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Waves at the nematic-isotropic interface: The role of surface tension anisotropy,
curvature elasticity, and backflow effects
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Recently, a theoretical description of waves at the nematic-isotropic interface has been proposed using a
generalized dynamical Landau—Ginzburg—de Gennes ti{®oBopa-Nita and T. J. Sluckin, Phys. Rev6E,
041703(2002]. This calculation assumed an isotropic surface tension, i.e., independent of the director orien-
tation at the interface and neglected all coupling between the director and the hydrodynamic flow. As a
consequence, the director was assumed to keep a fixed orientation and do not couple with the oscillations of the
interface. These assumptions are rather crude in real nematics where surface tension anisotropy may be as large
as 20% and where hydrodynamic coupling with the director is known to be important. In this paper we propose
to take into account these two effects: as a result, interface oscillations couple with the director field via
hydrodynamic flows and backflow effects. We analyze how these phenomena change the dispersion relation.
Finally, we review experiments on the nematic-isotropic interface and discuss how to measure experimentally
the dispersion relation.
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[. INTRODUCTION boundary problem associated with the sharp-interface model
is replaced by a coupled pair of nonlinear reaction-diffusion
In this paper, we analyze the problem of the damping ofequations. The spatial and temporal variations of the order
capillary waves at the interface between two fluids. Thisparameter phase field is governed by a time-dependent
classical problem is simple when the two fluids are isotropicGinzburg-Landau(TDGL) equation. The second equation
and immiscible and when the interface thickness is muchfor temperaturgis based on a modification of the heat equa-
smaller than the wavelength of the undulati¢tsharp-  tion, and contains a source term that mimics latent heat pro-
interface” limit). On the other hand, the problem is more duction at the moving interface. _
complicated when the two phases may transform into each 'Ntérfaces in thermotropic liquid crystals behave like
other (interface between two phases of the same compounﬂmd.el systems in Wh'c.h the phase-field thgory can be used
at the coexistence temperatyran effect that becomes domi- partu;ularly well. In t.helr cases, th.e phase-field c_)rder param-
nant when the wavelength of the oscillation approaches thgter is not arad hocinvention, as it can be physically mea-

interface thickness. This phenomenon should be visible aiumd' In addition, the fluidity of liquid crystals renders ac-

the liquid nterf I o the critical boint. but essible a large range of time scales in experiments. The
€ liquid-vapor intertace close 1o the critical point, Ut €X- g q, 4 phase-field theory of the nematic-isotropic phase

s o Stransition[3,4] we will use in this paper is a dynamical gen-
in liquid crystals, where phase transitions are very often very, ji-ation of the familiar Landau—de Gennes the&g], in

weakly first order. This was pointed out recently by one of usyhich coupling with hydrodynamics has been included. The
(V.P.-N.) and Sluckin in Ref[1], where the nematic-isotropic corresponding equations have been first proposed by Hess
interface was analyzed. In this particular example, it wag7] and subsequently completed by Olmsted and GoldBért
shown that the dispersion relation of the capillary waves deand by Qian and Shen@].
viates strongly from its usual forrffound in the hydrody- Apart from its intrinsic interest, the dynamics of liquid
namic sharp-interface limitat short wavelengttitypically  crystal interfaces is much richer than in usual systésngh
smaller than 1-2um, which should be visible experimen- as solid-liquid interfaces or surfaces in contact with air or
tally). Nevertheless, this calculation was not complete as itacuun). The reason is that the corresponding phase transi-
neglected the coupling between the nematic director and thigons can usually be described by a nonconserved order pa-
hydrodynamic flow, as well as the anchoring effect of therameter(associated with the symmetry breaking at the tran-
director at the interface. sition) and are weakly first order. The nematic-isotropic
The goal of this paper is to analyze the influence of thesgransition, where the orientational order parameter is quadru-
two effects on the dispersion relation of capillary waves atpolar, belongs to this category. In this example, it has been
the nematic-isotropicN-l) interface. As in Ref[1], we will  shown that very different dispersion relations for waves at
use a phase-field formulatid®]. In this approach, the free- the nematic-isotropic interface can be obtained depending on
the way the calculations are done: more precisely, the diffuse
interface theory, solved by assuming that the order parameter
*Permanent address: Faculty of Physics, University of Bucharesand velocity fields do not interact, leads to purely diffusive

P.O. Box MG-11, Bucharest 76900, Romania. surface waves whose mode structure is identical to that of the
TAuthor to whom correspondence should be addressed. Email adhulk diffusive modes found in the TDGL theof$]. On the
dress: patrick.oswald@ens-lyon.fr other hand, the sharp-interface theory yields modified capil-
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lary waves, with a large propagating component. [l. EQUATIONS OF MOTION
In a previous papefl], these two points of view have

been reconciled by analyzing the surface eigenmodes of thsec

nematic-isotropic interface within the Hess-Olmsted-

Goldbart model. To simplify things, it was assumed in that Qup=S(3n,Ng—5,p)/2, (1)

paper that the nematic director was fixed in space and time, )

so that the relevant physics was only described by a scalarhere the unit vecton is the nematic director an8 the

order parameter. It turns out that this assumption is onlysual scalar order paramet&= 0 in the isotropic liquid and

valid if the surface tension is isotropite., does not depend S=1 in a fully oriented nematic phase

on the director orientation at the interfacand, less obvious, Within the mesoscopic approach, the Landau—de Gennes

if the coupling between the flow and the directand pos- (LdG) free energy functional is given 412,13

sible “backflow” effectg can be neglected. A general disper-

sion relation was then obtained, having as particular cases _

the (scalaj order parameter relaxation regime in the short F(Q’VQ’T)_f [HQD+(VQ)IdV, 2

wavelength limit and the viscous damping regime valid in

the long wavelength limit. where
In this paper, we reconsider this problem in a more gen- _ T _

eral way, by taking into account both the hydrodynamic cou- HQT=a(T=T")QupQpa~BQupQpyQya

pling with the director and the surface tension anisotropy, +C(QupQpa)? (3)

which we know to be very large at the nematic-isotropic

interface. In this case, the problem is more complicated ats the bulk LdG free energy density and

the director oscillates. To introduce the anchoring energy of . ) 1 )

the director at the interface, we have included theGin- fe(VQ)=2L1(0aQpy) "+ 7L.2(96Qap) 4

tzrtc))l;):g tg:g' I_m t[hs (—:(;:Iaés(;mi Af)r egelegvargyrr']?sa?;';;O?i;gsth;éso'the distortion(elastig free energy density.

strength of thle anchoriﬁg energy a't the nematic-isotropic in- We assume that the heat diffusion is sufficiently rapid in

) A .order that the system remains at thermal equilibrium. We
terface. We emphasize that, in this model, the preferred ori;

entation of the director with respect to the interface is eithelrthere‘cOre ignore the equation for energy conservation and

arallel or normal depending on the sign lof. In the fol- assume that the system does not shift from temperatye
pare pending on g ' We further assume the fluid is incompressible. Within these
lowing we shall assumk, is positive, which favors homeo-

. ; approximations, the equations of motion for the velocity and
tropic anchoring.

