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Shear-induced textural transitions in flow-aligning liquid crystal polymers
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The equations of nematodynamics are formulated, solved, and used to model textural transformations in
sheared thermotropic flow-aligning nematic polymers. The solutions are classified and characterized using
analytical, scaling, and numerical methods. It is found that as the shear rate increases, the pathway between an
oriented nonplanar state and an oriented planar state is through texture formation and coarsening. The two
shear-rate dependent dimensionless numbers that control the texture formation and coarsening process are
Ericksen Er and Deborah De numbers. The emergence of texture is independent of the Deborah number, and
occurs at E=10%. As the shear rate increases and-Bf* the first texture that arises is a defect lattice. Further
increases of the shear rate bring De close to 1, ignite the coarsening processes, and replace the defect lattice
with a defect gas. The smallest texture length séaleccurs at the defect lattice-defect gas transition. In the
defect lattice regime the texture length scale decreases with increasing shearfratéjasa) ~ Y2, while in
the defect gas regime it increasestas (y—b+/(y—a) —c¢)~*. Finally when De>2, an oriented monodomain
state emerges, and the texture vanishes since coarsening overpowers defect nucleation. It is found that the
texture ftransition cascade unoriented monodomalafect lattice= defect gas>oriented monodomain
is remarkably consistent with the experimentally observed textural transitions of sheared lyotropic nematic
polymers.
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. INTRODUCTION example 8CB (4-n-octyl-4-cyanobiphenyl) is a shear flow-

aligning nematic at high temperatures but as the temperature
Nematic liquid crystal{NLCs) are textured, anisotropic, approaches the nematic-smedidransition temperature, the
viscoelastic material{1]. Their mechanical behavior is material loses its ability to orient with the flow and out-of-
greatly influenced by the presence of textures, or spatial digplane orientation and defect nucleation is likely to oddir
tribution of defects[2,3]. Since the rheological material Hydroxy-propyl cellulose in suitable solvents is a cholesteric
functions of NLCs are functions of the underlying texture, lyotropic liquid crystal polymer and it exhibits nonaligning
the role of shear on the nucleation and coarsening of texturddehavior at low shear-rates and flow-aligning behavior at
needs to be better understood. high shear ratep4]. No systematic data that show that ther-
The role of shear on texture formation and texture coarsMotropic liquid crystals, such as Vectf@], are nonaligning

ening is greatly affected on the flow properties of NL@ materials, has been presenteq. At present there appears to be
the molecular weighti.e., low-molar mass or polymepic @ consensus that thermotropic nematic polymers are flow
and the class of NLGi.e., lyotropic or thermotropid4]).  aligning[7].
Figure 1 shows a schematic of the molecular geometry, po- n
sitional disorder, and uniaxial orientational order of rigid rod
nematic polymers. The partial orientational order of the mo-
lecular unit axisu is along the average orientation given by
the directom (n-n=1). The shear flow behavior and rheol-
ogy of nematic liquid crystal§NLCs) depend on the sign
and magnitude of the reactive parametewhich is the ratio
of the flow aligning effect of the deformation rate and the
tumbling (rotationa) effect of the vorticity[4]. For rodslike
NLCs it is known that\>0 [1]. When\>1 the material
flow aligns close to the velocity gradient direction since the
rotational effect of vorticity is overcome by deformation.
When 0<A<1 the director does not align close to the ve-
locity gradient direction because the rotational effect of the
vorticity dominates over the aligning effect of the deforma-
tion. Materials withA>1 display the flow-aligning mode.
For thermotropic low-molecular mass nematics the only
mechanism that leads to nonaligning behavior is the proxim-
ity to the smecticA phase[5]. It has been shown that for G, 1. Schematic of the molecular geometry, positional disor-

der, and uniaxial orientational order of rigid rod nematic polymers

(NPs. The partial orientational order of the molecular unit axis
*Corresponding author. Email address: alejandro.rey@mcgill.caalong the average orientation given by the directqin-n=1).
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cally inversion walls in NLCs under external fields arise be-
cause two equivalent reorientatiGiotation) mechanisms are
possible. The net result is a field-aligned sample with trapped
thin layers that separate regions of clockwise rotations from
those of anticlockwise rotation. In many nematic polymers
the inversion walls are organized into long-lived periodic
structures(i.e., defect lattice[1,16,21—23 Inversion walls
are classified according to the elasti®., splay, bend, and
twist) modes of deformatiof8]. In this paper we restrict the
discussion to twist inversion wal[24], in which the director
-------------------- n lies in a plane parallel to the wall. Twist inversion walls are
characterize by a topological char@e given by

a)

I ot e M -~ Flow
direction

Velocity gradient \ _

direction C=— @

b : . : : :
) where Ay is the total director rotation while traversing the

Vorticity axis wall. As in disclination lines, the sign of the charge define
the sense of rotation. Since sheared flow-aligning nematic
FIG. 2. (@ Schematic of a twist inversion wall in which the polymers orient very close to the velocity direction, an in-
director rotates byr radians when traversing the walb) Sche-  version wall formation is expected if the initial orientation is
matic of the unit sphere description of the director figl®] with orthogonal to the imposed flow. In addition, if the flow-
respect to rectilinear simple shear flow. Theaxis is the flow di- aligning angle is sufficiently small, say less than several de-
rect?o_n, they axis the velocity_ gra_dient direction, and thexis the grees, the walls are essentially twist walls. Figufb)2s a
vorticity axis. The equator lies in the sheat-y) plane and the  gchematic of the unit sphere description of the director field
north pole and the south pole are located on the vorti@lyais.  [>5] \yhere thex axis is the flow direction, thg axis the
The director trajectory for two twist inversion walls, .Of Cha'@e velocity gradient direction, and theaxis (out of the plane of
=—1, andC= +1, is according to the rotation sense in going from . . S
the vorticity axis to the flow direction. the paper the vorticity axis. The equator lies in the shear
(x-y) plane and the north pole and the south pole are located
on the vorticity @) axis. The figure shows the director tra-
Textures are spatial distributions of defects. Defects argectory for two twist inversion walls, of charg&s= —1 and
classified according to dimensionalit ] in terms of points  + 1, according to the rotation sense in going from the vor-
(D=0), disclination lines D=1), and inversion walls[) ticity axis to the flow. In this paper we use shear-induced
=2). Disclination lines can have singular or nonsingulargeneration of twist inversion walls as a model for texture
cores[2]. The charge of a disclination line is defined by a generation.
sign (+,—) and a magnitud€l/2,], . . .). The sign indicates As mentioned above, each class of liquid crystals displays
the sense of rotation when encircling the defect, and the distinguishing number of textures. Textures exist in small-
magnitude, the amount of rotation. Inversion walls are two-molecule nematics, both flow aligning and tumblif@6—
dimensional nonsingular defects, in which spatially localized28], but are much more persistent in LCPs, due to the high
director gradients occur. Figuréa shows an schematic of a viscosities of the lattef4]. As mentioned above, in both
twist inversion wall[1] in which the director rotates byr  thermotropic and lyotropic liquid crystal polymeitsCPs9, it
radians when traversing the wall. The continuous directois known that defects influence the microstructure and rheol-
rotation is localized in a thin region that defines the inversiorogy [29]. The connection between textures and rheology of
wall thicknessé. The surface tension of the wall K/€, lyotropic LCP has been experimentally characteriz@d—
where K is the Frank elastic constafi8]. Inversion walls  34]. For thermotropic LCPs less progress has been made, as
form either loops, are attached to other defects, or to tha consequence of experimental difficultieg]. However,
bounding surfaces. