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Thermal denaturation of a helicoidal DNA model
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We study the static and dynamical properties of DNA in the vicinity of its melting transition, i.e., the
separation of the two strands upon heating. The investigation is based on a simple mechanical model which
includes the helicoidal geometry of the molecule and allows an exact numerical evaluation of its thermody-
namical properties. Dynamical simulations of long-enough molecular segments allow the study of the structure
factors and of the properties of the denaturated regions. Simulations of finite chains display the hallmarks of a
first order transition for sufficiently long-ranged stacking forces although a study of the model’s ‘‘universality
class’’ strongly suggests the presence of an ‘‘underlying’’ continuous transition.
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I. INTRODUCTION

The study of simple dynamical models describing vario
features of DNA dynamics has interested many authors
almost 20 years@1#. This vivid interest arises of course from
the biological relevance of DNA but also from its physic
properties which can now be probed through single-molec
micromanipulation experiments like stress-induced tran
tions @2# or strand separation@3#. This series of studies ha
clearly pointed out that DNA must be considered as a
namical object, whose~nonlinear! distortions could play a
major role in its functions.

One feature of DNA that attracted a lot of attention fro
physicists is its thermal denaturation, i.e., the transition fr
the native double-helix B-DNA to its melted form where th
two strands spontaneously separate upon heating@4#, be-
cause it provides an example of aone-dimensional phas
transition. Experiments show that this transition is ve
sharp, which suggested that it could be first order and this
to numerous investigations, first to justify the existence o
transition in a one-dimensional system and second to de
mine its order@5–12#. In spite of these efforts the nature o
the transition is still unclear and moreover, as discussed
low, the determination of its ‘‘true’’ order from experimen
may turn out to be virtually impossible.

In the theoretical approaches, the level of complexity
reduced to the minimum by taking into account only t
~classical! motion of large subunits rather than the full~quan-
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tum! many-body dynamics of all the atoms. Clearly, an a
propriate choice of the relevant degrees of freedom, depe
ing on the specific problem at hand, is crucial. Models ba
on the theory of polymers use self-avoiding walks to d
scribe the two strands@10–12#. They can be very successfu
in studying the properties of the melting transition at t
largest scale but, as they do not describe DNA at the leve
the base pairs, they cannot be used to investigate prope
that depend on the sequence, or probe DNA at a microsc
scale such as some recent single-molecule experiments.
of the simplest models that investigates DNA at the scale
a base pair is the Peyrard-Bishop~PB! model @13–15#. The
complex double-stranded molecule is described by postu
ing some simple effective interaction among the bases wi
a pair and along the strands. The model has been succ
fully applied to analyze experiments on the melting of sh
DNA chains@16#. Furthermore, it allows to easily include th
effect of heterogeneities@17# yielding a sharp staircase struc
ture of the melting curve~number of open base pairs as
function of the temperatureT) @4#. Beyond its original mo-
tivation to explain the denaturation transition, the PB mo
has an intrinsic theoretical interest as one of the simp
one-dimensional systems displaying a genuine phase tra
tion @8,9#.

The PB model has, however a serious shortcoming
cause it does not take into account the helicoidal structur
DNA. In the following, we consider an extended version
the PB model that has been proposed to avoid this weak
@18,19#. The introduction of DNA geometry induces an im
portant coupling between base pair opening and helical tw
largely substantiated for real DNA@18#. A modified version
of this helicoidal model has also been successfully applie
describe the denaturation of the chain induced either th
mally or mechanically by applying an external torque to t
©2003 The American Physical Society09-1
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chain ends@20#. Furthermore, its nonlinear excitations ha
been studied: small amplitude breather-like solutions h
been analytically determined@21# as well as large localized
bubbles@22#. Both types of excitations are of interest as th
may be thermally excited as precursors for the DNA stra
separation. A first effect of the helicoidal structure, namely
bring close to each other bases which are not consecutiv
the sequence, was treated in@23#, by introducing an interac-
tion between these bases. This first approach however did
take into account the important geometrical effect that
want to examine here, the coupling between opening
twist.

The aim of this work is to give further insight on th
melting transition of the helicoidal model, both from the s
tistical and from the dynamical point of view. After havin
recalled the model and its state variables~Secs. II and III!,
the first part~Secs. IV and V! is devoted to its exact thermo
dynamics and to a simulation study of its statistical prop
ties. We find that the melting transition is extremely sha
bearing essentially all of the hallmarks of a first-order tra
sition, at all temperature sampling steps studied~down to
0.01 K!. However, a study of the model’s ‘‘universalit
class,’’ using finite-size scaling techniques, allowing so
variation of the relevant physical parameters, and draw
from analogies with a Schro¨dinger-like equation~the Appen-
dix!, strongly suggests the presence of an ‘‘underlying’’ co
tinuous transition of the Kosterlitz-Thouless type in the a
sence of nonlinear stacking. This should be contrasted w
the exact second-order transition obtained in the ze
stacking limit of the PB model@9#.

In the second part~Sec. VI! we investigate dynamica
structure factors that are of particular relevance to both n
tron @24# and Raman@25# scattering experiments. The unde
lying idea is that, upon approaching the transition, the m
ecule should display precursor effects in the form of
‘‘mode softening,’’ i.e., a slowing-down of the dynamic
with appearance of a low-frequency component in the sp
trum. Slowing effects have been, to some extent, observe
the structure factors of the PB model@15# thus encouraging
this type of investigation.

II. THE HELICOIDAL MODEL

Two versions of the model have been proposed in ea
studies. The first one@18# describes an elastic backbone a
fixed base-pair planes while the second@20# considers a rigid
backbone and moving base-pair planes. The two models
play a very similar behavior with respect to denaturation
the potentials associated to the base-base interactions
pair and along the strands are the same in both cases
because both introduce a coupling between opening
twist that results from the helicoidal geometry. In the follow
ing, we will consider the fixed-planes model, sketched
Fig. 1.

The helical structure of DNA is introduced essentially
the competition between a stacking interaction that tend
keep the base-pairs close to each other~given by the fixed
distanceh between the base planes! and the length,0.h of
the backbone segment~described as an elastic rod of re
06190
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length ,0) that connects the attachment points of the ba
along each strand. The ratio,0 /h fixes the strand slant an
therefore the resulting helicity of the structure. This helic
is accounted for by the angle of rotation of a base-pair w
respect to the previous one, namely theequilibrium twist
angleu, equal to 2p/10.4 in B-DNA at room temperature.