. . . . the order parameter
To calculate the general dispersion relation of nemat|c:[ e order parameter becorfe)

isotropic interface, we start from a generalization of the stan- 9,0 ,=0, (5)
dard Ericksen-Lesli€EL) [10,11] theory written in term of

The local state of a uniaxial nematic liquid crystal is de-
ribed by a traceless symmetric second-rank te@sgy,

tensorial order parametg®]. This new formulation involves dv,,
the same number of viscous parameters as in the EL theory, pﬁzﬁﬁ(— POap™T agﬁ+ Top)s (6)
which can be expressed as linear combinations of the Leslie
viscosities.
O0=hgpthop=NSap—€apyhy, (7)

In order to perform the calculations, we assume that the

base state of the system is a planar nematic-isotropic inte(/vherep is the densityp the pressure, while and\ , are the

face in equilibrium. This condition fixes its temperature atLagrange multipliers associated with conditionsQFe 0 and
Tna » the nematic-isotropic phase transition temperature. T =Q,,, respectively. In this expressioa, 8, andy run
simplify, we further assume that the temperature is uniforn}rgﬁ] 1 tﬁg 3, summation over repeated indices is implied
(no temperature gradient perpendicular to the inteife@ae g e Levi-Civita symbol, andi/dt is the total time '
to thermal fluctuations, small-amplitude monochromatic_*#” '

. . d . . d _
waves develop at the interface. A linear stability analysis Of[j.erlva;uveﬁ/ at: lI} d.hV. Theb;jl_sto(rjtlpn sttreze dand the elas
the equations is used to obtain their dispersion relation. ¢ Molecularfieidn are obtained in standard manner as

The paper is organized as follows. In Sec. Il we describe =
the basic model and give the governing equations. We then o= 5 Q (8)
. . . . - ap 3(9,Q.,) Bxvp
present in Sec. Il the dispersion relations corresponding to axyp

the two regions defined by the typical lengths in the problem.
The general dispersion relation and numerical results are pre-

fr?arz;?a((jj 'ir;] S;(;;[Il\]/' ;Zee(:r']ﬁer::;giz Vi\gthsgle \S/ImV\F/)fI]IiféfldiSm% ?_eIAs for the viscous stress tensef and the viscous molecular
_emph: o field h¥, they are given by a tensorial generalization of the
lowed by a general discussion of the results in Sec. VI. Ex-
. e . . -EL theory[9],
periments on the nematic-isotropic front are reviewed then in
Sec. VII, where we also make a few suggestions for measur- v _ A+ BA A+ A+ A
ing the dispersion relation. Finally, in Sec. VIII, we draw  “* PrQapQuiuvt Balap™ BsQuuPupt PoQpuua

some conclusions and present directions for future work. + %,uzNaﬁ— #1Qa N, g+ 11QpuN 40 (10
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—hﬂﬁ:—%ﬂzAaﬁJfMlNaﬁy (12) son with what we would obtain for an ordinary liquid-air
interface as theN-I interface surface tension is very small.
where In the following, the ratio of these two lengtles=1s/1,
=105 will constitute the small parameter of the theory.
dQ We consider a two-dimensional flow with horizontal and
Nop= ab | QuuW,5~W,,Q,.z (12 vertical velocity components andw in the x and z direc-
dt tions, respectivelyg is the angle between the director and
the z axis [n=(sin P(x,z1),0,cosp(x,z,t))= (H(X,2,1),0,1) ]

is the time rate of change of the order parameter with respect, 4 e simplify the expressiori¢0) and (11) by assuming
to the background fluid angular velocityorotational deriva- 4t

tive in the language of rheologistsB,, B4, Bs, Bes M1,
and u,= B¢— Bs are viscous coefficients which can be ex- B1=Bs=Bs=0, PB4=28, (13
pressed in terms of the Leslie coefficientsand the value of _ _ . o
the order parametes [9], while Aaﬁzé(gavﬁjL dgv ) and which glve_,u2=0 [9]. I_n terms of Leslie coefficientsy;,
W, 5= 3(d.v5—dgv,) are, respectively, the symmetric and these relations are equivalent to
antisymmetric parts of the velocity gradient tensor. 5
Let us now define the two typical lengths of the problem y=as=ae=0, —ay=ay=a=9Su/4,
and the associated characteristic times. —B,=28 (14)
(i) The first length is related to the order parameter itself. 4= Pa '
It strongly varies across the interface over a typical distancqote that similar approximations were used to describe back-
known ~as the microscopic correlation lengtiis  fiows effects in the Smecti€- films and were known for
=(16CL/B%)"*=10""cm, whereL=3(L,+L,/6)/2 is @ preserving all the physics of the probldeven if the hypoth-
linear combination of the two stiffness constabisandL,.  esis — a,= @, corresponding to a “tumbling” nematic, is
This length gives the typical width of the order parameteriarely observed, except very close to a smectic phiaiss).
profile within the interface. The order paramefis also  within these approximations, the coefficighitdescribes the
associated with a typical relaxation timg=24Cu,/B” dissipation due to shear flo@hear viscosity while u, is
=10"s . This time does not depend on the size of theassociated with the dissipation due to the rotational motion
region in which the order parameter has been disturbe8, asof the optical axigwith the standard rotational viscosity,

is not a hydrodynamic variable. _ . =az—a,=9%%u4/2). Using these hypotheses and Ed$-
(i) The second length is associated with the vorticity, i.e.,4), the basic Eqs(5)—(7) take the form

to the flow induced by the motion of the interface. The cor-

responding physics is described by the generalized Navier- 0=d,u+d,w, (15
Stokes equatior(6), which can be considered in the thin
interface limit. The important physical parameters are the du 1 gsﬁem )
capillary force, associated with the interfacial tensigrthe Pai = Pt S|T mt2B| VU
viscous dissipation, associated with some viscosity coeffi-
cient », and the fluid inertia, governed by the mass density QSﬁemul ) 5
p. From these three quantities, we can construct only one — 7  9up~LV"SAS, (16)
lengthl = »*/py=1 cm .
In order to find the physical meaning of this length, let us dw 1 Qsﬁ
consider a perturbation of sideat the interface and let us p——=—d,p+ —(—em,uﬁ 28| V3w
estimate its relaxation time. This perturbation creates a pres- dt 2\ 4
sure gradient inside the fluid given by the Laplace equation: 98,21 un
VP=1y/12. This pressure gradient is balanced in the Navier- + 2 2.~ LV2S4,S, (17)

