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Waves at the nematic-isotropic interface: The role of surface tension anisotropy,
curvature elasticity, and backflow effects

V. Popa-Nita* and P. Oswald†

Laboratoire de Physique de l’Ecole Normale Supe´rieure de Lyon, 46 Alle´e d’Italie, 69364 Lyon Cedex 07, France
~Received 2 July 2003; revised manuscript received 24 October 2003; published 31 December 2003!

Recently, a theoretical description of waves at the nematic-isotropic interface has been proposed using a
generalized dynamical Landau–Ginzburg–de Gennes theory@V. Popa-Nita and T. J. Sluckin, Phys. Rev. E66,
041703~2002!#. This calculation assumed an isotropic surface tension, i.e., independent of the director orien-
tation at the interface and neglected all coupling between the director and the hydrodynamic flow. As a
consequence, the director was assumed to keep a fixed orientation and do not couple with the oscillations of the
interface. These assumptions are rather crude in real nematics where surface tension anisotropy may be as large
as 20% and where hydrodynamic coupling with the director is known to be important. In this paper we propose
to take into account these two effects: as a result, interface oscillations couple with the director field via
hydrodynamic flows and backflow effects. We analyze how these phenomena change the dispersion relation.
Finally, we review experiments on the nematic-isotropic interface and discuss how to measure experimentally
the dispersion relation.

DOI: 10.1103/PhysRevE.68.061707 PACS number~s!: 61.30.Cz, 64.70.Md, 83.80.Xz
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I. INTRODUCTION

In this paper, we analyze the problem of the damping
capillary waves at the interface between two fluids. T
classical problem is simple when the two fluids are isotro
and immiscible and when the interface thickness is m
smaller than the wavelength of the undulation~‘‘sharp-
interface’’ limit!. On the other hand, the problem is mo
complicated when the two phases may transform into e
other ~interface between two phases of the same compo
at the coexistence temperature!, an effect that becomes dom
nant when the wavelength of the oscillation approaches
interface thickness. This phenomenon should be visible
the liquid-vapor interface close to the critical point, but e
periments are very difficult in these conditions. It also exi
in liquid crystals, where phase transitions are very often v
weakly first order. This was pointed out recently by one of
~V.P.-N.! and Sluckin in Ref.@1#, where the nematic-isotropi
interface was analyzed. In this particular example, it w
shown that the dispersion relation of the capillary waves
viates strongly from its usual form~found in the hydrody-
namic sharp-interface limit! at short wavelength~typically
smaller than 1 –2mm, which should be visible experimen
tally!. Nevertheless, this calculation was not complete a
neglected the coupling between the nematic director and
hydrodynamic flow, as well as the anchoring effect of t
director at the interface.

The goal of this paper is to analyze the influence of th
two effects on the dispersion relation of capillary waves
the nematic-isotropic (N-I ) interface. As in Ref.@1#, we will
use a phase-field formulation@2#. In this approach, the free
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boundary problem associated with the sharp-interface mo
is replaced by a coupled pair of nonlinear reaction-diffus
equations. The spatial and temporal variations of the or
parameter phase field is governed by a time-depend
Ginzburg-Landau~TDGL! equation. The second equatio
~for temperature! is based on a modification of the heat equ
tion, and contains a source term that mimics latent heat p
duction at the moving interface.

Interfaces in thermotropic liquid crystals behave li
model systems in which the phase-field theory can be u
particularly well. In their cases, the phase-field order para
eter is not anad hocinvention, as it can be physically mea
sured. In addition, the fluidity of liquid crystals renders a
cessible a large range of time scales in experiments.
relevant phase-field theory of the nematic-isotropic ph
transition@3,4# we will use in this paper is a dynamical gen
eralization of the familiar Landau–de Gennes theory@5,6#, in
which coupling with hydrodynamics has been included. T
corresponding equations have been first proposed by H
@7# and subsequently completed by Olmsted and Goldbart@8#
and by Qian and Sheng@9#.

Apart from its intrinsic interest, the dynamics of liqui
crystal interfaces is much richer than in usual systems~such
as solid-liquid interfaces or surfaces in contact with air
vacuum!. The reason is that the corresponding phase tra
tions can usually be described by a nonconserved order
rameter~associated with the symmetry breaking at the tra
sition! and are weakly first order. The nematic-isotrop
transition, where the orientational order parameter is quad
polar, belongs to this category. In this example, it has b
shown that very different dispersion relations for waves
the nematic-isotropic interface can be obtained depending
the way the calculations are done: more precisely, the diff
interface theory, solved by assuming that the order param
and velocity fields do not interact, leads to purely diffusi
surface waves whose mode structure is identical to that of
bulk diffusive modes found in the TDGL theory@4#. On the
other hand, the sharp-interface theory yields modified ca

st,
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V. POPA-NITA AND P. OSWALD PHYSICAL REVIEW E68, 061707 ~2003!
lary waves, with a large propagating component.
In a previous paper@1#, these two points of view have

been reconciled by analyzing the surface eigenmodes o
nematic-isotropic interface within the Hess-Olmste
Goldbart model. To simplify things, it was assumed in th
paper that the nematic director was fixed in space and ti
so that the relevant physics was only described by a sc
order parameter. It turns out that this assumption is o
valid if the surface tension is isotropic~i.e., does not depend
on the director orientation at the interface!, and, less obvious
if the coupling between the flow and the director~and pos-
sible ‘‘backflow’’ effects! can be neglected. A general dispe
sion relation was then obtained, having as particular ca
the ~scalar! order parameter relaxation regime in the sh
wavelength limit and the viscous damping regime valid
the long wavelength limit.

In this paper, we reconsider this problem in a more g
eral way, by taking into account both the hydrodynamic co
pling with the director and the surface tension anisotro
which we know to be very large at the nematic-isotrop
interface. In this case, the problem is more complicated
the director oscillates. To introduce the anchoring energy
the director at the interface, we have included theL2 Gin-
zburg term in the elastic free energy in addition to the i
tropic one L1 @see Eq. ~4! below#. This term fixes the
strength of the anchoring energy at the nematic-isotropic
terface. We emphasize that, in this model, the preferred
entation of the director with respect to the interface is eit
parallel or normal depending on the sign ofL2. In the fol-
lowing we shall assumeL2 is positive, which favors homeo
tropic anchoring.

To calculate the general dispersion relation of nema
isotropic interface, we start from a generalization of the st
dard Ericksen-Leslie~EL! @10,11# theory written in term of
tensorial order parameter@9#. This new formulation involves
the same number of viscous parameters as in the EL the
which can be expressed as linear combinations of the Le
viscosities.

