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Hierarchical population model with a carrying capacity distribution for bacterial biofilms
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In order to describe biological colonies with a conspicuous hierarchical structure, a time- and space-discrete
model for the growth of a rapidly saturating local biological populafitix,t) is derived from a hierarchical
random deposition process previously studied in statistical physics. Two biologically relevant parameters, the
probabilities of birth,B, and of deathD, determine the carrying capacity. Due to the randomness the
population depends strongly on positianand there is a distribution of carrying capacitié§(K). This
distribution has self-similar character owing to the exponential slowing down of the growth, assumed in this
hierarchical model. The most probable carrying capacity and its probability are studied as a fun&iandf
D. The effective growth rate decreases with time, roughly as in a Verhulst process. The model is possibly
applicable, for example, to bacteria forming a “towering pillar” biofilm, a structure poorly described by
standard Eden or diffusion-limited-aggregation models. The bacteria divide on randomly distributed nutrient-
rich regions and are exposed to a random local bactericidal dgetibiotic spray. A gradual overall tem-
perature or chemical change away from optimal growth conditions reduces bacterial reproduction, while
biofilm development degrades antimicrobial susceptibility, causing stagnation into a stationary state.
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I. INTRODUCTION: RELEVANCE OF FRACTAL Il. THE MODEL

GEOMETRY TO BACTERIAL COLONIES . . . .
As a concrete example, consider bacteria on a line with

In opening this paper it is useful to review concisely the!Ocal population(x,t) defined orx < [0,1]. The population

._is normalized, so thaN is to be interpreted as a density
relevance of fractal geometry to the morphology of bacterial . .
! I . ; rather than the number of bacteria. Generalization to two or
colonies. We distinguish two cases. If nutrient supply is no

- . X ST t'[hree space dimensions is straightforward, as will become
limited, compact colonies grow according to a simplified

L .clear from the simple structure of the model. Assume, for
spontaneous multiplication process proposed by Eden in.~ "~ .. o o

. . ._simplicity, a homogeneous initial conditiolNy=N(x,0)
1961[1]. In spite of its compactness, an Eden cluster dIS->0 ting i lati | the i f a thi i
plays a rough surface with self-affine fractal geometry. In_ ™’ rip:risgnﬂl]ng moctuha ion along he meto.a dltr: uni orrg
1990 experimental evidence was presented for this kind Olfag{(l?tr.  birth Be grhc_N\;] . proc?sz Its charac etrlze « ytahpro” i
anisotropic fractal scaling of the shape of a biological sys—aI Hyt?] Il'r ' T,hW 'f |hsa$p |eh 0 stegmfirrl]s or vf)/tic ?IS ¢
tem, in the surface of colonies @scherichia coliandBa- ~ 2'°n9 th€ lin€. The stochastic character ot the gro retiects

cillus subtilisgrowing on agar platel2]. On the other hand that the surface is inhomogeneous.'s'o'me areas are nutrient
if the growth is limited by nutrient diffusion, it was first rich (e.g., agak, others are not. The division process is effec-
observed in 1989 that the entire colonies—not just theif! Ve Only in nutrient-rich patches. These patches are assumed
surfaces—develop a self-similar fractal sh4g& This pat- to be of characteristic size Xl/ where\ is a scale factor

tern corresponds to the geometry of diffusion limited aggre_centra! to the model. Alterna.tive ways of inducing spatially
gation(DLA) [4] and has been seen in many experiments td'onuniform growth or depletion are to apply, for photosyn-
date on bacterial colonies on low-nutrient substrates, in thietic bacteria, favorable or unfavorakfeV) illumination
form of branching growth with or without chiralit5]. according to a structured or random spatial pat{éx. _
For biofilms specifically, fractal structure was uncovered —Besides nutrient nonuniformity, the environmental condi-
with the aid of confocal laser scanning microscg@.SM)  tions are locally modified in a random way, for example, by
and a(volume fractal dimension was determined for bio- spraying drops of an antibiotic which subsequently spreads
mass clusters of sizes exceedingcb up to several hundred by diffusion or transport resulting from bacterial motility. In
microns[14], while smaller aggregates are compact. A two-places with low chemical concentration the population stag-
dimensional cellular automata approach taking into accountates, elsewhere it shrinks. The action of the bactericidal
cell division, nutrient diffusion and convection, and cell de- product is expressed through a probability of de@hAn
tachment was applied to simulate dynamically a wide rangénteresting variant on antibiotics, and relevant in particular to
of biofilm morphologies, including mushroom- and tower- inhibition of biofilm formation, is a nutrient remover such as,
or tuliplike structureg15]. Clearly, neither Eden nor DLA for example, lactoferrin. This protein, which is abundant in
modeling is adequate for describing these forms. In view ohuman external secretions, mops up traces of iron and
the conspicuous hierarchical structure of several of thesthereby deprives bacteria of an essential substance. Applied
morphologies, revealed by CLSM, the simple model pro-in concentrations below those that kill or prevent growth, it
posed in this paper may provide a basic alternative in arbijust slightly increases the division time of the bacteria and
trary space dimension. enhances their surface motility, causing them to “twitch” or
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wander around seeking food. As a result, microcolonies do 17
not form and matrix-encased communities specialized for
surface persistenadiofilms) do not develog8]. ™1

The model is composed as follows. The characteristic size
of the spatial inhomogeneity of the nutrient is, for simplicity,
taken to be the same as that of the applied antimicrobial
perturbation. Theunit) line is thus divided in\ segments, &
each of which has the size of, say, an antibiotic drop. The X0.5¢
probability of birth, B, is applied to each segment, and sub- =
sequently the probability of death. Each segment is thus
visited twice. We have &€B,D=<1, and without loss of gen-
erality we takex=3 in this paper.