In the model, bases are described as pointlike particle
equal massesm joined by elastic rods along each stran
Bases lying on the same plane are coupled by hydro
bonds leading to an attractive force that tends to main
their equilibrium distance equal to the DNA diameter 2R0.
We assume that the two bases in each pair move symm
cally. To describe base-pair opening and helical torsion un
those constraints, it suffices to introduce two degrees of fr
dom per base-pair: these arer n andfn , i.e., the radial and
angular positions and of thenth base. The total number o
degrees of freedom is thus 2N, N being the total number o
base pairs. The restriction imposed by the assumption
symmetric motion preserves the essential feature of the h
cal structure, the coupling between torsion and open
while it keeps the model sufficiently simple to allow anexact
treatment of its thermodynamics.

We consider the Lagrangian@26#

L5m(
n

~ ṙ n
21r n

2ḟn
2!2D(

n
~exp@2a~r n2R0!#21!2

2K(
n

~ l n,n212,0!22S(
n

~r n2r n21!2

3exp@2b~r n1r n2122R0!#, ~1!

where ,05Ah214R0
2sin2(u/2) and l n,n21 are respectively

the equilibrium and the actual distance between the
basesn andn21 along a strand,

l n,n215Ah21r n21
2 1r n

222r n21r ncos~fn2fn21!. ~2!

For later purposes, it is convenient to introduce the lo
twist angle defined asun5fn2fn21.

The first term in the Lagrangian is the kinetic energy. T
second term is intended to describe the hydrogen bond in
action between the two bases in a pair. Following Refs.@13#

FIG. 1. Schematic representation of the fixed-planes DNA h
coidal model.
9-2
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and@18#, a simple Morse potential form is chosen. The qu
dratic term in (l n,n212,0)2 represents the elastic energy
the backbone rods between neighboring base-pairs on
strand. Finally, the last term models a stacking interact
between neighboring base pairs. Its effect is to decrease
stiffness of the open parts of the chain relatively to the clo
ones and to stabilize the latter with respect to the dena
ation of a single base-pair. Terms of this type increase
cooperative effects close to the melting transition@15,27#.

In the present paper we restrict our attention to a ch
with free boundary conditions, which corresponds to the
perimental situation when DNA denaturation is studied
solution. However, the model described above can be ea
modified to account for an external torqueG applied at the
base pairs at the two ends@20#, as it is done in some single
molecule experiments.

The geometrical parameters of the model can be strai
forwardly fixed according to the available structural da
@18#. Much more delicate is instead the choice of the para
etersb,D,S andK gauging the effective forces. We select
values similar to those previously considered for the fix
planes case, which have been discussed elsewhere
choice of theK parameter can be independently derived@27#
from the twist persistence length@28#, while the choice of the
other two parameters was based@29# on a comparison with
recent mechanical denaturation experiments@2#. In particu-
lar, the important parameterD which sets the main energ
scale, has been tuned to reproduce as closely as possib
experimental value of the denaturation temperatureTD
5350 K. The full set of parameters used in the following a
summarized in Table I.

For the numerics it is convenient to work in dimensio
less units. A suitable choice is to measure lengths and e
gies in the natural units of the Morse potential,a21 andD,
respectively, whereby time is expressed in units ofAm/Da2.
With the parameters of Table I, one time unit~t.u.! .2.3 ps.

III. THE DENATURATION TRANSITION: A
QUALITATIVE DISCUSSION

Before going on, it is instructive to briefly discuss th
thermodynamic state variables of the chain as well as
~possible! analogies between denaturation and the more
miliar liquid-gas transition.

TABLE I. The parameter set used throughout the paper.

Parameter Symbol Value

Morse potential range a 6.3 Å21

Stacking interaction range b 0.5 Å21

Morse potential depth D 0.15 eV
Stacking interaction coupling S 0.65 eV Å22

Interplane distance h 3.4 Å
Elastic coupling K 0.04 eV Å22

Equilibrium distance R0 10 Å
Twist angle u 0.60707 rad
Base masses m 300 amu
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As already pointed out@20#, the applied torqueG plays
the role of the pressureP for the liquid-gas system. Its con
jugate variable is thedegree of supercoilings. Since we do
not consider the curvature of the axis of the helix, it reduc
simply to theaverage twist:

s5(
n

N
~^un&2u!

Nu
. ~3!

This variable thus plays the role of the volumeV. Following
this analogy we can therefore establish the following cor
spondences:

DNA model liquid-gas

T ↔ T

G ↔ P

2s ↔ V

The sign ofs is chosen for convenience as the degree
supercoiling vanishes for B-DNA and is negative for a p
tially denaturated chain@see also Eq.~4! below#.

Two natural scenarios may thus be expected: an isot
mal, torque-induced denaturation atG5GD or a fixed-torque,
thermally-induced one atT5TD . For the liquid-gas case
these two situations correspond to crossing of the coex
ence curve in the (P,T) plane with an horizontal or a vertica
line, leading to the transitions classically described by i
therms in the (P,V) plane or by isobars in the (V,T) one,
respectively. In both cases, the presence of a const
temperature or a constant-pressure/torque domain is as
ated to the phase coexistence.

Within this analogy, the transition isotherms correspond
the curves in Fig. 3 of Ref.@20#, and reproduced schemat
cally, on the (G,2s) plane, in Fig. 2~c!. Conversely, the
thermal denaturation at constant torqueG50 are correctly
described in the (2s,T) plane@Fig. 2~a!#. Notice that, with
the convention that a negativeG corresponds to an untwist
ing torque, bothGD and TD must increase upon increasin
temperature and torque respectively@see Fig. 2~b!#. However
the negative torque cannot exceed some critical value w
out leading to an instability of the helix associated to
change of the sign of the helicity. In the following, we wi
focus on the thermal denaturation transition atG50.

FIG. 2. A sketch of the behavior of first-order transition curv
in the three planes defined by the DNA model parameters2s, G,
andT. GD andTD represent the transition torque and temperatu
respectively;~a! thermally-induced denaturation ‘‘isobar’’ at zer
torque;~b! coexistence curve;~c! torque-induced denaturation iso
therm atT5TD , corresponding to a zero critical torque.
9-3
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It is important to remark that the helical constraints
cluded in the model roughly impose, at vanishing exter
torque,un'u for a closed chain segment, andun'0 for the
denatured one. This follows from the geometry of the he
and the stiffness of the strands: since the distance betw
consecutive bases is constrained by the elastic rods to
approximately equal to,0 , un is of order,0 /r n and hence
very small forr n@R0. Let us denote bynd the average num
ber of open bases in a chain of lengthN. Provided that open
and closed regions coexist along the helix, and that they
spatially well separated~this is well confirmed by simula-
tions as we show below!, then, to a good approximation, w
have

2s'2
nd~2u!

Nu
5

nd

N
. ~4!