In order to perform the calculations, we assume that
base state of the system is a planar nematic-isotropic in
face in equilibrium. This condition fixes its temperature
TN-I , the nematic-isotropic phase transition temperature.
simplify, we further assume that the temperature is unifo
~no temperature gradient perpendicular to the interface!. Due
to thermal fluctuations, small-amplitude monochroma
waves develop at the interface. A linear stability analysis
the equations is used to obtain their dispersion relation.

The paper is organized as follows. In Sec. II we descr
the basic model and give the governing equations. We t
present in Sec. III the dispersion relations corresponding
the two regions defined by the typical lengths in the proble
The general dispersion relation and numerical results are
sented in Sec. IV. The differences with the simplified mo
treated in Ref.@1# are emphasized in Sec. V, which is fo
lowed by a general discussion of the results in Sec. VI.
periments on the nematic-isotropic front are reviewed the
Sec. VII, where we also make a few suggestions for mea
ing the dispersion relation. Finally, in Sec. VIII, we dra
some conclusions and present directions for future work
06170
he
-
t
e,
lar
ly

es
t

-
-
,

s
f

-

-
ri-
r

-
-

ry,
lie

e
r-

t
o

c
f

e
n

to
.
e-
l

-
in
r-

II. EQUATIONS OF MOTION

The local state of a uniaxial nematic liquid crystal is d
scribed by a traceless symmetric second-rank tensorQab ,

Qab5S~3nanb2dab!/2, ~1!

where the unit vectornW is the nematic director andS the
usual scalar order parameter (S50 in the isotropic liquid and
S51 in a fully oriented nematic phase!.

Within the mesoscopic approach, the Landau–de Gen
~LdG! free energy functional is given by@12,13#

F~Q,“Q,T!5E @ f ~Q,T!1 f F~“Q!#dV, ~2!

where

f ~Q,T!5a~T2T* !QabQba2BQabQbgQga

1C~QabQba!2 ~3!

is the bulk LdG free energy density and

f F~“Q!5 1
2 L1~]aQbg!21 1

2 L2~]aQab!2 ~4!

the distortion~elastic! free energy density.
We assume that the heat diffusion is sufficiently rapid

order that the system remains at thermal equilibrium.
therefore ignore the equation for energy conservation
assume that the system does not shift from temperatureTN-I .
We further assume the fluid is incompressible. Within the
approximations, the equations of motion for the velocity a
the order parameter become@9#

]ava50, ~5!

r
dva

dt
5]b~2pdab1sab

d 1sab
v !, ~6!

05hab1hab
v 2ldab2eabglg , ~7!

wherer is the density,p the pressure, whilel andlg are the
Lagrange multipliers associated with conditions TrQ50 and
Qab5Qba , respectively. In this expression,a, b, andg run
from 1 to 3, summation over repeated indices is implie
eabg is the Levi-Civita symbol, andd/dt is the total time
derivative]/]t1vW •“. The distortion stresssd and the elas-
tic molecular fieldh are obtained in standard manner as

sab
d 52

]F

]~]aQgr!
]bQgr , ~8!

hab52dF/dQab . ~9!

As for the viscous stress tensorsv and the viscous molecula
field hv, they are given by a tensorial generalization of t
EL theory @9#,

sab
v 5b1QabQmnAmn1b4Aab1b5QamAmb1b6QbmAma

1 1
2 m2Nab2m1QamNmb1m1QbmNma , ~10!
7-2
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2hab
v 52 1

2 m2Aab1m1Nab , ~11!

where

Nab5
dQab

dt
1QamWmb2WamQmb ~12!

is the time rate of change of the order parameter with res
to the background fluid angular velocity~corotational deriva-
tive in the language of rheologists!. b1 , b4 , b5 , b6 , m1,
and m25b62b5 are viscous coefficients which can be e
pressed in terms of the Leslie coefficientsa i and the value of
the order parameterS @9#, while Aab5 1

2 (]avb1]bva) and
Wab5 1

2 (]avb2]bva) are, respectively, the symmetric an
antisymmetric parts of the velocity gradient tensor.

Let us now define the two typical lengths of the proble
and the associated characteristic times.

~i! The first length is related to the order parameter its
It strongly varies across the interface over a typical dista
known as the microscopic correlation lengthl S
5(16CL/B2)1/2.1026 cm, whereL53(L11L2/6)/2 is a
linear combination of the two stiffness constantsL1 andL2.
This length gives the typical width of the order parame
profile within the interface. The order parameterS is also
associated with a typical relaxation timetS524Cm1 /B2

.1026 s . This time does not depend on the size of
region in which the order parameter has been disturbed,S
is not a hydrodynamic variable.

~ii ! The second length is associated with the vorticity, i
to the flow induced by the motion of the interface. The c
responding physics is described by the generalized Nav
Stokes equation~6!, which can be considered in the th
interface limit. The important physical parameters are
capillary force, associated with the interfacial tensiong, the
viscous dissipation, associated with some viscosity coe
cient h, and the fluid inertia, governed by the mass dens
r. From these three quantities, we can construct only
length l h5h2/rg.1 cm .

In order to find the physical meaning of this length, let
consider a perturbation of sizel at the interface and let u
estimate its relaxation time. This perturbation creates a p
sure gradient inside the fluid given by the Laplace equat
“P.g/ l 2. This pressure gradient is balanced in the Nav
Stokes equation, either by the inertial term or by the visc
term, depending on the value ofl. Let t be the relaxation
time: in the former case, we haveg/ l 2.r l /t2, which gives
the inertial typical relaxation timet i.(r l 3/g)1/2; in the lat-
ter case,g/ l 2.h( l /t)/ l 25h/t l , which gives the typical vis-
cous relaxation timetv.h l /g. One immediately checks tha
the lengthl h defined above gives the size of the perturbat
for which the two relaxation times are equalt i5tv5th
5h3/rg2. So, for l @ l h , t i@tv , which means that inertia
dominates. In contrast, forl ! l h , tv@t i , meaning that now
viscosity dominates. In conclusion,l h is the length scale
separating the inertial regime from the viscous one. In
following, we shall useth as unit time, which is the typica
relaxation time of a perturbation of sizel h . Note that in our
systeml h.1 cm andth.10 s are pretty large~in compari-
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son with what we would obtain for an ordinary liquid-a
interface! as theN-I interface surface tension is very sma

In the following, the ratio of these two lengthse5 l S / l h
.1026 will constitute the small parameter of the theory.