One generation later this process is repeated, but the
maximum local increase or decrease of the population is re-
duced by a factor ok. This reduction is repeated in every 0 - -
generation. In this way the growth process eventually comes 0 13 . 23 1
to a halt, and the population approachesaaying capacity
as is commonly the case in models for a single spg@és FIG. 1. Sample of a local population density after five genera-
This rescaling of the growth or the depletion is a crucialtions of hierarchical random growth witB=0.5 and D=0.2,
ingredient of the model and leads to a hierarchical buildup ofN(x,5). The rescaling factor i&=3. The initial population is
the population. While introduced here heuristically, variousN(x,0)=0.5. The light (dark gray area indicates the massive
biologically relevant experimental conditions can be thoughgrowth (depletion which occurred in the first generation. As a re-
of, for which this rescaling is an adequate simple approximasult, large jumps ax=1/3 andx=2/3 persist for all later times.
tion for modeling a gradual saturation of the population. In-
deed, bacterial reproductivity and/or susceptibility to antimi-trient flow, and by biofilm development, and they occur on a
crobial agents can “wear out” in a systematic manner,smaller length scale due to diffusive nutrient/antibiotic frag-
uniformly in space. For example, thedfective birth ratede-  mentation. A single scale factor controls—in this greatly sim-
creases significantly by varying the temperature some 10 °@lified model—all these dynamical complications, so that
away from optimal growth conditions. Also, once a biofilm neither external time-dependent fields nor “interparticle” in-
starts forming, it becomes resistant to nutrient removers sucteractions occur explicitly in what follows. Repeating this
as lactoferrin, and it notoriously resists killing by antibiotics. process saturation is reached exponentially rapidly, typically
Further, if there is no nutrient-supplying fluid surroundingin less than ten generations, as the calculations show. The
the bacterial colony, or if it stops flowing, convective massresulting local population density for long time$(x,), is
transport is not available and much slower diffusive transporhighly inhomogeneous and largely reflects the initial random
sets in without nutrient renewal. The precise way in whichdistribution of the nutrient distribution and the toxic con-
this saturation is imposed here, through a constant rescaliri@mination, brought about by spraying. Considered math-
factor, has been deliberately chosen so as to reproduce tlegnatically,N(x,) is a fractal curve with infinite length, but
exponential convergence characteristic of a standard Verhulstvial fractal dimensionde=1. Figure 1 shows an example
process, in the continuum-time approximation of our modelof N(x,5), the local population after five generations, assum-
(see Sec. I ing B=0.5 andD=0.2.

Further, the rescaling by a factor wfis applied not only Note that the natural death of the organisms is not in-
to the increase or decrease of the local population, but also tduded explicitly in the model, for the simple reason that the
the typical size of the nutrient-rich or bactericidal patchesinduced saturation occurs on a time scédeveral hours
This assumption can be justified as follows. Since after onaignificantly shorter than the natural lifetime. In other words,
generation(of the order 6 2 h in real time the nutrient or the probabilityD pertains to death caused by bactericidal
chemical contamination has been redistributed in spaceroducts alone.
mainly by diffusion or by bacterial motion, regions which  In Fig. 1 it can be seen that what happens in the first
were initially rich (or pure will show poor (or toxic) spots, generation dominates the future evolution. For example, the
while initially barren regions will display small fertile areas. light gray square represents the massive growth on a
We restrict attention to the case of negligible convectivenutrient-rich segmen{2/3,1) while the dark gray square in-
transport through the surrounding fluid, since convectiordicates the result of the killing of most of the bacteria on a
would clearly invalidate our assumption of decreasing redistoxic patch (1/3,2/3. In the first segment0,1/3 nothing
tribution of mass in smaller and smaller fragments in thehappened in the first generation. After a few generations the
course of time. Thus, we apply the random birth and deatlpopulation “landscape” consists of towers and deep crests,
rules on an ever smaller length scale, reduced by a factor afhich get rougher as time progresses, but which hardly
N\ with respect to the previous generation, and repeat thishange size anymore.
reduction generation after generation. This model is mathematically equivalent to the previously

