be responsible for the slow dynamics. tanaled

To close this section, it is worth mentioning that a related gled.

analysis of collective modes for the helicoidal model hast The dynamics of the transition, as probed by the calcula-

been recently reportdd2]. The analytical calculations were lon Qf the radial and angular struct_ure factors, shows some
gomment features such as the existence of a central peak

$.(q,0) (arb. units)

(a)

- g=0.073

B

h 9=0.859

[ q=1.644
-}
F q=2.423

il

Sw(q,m) (arb. units)

-
(=]

(b)

FIG. 14. Structure factor§;(q,») andS,(q,w) for N=256 in

performed at room temperature and are based on the insia at is presumably due to the slow motion of the denaturation
taneous normal modes. At variance with our simulations, thi P y

approach descibe the shortime dynanos a time scale eite, (OCRER b TS Bt e ould de-
of picosecondsand a direct comparison is therefore not serve further investiaations P
straightforward. g :

Another point that should be reconsidered is the nucle-

ation of denaturation bubbles. The phenomenology described
VII. CONCLUSIONS AND DISCUSSION at the end of Sec. V is, at least qualitatively, very much
reminiscent of the nucleation mechanisms that drives relax-

The study of a simplified model of DNA has proved to be ation from metastable states at ordinary first-order transitions
extremely fruitful to unveil the basic features of the melting[41]. For instance, simulation in the overheated state sug-
transition at the single-molecule level. From the theoreticabests the existence of a “critical size” of the denaturation
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loops, above which they become unstable. Hence, metasta- 4-

. L A
bility stems from the fact that small enough bubbles close ] }]..... 001 38)
relatively fast. Nevertheless, there are important differences ----.001 10 A
that one should keep in mind. Indeed, in classical nucleation ——-01 10

theory the key role is played by the surface tension term
(proportional to the square of the droplet’s radjushereby

in our one-dimensional case the bubble “surface” is inde-
pendent of its length. The correspondence with the usual
theory is probably due to the torsional energy, associated to
the opening, which grows with the bubble size. This suggests
that a “one-dimensional nucleation theory” could be devel-
oped for helicoidal DNA.

The present study has focused on a DNA model that de-
scribes the molecule at the scale of the base pair. We think
that it is relevant because it is the scale of the genetic code at
which phenomena related to biological functions occur. The
helicoidal geometry itself is at this scdler more precisely at
the scale of a few tens of base pair®n the other hand,
there are other phenomena that enter in the statistics of DNA FIG. 15. exp() as a function o/ « for two different values of
melting, and they are related to the behavior of the moleculéhe dimensionless ratia; the r dependence is not visible for
at a much larger scale, on which the strands are regarded a.001.
flexible strings. Recent studies have shown that the entropy
of the loops also contributes to lead to a first order transitionfor the parameter values given in Table |, an€480 K, the
provided that self-avoiding aspects between segments of tiimensionless ratia = kg T/KR3 is equal to 0.01; this allows
loop and between open regions and closed domains are props to use the leading-order low-temperature asymptotic ex-
erly taken into accourjtl1]. Our approach is complementary pansion
to these studies and shows that the observed sharp melting

transition of DNA may have multiple origins. — wkgT Lo 1 K2 ) 2
\/ K ,

(A3)
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APPENDIX: RESULTS OBTAINED VIA GRADIENT will use the temperature-independent approximation

EXPANSION
2 _ 2
1. An approximate TI kernel e ()~ (907 (A5)

In the absence of an external torque, the nontrivial part o

the partition function of the model is given by (NhICh misses the weak peak ne&s «, but reproduces cor-

rectly the second moment, which is central to what follows.
N Within the approximation$A3), (A4), the partition function
ZP:f H {drn[rnrn_l]l/zdgn}e—v({ri OiD/keT (A1) is dominated, in the thermodynamic limit, by the largest ei-
n=1 genvalue of the one-dimensional Tl equation

where the potential energy consists of the three last terms in f dr'T(r,r ), (r')Y=A () (AB)
Eq. (1), and the relative angle coordinate enters only via the 0

second term. Introducing sum and difference coordingtes
=(rpt+ron_1)/2, 6,=r,—r,_1, it is possible to write the in-
tegral overd, as

with

, [mksT Lo K? 52
T(r,r )=~ K 7 1+ﬁ 1—ﬁ

5¢ eQ(ﬁz)e—VM(r)/kBTe—Vs(TﬁZ)/kBT' (A7)

Jo dgne*K(ln,nfrfo)zlkBTE cpo(r_n)eﬂ(ﬁﬁ vr_n)_ (A2)
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where Vy(r)=D(1—-exg—ar—Ry)])? and Vg=Sé?
X exqd —2b(r—Ry)]. 0.00 e
The form of Q) [cf. Fig. 15 and/or Eq(A5)] establishes )
that, in addition to the rangesadl/1/2b of the Morse and
stacking interactions, respectively, there is a third, much
larger, characteristic length in the problem,Depending on -0.024
the strength of the various parameters, it may be possible to
further simplify the general one-dimensional Tl problem and
elucidate the ensuing critical behavior. Two distinct cases 0.1
will be considered below. -0.04-