We consider a two-dimensional flow with horizontal an
vertical velocity componentsu and w in the x and z direc-
tions, respectively,f is the angle between the director an
the z axis @nW 5„sinf(x,z,t),0,cosf(x,z,t)….„f(x,z,t),0,1…#
and we simplify the expressions~10! and ~11! by assuming
that

b15b55b650, b452b, ~13!

which give m250 @9#. In terms of Leslie coefficientsa i ,
these relations are equivalent to

a15a55a650, 2a25a35a59S2m1/4,

a45b452b. ~14!

Note that similar approximations were used to describe ba
flows effects in the Smectic-C films and were known for
preserving all the physics of the problem~even if the hypoth-
esis 2a25a3, corresponding to a ‘‘tumbling’’ nematic, is
rarely observed, except very close to a smectic phase! @13#.
Within these approximations, the coefficientb describes the
dissipation due to shear flow~shear viscosity!, while m1 is
associated with the dissipation due to the rotational mot
of the optical axis~with the standard rotational viscosityg1
5a32a259S2m1/2). Using these hypotheses and Eqs.~1!–
~4!, the basic Eqs.~5!–~7! take the form

05]xu1]zw, ~15!

r
du

dt
52]xp1

1

2 S 9Snem
2

4
m112b D¹2u

2
9Snem

2 m1

4
]zt

2 f2L¹2S]xS, ~16!

r
dw

dt
52]zp1

1

2 S 9Snem
2

4
m112b D¹2w

1
9Snem

2 m1

4
]xt

2 f2L¹2S]zS, ~17!

9Snem
2 m1

2

df

dt
5

9~2L11L2!Snem
2

4
¹2f

1
9Snem

2 m1

4
~]zu2]xw!, ~18!

m1

2

dS

dt
5hzz

[s]1hxx
[s] , ~19!

where hxx
[s]5 1

3 d f /dS2 1
3 L¹2S2 1

4 L2¹2S and hzz
[s]

52 2
3 d f /dS1 2

3 L¹2S1 1
2 L2]zz

2 S @with d f /dS53a(T
2T* )S2 9

4 BS219CS3] are the symmetric traceless comp
nents of the elastic molecular field given by Eq.~9!,
7-3
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V. POPA-NITA AND P. OSWALD PHYSICAL REVIEW E68, 061707 ~2003!
L53(L11L2/6)/2 andSnem5B/6C is the value ofS in the
nematic phase at temperatureTN-I . Note that in writing Eqs.
~15!–~19!, we have neglected the terms of the followin
types:S(]aS)(]bf) andf(]aS)(]bS) which appear in the
distortion stress tensor. The terms of the first type cancel
to the fact that in the region of the dimensionl S , f is con-
stant and in the region of the dimensionl h , S is constant (f
relaxes to its equilibrium value over a distance of the dim
sion l h). The terms of the second type are negligible~be-
causef is always very close to zero, assuming homeotro
anchoring! comparing with terms of the form (]aS)(]bS)
which have been considered in the distortion stress ten
Equation~17! and the first three terms on the right hand s
of Eqs. ~15! and ~16! are written treating the orientationa
order parameterSnem as a frozen constant. We definea
59Snem

2 m1/4, K59(2L11L2)Snem
2 /4, and h5(a12b)/2

and we rewrite Eqs.~15!–~19! in dimensionless forms by
measuring length in unit ofl h , time in unit of th , and intro-
ducing the dimensionless quantities:S̄5S/Snem56CS/B, t

524a(T2TN-I)C/B25(T2TN-I)/(TN-I2T* ), f̄

5242C3f /B4, r̄5242rC3g2/B4h2, p̄5242C3p/B4, h̄
5242C3h/thB4, K̄5242C3K/B4l h , m̄153hm1/2rL, ā
5242C3a/thB4, ande25 l S

2/ l h
2 . Omitting the bar notation in

the following, the governing Eqs.~15!–~19! can be written as

05]xu1]zw, ~20!

r
du

dt
52]xp1h¹2u2a]zt

2 f2e2¹2S]xS, ~21!

r
dw

dt
52]zp1h¹2w1a]xt

2 f2e2¹2S]zS, ~22!

2a
df

dt
5K¹2f1a~]zu2]xw!, ~23!

e2m1

dS

dt
52

d f

dS
1e2S 11

3L2

4L D¹2S2
3

2
e2

L2

L
]xx

2 S, ~24!

whered f /dS52(11t)S26S214S3.
This form of the free energy density describes a first-or

nematic-isotropic phase transition. Fort5tN-I50, the two
phases, nematic (Snem51) and isotropic (Siso50), coexist in
equilibrium (f nem5 f iso). In the following we suppose tha
the stationary planar nematic-isotropic interface~the base
state of the system! is situated atz50, such that the nemati
lies in the regionz,0 and the isotropic phase in the regio
z.0. As for x axis, it is taken in the direction of the wav
vectorkW of the perturbation along the interface. This is po
sible without loss of generality, as the system is isotropic
x and y directions~neglecting the biaxiality of the nemati
phase!. In this way, the wave numberk represents the modu
lus of the two-dimensional wave vector in the plane of t
interface.
06170
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III. ASYMPTOTICS

We seek solutions of Eqs.~20!–~24! for e!1, in the inner
region~of dimensionl S) in which the order parameter varie
rapidly ~the solution is essentially diffusive! and in the outer
region~of dimensionl h) in which the physics is governed b
hydrodynamics~dissipation by shear flow and by rotation o
the optical axis, respectively!.

A. Outer region

In the outer region,S is constant in each phase (S5Snem
51 for z,0 andS5Siso50 for z.0) and the equations fo
velocity and angle are the same for all orders in an expan
in e. We have to consider separately the two phases.

1. Nematic phase

In the outer region of the nematic phase (z,0), S
5Snem51 and the working equations~20!–~24! become

05]xu1]zw, ~25!

r
du

dt
52]xp1h¹2u2a]zt

2 f ~26!

r
dw

dt
52]zp1h¹2w1a]xt

2 f ~27!

2a
df

dt
5K¹2f2a~]zu2]xw!. ~28!