In sum, in every new generation the population fluctua-introduced hierarchical random deposition prodd€s with
tions are reduced by coolingr heating, or by lack of nu-  rescaling factoi, and probabilitie®=B(1—D) for depos-
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iting a hill, and Q=D(1-B) for digging a hole, withP first approximation for describing this type of biofilm
+Q=1. The correspondence betwedh D) and (P,Q) can  growth. Towerlike structures do not emerge in the Eden
be seen by taking into account that in the biological applicaimodel or DLA models, which are the established paradigms
tion every segment is visited twice, applyifyin the first  of fractal bacterial colony models.
visit followed by D in the second, whereas in the deposition The connection between the model and the familiar Ver-
model there is only one visit per segment, per generatiorhulst process is elucidated in Sec. lll. It is made clear Bhat
Therefore, after a complete visit the population is increasedand D are biologically relevant parameters determining the
provided offspring was producednd no deaths occurred, carrying capacity, whereas the role of is to induce expo-
whence the produdB(1—D). The population is decreased nentially rapid saturation, ubiquitously found when a bio-
provided no divisions occurrednd the antibiotics killed a logical population approaches the carrying capacity of its
fraction of the existing population, whence £B)D. Fi-  environment. Furthei also sets an overall time scale factor.
nally, the population remains constantither offspring was  The carrying capacity distribution, the key result of this ran-
produced but subsequently killeat, no births took place and dom growth model, is calculated analytically in Sec. IV, and
the antibiotics were absent or had no effect. The probabilitconcrete examples are discussed in Sec. V, together with a
for this isBD+(1—B)(1—D)=1—(P+Q). Note that the check against numerical simulation. The self-similar charac-
total probability for the three outcomes is unity. ter of thisK distribution is demonstrated and the effectBf
Using the deposition model it is easy to derive analyticaland D on the standard deviation of the population is exam-
results in terms of the variablésandQ, and also numerical ined in representative cases. Section VI deals with the most
simulation is straightforward. In generatiorthe process re- probable carrying capacity and its probability, considered as
quires just\" (pseudojandom numbers. For each segmenta function ofB andD. Insight is gained in the abundance of
of width A" along x the population is increased by an large deviations away from the most probakleSection VII
amount equal to the segment si¢e dimensionless unijs presents our conclusions and addresses a possible experi-
with probability P, or reduced by that amount with probabil- mental test of this model.
ity Q, or left unchanged with probability 2 (P+ Q). This

leads to the characteristic rapidly converging population ;. CONNECTION WITH A VERHULST PROCESS
landscape formed by squares of decreasing @tige 1). OR LOGISTIC GROWTH

The initial condition is taken to b&ly=1/(A —1), inde- ) ) ) . i
pendent ofx (uniform inoculation. The first quantity of in- In this section we are concerned with the uniform, i.e.,

terest is the mean carrying capadiywhich is the ensemble spatially a)’eraged' population; The tim_e eyolution of the
average ofN(x,«) over all possible random realizations of mean, O_r quenched average, #(x.1) is given by the
the process. Since on average the population grows by af'ange in the mean valubli(t), fromt=ntot=n+1,
amount 8—D)X\ " in generatiom, we obtain _ _
N(n+1)=N(n)+\ ""YB-D), (3.1
K=(1+B-D)/((A—1)=(1+P-Q)/(A—-1), (2.1
which is solved by

independent ok. Clearly, the initial conditiorNy has been
chosen large enough so that, for BlandD, the population N(n)=Ng+(1—N""(B—D)/(A—1). 3.2
remains positive for alk andt, and approaches zero only in
the extinction limitB=0, D=1. Note the simple identity This is a simple growth, converging exponentially rapidly,
B—D=P—-Q, making the relations between the growth for n—~, to the mean carrying capacity. Clearly, the role of
probabilities and the deposition parameters more transparenhe rescaling factox in the model is to generate this simple

Generalization of the model to higher dimensidesg., saturation. It is useful now to work with the differences
substrate dimension) 2s not pursued here, but the results of
such extension can easily be anticipated by examining the AN=N—-N, and AK=K-Ng, (3.3
landscapes shown for the hierarchical deposition model
[10,11] on planar substrates. In fact, if the bacterial populayith respect to the initial populatioNy=1/(\ —1). We ob-
tion is compact, the value M(x,t) is simply proportional to  t3in
the height of the biofilm above the substrate, and the land-
scapes can be interpreted as three-dimensional in real space. Aﬂ(n)=(l—)\‘“)AK (3.4
This correspondence holds as long as there are no “over-
hangsf’ or h_oles in the biofilm, and thus works for compactUSing this in Eq.(3.1) leads to
towering pillar structures but not for noncompact or
mushroom-shaped on€$8]. The similarity between the N—1 AT
three-dimensional characteristic landscapes generated in this AN(n+1)—AN(n)= —
model, and the structure of its horizontal cross secfid No1-
(see Fig. 6 in that referengeand images of vertical and
horizontal sections of a towering pillar biofilm, as obtainedFor largen, we can neglech " compared to 1 in the de-
by confocal laser scanning microscopy, is remarkah®. nominator, and again using E(B.4), we get thenonlinear
This suggests that a hierarchical model may be a reasonabdifference equation

AN(n). (3.5

)\7n
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. . N—1 _ ( Aﬁ(n)) upwards or downwards, bringing the bacterial growth to a
AN(n+1)—AN(n)~——AN(n)| 1— ———|. halt on a time scale of a small number of generations. In Sec.
A AK Il we already alluded to the fact that biofilm development
(3.6 can be a factor leading to resistance to antibiotics, which can
lead to a vanishing death rate. We simply assume that both
nEef'fects(e.g., nutrient embargo and biofilm formatjooccur
uniformly throughout the sample. Our justification for as-
suming a uniform external perturbation responsible for the
(3.7  saturation is that in our random model the effective birth rate
(3.9 does not depend on the loca-lependentpopulation,
but only on time. Alternatively, the self-limitation of the
Note that, in general, the discrete time model and its conpopulation could of course also be dueldsal overpopula-

tinuum time limit have slightly different asymptotic behavior tion, but this model is in its present form too simple to allow
for long times, but this is irrelevant for our discussion here.for an internal local feedback process.

This analogy allows us to identify and interpret the model
parameters una}mbiguously. The characterist?c “bare decay |y THE CARRYING CAPACITY DISTRIBUTION
rate” or saturation time scale of the model A¢(A—1), a
constant. The precise value of the length rescaling factor Even though the average growth of the population is char-
the model has no particular biological relevance, apart fron@cterized by simple exponential saturation, the local popula-
affecting slightly the morphology of the population land- tion N(x,t) for a particular realization of the quenched ran-
scape, and can be chosen to be an arbitrary integdr The  domness typically shows interesting large fluctuations. These
carrying capacity(difference given by AK=(B—D)/(\ deviations, highly nonuniform in space, can possibly be mea-
—1) is an important property, and we find that it is deter-Sured experimentally by probing the local population of bac-
mined simply by the difference of the birth and death rates!eria after spraying a few drops of an antibiotic. The fluctua-
This link between a phenomenological parameter of the Vertions of the total populationV(t) = [5N(x,t)dx are studied
hulst equation, the carrying capacity, and the stochastic “miin this section and the following two.
croscopic” model paramete® andD is a key ingredient of Our aim in this section is to explore the effect of random
our model. Finally, theeffectivebirth rate 1#, which is by ~ nutrient inhomogeneity and random antibiotic spray on the

definition the ratid dAN(t)/dt]/AN(t), depends on the size CaTYiNg capacity, which is the asymptotic value for long
of the population, and eventually vanishes as the carryin mes of the total population. The simple stochastic nature of

o - : - del allows to obtain the full distribution in analytic
capacity is approached, as is typical of logistic growth. As- € mo - :
ymptotically for long times, it is given by form in terms of the probability of birtl8 and that of death

D, with modest mathematical effort. Consider a particular

time limit of which is of the form of the Verhulst equation

dt A

dAN() -1 N(t)( ) ANE)
AK

N—1 Aﬁ(t) N—1 random evolution. In generation the total population grows
1/~ (1_ — | = AT (3.9 by an amount X™—k.,)/\°™ where the possible values of
A AK A the integerk,, are contained in the s¢0,1,...,2A™}. For

) ) . example, in the deterministic limit8=1 and D=0, one

More precisely, the exact expression for all times, as followsa|ways has,,=0, and forB=0 andD=1 one invariably
from Eq.(3.5), is encounterk,,=2\". The set{k,, ... k,} will be referred

to as a “growth sequence” of length. Of course, growth
_ (3.9 sequences are in general degenerate in the sense that differ-
1—)\"" ent population landscapes can possess the same growth se-

quence. The total population aftergenerations, denoted by

Note, and we wish to stress, that for our process the Verhuls¥/(n), is then given by
equation is nothing but an easily interpretabtalinearap-

1 A1
T—T

proximation to the actual linear differential equation describ- 1 nOAM— Km
ing our dynamics, Mm)=—3 +m§=:l om (4.9)
dAN(t) A_lAﬁ AN(D) AK At this point it is useful to note that different growth se-
=—AN|1-——|— . )
dt N AK | AN(1) quences may accidentally result in the same value for the

total population. For example, a single local increassl af

one generation can be deleted ¥ local decreases in the
next generation. Therefore, an alternative sequence in which
nothing changes in those two generations would lead to the

The precise wayin our case exponentiain which the  same total population.

effective birth rate vanishes is only one possible way in If we work with the deposition probabilities, related Bo
which this rate in a biological system can be driven awayand D by P=B(1—D) and Q=D(1—B), and defineS
from its optimal value. We envisage that this drift is achieved= P+ Q, the probability for depositing in generation any

by cutting the nutrient supply, or by a temperature variationconfiguration with, sayh holes,f flat segmentgneither hill

A1
=——[AK-AN()]. (3.10
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nor hole, and\™—f —h hills is given by the following ex- 1.0
pression which takes into account the number of ways in
which the holes and flat segments can be put in the standard
combinatorial way,

m

A"—h\
Pm(h,f)= PN TTh1-s)'Q". (4.2
h f
o
Note that summing this expression over all possibkend f
gives the total probability,
A™ AM—h
> > Puhf)=1, (4.3
h=0 =0
which is unity, as it should be. P

The probability for having a fixed population increment,
that is, a particular valuk,,=k, in generatiorm, is given by
the following partial sum over th@,,(h,f):

FIG. 2. The dark area in theP(Q) plane below the line/P
+yQ=1 corresponds to the “biologically” accessible range of
P and Q, which can be reached starting from probabilities B,
W2 \m\ (\m_p D=1 throigh the relation®=B(1—-D) andQ:Dgl—B)“. Notg )
P (k)= 2 ( )( )P"m‘k+h(1—8)k‘2th. that P+ Q=<1 gives an upper _bound on the available “physical

m hSTo | h /\ k—2h range ofP andQ in the deposition model.
(4.9

n
Note thatk equals the number of flat segments plus twice the 1= [] Puk)=> T Pulkn) =2 ma(k)
number of holes, so thdt=k—2h. Here,[k/2] is equal to m= K k
k/2 if kis even, and equal tk¢-1)/2 if kis odd. Further, the
integer j(k) equals 0 ifk=sA™, and j(k)=k—\" for k => II,(M). (4.8
>\"™. One can verify the normalization N

oM In particular,

> Pu(k)=1. 4.5
k=0 S T(K)=1. 4.9

Since thek,,,, for different generationsy, are independent
variables, the probability of a given growth sequence is the In closing this section a few technical remarks are in or-
product der. Clearly, in the special cas€s=0, Q=0, orP+Q=1
the trinomial formulas we have derived, in particular Egs.
- N (4.2) and (4.4), cannot be used in the present form. Instead,
(k)= Hl Prn(Km), (4.6)  simple binomial expressions should be written down in those
" cases. Further, in view of the relatioRs=B(1—D) andQ
=D(1-B) one can verify that the “biological” domain in
the (P,Q) plane occupies only the kite-shaped region below
the line VP+/Q=1. On this line we hav®8=1—-D. We

wherek=(kq,ks, ... k,). Consequently, the probability
of realizing the total populatioA/{n) is the sum of the prob-
abilities of all the growth sequencéswhich produce the

same valueV(n) =N\’ will discuss later that this is a symmetry line in thB,D)
plane. Therefore, the present biological application uses only
) a subset of the parameters of the physical deposition model.
Hn(N)ZE ;Tn(k)v (4.77  This is illustrated in Fig. 2. The relevant kite-shaped region
k is filled in black. The white area below+Q=1 is not

accessible in the population model, but it is available in the
where the sum takes care of the degeneracy’.dh practice deposition model.

this sum contains only a few terms, because typically not

many growth sequences lead to the same value for the tota\I/ BACTERIAL POPULATION DISTRIBUTIONS VERSUS
population. For large the populationsV(n) converge to the ' ANTIBIOTIC EFEICIENGY

carrying capacitie¥, so that the distribution$I,(A) con-

verge to thecarrying capacity distributionlI.,(K), or in In order to illustrate the carrying capacity distribution and

shortIT(K), which we set out to obtain. its properties we turn to a few concrete examples. Consider a
Note that the total probability for the entire process up till process witlB= 0.5, representing equally probable nutrient-

any given generation is correctly normalized, since rich and nutrient-poor patches, abd= 0.5, corresponding to
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0.30 0.05
0.254 0.04 -
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=
0.154 0.024
0.05+ 0.00 ] .|III|I|||| m ||| ||||I|III|. —
1 | | 0.0 0.2 0.4 0.6 0.8 1.0
0.00 d T T T T d T T 1 N
0.0 0.2 04 06 08 1.0
N FIG. 4. Population distribution after two generatiofk;(N),

for B=0.5 andD=0.5. This distribution arises as the convolution
FIG. 3. Population distribution after one generatibin(\), for  of two generators. The seven peaks originate from the seven popu-
B=0.5 andD=0.5. The most probable populati¢highest peak  |ations seen in Fig. 3.
coincides with the initial population.

5 shows. There are 703 peaks after three, and 6481 peaks
medium antibiotic strength. It follows th&=0.25 andQ after four generations. The global scaling properties of the
=0.25. Figure 3 shows the population distribution after onedistribution can be easily understood if one takes into ac-
generation]I, (), for A=3. Since in the first generation the count that the number of peaks increases by approximately a
population is uniquely determined by the growth sequencéactor of 9, since the interpeak distance, or minimum popu-
kq, through M(1)=Ng+ (A —ky)/\2, with k;=0,...,2\, lation shift, decreases by a factor)of in each generation, as
we have implied by Eq.(4.1). Consequently, in order to preserve the

normalization of the total probability the height of the peaks

[T (N) = mq[K(M)]. (5.)  must decrease roughly by a factor of 9 also.
. . ) . After four generations the population distribution looks
The probab|I|t|es_assomated with the seven peaks in th_e f'g’hearly identical to that after three generations, provided the
ure thus follow directly from Eq(4.4). Note that the distri-  aight is scaled by roughly a factor of 9. Therefore, Fig. 5
bution is symmetric about the initial populatit\y=0.5, due (three generationsalready reveals the shape of the popula-
to the fact thaB=D. tion distribution in the limit of a large number of generations,

In the language of fractal geometf¢3] Fig. 3 can be ¢ it gives the carrying capacity distributidh(K) that we
called the “generator” of the distribution. If this generator .o interested in.

were now applied on a smaller scale to split every peak into
seven new peaks, we would obtain a perfect self-similar ob-

ject, when iterate@d infinitum However, in the second gen- 0'007_
eration the generator is different and hag’2 1 peaks, 19 in 0.006 4
our example. Its width is reduced by a factor\gfas can be .
seen from inspection of E¢4.1). It is the convolution of the 0.005+
two generators, according to the product expres&ios) and 1
sum (4.7), which gives the population distribution after two = %9947
generations. The result is shown in Fig. 4. = 5003

In this distribution the seven probability peaks of the first ]
generation are still clearly visible, but they have been split 0.002 -
due to the relatively small population shifts obtained in the ]
second generation. The seven structured peaks thus have  0.001-
width and fine structure determined by the generator of the 1
second generation, and all seven are similar to each othe °-°°°0'0 02 o4 08 o8 T
differing only in their amplitude which is apparent in Fig. 3. ' ' ' ' ' '
Note that the total number of peaks, 73, is significantly N

smaller than the product>719. This is due to overlap of FIG. 5. Population distribution after three generatidig(\),
peaks, which results, as discussed previously, from differenr B=0.5 andD=0.5. Notice the self-similarity in the fine struc-
growth sequences leading to the same population. ture of the main peaks. The distribution, normalized to unity, gives

As the generations progress, the individual probabilitythe probabilities of 703 distinct population values and its shape
peaks can no longer be resolved on the normal populationot its height has almost converged to that of the long-time carry-
scale. This is the case already after three generations, as Figg capacity distributiodI(K)=1II..(\N).
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FIG. 6. Population distribution after three generatiddg(/\),

for B=0.05 (poor nutrient and D=0.95 (strong antibiotick The 5 B=0.5 andD=0.99. In spite of the strong antibiotics the
population, initially ath=0.5, is strongly suppressed to low values  yrient.rich surface allows the population to survive at, on average,
and with small standard deviation. The mean value, 0.067, calcUrgi the initial value, and with large fluctuations. Notice that the

lated from Eq(3.2), is slightly larger than the most probable value. a4 value, 0.264, calculated from Eg.2), is roughly in between
the two most probable values.
Besides the analytic calculation, we have carried out
simulations of these random processes and obtained popula-

tion distributions in the form of histograms. Obviously, forapappens when medium nutrient level is combined with

histogram to present accurately a discrete distribution o ¢ ¢ tibioti if takeB=05 and
peaks, the bin width must be smaller than the interpeak sep&-rfng (or Very s rong; antibiotics. N we takeb="1.5 an
ration in population. For example, from these simulations,D_o'gg' leading tP=0.005 andQ=0.495, we obtain the

typically involving 10' processes for giveB andD, a his- carrying capacity distri.bution. shown in Fig. .7. The foII(_)wing
togram with 1000 bins of0,1) is obtained which reproduces Properties are conspicuousi) the population is entirely
the analytic results accurately. In view of the fact that little orshifted to well below its initial valudNo=0.5, (i) the distri-
no changes can be perceived in the shape of(pheperly  bution is broad, andii) the average population is about half
scaled distribution for generation numbers larger than three the initial population. It appears that the antibiotic has failed
it follows that a histogram with fixed bin siz€l000 will  in two respects. The population has not been suppressed
converge(without scaling already after three or four genera- completely, and it is difficult to predict the eventual
tions and reveal the carrying capacity distribution. In actualasymptotic population due to the large fluctuations. Math-
experiments a bin size is defined by practical resolution limi-ematically, this insufficiency can be traced to be caused, not
tations on the counting of bacteria. Therefore, the biologi-by the medium abundance of nutrient-rich patches in itself,
cally relevant framework is that which employsfized bin  since only very little growth is observedP& 0.005 is very
size small, but by a substantial reduction of the antibiotic effi-
The example we have chosen in Figs. 3-5 is a typicatjency. This reduction, fror® =0.99 in biological parameter
case in the category of broad carrying capacity dlsftr_|l_3ut|on%pace’ taQ=0.495 in physical parameter space, is due to the
with an average value close @ this case gtthe initial  jngjrect effect of nutrient-rich spots on antibiotic strength

homogeneous populatioNy. For medium nutrient levels through Q=D(1—B). Indeed, on 50% of the biofilm the

and medium antibiotic stren'gth the quctu.atlf)ns are" apParzntibiotic efficiency is spent on taking out only the newly
ently too large for the experimenter to gain “control” over

the outcome of the experiment. The situation changes drag_roduced bacteria, sind&=0.5, and only on the remaining

tically when bacteria in a nutrient-poor environment are ex- 0% of the area the initially existing population geﬂhlosl
posed to strong antibiotics. In this case a thorough eliminakilled eventually, so that we can understand tié¢n)
tion of bacteria results almost certainly. This is shown in Fig.—0.255, forn—co.
6. The few representative cases we have discussed up to
For birth and death probabilitieB=0.05 andD=0.95, now are the most interesting ones which can be studied
Fig. 6 gives the carrying capacity distribution after three genwithin this very simple model. We do not need to devote
erations. This corresponds t©=0.0025 andQ=0.9025. special attention to the limit8~D~0 or, equivalently,B
Clearly, the population has been suppressed to far below its D~1, for which the distribution remains sharply concen-
initial value Ny= 0.5, and the probability is concentrated on trated around the initial value, so that the outcome of experi-
the lowest accessible population values, arouvi¢0.06. ments is simple to predict. In the following section we elabo-
This result is to be expected, and in line with common ex-ate on the behavior of the most probable carrying capacity
perience with the effect of antibiotics on bacteria in aand its probability as a function of the birth and death rates,
nutrient-poor medium. i.e., of BandD.

FIG. 7. Population distribution after three generatidig(/\),

Possibly a more surprising result from this model is what
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VI. MOST PROBABLE CARRYING CAPACITY
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AND ITS PROBABILITY ---B=D
0.9} — B+D=1

With regard to an actual experiment it is important to
predict themost probablecarrying capacityK*, that will be 0.8t
observed, and its probability of occurrendé(K*), given
the birth and death probabilitieB and D. In generalK* 0.7}
differs from the meatK. We have studied these properties of Z
the model for rescaling factoids=2 and\=3. Differences in ‘:"— 0.6
rescaling factor are seen to lead to quantitative differences \
only, not essential for our discussion. Here we report on the 0.5¢ I ,
results forn=3. 0.l '\ J

Since the population distributions converge rapidly with ' N 7
increasing generation number, the results for the first genera- 0.3l - =
tion (the “generator’) determine to a very good approxima- '
tion the relative importance of the peaks in the final distri- 0.2 , , , ,
butions, as well as the population values associated with the "0 0.2 0.4 B 0.6 0.8

peaks. Therefore, we can restrict our attention to filst
generationwhen studying the most probable carrying capac-

ity and its probapility&ualita’gively and work with the most  generation, as a function @, for the special symmetry lineB
probable populatioh™ and its probabilityll;(N*). Inthe  _p (dashed line without singularities; along this line* =N

Appendix we give the analytic expressions for the probabili-=N;=0.5) andB+ D=1 (solid line with six corner singulariti¢s
ties of the populations after one generation.

T.here are two Iin.es of symmetry in the modell, which These jumps ifK* occur when two main peaks in the dis-
merit separate attention. The liBe=D is a symmetry line in  ipution (see Fig. 7 for exampleexchange maximum
the sense that the population distributions Box D are the height.

mirror images, reflected abolt=0.5, of the distributions A global plot of the most probable populatiof* after

with B and D interchanged. On the linB=D the average one generation, in the domain<®,D<1 is presented in
population remains equal to the initial population. There ISFig. 9. The two symmetries we discussed can be seen in this
no net growth(see Sec. I). One would therefore suspect piot. The singularities, in the form of terrace border lines,
that,_ when the antibiotic strength precisely compensates thl"epresent the “coexistence” of two distinct values I6F .
nutrient abundance, the most probable population after th¢pese lines run roughly parallel to lines of const&at D,
experiment equals the_mltlallpopulatlon. This is indeed thegq that, to a crude first approximation, the most probable
case. However, unlegsis sufficiently close to 0 or to 1, the population depends mainly on the differerie D. Recall

fluctuations are large and the probabilltl; (0.5) of observ- S B i
ing the most probable population is less than 50%. This isthat the average populatidt dependsonly on B—D, ac

) g _ cording to Eq.(3.1).
illustrated in Fig. 8(caseB=D). I The probability IT;(AM*) as a function ofB and D is
The second symmetry concerns the substitutiors dfy shown in Fig. 10. It displays lines of cornerlike singularities
1-D, and of D by 1—-B. Clearly, this operation leave? B
andQ unchanged, and therefore the results are invariant. The
line B+ D=1 thus acts like a mirror in theB;D) plane. The
probability IT, (N*) along this line shows interesting corner-
like singularities where the most probable population makes
a jump. In a statistical mechanical context what we are doing
is similar to minimizing the “free energy’F= —1I,(N)
with respect taV, for everyB, and obtaining the minimum-
free-energy(maximumil,) curve which displays corners at =
points where two “phases(values of\'*) coexist. Here, the
relevant\V are restricted to the seven population values gen-
erated in the first generatioffrig. 3), so that the curve can
have(at mosj six corners. Figure 8 shows the probability of
the most probable population along this lifease B+ D
=1). Although this curve has been calculated only for the
first generation, it is important to keep in mind that it is
already a good approximation to the probability of the most
probable carrying capacity*, defined in the limit of a large

FIG. 8. Probability of the most probable population after one

D 0 0 B

FIG. 9. Most probable population after one generation as a func-
number of generations. That curVEK*) must also display tion of B andD. The staircase structure reveals where two values of
cornerlike singularities, representing jumpskifi, at values N* exchange maximum probability. The model symmetries are ap-
of B (or D) close to the singularities exhibited in Fig. 8. parent and help interpret Fig. 8 and Fig. 10.