The latter quantity in nothing but the average fraction
open base pairsr5nd /N and the ‘‘isobar’’2s(T) can thus
be identified with the familiar denaturation curver(T). In
other words, the supercoiling and the fraction of open b
pairs are equivalent order parameters.

Before going further there is one crucial issue that sho
be addressed. One may argue that for a one-dimensi
model like the one at hand no phase transition of any t
should be observed. However, all usual arguments aga
the existence of singularities in thermodynamic potent
have been showednot to hold for the PB model@9#. Since
the latter is in many respects similar to the helicoidal mod
the same arguments apply and a genuine phase transiti
not forbiddena priori. This is confirmed by the transfer in
tegral approach which can be carried exactly~although partly
numerically! for this simple model.

IV. TRANSFER INTEGRAL APPROACH

A. ‘‘Apparent’’ thermodynamics

Because the model is one dimensional, a direct calc
tion of the partition function can be performed by the tran
fer integral~TI! method, as it was done for the simpler P
model @15#. The calculation proceeds along the same lin
but it is more involved because the model has two degree
freedom (r n andfn) per unit cell. It nevertheless reduces
a one-dimensional TI equation because the contribution
troduced by the angular part can be diagonalized by a F
rier transform@20,29#. As the calculation has already bee
presented in these earlier studies we do not discuss
method here and we confine our attention on its resu
which point out new aspects of the transition that had b
overlooked.

In this subsection we restrict ourselves to results obtai
via numerical solution of the TI equation. The accuracy
this approach is limited first by discretization errors in t
integrations and by the need to numerically evaluate in
grals over an infinite domain. As discussed in the next s
section, this second restriction can be partially lifted by
finite size scaling analysis, which involves a properly co
trolled approach to infinity. Integration methods, such as
Gauss-Legendre quadrature which select appropriate ab
06190
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for the evaluation of the function according to the number
points involved in the calculation, are also useful to integr
over a large domain with a reasonable number of points.
this first study, in order to ensure that all integrals are eva
ated with the same discretization error, we have compu
them with a 10th order Bode’s method@30# with a fixed
spatial step dr 50.032 Å and a minimum valuer min
59.7 Å ~due to the strong repulsion between bases descr
by the Morse potential,r cannot take values significantl
below the equilibrium length of 10 Å!. The maximumr max
of the integration range depends on the number of integra
points, which has been varied from 631 to 3601 leading
29.9<r max<124.9 Å. The eigenvalues of the transfer int
gral operator have been obtained either by diagonalizatio
the equivalent matrix problem or by the Kellog’s metho
@31# to get the two lowest eigenvalues.

The eigenvaluesL of the TI operator will henceforth be
written asL5exp(2e/kBT) wherekB is the Boltzmann con-
stant. With this notation the free energy per particle is de
mined by the smalleste eigenvaluee0 and is given by

f 52kBT ln~4pmkBT!1e0 . ~5!

Relevant thermodynamic quantities like the entropy and s
cific heat are then evaluated from the standard relations

s52
] f

]T
, cv52T

]2f

]T2
. ~6!

The mean base-pair stretching is given by

^r &5E
0

1`

r uf0~r !u2dr, ~7!

wheref0 is the eigenfunction associated withe0.
The free energyf and the mean value of the base pa

stretching^r & for our model are shown in Fig. 3, for tem
peratures going from 349 to 352 K with a step of 0.02
Within the accuracy of the calculation, a cusp inf at TD
5350.74 K is distinctly seen. It is associated with a sha
jump of the entropy at the transition. A jump in the speci
heat is also observed. Evaluating numerically the first a
second left and right derivatives of the free energy, one
tains the jump in entropyDs54.40kB , or 8.75 cal/K/mol,
and the jump in specific heatDcv50.64kB . The specific
heat drops from 2.14kB below TD to cv51.5 kB for T
.TD as expected from equipartition because after dena
ation only the harmonic contributions of the hamiltonian st
significant.

Figure 3~b! shows that, within numerical accuracy,^r &
exhibits a discontinuous transition from a finite consta
value ~very close to the equilibrium valueR0) to a value of
the order of the system size; in other words, the eigenfu
tion f0 appears to become suddenly delocalized. The pic
of a sharp transition persists down to a temperature samp
of 0.01 K.

Although the numerical results strongly suggest the occ
rence of a first order transition, caution is necessary: previ
studies of the related PB model have shown that the non
9-4
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ear stacking produces an extremely sharp, first-order-like
havior which masks the underlying second-order transit
as long as one stays out of a very narrow domain in
immediate vicinity of the critical temperatureTD ~exponen-
tial crossover@32,33#!. A more complete picture of the prop
erties of the transition will therefore be given in what fo
lows.

B. The ‘‘underlying’’ transition

We first address the question of what happens in the
sence of the nonlinear stacking, i.e., atS50. Preliminary
numerical investigations suggest a smooth behavior, bot
the lowest eigenvaluee0 and of the next-to-lowest,e1, as
functions of temperature; an ‘‘avoided crossing’’ betwe
them appears, with a small, but finite gap which has a m

FIG. 3. The free energy per particlef ~a!, and the mean value o
the base pair stretchinĝr & ~b! of the model evaluated by the tran
fer integral method in the temperature range 349<T<352 K with a
stepDT50.02 K. The model parameters are those listed in Tab
~calculation with the Bode’s method,dr 50.032 Å, r min59.7 Å,
and r max5124.9 Å).
06190
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mum at a certain temperature. Before we proceed to ana
the data obtained in detail, it is necessary to provide so
background and notation.

The order of the phase transition of the ideal system
unconstrained transverse spatial extent is determined by
critical exponentn which characterizes the gapDe[e1
2e0}(TD2T)n at temperatures belowTD ; a valuen51
implies a cusp in the free energy and a discontinuous
tropy; a value equal to 2 implies a discontinuity in the sp
cific heat, i.e., a usual 2nd order transition, etc.

The ‘‘raw’’ data provided by numerical solution of the T
equation refer to a particular transverse system sizeL
5r max determined by the imposition of an upper cutoff
the integration. On the other hand, near a critical point of
infinite system, the transverse fluctuations of the order
rameter also diverge. The quantityj'5A^r 2&2^r &2 provides
a measure of the distance from the critical point with dime
sions of length. According to the finite-size scaling hypo
esis@34#, size-dependent properties of a system in the vic
ity of the transition should depend solely on the ratioL/j' ,
i.e.,

DeL~T!5L2s f gS L

j'
D , ~8!

where the exponents characterizes the rounding of the ga
~cf. below!, f g(0) is a nonzero constant, andf g(x)}xs as
x@1 guarantees size independence in the limitL→`. In the
simplest cases, the positions of the minima of the gap
related to the type of divergence ofj' ; according to the
above scaling scenario, the temperatureTm(L) where the gap
minimum occurs, is such that

j'~TD2Tm~L !!'L. ~9!