2. Strong stacking interaction: transformation to an ODE

A gradient expansion of EqA6) involves(i) introducing

1
l/fy(r+5)~¢V(r)+l/f'y(f)5+§¢'y'(r)52, (A8)

. . . . . 376 377
(i) changing the variable of integration from (=r + ) to -0.08 ———————7—+——
8, and(iii) performing the Gaussian integrals ov&rNoting 350 360 370 380 390
that (a) the combined effect of the stacking interaction and T (K)
the Gaussian approximatidAS) can be described in terms  FiG. 16. The numerically determined two lowest eigenvalues of
of the quantity Eq. (A11), expressed in units db. The onset shows details of the
S s 1 gap in the region of the transition; no signs of rounding are apparent
— 4%1r)=——e 2 -Ro) . at a sampling oAT=0.1 K.
kT ¥ (r) kaT © e (A9)

5 ) . the full Tl solution of Sec. IV. According to Fig.16, the two
(n(?te that S can be. interpreted as an effective nearesjgyest eigenvalues exhibit an almost perfect intersection at a
neighbor harmonic spring constaiaind that(b) r~r to sec-  temperature sampling T=0.1 K. In addition, the differen-

ond order iné everywhere in Eq(A7), one obtains tial equation turns out to be an excellent approximation to
KT kT the original TI. Thus, the estimatéiy =370 K is only a few

(1_ ) W+ Yr=e Ple=Uny, percent higher than the value obtained within the TI; other

16Su?r? 4Su? critical thermodynamic quantities of interest demonstrate

(A10) comparable, or better agreement, e.g., the transition enthalpy
AH=T;AS=0.129 eV(cf. 0.133 eV from T), or the jump
where Ul(r)=VM7(£2+VL(r)+VB(r) and ) A_V in the specific heat, 0§ (cf. 0.7g from TI). The apparent
:(WkBT/\/K_S)’gO/K? v, here,V (r)=—KkgT(«/T)°/8 IS first order transition has its origin in the fact that the ther-
a long-range attraction which comes from exponentiating the, o1y generated barrier has a substantially longer range than
term in the first parentheses of EGA7), and Vg(r)  the Morse potential. The analysis of Sec. IV suggests that
=kgT In[u(r)/u(=)] is a thermally generated barrier analo- ¢rossover to a continuous transition eventually occurs: how-

gous to the one described 8] in the context of the one- gyer for the values of the parameters relevant to DNA dena-
dimensional DNA model with stacking. Expanding the expo-yration, observing this exponential crossover would require
nential in the right-hand sidéRHS) of Eq. (A10) and 4 emperature resolution of better than 1 mK. This estimate
rearranging terms, one obtains can be made by studying crossover phenomena with exactly
(kgT)? , . solvable “toy models”[32] of the denaturation transition of
T as.? Yot (VutVetVy, =€, (AlD)  the linear PB variety, where the zero stacking limit is known
L . “ o L
to yield a second-order “underlying” transition. In the case
where of Eqg. (All), the presence of an attractive inverse square
) interaction raises the possibility of more complex behavior,
V’[(r)=VL(r)[1— E(M(“)) } (A12) i.e., confinement at all temperatures or crossover to another
2\ u(r) transition at much higher temperatures. This is discussed be-
low.

is attractive everywhere.

Equation(A1l) is a key result. It can be trivially cast in
standard Sturm-Liouville form with a density function pro-
portional tou?; ther dependence of. is crucial for obtain- In the limit S—0, the decay of the kern€A7) is gov-
ing quantitatively sensible results; the simultaneous presenaaned by Eq(A5). This reduces EqAL1l) to
of three terms in the potential energy prevents us from solv-
ing Eq. (A11) exactly. A numerical solutiof43] for the pa-
rameter values of Table | reveals a behavior very similar to

3. The S=0 case

2
K
ke T Ut (Vv =€, (ALY
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where tion would prevent dissociation at all temperatures. We have
verified this by numerically solving EQA13). For weaker
attractions(value of the coefficient 16 or higher in these
units), numerical work suggests that the transition becomes
higher than second order; however, numerical accuracy is not
In the absence of stacking, the system is subject to the Morsgufficient to determine the detailed behavior. It is possible to
potential and the long-range attracti¢A14); the point to  guess what happens by substituting the Morse potential by a
note is that the attractive force is linearly dependent on th&arrow well, i.e., the total potential in E¢A13) being equal
temperature, just as the coefficient of the 2nd derivative ifo — D for Ry<r <Ry+ 1/a and equal to EqA14) for larger

Eg. (A13); consequently, ifD=0, the system will either r; this case is exactly solvable and shows that although the
have a bound state or not, according to the value of thehift in the value of the critical point is less than 1%, the
coefficient in the denominator of E¢A14). The value 16 is nature of the transition is radically transformed: the vanish-
marginal; if the interaction had been stronger, one wouldng of the lowest eigenvalue is now of the Kosterlitz-
have confinement at all temperatures; the Morse potentiallhouless type

being of short range, could not change that; in other words,

one would obtain a near-transition at a temperature con-

trolled by the Morse potential, but then the long-range attrac- eox —e onslp=T), (A15)

K2

= (A14)

VI(r)=—kgT
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