Stokes equation, either by the inertial term or by the viscous 4

term, depending on the value bfLet 7 be the relaxation
time: in the former case, we havel?=pl/7?, which gives _
the inertial typical relaxation time;= (pl%/y)¥? in the lat- 2 dt 4
ter casey/1%=5(l1/7)/1>= 5/ 7|, which gives the typical vis- )
cous relaxation 'timevz nl/y.' One immediately checks thgt + 9Shentt1 (O,u—d,W), (18)
the lengthl, defined above gives the size of the perturbation 4

for which the two relaxation times are equal=r7,=t,

=7°Ipy?. So, forl>1,, 7>r,, which means that inertia #y dS
dominates. In contrast, forl,, 7,>7;, meaning that now 2 dt
viscosity dominates. In conclusion, is the length scale

separating the inertial regime from the viscous one. In thevhere  hl=1df/dS-iLV?S-4L,V?S and hlJ
following, we shall usd, as unit time, which is the typical =— 2df/dS+2LV2S+ %L2(9§ZS [with df/dS=3a(T
relaxation time of a perturbation of sitg. Note that in our —T*)S— 2BS?+9CS’] are the symmetric traceless compo-
systeml ,=1 cm andt,=10 s are pretty largén compari- nents of the elastic molecular field given by E(p),

OStentts dg _ 2Lyt Lo)Shem, .

=hl+hls, (19
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L=3(L;+L,/6)/2 andS,e,=B/6C is the value ofSin the . ASYMPTOTICS
nematic phase at temperaturg, . Note that in writing Egs. . B 1 .
(15019, we have neglcid e tems of he olawing 1 S5 SLIEnS T 480 20 =1, e e
types: S(d,S) (954) and ¢(,S)(d,S) which appear in the o9 s P

distortion stress tensor. The terms of the first type cancel du::p:glg(gp ;ﬁ%lnjgﬁ)?ils) ?;sv(\?f?lttl:i”%/hglﬁﬂsgf‘;iInot\?srr?g(tjel;
to the fact that in the region of the dimensibgy ¢ is con- 9 pny 9 y

stant and in the region of the dimensiop Sis constant ¢ hydrodynamlcs{dlssmatlon by shear flow and by rotation of
the optical axis, respectively
relaxes to its equilibrium value over a distance of the dimen-
sionl,). The terms of the second type are negligiie- .
; ; ; A. Outer region
causeg is always very close to zero, assuming homeotropic
anchoring comparing with terms of the forma(,S)(d,49) In the outer regionSis constant in each phas&= S,
which have been considered in the distortion stress tensok 1 for z<0 andS=S,,=0 for z>0) and the equations for
Equation(17) and the first three terms on the right hand sidevelocity and angle are the same for all orders in an expansion

of Egs. (15 and (16) are written treating the orientational in e. We have to consider separately the two phases.
order parametelS,;n as a frozen constant. We define

=982, w1ld, K=9(2L,+L,)S2e {4, and n=(a+2B)/2 1. Nematic phase
and we rewrite Eqs(15)—(19) |n dimensionless forms by
measuring length in unit df, , time in unit oft,,, and intro-
ducing the dimensionless quantiti&®= S/S,e,=6CYB, 7
=24a(T— Ty, )C/B2=(T— Ty )/ (Taa —T%), f 0=dxu+d,w, (25
=242C3/B%, p=24pC3y%B*p% p=24C3%p/B* 7

In the outer region of the nematic phase<Q), S
=S,em= 1 and the working equation20)—(24) become

_ 242c3 4 23 4 - du _ 2 2
n/t,B K=24C3K/B l,, m1=37nu1l2pL, «@ Pai= —dyp+ nVu—adsid (26)
=24C3alt B"’ ande? —Isllfy Omrttrng the bar notation in
the foIIowmg the governing Eq$15)—(19) can be written as dw
pgp = 9P+ VAW (27)
0= dyu+ 3w, (20
do )
du , , - 2aE=KV ¢d—a(du—adw). (28
Pgi=" P+ PVU— adyd— €V°Si,S, (21
Thus, the outer problem is equivalently with the EL con-
tinuum theory of the nematic liquid crystals and E(&5)—
de_ —0,p+ 7V2W+ ad? — €2V2S0,S (22) (28) are similar to those used to study the transient periodic
dt z Xt = distortions which sometimes develop during the Fredericks
transition[14,15. The solution corresponding to the station-
de ary planar interface is given hy,=wy=0, py=const, and
20— =KV2¢p+ a(du—aw), (23 ¢o=0 assuming that homeotroprc anchorrng is favored. We
dt now impose a small periodic sinusoidal perturbation to the
interface of the formé, = &.expikx—Qt), where ¢, is the
ds df 3L, vertical displacement of the interface with respect to its equi-

€ /,Lla:—d—s‘l'e‘

L
1+ I>VZS—§62T2<9§XS, (24)  librium positionz=0. In our notationsk is the wave vector
(real number and () is the angular frequency. The latter
quantity is generally a complex number whose real part gives
wheredf/dS=2(1+7)S—65°+4S°. the relaxation timer=1/Re(Q) of the wave and the imagi-
This form of the free energy density describes a first- ordehary part the phase velocity,=Im(Q)/k. We then look for
nematic- ISOtrOpIC phase transition. Fer TN- |—O the two the solution of Eqs (25) (28) in the form u:erxp(qZ
phases, nematicn= 1) and isotropic §;5,=0), coexistin  +jkx—Ot), w=Wyexp@z+ikx—Ot), p=po+ Poexp@z+ikx
equilibrium (fhem=fiso). In the following we suppose that — ), and &= expz+ikx—Qt). After substitution in

the Stationary planar nematic-isotropic interfd(tbe base Eqs(25)_(28), we get a system of a|gebraic equations for
state of the systejs situated az=0, such that the nematic the amplitudes

lies in the regiorz<<0 and the isotropic phase in the region

z>0. As for x axis, it is taken in the direction of the wave ikUg+gWp=0,

vectork of the perturbation along the interface. This is pos-

sible without loss of generality, as the system is isotropic in [pQ— n(k*~g*)]Ug—ikPy+qaQd®,=0,

x andy directions(neglecting the biaxiality of the nematic

phase. In this way, the wave numbérrepresents the modu- [pQ— n(k?—q?)]W,—qPo+ikaQd,=0,

lus of the two-dimensional wave vector in the plane of the

interface. aqUy—ikaWy+[2aQ—K(k®*—g?)]Po=0. (29
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Putting the determinant of syste{29) equal to zero, we obtain the following bulk characteristic equation, connegtikggand

QO:

(K=a?){[2a0 = K(K*= ) ][pQ — n(k*=9*)]+ a*Q(K*~0?)} =0, (30

with solutions

g=k and g*=1%,=k?

