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Hierarchical population model with a carrying capacity distribution for bacterial biofilms
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In order to describe biological colonies with a conspicuous hierarchical structure, a time- and space-discrete
model for the growth of a rapidly saturating local biological populationN(x,t) is derived from a hierarchical
random deposition process previously studied in statistical physics. Two biologically relevant parameters, the
probabilities of birth,B, and of death,D, determine the carrying capacityK. Due to the randomness the
population depends strongly on positionx and there is a distribution of carrying capacities,P(K). This
distribution has self-similar character owing to the exponential slowing down of the growth, assumed in this
hierarchical model. The most probable carrying capacity and its probability are studied as a function ofB and
D. The effective growth rate decreases with time, roughly as in a Verhulst process. The model is possibly
applicable, for example, to bacteria forming a ‘‘towering pillar’’ biofilm, a structure poorly described by
standard Eden or diffusion-limited-aggregation models. The bacteria divide on randomly distributed nutrient-
rich regions and are exposed to a random local bactericidal agent~antibiotic spray!. A gradual overall tem-
perature or chemical change away from optimal growth conditions reduces bacterial reproduction, while
biofilm development degrades antimicrobial susceptibility, causing stagnation into a stationary state.
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I. INTRODUCTION: RELEVANCE OF FRACTAL
GEOMETRY TO BACTERIAL COLONIES

In opening this paper it is useful to review concisely t
relevance of fractal geometry to the morphology of bacte
colonies. We distinguish two cases. If nutrient supply is
limited, compact colonies grow according to a simplifi
spontaneous multiplication process proposed by Eden
1961 @1#. In spite of its compactness, an Eden cluster d
plays a rough surface with self-affine fractal geometry.
1990 experimental evidence was presented for this kind
anisotropic fractal scaling of the shape of a biological s
tem, in the surface of colonies ofEscherichia coliand Ba-
cillus subtilisgrowing on agar plates@2#. On the other hand
if the growth is limited by nutrient diffusion, it was firs
observed in 1989 that the entire colonies—not just th
surfaces—develop a self-similar fractal shape@3#. This pat-
tern corresponds to the geometry of diffusion limited agg
gation~DLA ! @4# and has been seen in many experiments
date on bacterial colonies on low-nutrient substrates, in
form of branching growth with or without chirality@5#.

For biofilms specifically, fractal structure was uncover
with the aid of confocal laser scanning microscopy~CLSM!
and a ~volume! fractal dimension was determined for bio
mass clusters of sizes exceeding 5mm up to several hundred
microns@14#, while smaller aggregates are compact. A tw
dimensional cellular automata approach taking into acco
cell division, nutrient diffusion and convection, and cell d
tachment was applied to simulate dynamically a wide ra
of biofilm morphologies, including mushroom- and towe
or tuliplike structures@15#. Clearly, neither Eden nor DLA
modeling is adequate for describing these forms. In view
the conspicuous hierarchical structure of several of th
morphologies, revealed by CLSM, the simple model p
posed in this paper may provide a basic alternative in a
trary space dimension.
1063-651X/2003/68~6!/061904~10!/$20.00 68 0619
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II. THE MODEL

As a concrete example, consider bacteria on a line w
local populationN(x,t) defined onxP@0,1#. The population
is normalized, so thatN is to be interpreted as a densi
rather than the number of bacteria. Generalization to two
three space dimensions is straightforward, as will beco
clear from the simple structure of the model. Assume,
simplicity, a homogeneous initial conditionN05N(x,0)
.0, representing inoculation along the line of a thin unifor
layer. At t.0 the growth process is characterized by a pro
ability of birth, B, which is applied to segments or ‘‘patches
along the line. The stochastic character of the growth refle
that the surface is inhomogeneous. Some areas are nu
rich ~e.g., agar!, others are not. The division process is effe
tive only in nutrient-rich patches. These patches are assu
to be of characteristic size 1/l, wherel is a scale factor
central to the model. Alternative ways of inducing spatia
nonuniform growth or depletion are to apply, for photosy
thetic bacteria, favorable or unfavorable~UV! illumination
according to a structured or random spatial pattern@6,7#.

Besides nutrient nonuniformity, the environmental con
tions are locally modified in a random way, for example,
spraying drops of an antibiotic which subsequently spre
by diffusion or transport resulting from bacterial motility. I
places with low chemical concentration the population st
nates, elsewhere it shrinks. The action of the bacteric
product is expressed through a probability of death,D. An
interesting variant on antibiotics, and relevant in particular
inhibition of biofilm formation, is a nutrient remover such a
for example, lactoferrin. This protein, which is abundant
human external secretions, mops up traces of iron
thereby deprives bacteria of an essential substance. App
in concentrations below those that kill or prevent growth
just slightly increases the division time of the bacteria a
enhances their surface motility, causing them to ‘‘twitch’’
©2003 The American Physical Society04-1
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wander around seeking food. As a result, microcolonies
not form and matrix-encased communities specialized
surface persistence~biofilms! do not develop@8#.