We have numerically solved the TI equation for a wide ran
of system sizes, using Gauss-Legendre quadratures, wheL
is defined as the largest grid point value provided by
Gauss-Legendre algorithm for the numberN of grid points
chosen for the calculation. Again, in order to ensure unifo
accuracy,N grows proportionately to the system size, wi
r max5350 Å corresponding toN52048 points. Figure 4
shows the dependence of the minimal gapDeL(Tm), and the
corresponding temperatureTm on L. The gap appears to de
pend quadratically on 1/L @i.e., s52 in Eq. ~8!#, to very
good accuracy, with an estimated limit of 1.431025 ~with a
standard deviation 0.831025) asL→`. We note in passing
that the disappearance of the gap between the bound
eigenvalue and the one belonging to the bottom of the c
tinuum band provides numerical evidence for the true occ
rence of an exact, thermodynamic phase transition@35#. The
temperatures which correspond to the gap minima can
well fitted to the function

Tm~L !5TDF 12
a2

lnS L

R0cD G ~10!

I

9-5
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with TD5577.8 K, a250.170 andc50.94. This type of de-
pendence ofTm on L immediately suggests@cf. Eq. ~9!# that

j'5cR0ea2 /utu, ~11!

wheret5T/TD21.
Figure 5 shows that data taken from a wide range of s

tem sizes scale well if plotted according to Eqs.~8! and~11!.
The numerical evidence thus strongly suggests that the
derlying transition manifests itself as an essential singula
of the gap, of the Kosterlitz-Thouless~KT! type. Equations
~11! and ~8! then imply that, in the limitL→`,

De}e22a2 /utu. ~12!

In the Appendix, it will be possible to identify the origin o
this particular behavior as an inverse-square attractive in
action between the stretching coordinates of successive
pairs.

C. Finite stacking revisited

It is now reasonable to conjecture, by analogy with wh
happens in the PB model, that the effects of the nonlin
stacking interaction will depend on its range. For the st
dard parameter set of Table I, the ratiob/a50.079 is very
small indeed. What happens at a less extreme regime,b/a
50.190, is shown in Fig. 6. Scaling according to the ans
~11! holds within a fairly narrow rangeutu,0.05 around the
denaturation point; note that it is the smaller magnitude
the nonuniversal parametera2 which is responsible for the
narrowing of the asymptotic critical region. Figure 7 summ
rizes what happens atb50.9 Å21, i.e., b/a50.143, only
slightly above the value of Table I. The gap exhibits an a
parent critical exponent very close to unity down tot

FIG. 4. Dependence of the minimal difference between the lo
est eigenvalues of the transfer integral operatorDeL(Tm) ~open
squares, lefty axis! and temperaturesTm ~closed circles, righty
axis! versus 1/L2.
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FIG. 5. Scaling of the difference between the two lowest eig
values of the transfer integral operator~open symbols, lefty scale!,
and the order parameter~solid symbols, righty scale!. The different
points have been obtained by transfer integral calculations
formed with 5 values ofL/R0516, 35, 70, 100, and 140. Th
dotted lines have slopes 2 and21, respectively, in accordance wit
the finite-size scaling hypothesis.

FIG. 6. Scaling of gap~open symbols, lefty scale!, and order
parameter~solid symbols, righty scale!; model parameters are thos
of Table I, with the exception ofb51.2 Å21. The different points
have been obtained by transfer integral calculations performe
L/R0525, 35, and 50. The dashed lines have slopes 2 and21,
respectively, in accordance with the finite-size scaling hypothes
9-6
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THERMAL DENATURATION OF A HELICOIDAL DNA MODEL PHYSICAL REVIEW E 68, 061909 ~2003!
50.01; closer to the denaturation point, the effective slo
increases significantly; it is reasonable to conjecture tha
temperatures even closer toTD , the asymptotic behavior wil
be dominated by the underlying essential singularity. At
physically relevant value ofb50.5 Å21, crossover to the
KT regime has moved belowt51025 and is practically un-
observable.

The analysis of this section demonstrates that, in spite
the very different mathematical properties of their ‘‘bar
versions, both the ‘‘straight’’~PB! and the helicoidal DNA
models, are effectively dominated by the stacking interact
when the latter is of sufficiently long range; because of it,
all practical purposes, the transition has all the characteris
of a first order transition, including a practically infinite di
continuity of the mean base pair stretching, and a latent h
Similarly, at the transition temperature, a very small tempe
ture gradient~of the order of the width of the transition re
gion, i.e.,DT,0.001 K) leads to an apparent phase coex
ence and hence to many features that one would be tem
to qualify as ‘‘typical of a first-order transition’’ as shown i
the next sections. These properties are very reminiscen
some results found on models of martensitic phase tra
tions @36–38#, but because we are dealing with a on
dimensional model that has a genuine phase transition,
phenomenon is more remarkable here.

Our results provide an excellent example of the disti
tion between the ‘‘experimental’’ perspective and the ‘‘the
retical’’ one, regarding the definition of the order of a pha
transition: although, in theory, the transition of the helicoid

FIG. 7. Dependence of the gap on the reduced tempera
T/Tm21 for b50.9 Å21 and system sizesL/R0512,49, 17.5, 25,
35, 50, and 70. The dashed and dotted lines have slopes 1 a
respectively. Apparent first-order behavior prevails forutu.0.01;
closer to the critical point there is a clear increase in the slo
before the onset of finite size rounding.
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DNA model is of infinite order~essential singularity!, the
actual temperature range over which it manifests its conti
ous character is far beyond the limits of either experimen
or numerical observation.

V. MOLECULAR DYNAMICS

In this section we report the results of direct simulatio
of the model. They bring complementary information on t
nature of the transition and allow us to study its dynamics
discussed in Sec. VI. As said above, we consider the cas
thermal denaturation forG50 and free boundary conditions
Microcanonical and canonical simulations were perform
because they allow the observation of the phase space
different viewpoints.

In the microcanonical ensemble, the Euler-Lagran
equations derived from Eq.~1! were integrated directly with
the standard fourth-order Runge-Kutta method with a sm
enough time step~typically 0.02 t.u.! in order to insure that
the relative energy drift is negligible~usually better than
1025) on the time scales of each run, i.e., 105 to 106 t.u.
@39#. Initially, all particles are set in their equilibrium pos
tions (r n5R0 , fn5nu) with random Gaussian distribute
velocities ~with zero average! in the radial direction. The
variance of the distribution serves to fix the energy per
gree of freedome. The averaging of the quantities of intere
is only started after a long enough transient to let the sys
equilibrate. After equilibration, the thermal energykBT is
computed in the usual way as twice the average kinetic
ergy per degree of freedom.