For a nematic of large deptfregion —x<z<0), the
wavelike solutions of Eq9425)—(28) are of the form

u=(ikAe*—1,C,e'12—1,C,e'2%) explikx— Qt), (32)
w= (kA& +ikC,e'17+ikC,e'2?)explikx— Qt), (33
p=po+ pQAZexpikx— Qt), (34)

d=(p,C e'1%+ ¢,C,e'2%) expikx— Qt), (35)

where ¢ =[pQ—n(k?®—1?)]aQ=—a(k®—1?)/[2a)
—K(k2—12)], &;=C/(k*~1?), with i=1,2. In Egs.(32)-
(35) the velocity field may be decomposed in two pafisa
potential (irrotationa) flow of amplitude proportional tA
[which derivates from the potentigt= A expkz+ikx—Qt)]
and(ii) a rotational flow of amplitude proportional © that
derivates from a vector potential.

2. Isotropic phase

In the isotropic phaséregionz>0) the working equa-
tions (20)—(24) become

0= dyu+ 3w, (36
du )
Pa:_(?xp‘*'??lv u, (37)
w 2
P = 9Pt mVW. (38)

2ap+Kp+[4a2B2+K2p?+4apK(B— Za)]”zQ

2Kn (3D

3. Dispersion relation

Equations (32)—(35) and (39—(41) correspond to the
classical sharp-interface approach, where it is assumed that
the thickness of the inner region is zero. In this limit, the
dispersion relation is determined by the boundary conditions
at the nematic-isotropic interface which can be takerz at
=0 due to the smallness of the amplitude of the oscillations
[16,17). These conditions are as follows:

(i) and (ii) The x and z components of the velocity must
be continuous.

(iii) The tangential components of the stress tensor must
also be continuous, which gives,,=o,,, where o,
=B(dW+ d,u) — 3KV?¢ and oy, = 7,(dW’ +d,u’) are the
xz components of the stress tensor in the nematic phase and
the isotropic liquid, respectively.

(iv) As to the jump of the normal component of the stress
tensor, it is given by the Laplace law

Oy O0= _(92§| (42)
77 7z yr?XZ,

where o,,= —p+2Bd,w and o,,= —p’ +27d,w’ are the
normal component of the stress at the interface in the nem-
atic phase and in the isotropic liquid, respectively. In this
equation £ = — (1/Q)w|,_ corresponds to the displacement
of the interface at poink with respect to the plane=0
(with (£)=0).

(v) The last boundary condition is given by the surface
torque equation

Keffﬂz¢|2:0+wa(¢+5)=ou (43

Thus, the outer problem of the isotropic phase is equivalent/hereW, is the anchoring energyi=d¢, /dx is the small
with the Navier-Stokes equations subject to the incompresdilt angle of the interface about the axis, andKe =K

ibility condition [16—19.

+2K,. The first term in Eq(43) is the elastic torque acting

Similar to the nematic phase, we get the wavelike solu0n the director at the surfagassuming<; = K=K and tak-

tions for the isotropic phase of large depftegion 0<z
<) in the form

u'=(ikA’e ¥*+1Ce ") expikx— Ot), (39)
w'=(—kA’e *?+ikCe "?)explikx—Qt),  (40)
p'=po+pQA’e *expikx—Qt), (41)

wherel =k(1—pQ/ k%)

ing into account the surface like tert,V-(nV-n+nxV

X ﬁ)] [13] and the second one is the anchoring torque due to
the surface tension anisotropy. After substituting solutions
(32—(35) and (39—(41) into the boundary conditions, we
obtain a homogeneous system of equations for the five am-
plitudesA, A’, C,;, C,, andC. Equating to zero its deter-
minant gives the dispersion relation in the form

D
0= (44)
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where D= (k—I)(F,E;—FEp) +(k?—1?)[2k(F,~Fy) £
+Fy(I+ 1) =Fy(l3+1)] and  N=I(FE,~F,E,) So(§)=5 1—tanh—), (50)
+ (K2 =12 [(F1+ K5 Q) (I +1) = (Fo+K2/Q) (1, +1) ] + K2/ V2

20[(I,+DE;—(I,+1)E,].  Here  E=12—12—K(k?
—Ii2) ¢il2B, Fi=(bl;+1)¢;, b is a parameter defined &s
=Kerf/W,, and Q3= —yk%/2p is the capillary wave dis-
persion relation for idedinviscid) fluids. To obtain Eq(44),

where we have fixed the center of the interféadefined by
Sy=1/2) até=0. Correspondingly, the surface tensidar
homeotropic anchorings given(in the dimensionless form

we have considered that the densities and translational visb-y

cosities of the two phases are equB8H7,). The subscript ds, \/5

Ba recalls that the real part dof) is associated with the y= f ( ) dg— (51
dissipation due to the shear flow and the rotational motion of d¢

the directoniwhich induces supplementary backflow effects ) , . ,
Note that in the limitW.—0 anda—0. the director orien- R€turning to real variables this equation takes the form
a )

tation does not change in tingi is fixed because there is no 3
coupling with the flow and the interfageso that the disper- _ \/_E B 112 (52)
sion relation greatly simplifies and becomes L 24312¢5/2

Similar calculation can be done by assuming that the di-
rector makes an anglé with the z axis at the interface. In
this case the surface tension becomes

0p=——93, (45)

as found in Ref[1]. Note that we only use the subscripin
this equation to show that the real part(®fis simply due in J2 B®
this case to the shear flow. P)=5 PV

Before calculating the full dispersion relation, we now
need to analyze the problem in the “inner” region, i.e., at a
length scale of the order of the interface thicknkss

1 1/2
L+§L25in2¢> . (53

At small surface tension anisotropy{ much smaller than
L), this equation can be rewritten in the Rapini-Popoular

form
B. Inner region

. - . 1
_ At smgll scalf, hydrodyrlamlcs are negI|g|bIe. By using Wp)=y+ = Wa5|n2¢> (54)
inner variablest=x/e and ¢{=12/ e, the leading order equa-

tions for the order parameter are obtained from the general

equations29), (25), and(26) and write as follows: with L,/L=2W,/y. As a consequence, knowingandW,
allows us to calculatd. and L,. We note that in the case
~ 9SS df 3La) oo 3L L,=0, W,=0, andK,= —K/2 [see Eq(58) below and Ref.
M1 = _d_S+ 4L v S_ 8“8 (46) [13], p. 246 and the boundary conditio@®3) is identically
satisfied.
0=—d,p-V?S3,S, (47) We now return to the dispersion relation in the inner re-
gion. It is obtained perturbing the base state, &), by
0= —ﬁgp—VZSﬁgs, (48) S(¢,€,1) =Su(&) + S(§) expike—Qt). Substituting this form

into Eq. (49) and linearizing in perturbation, give

where 1., =24Cu,/B?. The first equation gives the order HS=0S (55)

parameter profile and will be used to calculate the dispersion ’

relation in the inner region. The two others allow calculating, here H=—d2+ K2[1— 6L, /(4L +3L,) ]+ d?f/d(Sy)
z