Thus, the outer problem is equivalently with the EL co
tinuum theory of the nematic liquid crystals and Eqs.~25!–
~28! are similar to those used to study the transient perio
distortions which sometimes develop during the Frederi
transition@14,15#. The solution corresponding to the statio
ary planar interface is given byu05w050, p05const, and
f050 assuming that homeotropic anchoring is favored.
now impose a small periodic sinusoidal perturbation to
interface of the formj I5jkexp(ikx2Vt), where j I is the
vertical displacement of the interface with respect to its eq
librium positionz50. In our notations,k is the wave vector
~real number! and V is the angular frequency. The latte
quantity is generally a complex number whose real part gi
the relaxation timet51/Re(V) of the wave and the imagi
nary part the phase velocityvp5Im(V)/k. We then look for
the solution of Eqs.~25!–~28! in the form u5U0exp(qz
1ikx2Vt), w5W0exp(qz1ikx2Vt), p5p01P0exp(qz1ikx
2Vt), and F5F0exp(qz1ikx2Vt). After substitution in
Eqs. ~25!–~28!, we get a system of algebraic equations f
the amplitudes

ikU01qW050,

@rV2h~k22q2!#U02 ikP01qaVF050,

@rV2h~k22q2!#W02qP01 ikaVF050,

aqU02 ikaW01@2aV2K~k22q2!#F050. ~29!
7-4
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Putting the determinant of system~29! equal to zero, we obtain the following bulk characteristic equation, connectingq, k, and
V:

~k22q2!$@2aV2K~k22q2!#@rV2h~k22q2!#1a2V~k22q2!%50, ~30!

with solutions

q5k and q25 l 1,2
2 5k22

2ab1Kr6@4a2b21K2r214arK~b22a!#1/2

2Kh
V. ~31!
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For a nematic of large depth~region 2`,z,0), the
wavelike solutions of Eqs.~25!–~28! are of the form

u5~ ikAekz2 l 1Ĉ1el 1z2 l 2Ĉ2el 2z!exp~ ikx2Vt !, ~32!

w5~kAekz1 ikĈ1el 1z1 ikĈ2el 2z!exp~ ikx2Vt !, ~33!

p5p01rVAekzexp~ ikx2Vt !, ~34!

f5~f1Ĉ1el 1z1f2Ĉ2el 2z!exp~ ikx2Vt !, ~35!

where f i5@rV2h(k22 l i
2)#/aV52a(k22 l i

2)/@2aV

2K(k22 l i
2)#, Ĉi5C/(k22 l i

2), with i 51,2. In Eqs.~32!–
~35! the velocity field may be decomposed in two parts:~i! a
potential ~irrotational! flow of amplitude proportional toA
@which derivates from the potentialc5A exp(kz1ikx2Vt)]
and~ii ! a rotational flow of amplitude proportional toC that
derivates from a vector potential.

2. Isotropic phase

In the isotropic phase~region z.0) the working equa-
tions ~20!–~24! become

05]xu1]zw, ~36!

r
du

dt
52]xp1h I¹

2u, ~37!

r
dw

dt
52]zp1h I¹

2w. ~38!

Thus, the outer problem of the isotropic phase is equiva
with the Navier-Stokes equations subject to the incompre
ibility condition @16–19#.

Similar to the nematic phase, we get the wavelike so
tions for the isotropic phase of large depth~region 0,z
,`) in the form

u85~ ikA8e2kz1 lĈe2 lz!exp~ ikx2Vt !, ~39!

w85~2kA8e2kz1 ikĈe2 lz!exp~ ikx2Vt !, ~40!

p85p01rVA8e2kzexp~ ikx2Vt !, ~41!

wherel 5k(12rV/h Ik
2)1/2.
06170
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3. Dispersion relation

Equations ~32!–~35! and ~39!–~41! correspond to the
classical sharp-interface approach, where it is assumed
the thickness of the inner region is zero. In this limit, t
dispersion relation is determined by the boundary conditi
at the nematic-isotropic interface which can be taken az
50 due to the smallness of the amplitude of the oscillatio
@16,17#. These conditions are as follows:

~i! and ~ii ! The x andz components of the velocity mus
be continuous.

~iii ! The tangential components of the stress tensor m
also be continuous, which givessxz5sxz8 , where sxz

5b(]xw1]zu)2 1
2 K¹2f andsxz8 5h I(]xw81]zu8) are the

xz components of the stress tensor in the nematic phase
the isotropic liquid, respectively.

~iv! As to the jump of the normal component of the stre
tensor, it is given by the Laplace law

szz2szz8 5g
]2j I

]x2
, ~42!

whereszz52p12b]zw and szz8 52p812h I]zw8 are the
normal component of the stress at the interface in the n
atic phase and in the isotropic liquid, respectively. In th
equation,j I52(1/V)wuz50 corresponds to the displaceme
of the interface at pointx with respect to the planez50
~with ^j I&50).

~v! The last boundary condition is given by the surfa
torque equation

Ke f f]zfuz501Wa~f1d!50, ~43!

whereWa is the anchoring energy,d5dj I /dx is the small
tilt angle of the interface about thex axis, andKe f f5K
12K4. The first term in Eq.~43! is the elastic torque acting
on the director at the surface@assumingK15K35K and tak-
ing into account the surface like termK4“•(nW“•nW 1nW 3“

3nW )] @13# and the second one is the anchoring torque du
the surface tension anisotropy. After substituting solutio
~32!–~35! and ~39!–~41! into the boundary conditions, we
obtain a homogeneous system of equations for the five
plitudesA, A8, Ĉ1 , Ĉ2, and Ĉ. Equating to zero its deter
minant gives the dispersion relation in the form

Vba
2 5

D

N
V0

2 , ~44!
7-5
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where D5(k2 l )(F2E12F1E2)1(k22 l 2)@2k(F22F1)
1F1( l 21 l )2F2( l 11 l )# and N5 l (F1E22F2E1)
1(k22 l 2)@(F11k2/V)( l 21 l )2(F21k2/V)( l 11 l )# 1 k2 /
2V@( l 21 l )E12( l 11 l )E2#. Here Ei5 l 22 l i

22K(k2

2 l i
2)f i /2b, Fi5(bli11)f i , b is a parameter defined asb

5Ke f f /Wa , and V0
252gk3/2r is the capillary wave dis-

persion relation for ideal~inviscid! fluids. To obtain Eq.~44!,
we have considered that the densities and translational
cosities of the two phases are equal (b5h I). The subscript
ba recalls that the real part ofV is associated with the
dissipation due to the shear flow and the rotational motion
the director~which induces supplementary backflow effect!.
Note that in the limitWa→0 anda→0, the director orien-
tation does not change in time~it is fixed because there is n
coupling with the flow and the interface!, so that the disper-
sion relation greatly simplifies and becomes

Vb
25

l 2k

l
V0

2 , ~45!

as found in Ref.@1#. Note that we only use the subscriptb in
this equation to show that the real part ofV is simply due in
this case to the shear flow.