Constant-temperature~canonical! results were obtained
through an extended Nose´-Hoover method using a thermo
stat chain@40# which is specifically designed to constrain th
total kinetic energy to fluctuate aroundNkBT, insuring at the
same time the correct~canonical! distribution of its fluctua-
tions. A chain of 3 thermostats was employed w
the first thermostat typical frequency equal to the high
phonon frequency of the lattice,vM5$a2D12K„R0(1
2cosu)/,0…

2#/m%1/2. The integration of the correspondin
equations of motion was again performed with a fourth-or
Runge-Kutta scheme with typical time step of 0.01 t.u., a
thermalization is achieved by a long-enough transie
Changes in temperature were performed in a sequential
upon heating the chain with a temperature ramp and relax
afterward.

As discussed in Sec. IV, strictly speaking the transition
smooth. However the temperature range of the crossove
gion to a smooth behavior is so small~less than DT
50.001 K for a stacking parameterb50.5 Å21) that the
numerical experiments, as well as actual denaturation exp
ments on DNA, show all the character of a first order tra
sition. Therefore in this section we shall use the language
first order transitions which is the appropriate language
discuss the results.

Measured caloric curves showing the temperature~in en-
ergy units! as a function of the energy per degree of freedo
kBT(e), for a chain ofN5128 base pairs are reported in Fi
8. They distinctly show a flat part atkBT50.2012D corre-

re

2,

e,
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BARBI et al. PHYSICAL REVIEW E 68, 061909 ~2003!
sponding to the temperatureTD5350 K that has been foun
to be the denaturation transition by the transfer integral
culation. In analogy with a liquid-gas transition, the flat r
gion occurring betweeneB50.20D and eD50.64D is thus
identified as the curve of coexistence between the closed
the denatured phases. The slope of the two branches,kBT/e
should be equal to 2/cv ~the factor 2 appears becausee, en-
ergy per degree of freedom is12 of the energy per unit cell!.
The figure shows that this is in good agreement with
values given by the TI calculation, i.e.,cv.2.2 belowTD
and 1.5 aboveTD . We have also compared the melting e
tropy per particle,Ds52D(] f /]T), as obtained from the
transfer integral calculationDsth , with that obtained from
the microcanonical simulationsDsnum for the finite chain,
i.e., the ratio 2(eD2eB)/TD :

Dsnum53.7031024 eV/K, Dsth53.8031024 eV/K.
~13!

The two quantities are in very good agreement.
In addition, the transition markedly displays a signature

metastability and hysteretic effects. Indeed, the B-DNA
branch extends well aboveTD ~up to about 500 K!. Marked
hysteretic effect upon heating are also observed for the t
mostated chain~crosses in Fig. 8!. Either in microcanonical
and canonical simulations, the system appears to be spo
neously ‘‘trapped’’ into this metastable state for low enou
energies~or temperatures! over the transition one. Direct in
spection of the system configuration reveals that the cha
completely closed and we can refer to it as an overhea
state.

An undercooled branch exists as well below the dena
ation temperature. To detect it in the microcanonical sche
we employed the following procedure. The initial conditio
in the B phase, is evolved for a certain time after which
chain is ‘‘annealed’’ by multiplying all velocities by an as

FIG. 8. Result of microcanonical simulations~open symbols!:
kinetic temperature as a function of the energy per degree of f
dom for a molecule ofN5128 base pairs. To show the convergen
of averages, data for two transient durations are reported. Pl
and crosses respectively refer to canonical simulations with clo
initial conditions and with the initial insertion of an artificial bubb
of length 120 base pairs~transient 105 time units!. Solid line is the
transfer integral result~see text for details!.
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signed factor smaller than 1~we set it equal to 0.8!. The
averages are thus computed after a further transient~see
again Fig. 8!. Similar results can be obtained for the therm
stated chain by artificially imposing on standard initial co
ditions the presence of a denaturated bubble of given len
, in the middle of the chain at temperatureT.TD . We will
give more details on this procedure at the end of this sect

Canonical and microcanonical results are therefore c
sistent, apart from some deviations at high temperatures
T.TD , which can be expected because after denatura
the model becomes almost purely harmonic as the Mo
potential linking the bases plays no role for base-pair d
tancer corresponding to the plateau of the potential, and
stacking contribution also tends to vanish. Therefore forT
.TD a microcanonical equilibrium cannot be achieved, u
less we force it by averaging over thermalized initial con
tions ~for instance obtained by a Monte Carlo procedure! or
by a temporary switch to a canonical simulation during a r

The results were checked to be robust with respect to
transient duration as well as to the rate at which tempera
is changed through the ramp. Alternative thermalizat
schemes do not change the outcomes as well. For exam
simulations where microcanonical runs are alternated to
nonical ones, yield the same results~except atT.TD as
mentioned above!. In such a case the computed averages
microcanonical as the thermostated dynamics only serve
a way to change the system energy.

Obviously, a crucial issue is the dependence of the res
on the chain size. We observed that upon increasing the c
length up toN5256 or 512, the only difference with respe
to theN5128 case is a slower convergence of the avera
in the high and intermediate energy region. Nonetheless,
coexistence line is practically reached within compara
simulation times. This is presumably influenced by the init
conditions and could be improved by a more sensible cho

In order to precise the nature of the transition from a vi
point close to experiments, we measured the average frac
of open base pairsr. This is indeed a quantity which is
measurable by UV absorption. As in previous stud
@15,18,20#, we consider a base pair to be open whenever
radial displacementr n is larger than the inflection point o
the Morse potential, i.e., whenr n /R0.8 ln 2, and we aver-
age the counting during the run. A simple reasoning sho
that the order parameterr should obey a ‘‘lever rule’’@41#

e5~12r!eB1reD , eB,e,eD , ~14!

thus implying thatr(e) increases linearly between 0 and
along the coexistence line. In a similar way, we expect t
the average twist per base pair^un&5^fN2f1&/N5u(1
1s) should decrease linearly from a value close tou to 0.
This is illustrated in Fig. 9. Notice once again the hystere
effects.