the pressure field, V\ihich we will not give expligitly. Inthe .on pe conveniently thought of as a quantum mechanical
following we set 7=¢/(1+3L,/4L)"? and &=¢/(1  Hamiltonian operatof22]. Note thatd?f/d S2(Sy) is positive
+3L,/4L)"% In these new variables, E46) simplifies gt ¢=+ (whereS,=0 andSy=1) and negative at=0
and becomeéomitting the tilde Signs in the fO”OWIrjg (Where SO: 1/2) In our Casef(S):SZ(l_S)z, one has
d?f/dS(Sp) =2—125y(&) + 12S3(¢), which equals—1 at
2.8 (49) £=0, and tends to+2 for £&—*w. It follows that
i« d?f/dS(S,) represents a potential well which must have at
least one bound state. In fact, sinke0 corresponds to a
where, now, units of length and time arki=Ig(1  uniform translation of the interface, we know tHaf_,=0
+3L,/4L) Y2 andt,,, respectively. For the equilibrium planar is the eigenvalue with the eigenfunctiahS, [this can be
nematic-isotropic interface perpendicular&auxis, the solu-  easily checked by differentiating E¢1) with respect tcf].
tion of TDGL equation(49) with boundary conditionsS;  Also, since this function has no node, it must be the ground
(—)=1 andSy(«)=0 (the subscript O refers to the equi- state. Since thd dependence oH is simply the additive
librium interface is given by constank?[1—6L,/(4L+3L,)], it follows thatd S, /d¢ s,

9S__ dt o 6L
Mgt ™ ds 4L+3L,
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and the typical experimental values given in the literature for
" 7 5CB (pentylcyanobiphenyl y=1.5x10"2 erg/cnt, a=j
=0.1P, p=1g/len?, K=21x10 "dyn, W,=5

. x 10~ erg/cnt, andS,en=0.35[13,20,21.

Three regions must be clearly distinguished.

In the short wavelength limitregion 1l in Fig. 1), the
interface is diffuse as the relaxation of the order parameter in
the inner region is the dominant process. The dispersion re-
lation is then given by Eq56) (dotted curve in Fig. 1L
In the large wavelength limit, the interface is sharp and

— T T T T T T T T 1 can be considered as a surface of discontinuity. The viscous

100 10° 0% 10" 10® 10’ 10* 10" w0 10" 10" 10" damping processes in the outer region then dominate and the
ko) corresponding dispersion relation is given by Ed4)

FIG. 1. The damping rate R&() as a function of the wave (dashed curve in Fig.)1The transition between these two
vectork in a log-log plot defining three distinct regimes. The gen- fegimes takes place when Ref,)=Re(()s), which gives
eral dispersion relation, Eq57) (continuous curve the viscous the critical wave numbek,=5x10* cm™*! and the corre-
damping dispersion relation, E¢t4) (dashed curve and the order  sponding critical wavelengtix.=1.2 um. It also appears
parameter relaxation dispersion relation, E§6) (dotted curve immediately that the curve in Fig. 1 has a slope discontinuity
Region I—dissipation due to shear flow; region ll—dissipation duemarked by a small peak for a particular value of the wave
to rotational motion of the director; Region lll—relaxation of the numberk, =0.8 cm *. So, two regions must be further dis-
order parameter. tinguished in the hydrodynamic limit. The region | corre-

sponds tak<<k, where the nematic behaves as an isotropic
for all k, the ground state eigenfunction—the so-called “slowliquid of viscosity 7= (a+ 28)/2. This viscosity correspond
mode”—of eigenvalugin “real units”) to the second viscosity of Miesowiczyf, according to stan-
dard notatiof13]), i.e., to the viscosity of the nematic phase
when it is sheared parallel to the director. Finally, the inter-
mediate region Il corresponds kg <k<k.. In this range of
wave vectors, the slope of the curve is smaller than in region
We note that()g is real and positive. It gives the relaxation |, which indicates a decrease of the dissipation. In this re-
rate of the order parameter in the absence of hydrodynamicgime, curvature elasticity and backflow effects play an im-
coupling. portant role and cannot be ruled out.

To sum up, three distinct regions appear in Fig. 1: two
regions in the hydrodynamic regime where the nematic be-
haves as an isotropic liquid of effective viscosifywhenk

In order to obtain the full dispersion relation, we need to<k, (region l), whereas fok, <k<k_ (region I}, nematic
match the solutions obtained in the outer and in the inneeffects become important. Finally, at large wave numlbers
regions, respectively, at first order &f. Similar matching >k, (region Ill) the relaxation of the order parameter gov-
was already done in Refl] and we refer to that paper for erns the physics. In order to better characterize these three
detailed calculations. Using the same procedure, we obtairegions we compare in the following section the results ob-
the generalized dispersion relation tained in the general case with those obtained in the simpli-
fied model assuminyV,=0 anda=0.

Re() (s
-‘-‘_l_b_l-l._l
2. 938 3 5 3 3

2SS A%

: = =

o

-
=)

4L

Qe 6L,
S g

et
1 4L+ 3L, K. (56)

IV. GENERAL DISPERSION RELATION

02-00=0%,, (57)
where Q 4, and Qg are given by the Eqs(44) and (56), V. COMPARISON WITH THE CASE W,=0 AND a=0
respectively. . i )
The real part of the solution of EG7) and its asymptotic It is interesting to compare these results with those ob-

limits given by Egs.(44) and (56) are drawn in Fig. 1. To tained in Ref[1] where it was assumed that the orientation

perform the numerical calculations we have takgr- 3.63 of the director is fixed. As we have already mentioned, this
X 10" 7 dyn, L,=3.69x 108 dyn, L=5.53x 10" dyn, K, assumption is corre_ct if the surface te_nsion is isotropig, ( _
=—1x10"7 dyn, Korr=1.02<10"8 dyn, b=2.03 =0). a_nd t_he coupllng. betwepn the d|reptor and the flow is
%10~ cm, which givesQg=6.13< 10 'k?. These param- negligible (in our notation, this happens i< or a«=0).

eters have been obtained by using the following equations; !N order that this comparison makes sense, we performed
again the calculation of the dispersion relation by taking the

L, W, 9 9 same surface tension, which imposes to take the same value
T =2 K=z(2L,+ L) Seerm K4=—ZL18§em for L. This way, we have obtainetl;=3.69x10 7 dyn,
Y L,=0, K;=—K/2=—-1.02<10 7 dyn, K.;;=0, b=2.03
X 10" ° cm, andQgs=6.77X 10" "k?.
(58) In the following, we callQ)’ the relaxation rate atV,
' =0 anda=0 (as calculated in Refl]),
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FIG. 2. The relative variation of the relaxation rate. The mean-
ing of the three regions is the same as in Fig. 1.

02-050'=03, (59
@ 1}
where E
2L
QL==——Kk>=6.77x10 K2, (60)
3p1
and(z is given by Eq.(45). I 7 I r
In Fig. 2 we have plotted the relative variation of the 10 10° 1% 10" 10° 100 1 10° 10
relaxation ratg Re(Q) —Re(Q’)]/Re(Q’) as a function of ® k(em”)

k. Again the three regions discussed in the preceding section FIG. 3. Im(@Q) (a and corresponding phase velocitie
are clearly visible. In addition, we note that the relaxationzlm(ﬂ')/k' (b) calculated from Eqs(%?) (cognti‘:luous curve)san%
rate is enhancedwith respect to the simplified case=W, (59 (dotted curves

=0) in region I, whereas it is lowered in regions Il and Ill.

In Fig. 3 we have plotted Inf¢) and the corresponding shifted towards the large values kfwhen W,—0. These
phase velocity ,=Im(€2)/k as a function ofk in the two  two figures show that the effect of the anisotropy is very
cases. In the two graphs, the general solution obtained fror§mall in comparison with the effect of the rotational viscosity
Eq. (57) is represented by the solid curves, while the dotted,,
ones represent the solution obtained in the simplified case |n the following section we discuss these results and give
corresponding to Eq(59). Again the three regions are clearly some analytical expressions which allow us to predict a few

diStinguiShable. In region I, the phase Ve|OCiti€m’ the ||m|t|ng cases showed in the previous graphs_
imaginary parts ofQ)) are almost identical, the difference

coming from the difference of viscosity of the nematic phase VI. DISCUSSION

in the two casefequal to (23+ a)/2 in the general case and

to the smaller valugg in the simplified case, which explains ~ We first discuss the region(the limit k—0). In this limit,

the differencé On the other hand, there is a big qualitative the nematic behaves almost as an ideal fluid, which means

difference in region Il since In{¢) (and then the phase ve-

locity) are different from O in the general case, whereas they

vanish in the simplified case. Note that ) and the phase

velocity are zero in both cases in region IlI. _ 2024
Finally, we have studied the effect of the surface tensiong

anisotropy in the general case. For doing this, we have plot<

ted in Fig. 4 the relative variation of the relaxation rate

[Re(Q)(W,#0)—Re(Q)(W;=0)]/Re(Q)(W,=0). We

note that the influence o, is null in the region | and

becomes visiblg¢although very smallin regions Il(where it -0.08 —

remains less than 4%) and [MWhere it goes up to 10%). In

addition, we have plotted the phase velocities in both case: ™ B L B, bl B

in Fig. 5. Because there is only a difference between the twc w0 (Cm_1)‘°4 L L

cases in region Il, we have restricted our graph to this region.

Again the effect of the anisotropy is quite small, and is only FIG. 4. The relative variation of the relaxation rate

visible close to the maximum of the curve which is slightly [Re(Q)(W,#0)—Re(Q)(W,=0)]/Re(Q)(W,=0).

-0.04 -

AlRe(Q)

-0.06 —
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FIG. 6. Spatial attenuation lengths of the waves in the nematic
phase as a function of the wave number.

(a#0) than in the simplified onea=0). Another conse-

that curln=0. As a consequence the second term on the rhguence of this difference of viscosities is that, in region I,
of Eq. (28) vanishes which gives from the same equationim(() and the corresponding phase velocity are larger the
apQ~Kk?p. We conclude that ther terms on the rhs of smaller the viscosity is. This explains the shift between the
Eqgs.(26) and(27) (of the order ofakQ ¢~Kk3¢) are com-  two curves in the region | of Fig. 3.
pletely negligible with respect to the usual viscous terms in  \We now discuss the crossover between regions | and Il in
7 in the same equation®f the order of 7k?v). So, the the general case, whem+0. Assuminga= g (as in our
dissipation due to the rotational motion of the director isnumerical calculations the solutions of the characteristic
negligible and the nematic behaves as an isotropic fluid. Irquation(30) are given by
this case the dispersion relatiofd) reduces to that for two
fluids with equal densities but different viscosities: 12
p

q=k q:I1=k<1——ZQ) ,
k(12+12)—2k® 7k
(I+1)(k2=11,)

wherel; =k(1—pQ/ 7k?)¥2 I=k(1-pQ/Bk?? andQ3
=—vk3/2p. These formulas allow us to predict the
asymptotic value offRe((2)—Re((2')]/Re(2’) given in
Fig. 2 ask—0. Indeed, in this limit of very small damping
(|Q0|> 7k?/p), Q differs from Q, only by a small quantity
6Q,, with a real part given by

Q3. (61)

2&’,8 1/2
q=|2=k(1—K 29) . (65)

nk

These formulas show thdf is associated with the usual
shear flow and is characterized by the relaxation time of
vorticity 7, = p/ 7k?=6.67k? (in cgs unit3. In contrast], is
associated with the rotational motion of the director and is
associated with the characteristic relaxation time of the fluc-
tuations of the director orientatiom,=2aB/K nk?=6.35

X 10°/k?). In Fig. 6 we have plotted Re(/k) and Re(,/k)

as a function ok. The three regions are again clearly visible.
In this equation, the effective viscosity coefficient is definedIn particular, this graph shows that the passage from the re-
to be gion | to the region Il takes place &=k, =0.812 cm %,
precisely when Rég)=Re(,). We emphasize that the two
propagating modes observed in regions | and Il are very well
decoupledsee, in particular, in Fig.)3becauser,<7,.

Finally, let us discuss the region IIl which is dominated by
the dynamics of the order parameter. In that case, surface
undulations are strongly damped and do not propagate. The
dispersion relation is given by E§56) which allows us to
calculate the large wave numbers limik—¢oc) in the graph
of Fig. 2:

1/4
Y nl/fo K74
c .

2T/4 34

Re(6Q),)= (62

B+
ﬁl/2+ 771/2’

12 _
Nett=

(63)
with »=(28+ «)/2 in the general case ang=g in the
simplified case. From E(q63), we calculate, in the limik
—0,

REQ)-ReQ) _ 7efi— B
Rqu) - :81/2

This value is in very good agreement with that found nu-
merically in Fig. 2. Note that Ré¥)>Re(()') because the
viscosity 7 of the nematic phase is greater in the general casblote that this limit is the same in the graph of Fig. 4.

=0.124. (64)
Re(Q2s) —Re(Qg)

Re(Qg)

=—0.095.

(66)
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VII. ABOUT EXPERIMENTS AND THE WAY TO 100
MEASURE THE DISPERSION RELATION

. . . . . 10 —
In this section, we briefly review the experiments already >

performed on the nematic-isotropic interface and we recall ag
few general methods to measure the dispersion relation o g
capillary waves. N
First of all, the surface tension of the nematic-isotropic
interface has been measur&8]. One method consisted of
analyzing the shape of a macroscofsize in centimeter 0.01
nematic drop placed on a Teflon plate, itself situated in a
transparent recipient filled with the isotropic liquid. Due to  0.001 r —

0.1 -

Re ©) (8

[N
@

-
o
~-

the gravity and the small density difference between the two 10? 10° . ’ P 10* 10°
phases, the drop slightly departs from its perfect sphericai (om”y
shape(the so-called “sessile drop” metho@4]), allowing FIG. 7. Re2) and Im() as a function ofk in the range of

the determination of the surface tensitfor the preferred wave vectors accessible by light scattering.
orientation of the director at the interfacéJnfortunately,
this static experiment gives no information about capillaryclassical technique has been successfully performed for
waves. On the other hand, it could be interesting to look aprobing waves at liquid interfaces such as the waiatede-
the mechanically excited deformation modes of a large drogane interfac§27] or the liquid-vapor interface of the carbon
in this type of system to explore the dispersion relation indjoxide very close to the critical poif8]. The latter ex-
regime | and obtain an estimate of the wave vector at whiclymple resembles the present case in both, the small density
“ordinary” capillary waves are overdamped and stop propa-difference between the two phases and the very low surface
gating. tension. The nematic-air interface has also been investigated
Another method to probe regime | would be to prepare axperimentally by light scatterin§29,3Q but this case is
flat nematic-isotropic interface in a large recipigmany paradoxically closer to that of usual liquid-air interfaces than
centimeters in size The experimental procedure would then to ours. Briefly, the technique consists of measuring the
consist of mechanicallyor electrically exciting “plane”  power spectrunP(k,w) of the scattered light at different
surface waves at a fixed frequenty 27/ w. In this case, wave vectork by using an heterodyne detecti¢for more
the wave vector of the waves is complgx=Re() details see Ref$31,32). To a first approximation, the spec-
+ilm(q)]. Each component of can then be measured by trum is Lorentzian of half width He)(k)] and it is shifted
observing the deflection of a laser beam with a position senby Im[Q (k)] (Doppler effect due to the wave propagation
sitive photodiode as a function of the distance to the excitawave vectors accessible experimentally range between
tion point. These two components are then compared to theoo cm* and 1¢ cm™?, which turn out to be in the regime
solution(in g at fixed() = ) of the dispersion relation. Note || of the present study. Nevertheless, it must be noted that in
that this method has already been used for studying capillanhis range of wave vector, Iff)) is typically ten times
waves at the nematic-air interface in regimg25|. smaller than Re) (Fig. 7). For this reason, Infg) will be
Another set of experiments on the nematic-isotropic interdifficult to measure. One way to improve the situation con-
face has been performed by Faetti and Pallefhi In that  sijsts of decreasing the viscosity in order to increase the phase
case, the reflectivity of the interface has been measured. Thiglocity of the waves while decreasing their damping. From
method allows a precise determination of the “optical” this point of view, 5CB is certainly not the best candidate for
width of the interface. This quantity depends both on thethis experiment, as its nematic-to-isotropic transition tem-
“static” width of the interface [given by the Landau— perature is pretty low. Let us now return to the nematic-air
Ginzburg—de Gennes theory and equal/@ls according to interface. In this case, the surface tension is typically three
Eg. (50] and on its “thermal” width (in general much orders of magnitude larger than at the nematic-isotropic in-
largen [26]. The latter is due to thermal fluctuations which terface. Consequently, regime | at the nematic-air interface
excite capillary waves at the interface. Thus, this methodthe only one calculated by Langevin and Bouchi29,30)
gives average information on the interface fluctuations. Notextends up to values df of the order of 18 cm™ . That
that, in this experiment, wave vectors which contribute to themeans that the nematic-air interface must roughly behave in
reflectivity range from 1{2ls~7x10° cm ! down to light scattering as an ordinary liquid-air interface. The main
an/\~300 cm !, where\ is the wavelength of the light in  difference with respect to an ordinary liquid is that the damp-
vacuum,n the sum of the refractive indices of the isotropic ing rate of the capillary waves depends on the orientation of
and of the nematic phases, amdsome angléof the order of  the director with respect to the wave vector, as the viscosity
5~7x10 %) fixed by the experimental setup. So, this ex- depends on the orientation of the director with respect to the
periment brings into play capillary waves of regimes Il andvelocity and the velocity gradient. This obviously applies if
[l defined previously. On the other hand, it again gives nothe anchoring is not homeotropicontrary to what we have
information about their dynamics. assumed to simplify the calculation$t was indeed the case
To obtain direct information about dynamics of capillary in the experiment of Langevif80], who was able to extract
waves, quasielastic laser light scattering can be used. Thisom her measurements the surface tension and three distinct
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viscosities of the nematic phase. On the other hand, regimand of the hydrodynamic coupling between the flow and the
II, where curvature elasticity and backflow effects are impor-director has a fairly small effecef —20%) on the relaxation
tant, is out of reach by light scattering at the nematic-airrate; in contrast, this influence on the phase velocity is very
interface. important in region Il in which a new propagating mode is
As for the region of transition between regimes Il and Ill, observed(see Figs. 2 and BWe have also compared the
which is predicted to appear at a wave vector of the order oéffect of anchoring energy to that of rotational viscosity on
5% 10* cm™%, it should be accessible by diffuse scattering ofthese two quantitie&ee Figs. 4 and)Sinding that the effect
X rays at grazing incidence. In particular, a photon correla-of the rotational viscosity and associated backflow effect is
tion spectroscopy experiment should give valuable informamuch more important than that of the anchoring energy.
tion in this region where dynamics of the order parameter Finally, we have proposed experiments to examine and
become dominant. study these three regimes. Of course, our calculations are
Finally, we suggest that the Faraday instability could alsasimplified as we do not use the complete set of Leslie vis-
be used to study capillary waves at the nematic-isotropicosities and we assume isotropic curvature elasticity. Never-
interface. We recall that this method consists of excitingtheless, we think that the physics is preserved in the general
parametrically capillary waves by vibrating a recipient con-case, in which only a numerical calculation can give the full
taining the liquid crystal in the direction perpendicular to thedispersion relation. Another simplication concerns the an-
interface. Because this experiment has already been pechoring at the interface. We have treated the homeotropic
formed at the liquid-vapor interface of the carbon dioxidecase, but we know from experimer{&ee, for instance, Ref.
close to the critical poinf33], we believe it should be fea- [21]) that the molecules are often tilted with respect to the
sible in nematics and provide information about capillarynormal to the interface. This type of anchoring cannot be
waves in regimes | and Il. In particular, we predict that theexplained in the framework of the present theory, which con-
instability should disappear at the passage between regimeséquently must be completed by adding some new ingredi-
and II. ents such as ordoelectricifg4]. This complication, again,
should not change the nature of the problem, but could lead
VIIl. CONCLUSIONS to new phenomena as it breaks the rotational invariance
] ) o about the axis perpendicular to the normal to the interface.
In this paperwhich can be regarded as a generalization ofingeed, assume that the molecules form an adigttifferent
Ref.[1]) we have examined surface modes at the nematictom o and#/2 with thez axis and are inclined in the direc-
|sotrop!c interface using the Qian and Sh¢Bygeneralized oy x>0. In this case, waves propagating along thaxis
dynamical Landau—de Gennes theory. We have assumed @Rouid have different phase velocities in the regime Il ac-
isothermal system characterized by a tensorial order paramy ding to whether they propagate in one direction or in the
eter, both phases having the same density. Considering “Eﬁ)posite one. As a consequence, the power spectrum ob-
surface tension anisotrop§he L, term in the elastic free ggpyed in light scattering should not be symmetridiand
energy density we have also taken into account the cou-_y another complication that can arise concerns the forma-
pling between interface oscillations, the director field, andijon of an interface instability in oblique anchoring. This
velocity (by including backflow effects We have considered  jnstapility can lead to an array of umbilics or to the forma-
the equilibrium planar nematic-isotropic interface as the basggn of a hill-and-valley structure when a magnetic field
state of the system. The front was then perturbed with qunich, in principle, could be included in the calculation of
small-amplitude monochromatic plane wave and the lineafhe gispersion relatioris imposed to obtain a homogeneous
stability of the front was examined to obtain the generalizedyrientation of the sample. Nevertheless, we emphasize that
dispersion relation, Eq(57). Three distinct regions can be these instabilities can be avoided easily provided that the
d|st|ngU|shed1(see Fig. 1 (i) at very low values ofk (k  nematic layer thickness be larger than some critical thick-
<k,~1 cm ") the dissipation due to shear flow dominatesness, which depends on the temperature gradient applied per-