Before calculating the full dispersion relation, we no
need to analyze the problem in the ‘‘inner’’ region, i.e., a
length scale of the order of the interface thicknessl S .

B. Inner region

At small scale, hydrodynamics are negligible. By usi
inner variablesz5x/e and j5z/e, the leading order equa
tions for the order parameter are obtained from the gen
equations~29!, ~25!, and~26! and write as follows:

m̃1

]S

]t
52

d f

dS
1S 11

3L2

4L D¹2S2
3L2

2L
]zz

2 S, ~46!

052]zp2¹2S]zS, ~47!

052]jp2¹2S]jS, ~48!

where m̃1524Cm1 /B2. The first equation gives the orde
parameter profile and will be used to calculate the dispers
relation in the inner region. The two others allow calculati
the pressure field, which we will not give explicitly. In th
following we set z̃5z/(113L2 /4L)1/2 and j̃5j/(1
13L2 /4L)1/2. In these new variables, Eq.~46! simplifies
and becomes~omitting the tilde signs in the following!

m1

]S

]t
52

d f

dS
1¹2S2

6L2

4L13L2
]zz

2 S, ~49!

where, now, units of length and time arel S85 l S(1
13L2/4L)1/2 andth , respectively. For the equilibrium plana
nematic-isotropic interface perpendicular toj axis, the solu-
tion of TDGL equation~49! with boundary conditionsS0
(2`)51 andS0(`)50 ~the subscript 0 refers to the equ
librium interface! is given by
06170
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S0~j!5
1

2 S 12tanh
j

A2
D , ~50!

where we have fixed the center of the interface~defined by
S051/2) at j50. Correspondingly, the surface tension~for
homeotropic anchoring! is given~in the dimensionless form!
by

g5E
2`

` S dS0

dj D 2

dj5
A2

6
. ~51!

Returning to real variables this equation takes the form

g5
A2

6

B3

243/2C5/2
L1/2. ~52!

Similar calculation can be done by assuming that the
rector makes an anglef with the z axis at the interface. In
this case the surface tension becomes

g~f!5
A2

6

B3

243/2C5/2S L1
1

2
L2sin2f D 1/2

. ~53!

At small surface tension anisotropy (L2 much smaller than
L), this equation can be rewritten in the Rapini-Popou
form

g~f!5g1
1

2
Wasin2f, ~54!

with L2 /L52Wa /g. As a consequence, knowingg andWa
allows us to calculateL and L2. We note that in the case
L250, Wa50, andK452K/2 @see Eq.~58! below and Ref.
@13#, p. 246! and the boundary condition~43! is identically
satisfied.

We now return to the dispersion relation in the inner
gion. It is obtained perturbing the base state, Eq.~50!, by
S(z,j,t)5S0(j)1S(j)exp(ikz2Vt). Substituting this form
into Eq. ~49! and linearizing in perturbation, give

HS5VS, ~55!

where H52dz
21k2@126L2 /(4L13L2)#1d2f /dS2(S0)

can be conveniently thought of as a quantum mechan
Hamiltonian operator@22#. Note thatd2f /dS2(S0) is positive
at j56` ~whereS050 andS051) and negative atj50
~where S051/2). In our casef (S)5S2(12S)2, one has
d2f /dS2(S0)52212S0(j)112S0

2(j), which equals21 at
j50, and tends to12 for j→6`. It follows that
d2f /dS2(S0) represents a potential well which must have
least one bound state. In fact, sincek50 corresponds to a
uniform translation of the interface, we know thatVk5050
is the eigenvalue with the eigenfunctiondjS0 @this can be
easily checked by differentiating Eq.~61! with respect toj].
Also, since this function has no node, it must be the grou
state. Since thek dependence ofH is simply the additive
constantk2@126L2 /(4L13L2)#, it follows thatdS0 /dj is,
7-6
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WAVES AT THE NEMATIC-ISOTROPIC INTERFACE: . . . PHYSICAL REVIEW E 68, 061707 ~2003!
for all k, the ground state eigenfunction—the so-called ‘‘slo
mode’’—of eigenvalue~in ‘‘real units’’ !

VS5
4L

9m1
S 12

6L2

4L13L2
D k2. ~56!

We note thatVS is real and positive. It gives the relaxatio
rate of the order parameter in the absence of hydrodynam
coupling.

IV. GENERAL DISPERSION RELATION

In order to obtain the full dispersion relation, we need
match the solutions obtained in the outer and in the in
regions, respectively, at first order ine2. Similar matching
was already done in Ref.@1# and we refer to that paper fo
detailed calculations. Using the same procedure, we ob
the generalized dispersion relation

V22VSV5Vba
2 , ~57!

where Vba and VS are given by the Eqs.~44! and ~56!,
respectively.

The real part of the solution of Eq.~57! and its asymptotic
limits given by Eqs.~44! and ~56! are drawn in Fig. 1. To
perform the numerical calculations we have takenL153.63
31027 dyn, L253.6931028 dyn, L55.5331027 dyn, K4
52131027 dyn, Ke f f51.0231028 dyn, b52.03
31025 cm, which givesVS56.1331027k2. These param-
eters have been obtained by using the following equatio

L2

L
52

Wa

g
, K5

9

4
~2L11L2!Snem

2 , K452
9

4
L1Snem

2 ,

L5
3

2 S L11
L2

6 D , ~58!

FIG. 1. The damping rate Re(V) as a function of the wave
vectork in a log-log plot defining three distinct regimes. The ge
eral dispersion relation, Eq.~57! ~continuous curve!, the viscous
damping dispersion relation, Eq.~44! ~dashed curve!, and the order
parameter relaxation dispersion relation, Eq.~56! ~dotted curve!.
Region I—dissipation due to shear flow; region II—dissipation d
to rotational motion of the director; Region III—relaxation of th
order parameter.
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and the typical experimental values given in the literature
5CB ~pentylcyanobiphenyl!: g51.531022 erg/cm2, a5b
.0.1 P, r51 g/cm3, K52.131027 dyn, Wa55
31024 erg/cm2, andSnem50.35 @13,20,21#.

Three regions must be clearly distinguished.
In the short wavelength limit~region III in Fig. 1!, the

interface is diffuse as the relaxation of the order paramete
the inner region is the dominant process. The dispersion
lation is then given by Eq.~56! ~dotted curve in Fig. 1!.

In the large wavelength limit, the interface is sharp a
can be considered as a surface of discontinuity. The visc
damping processes in the outer region then dominate and
corresponding dispersion relation is given by Eq.~44!
~dashed curve in Fig. 1!. The transition between these tw
regimes takes place when Re(Vha)5Re(VS), which gives
the critical wave numberkc.53104 cm21 and the corre-
sponding critical wavelengthlc.1.2 mm. It also appears
immediately that the curve in Fig. 1 has a slope discontinu
marked by a small peak for a particular value of the wa
numberk* .0.8 cm21. So, two regions must be further dis
tinguished in the hydrodynamic limit. The region I corr
sponds tok,k* where the nematic behaves as an isotro
liquid of viscosityh5(a12b)/2. This viscosity correspond
to the second viscosity of Miesowicz (hb according to stan-
dard notation@13#!, i.e., to the viscosity of the nematic phas
when it is sheared parallel to the director. Finally, the int
mediate region II corresponds tok* ,k,kc . In this range of
wave vectors, the slope of the curve is smaller than in reg
I, which indicates a decrease of the dissipation. In this
gime, curvature elasticity and backflow effects play an i
portant role and cannot be ruled out.

To sum up, three distinct regions appear in Fig. 1: t
regions in the hydrodynamic regime where the nematic
haves as an isotropic liquid of effective viscosityh whenk
,k* ~region I!, whereas fork* ,k,kc ~region II!, nematic
effects become important. Finally, at large wave numberk
.kc ~region III! the relaxation of the order parameter go
erns the physics. In order to better characterize these t
regions we compare in the following section the results
tained in the general case with those obtained in the sim
fied model assumingWa50 anda50.

V. COMPARISON WITH THE CASE WaÄ0 AND aÄ0

It is interesting to compare these results with those
tained in Ref.@1# where it was assumed that the orientati
of the director is fixed. As we have already mentioned, t
assumption is correct if the surface tension is isotropic (Wa
50) and the coupling between the director and the flow
negligible ~in our notation, this happens ifa!b or a50).

In order that this comparison makes sense, we perform
again the calculation of the dispersion relation by taking
same surface tension, which imposes to take the same v
for L. This way, we have obtainedL153.6931027 dyn,
L250, K452K/2521.0231027 dyn, Ke f f50, b52.03
31025 cm, andVS56.7731027k2.

In the following, we callV8 the relaxation rate atWa
50 anda50 ~as calculated in Ref.@1#!,

e

7-7
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V82 2VS8V85Vb
2 , ~59!

where

VS85
2L1

3m1
k256.7731027k2, ~60!

andVb is given by Eq.~45!.
In Fig. 2 we have plotted the relative variation of th

relaxation rate@Re(V)2Re(V8)#/Re(V8) as a function of
k. Again the three regions discussed in the preceding sec
are clearly visible. In addition, we note that the relaxati
rate is enhanced~with respect to the simplified casea5Wa
50) in region I, whereas it is lowered in regions II and I

In Fig. 3 we have plotted Im(V) and the corresponding
phase velocityvp5Im(V)/k as a function ofk in the two
cases. In the two graphs, the general solution obtained f
Eq. ~57! is represented by the solid curves, while the dot
ones represent the solution obtained in the simplified c
corresponding to Eq.~59!. Again the three regions are clear
distinguishable. In region I, the phase velocities~or the
imaginary parts ofV) are almost identical, the differenc
coming from the difference of viscosity of the nematic pha
in the two cases@equal to (2b1a)/2 in the general case an
to the smaller valueb in the simplified case, which explain
the difference#. On the other hand, there is a big qualitati
difference in region II since Im(V) ~and then the phase ve
locity! are different from 0 in the general case, whereas t
vanish in the simplified case. Note that Im(V) and the phase
velocity are zero in both cases in region III.

Finally, we have studied the effect of the surface tens
anisotropy in the general case. For doing this, we have p
ted in Fig. 4 the relative variation of the relaxation ra
@Re(V)(WaÞ0)2Re(V)(Wa50)#/Re(V)(Wa50). We
note that the influence ofWa is null in the region I and
becomes visible~although very small! in regions II~where it
remains less than 4%) and III~where it goes up to 10%). In
addition, we have plotted the phase velocities in both ca
in Fig. 5. Because there is only a difference between the
cases in region II, we have restricted our graph to this reg
Again the effect of the anisotropy is quite small, and is on
visible close to the maximum of the curve which is sligh

FIG. 2. The relative variation of the relaxation rate. The me
ing of the three regions is the same as in Fig. 1.
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shifted towards the large values ofk when Wa→0. These
two figures show that the effect of the anisotropy is ve
small in comparison with the effect of the rotational viscos
a.

In the following section we discuss these results and g
some analytical expressions which allow us to predict a f
limiting cases showed in the previous graphs.

VI. DISCUSSION

We first discuss the region I~the limit k→0). In this limit,
the nematic behaves almost as an ideal fluid, which me

-

FIG. 3. Im(V) ~a! and corresponding phase velocitiesvp

5Im(V)/k ~b! calculated from Eqs.~57! ~continuous curves! and
~59! ~dotted curves!.

FIG. 4. The relative variation of the relaxation ra
@Re(V)(WaÞ0)2Re(V)(Wa50)#/Re(V)(Wa50).
7-8
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WAVES AT THE NEMATIC-ISOTROPIC INTERFACE: . . . PHYSICAL REVIEW E 68, 061707 ~2003!
that curln50. As a consequence the second term on the
of Eq. ~28! vanishes which gives from the same equat
afV;Kk2f. We conclude that thea terms on the rhs of
Eqs.~26! and~27! ~of the order ofakVf;Kk3f) are com-
pletely negligible with respect to the usual viscous terms
h in the same equations~of the order ofhk2v). So, the
dissipation due to the rotational motion of the director
negligible and the nematic behaves as an isotropic fluid
this case the dispersion relation~44! reduces to that for two
fluids with equal densities but different viscosities:

V25F11
k~ l 21 l 1

2!22k3

~ l 1 l 1!~k22 l l 1!
GV0

2 , ~61!

where l 15k(12rV/hk2)1/2, l 5k(12rV/bk2)1/2, andV0
2

52gk3/2r. These formulas allow us to predict th
asymptotic value of@Re(V)2Re(V8)#/Re(V8) given in
Fig. 2 ask→0. Indeed, in this limit of very small dampin
(uV0u@hk2/r), V differs from V0 only by a small quantity
dVh with a real part given by

Re~dVh!5
g1/4

27/4r3/4
he f f

1/2k7/4. ~62!