From Fig. 8 it is clear that the microcanonical ensem
has the merit of allowing to investigate the dynamics of t
chain in the coexistence region. For illustration, Fig.
shows a snapshot of the state of the chain fore/D50.5
where, from formula~14!, we expect around 40% of the bas
pairs to be denaturated. The fact that the chain opens a

e-
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ed
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THERMAL DENATURATION OF A HELICOIDAL DNA MODEL PHYSICAL REVIEW E 68, 061909 ~2003!
sides is clearly caused by the free boundary conditio
Moreover, this figure can give a hint on why we observe
transition that has all the features of a true first order tra
tion ~coexistence of phases, metastability! although the tran-
sition is actually second order. From a theoretical point
view, the order is determined in the thermodynamic lim
i.e., for an infinite system. This correspond to the identifi
tion, in the transfer integral method, of the free energy w
the lowest eigenvaluee0, Eq. ~5!. In numerical simulations
as well as in experiments, one is dealing with a finite syst
When the thermodynamic transition is extremely sharp~as it
is the case for the stacking parameterb50.5 Å21), the in-
homogeneity caused by the free ends is sufficient to lea
an apparent coexistence of phases, i.e., a first-order-like
sition, presumably because the boundary effects induc
perturbation~in particular on the average local torque! which
is sufficient to change the local transition temperature by
very small amount which separates the domain of clo
DNA from the domain where the molecule denaturates. T
is why the molecular dynamics simulations are useful

FIG. 9. Fraction of open base pairsr and average twist̂un&
from microcanonical simulations. The simulation parameters are
same as in Fig. 8. The circles were obtained with an initially clo
chain while the squares refer to annealed initial conditions.

FIG. 10. Snapshot of the chain of 128 bps in the coexiste
regione50.5D.
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complete the transfer integral study, and to provide res
that can be compared with experiments.

Another interesting aspect which can be studied throu
simulation is the dynamics of opening events. This allows
look for analogies with the classical nucleation mechanis
that drives relaxation from metastable states at ordinary fi
order transitions@41#. Figure 11 reports the distribution o
the length of denaturated bubbles for subsequent times
ing the same run of Fig. 10. There is a clear tendency
smaller bubbles to close~or merge! until only a few large
ones remain. A similar measure in the overheated metast
phase shows instead that the size of bubbles is pretty s
and decrease systematically in time.

To further investigate this aspect, we performed simu
tions in the canonical ensemble, starting from a thermali
state at temperatureT and artificially seeding a denaturate
bubble of given length, in the middle of the chain. To
accomplish this, given the geometry of the model, we
un50 in the central region and impose a triangular profi
for the r ns designed in such a way that the resulting stress
the backbone springs is approximatively zero. The flank
regions are initially at equilibrium and free from any add
tional supercoiling.

In a first series of simulations we checked that forT
,TD the B-DNA form is very robust with respect to suc
local perturbation: for instance, atT5200 or 300 K bubbles
of length,<12 base pairs on a chain 128 base-pair long te
to shrink and the system rapidly returns to its complet
closed state. Very large bubbles (,;110 base pairs! may
tend to close as well, although on longer times. Howev
several cases are found where perturbations as large,
5120 base pairs are able to drive the system into the m
stable, undercooled, denaturated state. These experime
low the observation of the second metastable state in
canonical scheme: thus completing the correspondence
the microcanonical results~see again data shown in Fig. 8!.

The situation is, as expected, the opposite in the ov

e
d

e

FIG. 11. Distributions of the lengths of the denaturated regio
at different times in the coexistence regione50.5D. To improve
the statistics, histograms were cumulated over a time window
around 103 time units.
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BARBI et al. PHYSICAL REVIEW E 68, 061909 ~2003!
heated regionTD,T&600 K. Here, the insertion of a sho
bubble suffices to destabilize the B-DNA form and let t
system switch to its equilibrium state, i.e., the complet
open chain. For instance, atT5400 or 500 K a bubble of
length,.8 on a chain of 128 base pairs is generally enou
Approximated estimates seem to indicate that the mini
length of the bubble tend to decrease with temperature
intuitively expected, but this behavior is not very systema
Statistics over a very large number of events would be n
essary to conclude quantitatively.

VI. DYNAMICAL STRUCTURE FACTORS

One of the motivations for considering mechanical mo
els is the possibility to probe microscopic and collective m
tion in different phases. In this section, we focus on dyna
cal correlation functions that usually reflect different types
excitations. More precisely, we computed the radial struct
factor

Sr~q,v!5K U E (
n

r nei (qn2vt)dtU2L ~15!

and the angular oneSc(q,v) wherecn5fn2nu is the an-
gular displacement from the equilibrium position. Bracke
denote an average over an ensemble of independent mo
lar dynamics trajectories~typically hundreds!. All the results
reported in this section are obtained in the microcanon
ensemble.

Let us first consider the low temperature native phase
shown in Fig. 12, the spectral analysis display, as expec
sharp lines at the frequencies of the two phonon branc
v6(q) that can be computed atT50 in the harmonic ap-
proximation@27# ~see the vertical lines in Fig. 12!. Acoustic
vibrations in the angular variables are only weakly coup
to the radial~optical! ones. Interesting enough, the rad
spectra also displays a large peak at a frequency lying in
phonon gap and independent on the wave number@i.e., the
large peak atv.0.7 in Fig. 12~a!#. Its origin can be traced
back to the excitation of a localized surface mode. This
confirmed by direct inspection of the chain configuratio
Actually, the mode is found to slowly decay in time due
nonlinear interaction leading to a systematic decrease o
spectral component.

Upon increasing the energy, the optical branch gradu
shifts towards lower values of the frequency~softening! and
higher-harmonics appear. Furthermore, the resonance
both the radial and angular peaks are substantially broad
due to increasing anharmonicity that enhances the effec
damping. More importantly, a large low-frequency comp
nent, acentral peak, arises in the radial structure functio
The temperature dependence ofSr(q,v) across the denatur
ation transition is illustrated in Fig. 13. The three differe
energies correspond toT5300, 357, and 535 K. The latte
value is well into the metastable overheated region. For fi
q, the position of the central peak is unchanged upon incre
ing temperature but its width broadens. Furthermore,
v22 behavior at low frequencies~see the inset of Fig. 13!
suggests a Lorentzian line shape. The origin of this cen
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peak, also found in the simpler PB model, and its proper
are still unclear although it is tempting to assign it to t
slow dynamics of the bubble boundaries.

An even more sizable central component appears w
closed and open form coexist~see Fig. 14!. This is accom-

FIG. 12. Structure factorsSr(q,v) ~a! and Sc(q,v) ~b! for N
5256 at very low energy,e50.01D ~corresponding toT518 K).
The different curves correspond to wave numbersq52.5676,
1.66896, 0.88356, and 0.09812~right to left!.