The model is composed as follows. The characteristic s
of the spatial inhomogeneity of the nutrient is, for simplici
taken to be the same as that of the applied antimicro
perturbation. The~unit! line is thus divided inl segments,
each of which has the size of, say, an antibiotic drop. T
probability of birth,B, is applied to each segment, and su
sequently the probability of death,D. Each segment is thu
visited twice. We have 0<B,D<1, and without loss of gen
erality we takel53 in this paper.

One generation later this process is repeated, but
maximum local increase or decrease of the population is
duced by a factor ofl. This reduction is repeated in ever
generation. In this way the growth process eventually com
to a halt, and the population approaches acarrying capacity,
as is commonly the case in models for a single species@9#.
This rescaling of the growth or the depletion is a cruc
ingredient of the model and leads to a hierarchical buildup
the population. While introduced here heuristically, vario
biologically relevant experimental conditions can be thou
of, for which this rescaling is an adequate simple approxim
tion for modeling a gradual saturation of the population.
deed, bacterial reproductivity and/or susceptibility to antim
crobial agents can ‘‘wear out’’ in a systematic mann
uniformly in space. For example, theeffective birth ratede-
creases significantly by varying the temperature some 10
away from optimal growth conditions. Also, once a biofil
starts forming, it becomes resistant to nutrient removers s
as lactoferrin, and it notoriously resists killing by antibiotic
Further, if there is no nutrient-supplying fluid surroundin
the bacterial colony, or if it stops flowing, convective ma
transport is not available and much slower diffusive transp
sets in without nutrient renewal. The precise way in wh
this saturation is imposed here, through a constant resca
factor, has been deliberately chosen so as to reproduce
exponential convergence characteristic of a standard Verh
process, in the continuum-time approximation of our mo
~see Sec. III!.

Further, the rescaling by a factor ofl is applied not only
to the increase or decrease of the local population, but als
the typical size of the nutrient-rich or bactericidal patch
This assumption can be justified as follows. Since after
generation~of the order of 2 h in real time! the nutrient or
chemical contamination has been redistributed in spa
mainly by diffusion or by bacterial motion, regions whic
were initially rich ~or pure! will show poor ~or toxic! spots,
while initially barren regions will display small fertile area
We restrict attention to the case of negligible convect
transport through the surrounding fluid, since convect
would clearly invalidate our assumption of decreasing red
tribution of mass in smaller and smaller fragments in
course of time. Thus, we apply the random birth and de
rules on an ever smaller length scale, reduced by a facto
l with respect to the previous generation, and repeat
reduction generation after generation.

In sum, in every new generation the population fluctu
tions are reduced by cooling~or heating!, or by lack of nu-
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trient flow, and by biofilm development, and they occur on
smaller length scale due to diffusive nutrient/antibiotic fra
mentation. A single scale factor controls—in this greatly si
plified model—all these dynamical complications, so th
neither external time-dependent fields nor ‘‘interparticle’’ i
teractions occur explicitly in what follows. Repeating th
process saturation is reached exponentially rapidly, typic
in less than ten generations, as the calculations show.
resulting local population density for long times,N(x,`), is
highly inhomogeneous and largely reflects the initial rand
distribution of the nutrient distribution and the toxic co
tamination, brought about by spraying. Considered ma
ematically,N(x,`) is a fractal curve with infinite length, bu
trivial fractal dimensiondF51. Figure 1 shows an exampl
of N(x,5), the local population after five generations, assu
ing B50.5 andD50.2.

Note that the natural death of the organisms is not
cluded explicitly in the model, for the simple reason that t
induced saturation occurs on a time scale~several hours!
significantly shorter than the natural lifetime. In other word
the probabilityD pertains to death caused by bactericid
products alone.

In Fig. 1 it can be seen that what happens in the fi
generation dominates the future evolution. For example,
light gray square represents the massive growth on
nutrient-rich segment~2/3,1! while the dark gray square in
dicates the result of the killing of most of the bacteria on
toxic patch ~1/3,2/3!. In the first segment~0,1/3! nothing
happened in the first generation. After a few generations
population ‘‘landscape’’ consists of towers and deep cre
which get rougher as time progresses, but which har
change size anymore.

This model is mathematically equivalent to the previou
introduced hierarchical random deposition process@10# with
rescaling factorl, and probabilitiesP5B(12D) for depos-

FIG. 1. Sample of a local population density after five gene
tions of hierarchical random growth withB50.5 and D50.2,
N(x,5). The rescaling factor isl53. The initial population is
N(x,0)50.5. The light ~dark! gray area indicates the massiv
growth ~depletion! which occurred in the first generation. As a r
sult, large jumps atx51/3 andx52/3 persist for all later times.
4-2
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HIERARCHICAL POPULATION MODEL WITH A . . . PHYSICAL REVIEW E68, 061904 ~2003!
iting a hill, and Q5D(12B) for digging a hole, withP
1Q<1. The correspondence between (B,D) and (P,Q) can
be seen by taking into account that in the biological appli
tion every segment is visited twice, applyingB in the first
visit followed by D in the second, whereas in the depositi
model there is only one visit per segment, per generat
Therefore, after a complete visit the population is increas
provided offspring was producedand no deaths occurred
whence the productB(12D). The population is decrease
provided no divisions occurredand the antibiotics killed a
fraction of the existing population, whence (12B)D. Fi-
nally, the population remains constant ifeitheroffspring was
produced but subsequently killed,or no births took place and
the antibiotics were absent or had no effect. The probab
for this is BD1(12B)(12D)512(P1Q). Note that the
total probability for the three outcomes is unity.