In this equation, the effective viscosity coefficient is defin
to be

he f f
1/25

b1h

b1/21h1/2
, ~63!

with h5(2b1a)/2 in the general case andh5b in the
simplified case. From Eq.~63!, we calculate, in the limitk
→0,

Re~V!2Re~V8!

Re~V8!
5

he f f
1/22b1/2

b1/2
50.124. ~64!

This value is in very good agreement with that found n
merically in Fig. 2. Note that Re(V).Re(V8) because the
viscosityh of the nematic phase is greater in the general c

FIG. 5. The phase velocities. ForWa5531024 erg/cm2 ~ex-
perimental value!, continuous curve and forWa50, dotted curve.
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(aÞ0) than in the simplified one (a50). Another conse-
quence of this difference of viscosities is that, in region
Im(V) and the corresponding phase velocity are larger
smaller the viscosity is. This explains the shift between
two curves in the region I of Fig. 3.

We now discuss the crossover between regions I and
the general case, whenaÞ0. Assuminga5b ~as in our
numerical calculations!, the solutions of the characteristi
equation~30! are given by

q5k q5 l 15kS 12
r

hk2
V D 1/2

,

q5 l 25kS 12
2ab

Khk2
V D 1/2

. ~65!

These formulas show thatl 1 is associated with the usua
shear flow and is characterized by the relaxation time
vorticity th5r/hk2.6.67/k2 ~in cgs units!. In contrast,l 2 is
associated with the rotational motion of the director and
associated with the characteristic relaxation time of the fl
tuations of the director orientationta52ab/Khk2.6.35
3105/k2). In Fig. 6 we have plotted Re(l 1 /k) and Re(l 2 /k)
as a function ofk. The three regions are again clearly visib
In particular, this graph shows that the passage from the
gion I to the region II takes place atk5k* 50.812 cm21,
precisely when Re(l 2)5Re(l 1). We emphasize that the tw
propagating modes observed in regions I and II are very w
decoupled~see, in particular, in Fig. 3! becauseth!ta .

Finally, let us discuss the region III which is dominated
the dynamics of the order parameter. In that case, sur
undulations are strongly damped and do not propagate.
dispersion relation is given by Eq.~56! which allows us to
calculate the large wave numbers limit (k→`) in the graph
of Fig. 2:

Re~VS!2Re~VS8!

Re~VS8!
520.095. ~66!

Note that this limit is the same in the graph of Fig. 4.

FIG. 6. Spatial attenuation lengths of the waves in the nem
phase as a function of the wave number.
7-9



d
ll

n

ic
f

to
tw
ic

ry
a

ro
in
ic
a

e

n

y
e
ita
t

lla

e

Th
l’’

th

h
o
o
th

ic

x-
nd
no

ry
Th

for

n

nsity
face
ated

an
the
t

-

een

t in

n-
ase
m

for
m-
air
ree
in-

ace

e in
in
p-
of

sity
the
if

t
tinct
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VII. ABOUT EXPERIMENTS AND THE WAY TO
MEASURE THE DISPERSION RELATION

In this section, we briefly review the experiments alrea
performed on the nematic-isotropic interface and we reca
few general methods to measure the dispersion relatio
capillary waves.

First of all, the surface tension of the nematic-isotrop
interface has been measured@23#. One method consisted o
analyzing the shape of a macroscopic~size in centimeter!
nematic drop placed on a Teflon plate, itself situated in
transparent recipient filled with the isotropic liquid. Due
the gravity and the small density difference between the
phases, the drop slightly departs from its perfect spher
shape~the so-called ‘‘sessile drop’’ method@24#!, allowing
the determination of the surface tension~for the preferred
orientation of the director at the interface!. Unfortunately,
this static experiment gives no information about capilla
waves. On the other hand, it could be interesting to look
the mechanically excited deformation modes of a large d
in this type of system to explore the dispersion relation
regime I and obtain an estimate of the wave vector at wh
‘‘ordinary’’ capillary waves are overdamped and stop prop
gating.

Another method to probe regime I would be to prepar
flat nematic-isotropic interface in a large recipient~many
centimeters in size!. The experimental procedure would the
consist of mechanically~or electrically! exciting ‘‘plane’’
surface waves at a fixed frequencyf 52p/v. In this case,
the wave vector of the waves is complex@q5Re(q)
1 i Im(q)#. Each component ofq can then be measured b
observing the deflection of a laser beam with a position s
sitive photodiode as a function of the distance to the exc
tion point. These two components are then compared to
solution~in q at fixedV5v) of the dispersion relation. Note
that this method has already been used for studying capi
waves at the nematic-air interface in regime I@25#.

Another set of experiments on the nematic-isotropic int
face has been performed by Faetti and Palleschi@21#. In that
case, the reflectivity of the interface has been measured.
method allows a precise determination of the ‘‘optica
width of the interface. This quantity depends both on
‘‘static’’ width of the interface @given by the Landau–
Ginzburg–de Gennes theory and equal toA2l S according to
Eq. ~50!# and on its ‘‘thermal’’ width ~in general much
larger! @26#. The latter is due to thermal fluctuations whic
excite capillary waves at the interface. Thus, this meth
gives average information on the interface fluctuations. N
that, in this experiment, wave vectors which contribute to
reflectivity range from 1/A2l S;73105 cm21 down to
an/l;300 cm21, wherel is the wavelength of the light in
vacuum,n the sum of the refractive indices of the isotrop
and of the nematic phases, anda some angle~of the order of
5;731023) fixed by the experimental setup. So, this e
periment brings into play capillary waves of regimes II a
III defined previously. On the other hand, it again gives
information about their dynamics.