061904-8



HIERARCHICAL POPULATION MODEL WITHA . .. PHYSICAL REVIEW E68, 061904 (2003

m,(N)

B D 0 0

B

FIG. 10. Probability of the most probable population after one
generation, as a function & andD. Two special lines along this
surface are shown in Fig. 8. Notice that the border liné8-a0 or

FIG. 11. Standard deviatioB; of the population distribution
after one generation, vB and D. We have definedX;

B=1 display three corner singularities, as do the lines¥er0 or = V2A+121. Notice that only extreme values BfandD (near the
D=1. corners of the square, whebg, approaches zeydead to a sharp

distribution and easily predictable populations of individual

precisely where the terrace borders occur in Fig. 9. Note that2MPIes:
a sharp population distribution is only found near the four
points whereB andD are close to 0 or 1. as discussed in Sec. Il. Through the actionnothe model
In order to quantify this further we have calculated thebecomes hierarchical and this leads to a finite carrying ca-
standard deviatioril of the distribution after one genera- pacity (“freezing” or stagnation. Undoubtedly, the use of
tion, as a function ofB and D. This quantity is defined just one parametex for inducing all these dynamical effects,
through in the interest of simplicity and transparency of the model,
o cannot be more than a first crude step towards a more real-
o o 1 — o on istic and refined approach.
(21) TOoN+1 go [Nc=N(D)]*Pu(k), (6.1 The growth of the population thus acquires a hierarchical
structure, apparent in the fractal population “landscapes”
with Aj=1/(\—1)+(A—k)/\? and, from Eq.(3.2), W(l) (Fig. }), apd .exp.ressgd by @early self-similgr carryiqg
B - . ~ capacity distributionFigs. 3—7, the mathematics of which
=1/(\ —1)+(B—D)/). Explicit expressions for th@, are has been discussed using elementary notions of fractal geom-
given in the Appendix. The standard deviation is shown in

Fig. 11. Like the average population, the standard deviatioﬁtry' The main conclusion from studying these distributions

is a smooth function oB andD, and illustrates clearly that a IS that for generic values di andD a broad range of carry-
broad population distribution is generic. ing capacities can be observed, and the outcome depends

largely on the sample used. Ensemble averaging is necessary
for predicting statistically relevant properties of this type of
growth.

The question now arises whether this model is relevant to

Keeping in mind possible relevance of this hierarchicalan experiment in which bacteria capable of forming a biofilm
model to towering pillar biofilms, as discussed in Sec. Il, weon an inhomogeneous nutrient field are exposed to antibiotic
recapitulate here the main model ingredients. The modebr protein spray and subsequently put in a refrigerator or an
contains three parameters: birth probabilBy death prob- oven(for about a day, witlAT~1 °C/h). The applicability
ability D, and rescaling factok. B essentially reflects the of the model relies primarily on the determination of the
fraction (or quality) of nutrient-rich area on the surface, and model parameters starting from experimental system param-
D the density(or quality) of bactericidal agents. The rescal- eters. In our discussion we have takena3, having in mind
ing factor\ sets the characteristic bare decay r&ec. Il)) that the linear size of a nutrient-rich patch or an antibiotic
and controls the fragmentation—in space—of the nutrientdrop is roughly one third of the inoculation line. This length
rich patches and the antimicrobial activity, mimicking diffu- ratio can be determined easily in practice and the rescaling
sion and transport. The main role dfhas been to generate factor can be adjusted, or, of course, two separate rescaling
the exponentially rapid saturation of the population byfactors can be introduced if necessary. The external cooling
decreasing—uniformly in space—the amount of offsprings(or heating rate, taking the bacteria away from optimal
in each generation and simultaneously increasing uniformlgrowth conditions, is assumed to be adjusted so that the pro-
antimicrobial resistance. This mimics, for example, a nutriencesses come to a halt in about four to five generations. The
or temperature drop and biofilm development, respectivelyguality of the nutrient and the strength of the antibiotic, in-

VIl. CONCLUSIONS AND A POSSIBLE
EXPERIMENTAL TEST
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corporated irB andD, can be tuned experimentally by dilu-  APPENDIX: PROBABILITIES OF THE POPULATION
tion, for example. Alternatively, one can work with a fixed AFTER ONE GENERATION (CASE A=3)

amount of nutrient, all of which is placed initially on the
substrate in a nonuniform way. In this case, without “refuel-

ing,” the population will come to a halt with no need to _, . : . X
change the temperature of the sample. izlgyl2ft§:rggeo?tehnee?$)gﬁ§rec' \r/ODb;'k:ﬁtir:Sscalmg factor is
State-of-the-art experiments allow a simultaneous count- ~* yp

ing of many samples¢say, 13) on a microarray in order to P=B(1-D) and Q=D(1-B) (A1)
obtain carrying capacity distributions, much like is done in ’

ensemble averaging. In sum, a direct experimental check Qfjth 0<B, D<1; and in terms ofS=P+Q, we obtain,
this model is feasible, and would be worthwhile, before in-ysjng Eq.(4.4),

troducing theoretical refinements which undoubtedly are

necessary to make the model more realistic, but on the other P,(0)=P3,

hand compromise the insight that can be gained using only
very few key parameters.

In this appendix we give the analytic expressions used in
the calculations of the most probable population and its prob-

Py(1)=3P?3(1-9),
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