FIG. 13. Radial structure factorsSr(q,v) for N5256 and dif-
ferent energiese50.17D, 0.20D, and 0.30D ~solid, dashed, and
dot-dashed lines, respectively!. To reduce fluctuations, a smoothin
of the data has been performed by averaging over 10 consec
channels.
9-10
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THERMAL DENATURATION OF A HELICOIDAL DNA MODEL PHYSICAL REVIEW E 68, 061909 ~2003!
panied by a stronger coupling between angular and ra
degrees of freedom, as manifested by the peaks at aco
frequencies inSr . The birth of large low-frequency compo
nents bears strong resemblance with heterophase fluctua
observed in other lattice models with~pseudo! first-order
transition characterized by large entropy barriers@36–38#. In
other words, the motion of the interface between the t
phases should be responsible for the slow dynamics.

To close this section, it is worth mentioning that a relat
analysis of collective modes for the helicoidal model h
been recently reported@42#. The analytical calculations wer
performed at room temperature and are based on the in
taneous normal modes. At variance with our simulations,
approach describe the short-time dynamics~on a time scale
of picoseconds! and a direct comparison is therefore n
straightforward.

VII. CONCLUSIONS AND DISCUSSION

The study of a simplified model of DNA has proved to
extremely fruitful to unveil the basic features of the melti
transition at the single-molecule level. From the theoreti

FIG. 14. Structure factorsSr(q,v) andSc(q,v) for N5256 in
the coexistence regione50.50D. Vertical lines are the phonon fre
quencies~one from the acoustic and one from the optical branch
each q value! calculated atT50. Graphs have been arbitraril
shifted for clarity.
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point of view, dealing with a one-dimensional model~with
two degrees of freedom per base pair! turned out to be par-
ticularly convenient as it allows an exact evaluation of t
partition function. Indeed, the angular variables can be eli
nated by Fourier transform, yielding a more tractable o
variable transfer integral problem. The latter cannot
solved analytically but the numerical and approximate res
presented above provide a complete insight on the natur
the transition. In particular, the finite-size scaling analysis
the transfer integral turned out to be essential to take
account the finiteness of the integration range. Such
analysis strongly suggests that the underlying transition
continuous, of the Kosterlitz-Thouless type. This behav
can be related to the existence of an effective attractive fo
which is directly connected to the helicoidal geometrybe-
cause it appears when the angular degree of freedom is
grated out. Qualitatively it can be understood as com
from the difficulty to disentangle the two helices. On th
other hand, for physically relevant values of the paramet
the temperature range over which the continuous aspec
the transition can be detected may become extremely na
~less thanDT50.001 K). For all practical purposes the tra
sition appears to be perfectly sharp, and bears the hallm
of a first order transition, in agreement with experiments.
our view, this result is remarkable and attracts attention
how numerical or experimental observations on finite s
tems and with a limited resolution may dramatically diff
from theoretical expectations.

Molecular dynamics simulations confirm this appare
first-order character. They show hysteresis and metastab
as well as a coexistence region between an open and a c
‘‘phase’’ and, by varying the energy density in the critic
region, a gradual change of the volume fraction occupied
the two which is reminiscent of, say, the liquid-gas tran
tions.

In addition to the very sharp transition found by the th
oretical analysis, the finite-size effects certainly play a ma
role in the above phenomenology. The helicoidal mode
more sensitive to these finite size effects than the ‘‘flat’’ P
model because the free ends allow a release of the torsi
energy which appears when a segment of the chain op
One can understand the crucial role of boundary effect
one considers that a finite closed loop of helicoidal DN
cannot denaturate at all because the two strands are
tangled.

The dynamics of the transition, as probed by the calcu
tion of the radial and angular structure factors, shows so
prominent features such as the existence of a central p
that is presumably due to the slow motion of the denatura
bubbles. Moreover, the coupling between opening and tw
introduces some additional spectral features that would
serve further investigations.

Another point that should be reconsidered is the nuc
ation of denaturation bubbles. The phenomenology descr
at the end of Sec. V is, at least qualitatively, very mu
reminiscent of the nucleation mechanisms that drives re
ation from metastable states at ordinary first-order transiti
@41#. For instance, simulation in the overheated state s
gests the existence of a ‘‘critical size’’ of the denaturati

r
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BARBI et al. PHYSICAL REVIEW E 68, 061909 ~2003!
loops, above which they become unstable. Hence, meta
bility stems from the fact that small enough bubbles clo
relatively fast. Nevertheless, there are important differen
that one should keep in mind. Indeed, in classical nuclea
theory the key role is played by the surface tension te
~proportional to the square of the droplet’s radius!, whereby
in our one-dimensional case the bubble ‘‘surface’’ is ind
pendent of its length. The correspondence with the us
theory is probably due to the torsional energy, associate
the opening, which grows with the bubble size. This sugge
that a ‘‘one-dimensional nucleation theory’’ could be dev
oped for helicoidal DNA.

The present study has focused on a DNA model that
scribes the molecule at the scale of the base pair. We t
that it is relevant because it is the scale of the genetic cod
which phenomena related to biological functions occur. T
helicoidal geometry itself is at this scale~or more precisely at
the scale of a few tens of base pairs!. On the other hand
there are other phenomena that enter in the statistics of D
melting, and they are related to the behavior of the molec
at a much larger scale, on which the strands are regarde
flexible strings. Recent studies have shown that the entr
of the loops also contributes to lead to a first order transiti
provided that self-avoiding aspects between segments o
loop and between open regions and closed domains are p
erly taken into account@11#. Our approach is complementar
to these studies and shows that the observed sharp me
transition of DNA may have multiple origins.
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APPENDIX: RESULTS OBTAINED VIA GRADIENT
EXPANSION

1. An approximate TI kernel

In the absence of an external torque, the nontrivial par
the partition function of the model is given by

ZP5E )
n51

N

$drn@r nr n21#1/2dun%e
2V($r i ,u i %)/kBT, ~A1!

where the potential energy consists of the three last term
Eq. ~1!, and the relative angle coordinate enters only via
second term. Introducing sum and difference coordinater̄ n
5(r n1r n21)/2, dn5r n2r n21, it is possible to write the in-
tegral overun as

E
0

p

dune2K( l n,n212,0)2/kBT[F0~ r̄ n!eV(dn
2 , r̄ n). ~A2!
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For the parameter values given in Table I, andT5480 K, the
dimensionless ratiol5kBT/KR0

2 is equal to 0.01; this allows
us to use the leading-order low-temperature asymptotic
pansion

F0~ r̄ !;ApkBT

K

L0

k r̄
S 12

k2

4r̄ 2D 21/2

, ~A3!

wherek52R0 sin(u/2)55.98 Å, over the whole temperatur
range of interest. Note that due to the repulsive core of
Morse potential, the inequality

r @k/2 ~A4!

always holds. Furthermore, numerical evaluation reveals
the functionV is ~i! almost independent ofr̄ , and~ii ! weakly
dependent on temperature~cf. Fig. 15!. In the following we
will use the temperature-independent approximation

eV(d2)'e2(d/k)2
, ~A5!

which misses the weak peak neard5k, but reproduces cor-
rectly the second moment, which is central to what follow
Within the approximations~A3!, ~A4!, the partition function
is dominated, in the thermodynamic limit, by the largest
genvalue of the one-dimensional TI equation

E
0

`

dr8T~r ,r 8!cn~r 8!5Lncn~r ! ~A6!

with

T~r ,r 8!'ApkBT

K

L0

k S 11
k2

8r̄ 2D S 12
d2

8r̄ 2D
3eV(d2)e2VM(r )/kBTe2VS( r̄ ,d2)/kBT, ~A7!