Using the deposition model it is easy to derive analyti
results in terms of the variablesP andQ, and also numerica
simulation is straightforward. In generationn the process re-
quires justln ~pseudo-!random numbers. For each segme
of width l2n along x the population is increased by a
amount equal to the segment size~in dimensionless units!
with probabilityP, or reduced by that amount with probab
ity Q, or left unchanged with probability 12(P1Q). This
leads to the characteristic rapidly converging populat
landscape formed by squares of decreasing size~Fig. 1!.

The initial condition is taken to beN051/(l21), inde-
pendent ofx ~uniform inoculation!. The first quantity of in-
terest is the mean carrying capacityK̄, which is the ensemble
average ofN(x,`) over all possible random realizations
the process. Since on average the population grows b
amount (B2D)l2n in generationn, we obtain

K̄5~11B2D !/~l21!5~11P2Q!/~l21!, ~2.1!

independent ofx. Clearly, the initial conditionN0 has been
chosen large enough so that, for allB andD, the population
remains positive for allx and t, and approaches zero only i
the extinction limit B50, D51. Note the simple identity
B2D5P2Q, making the relations between the grow
probabilities and the deposition parameters more transpa

Generalization of the model to higher dimensions~e.g.,
substrate dimension 2! is not pursued here, but the results
such extension can easily be anticipated by examining
landscapes shown for the hierarchical deposition mo
@10,11# on planar substrates. In fact, if the bacterial popu
tion is compact, the value ofN(x,t) is simply proportional to
the height of the biofilm above the substrate, and the la
scapes can be interpreted as three-dimensional in real s
This correspondence holds as long as there are no ‘‘o
hangs’’ or holes in the biofilm, and thus works for compa
towering pillar structures but not for noncompact
mushroom-shaped ones@8#. The similarity between the
three-dimensional characteristic landscapes generated in
model, and the structure of its horizontal cross section@11#
~see Fig. 6 in that reference!, and images of vertical and
horizontal sections of a towering pillar biofilm, as obtain
by confocal laser scanning microscopy, is remarkable@12#.
This suggests that a hierarchical model may be a reason
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first approximation for describing this type of biofilm
growth. Towerlike structures do not emerge in the Ed
model or DLA models, which are the established paradig
of fractal bacterial colony models.

The connection between the model and the familiar V
hulst process is elucidated in Sec. III. It is made clear thaB
and D are biologically relevant parameters determining t
carrying capacityK, whereas the role ofl is to induce expo-
nentially rapid saturation, ubiquitously found when a bi
logical population approaches the carrying capacity of
environment. Further,l also sets an overall time scale facto
The carrying capacity distribution, the key result of this ra
dom growth model, is calculated analytically in Sec. IV, a
concrete examples are discussed in Sec. V, together w
check against numerical simulation. The self-similar char
ter of thisK distribution is demonstrated and the effect ofB
andD on the standard deviation of the population is exa
ined in representative cases. Section VI deals with the m
probable carrying capacity and its probability, considered
a function ofB andD. Insight is gained in the abundance
large deviations away from the most probableK. Section VII
presents our conclusions and addresses a possible ex
mental test of this model.

III. CONNECTION WITH A VERHULST PROCESS
OR LOGISTIC GROWTH

In this section we are concerned with the uniform, i.
spatially averaged, population. The time evolution of t
mean, or ‘‘quenched average,’’ ofN(x,t) is given by the
change in the mean value,N̄(t), from t5n to t5n11,

N̄~n11!5N̄~n!1l2n21~B2D !, ~3.1!

which is solved by

N̄~n!5N01~12l2n!~B2D !/~l21!. ~3.2!

This is a simple growth, converging exponentially rapid
for n→`, to the mean carrying capacity. Clearly, the role
the rescaling factorl in the model is to generate this simp
saturation. It is useful now to work with the differences

DN̄5N̄2N0 and DK̄5K̄2N0 , ~3.3!

with respect to the initial populationN051/(l21). We ob-
tain

DN̄~n!5~12l2n!DK̄. ~3.4!

Using this in Eq.~3.1! leads to

DN̄~n11!2DN̄~n!5
l21

l

l2n

12l2n
DN̄~n!. ~3.5!

For largen, we can neglectl2n compared to 1 in the de
nominator, and again using Eq.~3.4!, we get thenonlinear
difference equation
4-3
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DN̄~n11!2DN̄~n!'
l21

l
DN̄~n!S 12

DN̄~n!

DK̄
D .

~3.6!