and the nematic behaves as a viscous isotropic fheigion  hengicularly to the interfacfor an estimate, see RdfL3]).
[), (ii) at intermediate values ofk (k, <k<k.~5

x10* em™ 1) curvature elasticity and backflow effects be-

come importantregion 1), and finally(iii) at large values of

k (k>k.) the relaxation of the order parameter governs the

physics(region IlI). V.P.-N. acknowledges support from RieAlpes and
We compared these results with those obtained in[R&f. CNRS grants and thanks the Ecole Normale ‘Siepee de

where it was assumed that the orientation of the director ikyon for scientific hospitality. We thank V. Bergeron for

fixed. The influence of the anisotropy of the surface tensiorruitful discussions.

ACKNOWLEDGMENTS

[1] V. Popa-Nita and T.J. Sluckin, Phys. Rev6g 041703(2002. Popa-Nita, T.J. Sluckin, and A.A. Wheelebid. 7, 1225
[2] For a review of phase-field models, see, e.g., A.A. Wheeler, J.  (1997. . .

Stat. Phys95, 1245(1999. [4] P. Ziherl, A. Sarlah, ang S. dmer, Phys. Rev. B8, 602
[3] V. Popa-Nita and T.J. Sluckin, J. Phys. @] 873 (1996; V. (1998; A. Sarlah and S. dmer,ibid. 60, 1821(1999.

061707-11



V. POPA-NITA AND P. OSWALD

[5] P.G. de Gennes, Mol. Cryst. Lig. Cryst2, 193(1972.

PHYSICAL REVIEW E68, 061707 (2003

(1984.

[6] For a review of these models, see, e.g., T. J. Sluckin and A[22] J.S. Langer, Ann. Phy4.1, 108(1967; J. Zittartz, Phys. Rev.

Poniewierski, inFluid Interfacial Phenomeneedited by C. A.
Croxton (Wiley, New York, 1986, Chap. 5; B. J®me, Rep.
Prog. Phys54, 391(199J.
[7] S. Hess, Z. Naturforsch. 81, 1507(1976.
[8] P.D. Olmsted and P. Goldbart, Phys. Rev R 4578 (1990);
46, 4966(1992.
[9] T. Qian and P. Sheng, Phys. Rev5B, 7475(1998.
[10] J.L. Ericksen, Arch. Ration. Mech. Anat, 231(1960.
[11] F.M. Leslie, Q. J. Mech. Appl. Mathl9, 357 (1966); Arch.
Ration. Mech. Anal28, 265 (1968.
[12] P. G. de Gennes and J. ProBhe Physics of Liquid Crystals
2nd ed.(Oxford University Press, Oxford, 1983
[13] P. Oswald and P. Pieranskies Cristaux Liquides: Concepts et
Proprietes Physiques llluste Par Des Expeéences(Gordon
and Breach, Paris, 20p0vol. 1.
[14] E.F. Carr, Mol. Cryst. Lig. Cryst34, 159 (1977.
[15] E. Guyon, R. Meyer, and J. Salan, Mol. Cryst. Lig. Cryst,
261 (1979.
[16] L. D. Landau and E. M. LifshitzFluid Mechanics(Pergamon
Press, Oxford, 1959
[17] V. G. Levich, Physicochemical Hydrodynami¢Brentice-Hall,
Englewood Cliffs, NJ, 1962
[18] U.-Ser Jeng, L. Esibov, L. Crow, and A. Steyerl, J. Phys.:
Condens. Mattel0, 4955(1998.
[19] J. Jzkle, J. Phys.: Condens. Matt&0, 7121(1998.
[20] N.V. Madhusudana and R. Pratibha, Mol. Cryst. Lig. Cr@&.
249 (1982.
[21] S. Faetti and V. Palleschi, J. Chem. Ph§g, 6254 (1984);
Phys. Rev. A30, 3241(1984); J. Phys(France Lett. 45, L313

154, 529(1967; A.J. Bray, Phys. Rev. B8, 1508(1998; W.
van Saarloos, Phys. Rep01, 9 (1998.

[23] R. Williams, Mol. Cryst. Lig. Cryst35, 349 (1976.

[24] A. W. Adamson,Physical Chemistry of Surfac€¥Viley Inter-
science, New York, 1990

[25] C.H. Sohl, K. Miyano, J.B. Ketterson and G. Wong, Phys. Rev.
A 22, 1256(1980.

[26] J. Meunier and D. Langevin, J. Phy&rance Lett. 43, L185
(1982.

[27] S. Hard and R.D. Neuman, J. Colloid Interface Sdi5 73
(1987).

[28] M.A. Bouchiat and J. Meunier, Phys. Rev. Left3, 752
(1969; J. Phys.(France 32, C5a-181(1972.

[29] D. Langevin and M.A. Bouchiat, J. Phyé&rance 33, 101
(1972.

[30] D. Langevin, J. PhysFrance 37, 901 (1976.

[31] For a review about experimental studies of liquid at interfaces,
see J. Meunier, ihiquids at InterfacesProceeding of the Les
Houches Summer School, Session XLVIII, edited by J. Char-
volin, J.-F. Joanny, and J. Zinn-JustiMorth-Holland, Amster-
dam, 1988.

[32] For the description of a simple apparatus allowing the study of
capillary waves at a liquid surface through the quasielastic
scattering of light, see W.M. Klipstein, J.S. Radnich, and S.K.
Lamoreaux, Am. J. Phy$4, 758 (1996.

[33] S. Fauve, K. Kumar, C. Laroche, D. Beysens, and Y. Garrabos,
Phys. Rev. Lett68, 3160(1992.

[34] G. Barbero, I. Dozov, J.F. Palierne, and G. Durand, Phys. Rev.
Lett. 56, 2056 (1986).

061707-12