To obtain direct information about dynamics of capilla
waves, quasielastic laser light scattering can be used.
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classical technique has been successfully performed
probing waves at liquid interfaces such as the water-n dode-
cane interface@27# or the liquid-vapor interface of the carbo
dioxide very close to the critical point@28#. The latter ex-
ample resembles the present case in both, the small de
difference between the two phases and the very low sur
tension. The nematic-air interface has also been investig
experimentally by light scattering@29,30# but this case is
paradoxically closer to that of usual liquid-air interfaces th
to ours. Briefly, the technique consists of measuring
power spectrumP(k,v) of the scattered light at differen
wave vectork by using an heterodyne detection~for more
details see Refs.@31,32#!. To a first approximation, the spec
trum is Lorentzian of half width Re@V(k)# and it is shifted
by Im@V(k)# ~Doppler effect due to the wave propagation!.
Wave vectors accessible experimentally range betw
100 cm21 and 104 cm21, which turn out to be in the regime
II of the present study. Nevertheless, it must be noted tha
this range of wave vector, Im(V) is typically ten times
smaller than Re(V) ~Fig. 7!. For this reason, Im(V) will be
difficult to measure. One way to improve the situation co
sists of decreasing the viscosity in order to increase the ph
velocity of the waves while decreasing their damping. Fro
this point of view, 5CB is certainly not the best candidate
this experiment, as its nematic-to-isotropic transition te
perature is pretty low. Let us now return to the nematic-
interface. In this case, the surface tension is typically th
orders of magnitude larger than at the nematic-isotropic
terface. Consequently, regime I at the nematic-air interf
~the only one calculated by Langevin and Bouchiat@29,30#!
extends up to values ofk of the order of 103 cm21. That
means that the nematic-air interface must roughly behav
light scattering as an ordinary liquid-air interface. The ma
difference with respect to an ordinary liquid is that the dam
ing rate of the capillary waves depends on the orientation
the director with respect to the wave vector, as the visco
depends on the orientation of the director with respect to
velocity and the velocity gradient. This obviously applies
the anchoring is not homeotropic~contrary to what we have
assumed to simplify the calculations!. It was indeed the case
in the experiment of Langevin@30#, who was able to extrac
from her measurements the surface tension and three dis

FIG. 7. Re(V) and Im(V) as a function ofk in the range of
wave vectors accessible by light scattering.
7-10
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WAVES AT THE NEMATIC-ISOTROPIC INTERFACE: . . . PHYSICAL REVIEW E 68, 061707 ~2003!
viscosities of the nematic phase. On the other hand, reg
II, where curvature elasticity and backflow effects are imp
tant, is out of reach by light scattering at the nematic-
interface.

As for the region of transition between regimes II and I
which is predicted to appear at a wave vector of the orde
53104 cm21, it should be accessible by diffuse scattering
x rays at grazing incidence. In particular, a photon corre
tion spectroscopy experiment should give valuable inform
tion in this region where dynamics of the order parame
become dominant.

Finally, we suggest that the Faraday instability could a
be used to study capillary waves at the nematic-isotro
interface. We recall that this method consists of excit
parametrically capillary waves by vibrating a recipient co
taining the liquid crystal in the direction perpendicular to t
interface. Because this experiment has already been
formed at the liquid-vapor interface of the carbon dioxi
close to the critical point@33#, we believe it should be fea
sible in nematics and provide information about capilla
waves in regimes I and II. In particular, we predict that t
instability should disappear at the passage between regim
and II.

VIII. CONCLUSIONS

In this paper~which can be regarded as a generalization
Ref. @1#! we have examined surface modes at the nema
isotropic interface using the Qian and Sheng@9# generalized
dynamical Landau–de Gennes theory. We have assume
isothermal system characterized by a tensorial order par
eter, both phases having the same density. Considering
surface tension anisotropy~the L2 term in the elastic free
energy density!, we have also taken into account the co
pling between interface oscillations, the director field, a
velocity ~by including backflow effects!. We have considered
the equilibrium planar nematic-isotropic interface as the b
state of the system. The front was then perturbed wit
small-amplitude monochromatic plane wave and the lin
stability of the front was examined to obtain the generaliz
dispersion relation, Eq.~57!. Three distinct regions can b
distinguished~see Fig. 1!: ~i! at very low values ofk (k
,k* '1 cm21) the dissipation due to shear flow dominat
and the nematic behaves as a viscous isotropic fluid~region
I!, ~ii ! at intermediate values ofk (k* ,k,kc'5
3104 cm21) curvature elasticity and backflow effects b
come important~region II!, and finally~iii ! at large values of
k (k.kc) the relaxation of the order parameter governs
physics~region III!.

We compared these results with those obtained in Ref.@1#
where it was assumed that the orientation of the directo
fixed. The influence of the anisotropy of the surface tens

@1# V. Popa-Nita and T.J. Sluckin, Phys. Rev. E66, 041703~2002!.
@2# For a review of phase-field models, see, e.g., A.A. Wheele

Stat. Phys.95, 1245~1999!.
@3# V. Popa-Nita and T.J. Sluckin, J. Phys. II6, 873 ~1996!; V.
06170
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and of the hydrodynamic coupling between the flow and
director has a fairly small effect (.220%) on the relaxation
rate; in contrast, this influence on the phase velocity is v
important in region II in which a new propagating mode
observed~see Figs. 2 and 3.! We have also compared th
effect of anchoring energy to that of rotational viscosity
these two quantities~see Figs. 4 and 5! finding that the effect
of the rotational viscosity and associated backflow effec
much more important than that of the anchoring energy.

Finally, we have proposed experiments to examine a
study these three regimes. Of course, our calculations
simplified as we do not use the complete set of Leslie v
cosities and we assume isotropic curvature elasticity. Ne
theless, we think that the physics is preserved in the gen
case, in which only a numerical calculation can give the f
dispersion relation. Another simplication concerns the
choring at the interface. We have treated the homeotro
case, but we know from experiments~see, for instance, Ref
@21#! that the molecules are often tilted with respect to t
normal to the interface. This type of anchoring cannot
explained in the framework of the present theory, which co
sequently must be completed by adding some new ingr
ents such as ordoelectricity@34#. This complication, again,
should not change the nature of the problem, but could l
to new phenomena as it breaks the rotational invaria
about the axis perpendicular to the normal to the interfa
Indeed, assume that the molecules form an angleF different
from 0 andp/2 with thez axis and are inclined in the direc
tion x.0. In this case, waves propagating along thex axis
should have different phase velocities in the regime II
cording to whether they propagate in one direction or in
opposite one. As a consequence, the power spectrum
served in light scattering should not be symmetric ink and
2k. Another complication that can arise concerns the form
tion of an interface instability in oblique anchoring. Th
instability can lead to an array of umbilics or to the form
tion of a hill-and-valley structure when a magnetic fie
~which, in principle, could be included in the calculation
the dispersion relation! is imposed to obtain a homogeneo
orientation of the sample. Nevertheless, we emphasize
these instabilities can be avoided easily provided that
nematic layer thickness be larger than some critical thi
ness, which depends on the temperature gradient applied
pendicularly to the interface~for an estimate, see Ref.@13#!.
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