This is clearly a discrete Verhulst process, the continu
time limit of which is of the form of the Verhulst equation

dDN̄~ t !

dt
5

l21

l
DN̄~ t !S 12

DN̄~ t !

DK̄
D . ~3.7!

Note that, in general, the discrete time model and its c
tinuum time limit have slightly different asymptotic behavi
for long times, but this is irrelevant for our discussion he

This analogy allows us to identify and interpret the mod
parameters unambiguously. The characteristic ‘‘bare de
rate’’ or saturation time scale of the model isl/~l21!, a
constant. The precise value of the length rescaling factorl in
the model has no particular biological relevance, apart fr
affecting slightly the morphology of the population lan
scape, and can be chosen to be an arbitrary integerl.1. The
carrying capacity~difference! given by DK̄5(B2D)/(l
21) is an important property, and we find that it is det
mined simply by the difference of the birth and death rat
This link between a phenomenological parameter of the V
hulst equation, the carrying capacity, and the stochastic ‘‘
croscopic’’ model parametersB andD is a key ingredient of
our model. Finally, theeffectivebirth rate 1/t, which is by
definition the ratio@dDN̄(t)/dt#/DN̄(t), depends on the siz
of the population, and eventually vanishes as the carry
capacity is approached, as is typical of logistic growth. A
ymptotically for long times, it is given by

1/t;
l21

l S 12
DN̄~ t !

DK̄
D 5

l21

l
l2n. ~3.8!

More precisely, the exact expression for all times, as follo
from Eq. ~3.5!, is

1/t5
l21

l

l2n

12l2n
. ~3.9!

Note, and we wish to stress, that for our process the Verh
equation is nothing but an easily interpretablenonlinearap-
proximation to the actual linear differential equation descr
ing our dynamics,

dDN̄~ t !

dt
5

l21

l
DN̄~ t !S 12

DN̄~ t !

DK̄
D DK̄

DN̄~ t !

5
l21

l
@DK̄2DN̄~ t !#. ~3.10!

The precise way~in our case exponential! in which the
effective birth rate vanishes is only one possible way
which this rate in a biological system can be driven aw
from its optimal value. We envisage that this drift is achiev
by cutting the nutrient supply, or by a temperature variati
06190
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upwards or downwards, bringing the bacterial growth to
halt on a time scale of a small number of generations. In S
II we already alluded to the fact that biofilm developme
can be a factor leading to resistance to antibiotics, which
lead to a vanishing death rate. We simply assume that b
effects~e.g., nutrient embargo and biofilm formation! occur
uniformly throughout the sample. Our justification for a
suming a uniform external perturbation responsible for
saturation is that in our random model the effective birth r
~3.9! does not depend on the local (x-dependent! population,
but only on time. Alternatively, the self-limitation of th
population could of course also be due tolocal overpopula-
tion, but this model is in its present form too simple to allo
for an internal local feedback process.

IV. THE CARRYING CAPACITY DISTRIBUTION

Even though the average growth of the population is ch
acterized by simple exponential saturation, the local popu
tion N(x,t) for a particular realization of the quenched ra
domness typically shows interesting large fluctuations. Th
deviations, highly nonuniform in space, can possibly be m
sured experimentally by probing the local population of ba
teria after spraying a few drops of an antibiotic. The fluctu
tions of the total populationN(t)5*0

1N(x,t)dx are studied
in this section and the following two.

Our aim in this section is to explore the effect of rando
nutrient inhomogeneity and random antibiotic spray on
carrying capacityK, which is the asymptotic value for long
times of the total population. The simple stochastic nature
the model allows to obtain the fullK distribution in analytic
form in terms of the probability of birthB and that of death
D, with modest mathematical effort. Consider a particu
random evolution. In generationm the total population grows
by an amount (lm2km)/l2m where the possible values o
the integerkm are contained in the set$0,1, . . . ,2lm%. For
example, in the deterministic limitsB51 and D50, one
always haskm50, and forB50 andD51 one invariably
encounterskm52lm. The set$k1 , . . . ,kn% will be referred
to as a ‘‘growth sequence’’ of lengthn. Of course, growth
sequences are in general degenerate in the sense that d
ent population landscapes can possess the same growt
quence. The total population aftern generations, denoted b
N(n), is then given by

N~n!5
1

l21
1 (

m51

n
lm2km

l2m
. ~4.1!

At this point it is useful to note that different growth se
quences may accidentally result in the same value for
total population. For example, a single local increase ofN in
one generation can be deleted byl2 local decreases in the
next generation. Therefore, an alternative sequence in w
nothing changes in those two generations would lead to
same total population.

If we work with the deposition probabilities, related toB
and D by P5B(12D) and Q5D(12B), and defineS
5P1Q, the probability for depositing in generationm any
configuration with, say,h holes,f flat segments~neither hill
4-4
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HIERARCHICAL POPULATION MODEL WITH A . . . PHYSICAL REVIEW E68, 061904 ~2003!
nor hole!, andlm2 f 2h hills is given by the following ex-
pression which takes into account the number of ways
which the holes and flat segments can be put in the stan
combinatorial way,

Pm~h, f !5S lm

h D S lm2h

f D Plm2 f 2h~12S! fQh. ~4.2!

Note that summing this expression over all possibleh and f
gives the total probability,

(
h50

lm

(
f 50

lm2h

Pm~h, f !51, ~4.3!

which is unity, as it should be.
The probability for having a fixed population incremen

that is, a particular valuekm5k, in generationm, is given by
the following partial sum over thePm(h, f ):

P̂m~k!5 (
h5 j (k)

[k/2] S lm

h D S lm2h

k22h D Plm2k1h~12S!k22hQh.

~4.4!

Note thatk equals the number of flat segments plus twice
number of holes, so thatf 5k22h. Here,@k/2# is equal to
k/2 if k is even, and equal to (k21)/2 if k is odd. Further, the
integer j (k) equals 0 if k<lm, and j (k)5k2lm for k
.lm. One can verify the normalization

(
k50

2lm

P̂m~k!51. ~4.5!

Since thekm , for different generationsm, are independen
variables, the probability of a given growth sequence is
product

p̂n~k![ )
m51

n

P̂m~km!, ~4.6!

wherek5(k1 ,k2 , . . . ,kn). Consequently, the probabilityP
of realizing the total populationN(n) is the sum of the prob-
abilities of all the growth sequencesk which produce the
same valueN(n)5N,

Pn~N!5(
k

(N)

p̂n~k!, ~4.7!

where the sum takes care of the degeneracy ofN. In practice
this sum contains only a few terms, because typically
many growth sequences lead to the same value for the
population. For largen the populationsN(n) converge to the
carrying capacitiesK, so that the distributionsPn(N) con-
verge to thecarrying capacity distributionP`(K), or in
shortP(K), which we set out to obtain.

Note that the total probability for the entire process up
any given generationn is correctly normalized, since
06190
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(
k50

2lm

P̂m~k!5(
k

)
m51

n

P̂m~km!5(
k

p̂n~k!

5(N Pn~N!. ~4.8!

In particular,

(
K

P~K !51. ~4.9!

In closing this section a few technical remarks are in
der. Clearly, in the special casesP50, Q50, or P1Q51
the trinomial formulas we have derived, in particular Eq
~4.2! and ~4.4!, cannot be used in the present form. Inste
simple binomial expressions should be written down in tho
cases. Further, in view of the relationsP5B(12D) andQ
5D(12B) one can verify that the ‘‘biological’’ domain in
the (P,Q) plane occupies only the kite-shaped region bel
the line AP1AQ51. On this line we haveB512D. We
will discuss later that this is a symmetry line in the (B,D)
plane. Therefore, the present biological application uses o
a subset of the parameters of the physical deposition mo
This is illustrated in Fig. 2. The relevant kite-shaped reg
is filled in black. The white area belowP1Q51 is not
accessible in the population model, but it is available in
deposition model.

V. BACTERIAL POPULATION DISTRIBUTIONS VERSUS
ANTIBIOTIC EFFICIENCY

In order to illustrate the carrying capacity distribution a
its properties we turn to a few concrete examples. Consid
process withB50.5, representing equally probable nutrien
rich and nutrient-poor patches, andD50.5, corresponding to

FIG. 2. The dark area in the (P,Q) plane below the lineAP
1AQ51 corresponds to the ‘‘biologically’’ accessible range
P and Q, which can be reached starting from probabilities 0<B,
D<1 through the relationsP5B(12D) and Q5D(12B). Note
that P1Q<1 gives an upper bound on the available ‘‘physica
range ofP andQ in the deposition model.
4-5
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medium antibiotic strength. It follows thatP50.25 andQ
50.25. Figure 3 shows the population distribution after o
generation,P1(N), for l53. Since in the first generation th
population is uniquely determined by the growth seque
k1, through N(1)5N01(l2k1)/l2, with k150, . . . ,2l,
we have

P1~N!5p1@k~N!#. ~5.1!

The probabilities associated with the seven peaks in the
ure thus follow directly from Eq.~4.4!. Note that the distri-
bution is symmetric about the initial populationN050.5, due
to the fact thatB5D.

In the language of fractal geometry@13# Fig. 3 can be
called the ‘‘generator’’ of the distribution. If this generato
were now applied on a smaller scale to split every peak
seven new peaks, we would obtain a perfect self-similar
ject, when iteratedad infinitum. However, in the second gen
eration the generator is different and has 2l211 peaks, 19 in
our example. Its width is reduced by a factor ofl, as can be
seen from inspection of Eq.~4.1!. It is the convolution of the
two generators, according to the product expression~4.6! and
sum ~4.7!, which gives the population distribution after tw
generations. The result is shown in Fig. 4.

In this distribution the seven probability peaks of the fi
generation are still clearly visible, but they have been s
due to the relatively small population shifts obtained in t
second generation. The seven structured peaks thus ha
width and fine structure determined by the generator of
second generation, and all seven are similar to each o
differing only in their amplitude which is apparent in Fig.
Note that the total number of peaks, 73, is significan
smaller than the product 7319. This is due to overlap o
peaks, which results, as discussed previously, from diffe
growth sequences leading to the same population.

As the generations progress, the individual probabi
peaks can no longer be resolved on the normal popula
scale. This is the case already after three generations, as

FIG. 3. Population distribution after one generation,P1(N), for
B50.5 andD50.5. The most probable population~highest peak!
coincides with the initial population.
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5 shows. There are 703 peaks after three, and 6481 p
after four generations. The global scaling properties of
distribution can be easily understood if one takes into
count that the number of peaks increases by approximate
factor of 9, since the interpeak distance, or minimum po
lation shift, decreases by a factor ofl2 in each generation, a
implied by Eq.~4.1!. Consequently, in order to preserve th
normalization of the total probability the height of the pea
must decrease roughly by a factor of 9 also.

After four generations the population distribution loo
nearly identical to that after three generations, provided
height is scaled by roughly a factor of 9. Therefore, Fig
~three generations! already reveals the shape of the popu
tion distribution in the limit of a large number of generation
i.e., it gives the carrying capacity distributionP(K) that we
are interested in.

FIG. 4. Population distribution after two generations,P2(N),
for B50.5 andD50.5. This distribution arises as the convolutio
of two generators. The seven peaks originate from the seven p
lations seen in Fig. 3.

FIG. 5. Population distribution after three generations,P3(N),
for B50.5 andD50.5. Notice the self-similarity in the fine struc
ture of the main peaks. The distribution, normalized to unity, giv
the probabilities of 703 distinct population values and its shape~but
not its height! has almost converged to that of the long-time car
ing capacity distributionP(K)[P`(N).
4-6
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Besides the analytic calculation, we have carried
simulations of these random processes and obtained po
tion distributions in the form of histograms. Obviously, for
histogram to present accurately a discrete distribution
peaks, the bin width must be smaller than the interpeak s
ration in population. For example, from these simulatio
typically involving 104 processes for givenB and D, a his-
togram with 1000 bins on~0,1! is obtained which reproduce
the analytic results accurately. In view of the fact that little
no changes can be perceived in the shape of the~properly
scaled! distribution for generation numbers larger than thr
it follows that a histogram with fixed bin size~1000! will
converge~without scaling! already after three or four genera
tions and reveal the carrying capacity distribution. In act
experiments a bin size is defined by practical resolution li
tations on the counting of bacteria. Therefore, the biolo
cally relevant framework is that which employs afixed bin
size.

The example we have chosen in Figs. 3–5 is a typ
case in the category of broad carrying capacity distributi
with an average value close to~in this case at! the initial
homogeneous populationN0. For medium nutrient levels
and medium antibiotic strength the fluctuations are app
ently too large for the experimenter to gain ‘‘control’’ ove
the outcome of the experiment. The situation changes d
tically when bacteria in a nutrient-poor environment are
posed to strong antibiotics. In this case a thorough elimi
tion of bacteria results almost certainly. This is shown in F
6.

For birth and death probabilitiesB50.05 andD50.95,
Fig. 6 gives the carrying capacity distribution after three g
erations. This corresponds toP50.0025 andQ50.9025.
Clearly, the population has been suppressed to far below
initial value N050.5, and the probability is concentrated o
the lowest accessible population values, aroundN'0.06.
This result is to be expected, and in line with common e
perience with the effect of antibiotics on bacteria in
nutrient-poor medium.

FIG. 6. Population distribution after three generations,P3(N),
for B50.05 ~poor nutrient! and D50.95 ~strong antibiotics!. The
population, initially atN50.5, is strongly suppressed to low valu
and with small standard deviation. The mean value, 0.067, ca
lated from Eq.~3.2!, is slightly larger than the most probable valu
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Possibly a more surprising result from this model is wh
happens when medium nutrient level is combined w
strong ~or very strong! antibiotics. If we takeB50.5 and
D50.99, leading toP50.005 andQ50.495, we obtain the
carrying capacity distribution shown in Fig. 7. The followin
properties are conspicuous:~i! the population is entirely
shifted to well below its initial valueN050.5, ~ii ! the distri-
bution is broad, and~iii ! the average population is about ha
the initial population. It appears that the antibiotic has fail
in two respects. The population has not been suppres
completely, and it is difficult to predict the eventu
asymptotic population due to the large fluctuations. Ma
ematically, this insufficiency can be traced to be caused,
by the medium abundance of nutrient-rich patches in its
since only very little growth is observed (P50.005 is very
small!, but by a substantial reduction of the antibiotic ef
ciency. This reduction, fromD50.99 in biological paramete
space, toQ50.495 in physical parameter space, is due to
indirect effect of nutrient-rich spots on antibiotic streng
through Q5D(12B). Indeed, on 50% of the biofilm the
antibiotic efficiency is spent on taking out only the new
produced bacteria, sinceB50.5, and only on the remaining
50% of the area the initially existing population gets~almost!

killed eventually, so that we can understand thatN̄(n)
→0.255, forn→`.