FIG. 15. exp(V) as a function ofd/k for two different values of
the dimensionless ratiol; the r dependence is not visible forl
50.001.
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where VM(r )5D(12exp@2a(r2R0)#)
2 and VS5Sd2

3exp@22b(r̄2R0)#.
The form of V @cf. Fig. 15 and/or Eq.~A5!# establishes

that, in addition to the ranges 1/a, 1/2b of the Morse and
stacking interactions, respectively, there is a third, mu
larger, characteristic length in the problem,k. Depending on
the strength of the various parameters, it may be possibl
further simplify the general one-dimensional TI problem a
elucidate the ensuing critical behavior. Two distinct ca
will be considered below.

2. Strong stacking interaction: transformation to an ODE

A gradient expansion of Eq.~A6! involves~i! introducing

cn~r 1d!'cn~r !1cn8~r !d1
1

2
cn9~r !d2, ~A8!

~ii ! changing the variable of integration fromr 8 (5r 1d) to
d, and~iii ! performing the Gaussian integrals overd. Noting
that ~a! the combined effect of the stacking interaction a
the Gaussian approximation~A5! can be described in term
of the quantity

S

kBT
m2~r ![

S

kBT
e22b(r 2R0)1

1

k2
~A9!

~note thatSm2 can be interpreted as an effective near
neighbor harmonic spring constant! and that~b! r̄'r to sec-
ond order ind everywhere in Eq.~A7!, one obtains

S 12
kBT

16Sm2r 2D cn1
kBT

4Sm2
cn95e2b(en2U1)cn ,

~A10!

where U1(r )5VM(r )1VL(r )1VB(r ) and Ln

5(pkBT/AKS),0 /ke2ben; here,VL(r )52kBT(k/r )2/8 is
a long-range attraction which comes from exponentiating
term in the first parentheses of Eq.~A7!, and VB(r )
5kBT ln@m(r)/m(`)# is a thermally generated barrier anal
gous to the one described in@8# in the context of the one
dimensional DNA model with stacking. Expanding the exp
nential in the right-hand side~RHS! of Eq. ~A10! and
rearranging terms, one obtains

2
~kBT!2

4Sm2
cn91~VM1VB1VL* !cn5encn , ~A11!

where

VL* ~r !5VL~r !F12
1

2 S m~`!

m~r ! D 2G ~A12!

is attractive everywhere.
Equation~A11! is a key result. It can be trivially cast in

standard Sturm-Liouville form with a density function pr
portional tom2; the r dependence ofm is crucial for obtain-
ing quantitatively sensible results; the simultaneous prese
of three terms in the potential energy prevents us from s
ing Eq. ~A11! exactly. A numerical solution@43# for the pa-
rameter values of Table I reveals a behavior very similar
06190
h

to

s

t

e

-

ce
-

o

the full TI solution of Sec. IV. According to Fig.16, the tw
lowest eigenvalues exhibit an almost perfect intersection
temperature samplingDT50.1 K. In addition, the differen-
tial equation turns out to be an excellent approximation
the original TI. Thus, the estimatedTD5370 K is only a few
percent higher than the value obtained within the TI; oth
critical thermodynamic quantities of interest demonstr
comparable, or better agreement, e.g., the transition enth
DH5TDDS50.129 eV~cf. 0.133 eV from TI!, or the jump
in the specific heat, 0.8kB ~cf. 0.7kB from TI!. The apparent
first-order transition has its origin in the fact that the the
mally generated barrier has a substantially longer range
the Morse potential. The analysis of Sec. IV suggests
crossover to a continuous transition eventually occurs; h
ever, for the values of the parameters relevant to DNA de
turation, observing this exponential crossover would requ
a temperature resolution of better than 1 mK. This estim
can be made by studying crossover phenomena with exa
solvable ‘‘toy models’’@32# of the denaturation transition o
the linear PB variety, where the zero stacking limit is know
to yield a second-order ‘‘underlying’’ transition. In the cas
of Eq. ~A11!, the presence of an attractive inverse squ
interaction raises the possibility of more complex behav
i.e., confinement at all temperatures or crossover to ano
transition at much higher temperatures. This is discussed
low.

3. The SÄ0 case

In the limit S→0, the decay of the kernel~A7! is gov-
erned by Eq.~A5!. This reduces Eq.~A11! to

2kBT
k2

4
cn91~VM1VL* !cn5encn , ~A13!

FIG. 16. The numerically determined two lowest eigenvalues
Eq. ~A11!, expressed in units ofD. The onset shows details of th
gap in the region of the transition; no signs of rounding are appa
at a sampling ofDT50.1 K.
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where

VL* ~r !52kBT
k2

16r 2
. ~A14!

In the absence of stacking, the system is subject to the M
potential and the long-range attraction~A14!; the point to
note is that the attractive force is linearly dependent on
temperature, just as the coefficient of the 2nd derivative
Eq. ~A13!; consequently, ifD50, the system will either
have a bound state or not, according to the value of
coefficient in the denominator of Eq.~A14!. The value 16 is
marginal; if the interaction had been stronger, one wo
have confinement at all temperatures; the Morse poten
being of short range, could not change that; in other wo
one would obtain a near-transition at a temperature c
trolled by the Morse potential, but then the long-range attr
e

e

ta

s

06190
se

e
n

e

d
l,

s,
n-
-

tion would prevent dissociation at all temperatures. We h
verified this by numerically solving Eq.~A13!. For weaker
attractions~value of the coefficient 16 or higher in thes
units!, numerical work suggests that the transition becom
higher than second order; however, numerical accuracy is
sufficient to determine the detailed behavior. It is possible
guess what happens by substituting the Morse potential b
narrow well, i.e., the total potential in Eq.~A13! being equal
to 2D for R0,r ,R011/a and equal to Eq.~A14! for larger
r; this case is exactly solvable and shows that although
shift in the value of the critical point is less than 1%, th
nature of the transition is radically transformed: the vani
ing of the lowest eigenvalue is now of the Kosterlit
Thouless type

e0}2e2const/(TD2T). ~A15!
o
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