The few representative cases we have discussed u
now are the most interesting ones which can be stud
within this very simple model. We do not need to devo
special attention to the limitsB'D'0 or, equivalently,B
'D'1, for which the distribution remains sharply conce
trated around the initial value, so that the outcome of exp
ments is simple to predict. In the following section we elab
rate on the behavior of the most probable carrying capa
and its probability as a function of the birth and death rat
i.e., of B andD.

u-

FIG. 7. Population distribution after three generations,P3(N),
for B50.5 and D50.99. In spite of the strong antibiotics th
nutrient-rich surface allows the population to survive at, on avera
half the initial value, and with large fluctuations. Notice that t
mean value, 0.264, calculated from Eq.~3.2!, is roughly in between
the two most probable values.
4-7
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VI. MOST PROBABLE CARRYING CAPACITY
AND ITS PROBABILITY

With regard to an actual experiment it is important
predict themost probablecarrying capacity,K* , that will be
observed, and its probability of occurrence,P(K* ), given
the birth and death probabilitiesB and D. In generalK*

differs from the meanK̄. We have studied these properties
the model for rescaling factorsl52 andl53. Differences in
rescaling factor are seen to lead to quantitative differen
only, not essential for our discussion. Here we report on
results forl53.

Since the population distributions converge rapidly w
increasing generation number, the results for the first gen
tion ~the ‘‘generator’’! determine to a very good approxima
tion the relative importance of the peaks in the final dis
butions, as well as the population values associated with
peaks. Therefore, we can restrict our attention to thefirst
generationwhen studying the most probable carrying cap
ity and its probabilityqualitatively, and work with the most
probable populationN * and its probabilityP1(N* ). In the
Appendix we give the analytic expressions for the probab
ties of the populations after one generation.

There are two lines of symmetry in the model, whi
merit separate attention. The lineB5D is a symmetry line in
the sense that the population distributions forB.D are the
mirror images, reflected aboutN50.5, of the distributions
with B and D interchanged. On the lineB5D the average
population remains equal to the initial population. There
no net growth~see Sec. III!. One would therefore suspec
that, when the antibiotic strength precisely compensates
nutrient abundance, the most probable population after
experiment equals the initial population. This is indeed
case. However, unlessB is sufficiently close to 0 or to 1, the
fluctuations are large and the probabilityP1(0.5) of observ-
ing the most probable population is less than 50%. This
illustrated in Fig. 8~caseB5D).

The second symmetry concerns the substitution ofB by
12D, and of D by 12B. Clearly, this operation leavesP
andQ unchanged, and therefore the results are invariant.
line B1D51 thus acts like a mirror in the (B,D) plane. The
probabilityP1(N* ) along this line shows interesting corne
like singularities where the most probable population ma
a jump. In a statistical mechanical context what we are do
is similar to minimizing the ‘‘free energy’’F52P1(N)
with respect toN, for everyB, and obtaining the minimum
free-energy~maximum-P1) curve which displays corners a
points where two ‘‘phases’’~values ofN * ! coexist. Here, the
relevantN are restricted to the seven population values g
erated in the first generation~Fig. 3!, so that the curve can
have~at most! six corners. Figure 8 shows the probability
the most probable population along this line~caseB1D
51). Although this curve has been calculated only for t
first generation, it is important to keep in mind that it
already a good approximation to the probability of the m
probable carrying capacityK* , defined in the limit of a large
number of generations. That curveP(K* ) must also display
cornerlike singularities, representing jumps inK* , at values
of B ~or D) close to the singularities exhibited in Fig.
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These jumps inK* occur when two main peaks in the dis
tribution ~see Fig. 7 for example! exchange maximum
height.

A global plot of the most probable populationN * after
one generation, in the domain 0<B,D<1 is presented in
Fig. 9. The two symmetries we discussed can be seen in
plot. The singularities, in the form of terrace border line
represent the ‘‘coexistence’’ of two distinct values ofK* .
These lines run roughly parallel to lines of constantB2D,
so that, to a crude first approximation, the most proba
population depends mainly on the differenceB2D. Recall
that the average populationN̄ dependsonly on B2D, ac-
cording to Eq.~3.1!.

The probability P1(N* ) as a function ofB and D is
shown in Fig. 10. It displays lines of cornerlike singulariti

FIG. 8. Probability of the most probable population after o
generation, as a function ofB, for the special symmetry linesB

5D ~dashed line without singularities; along this lineN* 5N̄
5N050.5) andB1D51 ~solid line with six corner singularities!.

FIG. 9. Most probable population after one generation as a fu
tion of B andD. The staircase structure reveals where two values
N* exchange maximum probability. The model symmetries are
parent and help interpret Fig. 8 and Fig. 10.
4-8
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precisely where the terrace borders occur in Fig. 9. Note
a sharp population distribution is only found near the fo
points whereB andD are close to 0 or 1.

In order to quantify this further we have calculated t
standard deviationŜ1 of the distribution after one genera
tion, as a function ofB and D. This quantity is defined
through

~Ŝ1!25
1

2l11 (
k50

2l

@Nk2N̄~1!#2P̂1~k!, ~6.1!

with Nk[1/(l21)1(l2k)/l2 and, from Eq.~3.2!, N̄(1)
51/(l21)1(B2D)/l. Explicit expressions for theP̂1 are
given in the Appendix. The standard deviation is shown
Fig. 11. Like the average population, the standard devia
is a smooth function ofB andD, and illustrates clearly that a
broad population distribution is generic.

VII. CONCLUSIONS AND A POSSIBLE
EXPERIMENTAL TEST

Keeping in mind possible relevance of this hierarchi
model to towering pillar biofilms, as discussed in Sec. II,
recapitulate here the main model ingredients. The mo
contains three parameters: birth probabilityB, death prob-
ability D, and rescaling factorl. B essentially reflects the
fraction ~or quality! of nutrient-rich area on the surface, an
D the density~or quality! of bactericidal agents. The resca
ing factorl sets the characteristic bare decay rate~Sec. III!
and controls the fragmentation—in space—of the nutrie
rich patches and the antimicrobial activity, mimicking diffu
sion and transport. The main role ofl has been to generat
the exponentially rapid saturation of the population
decreasing—uniformly in space—the amount of offsprin
in each generation and simultaneously increasing unifor
antimicrobial resistance. This mimics, for example, a nutri
or temperature drop and biofilm development, respectiv

FIG. 10. Probability of the most probable population after o
generation, as a function ofB andD. Two special lines along this
surface are shown in Fig. 8. Notice that the border lines atB50 or
B51 display three corner singularities, as do the lines forD50 or
D51.
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as discussed in Sec. II. Through the action ofl the model
becomes hierarchical and this leads to a finite carrying
pacity ~‘‘freezing’’ or stagnation!. Undoubtedly, the use o
just one parameterl for inducing all these dynamical effects
in the interest of simplicity and transparency of the mod
cannot be more than a first crude step towards a more r
istic and refined approach.

The growth of the population thus acquires a hierarchi
structure, apparent in the fractal population ‘‘landscape
~Fig. 1!, and expressed by a~nearly! self-similar carrying
capacity distribution~Figs. 3–7!, the mathematics of which
has been discussed using elementary notions of fractal ge
etry. The main conclusion from studying these distributio
is that for generic values ofB andD a broad range of carry
ing capacities can be observed, and the outcome dep
largely on the sample used. Ensemble averaging is neces
for predicting statistically relevant properties of this type
growth.

The question now arises whether this model is relevan
an experiment in which bacteria capable of forming a biofi
on an inhomogeneous nutrient field are exposed to antibi
or protein spray and subsequently put in a refrigerator or
oven ~for about a day, withDT'1 °C/h). The applicability
of the model relies primarily on the determination of th
model parameters starting from experimental system par
eters. In our discussion we have takenl53, having in mind
that the linear size of a nutrient-rich patch or an antibio
drop is roughly one third of the inoculation line. This leng
ratio can be determined easily in practice and the resca
factor can be adjusted, or, of course, two separate resca
factors can be introduced if necessary. The external coo
~or heating! rate, taking the bacteria away from optim
growth conditions, is assumed to be adjusted so that the
cesses come to a halt in about four to five generations.
quality of the nutrient and the strength of the antibiotic, i

FIG. 11. Standard deviationS1 of the population distribution
after one generation, vsB and D. We have definedS1

[A2l11 Ŝ1. Notice that only extreme values ofB andD ~near the
corners of the square, whereS1 approaches zero! lead to a sharp
distribution and easily predictable populations of individu
samples.
4-9
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corporated inB andD, can be tuned experimentally by dilu
tion, for example. Alternatively, one can work with a fixe
amount of nutrient, all of which is placed initially on th
substrate in a nonuniform way. In this case, without ‘‘refu
ing,’’ the population will come to a halt with no need t
change the temperature of the sample.

State-of-the-art experiments allow a simultaneous cou
ing of many samples~say, 104) on a microarray in order to
obtain carrying capacity distributions, much like is done
ensemble averaging. In sum, a direct experimental chec
this model is feasible, and would be worthwhile, before
troducing theoretical refinements which undoubtedly
necessary to make the model more realistic, but on the o
hand compromise the insight that can be gained using o
very few key parameters.
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APPENDIX: PROBABILITIES OF THE POPULATION
AFTER ONE GENERATION „CASE lÄ3…

In this appendix we give the analytic expressions used
the calculations of the most probable population and its pr
ability after one generation~Sec. VI!. The rescaling factor is
l53. In terms of the auxiliary probabilities

P5B~12D ! and Q5D~12B!, ~A1!

with 0<B, D<1; and in terms ofS5P1Q, we obtain,
using Eq.~4.4!,

P̂1~0!5P3,

P̂1~1!53P2~12S!,

P̂1~2!53P~12S!213P2Q,

P̂1~3!5~12S!316P~12S!Q,

P̂1~4!53~12S!2Q13PQ2,

P̂1~5!53~12S!Q2,

P̂1~6!5Q3. ~A2!
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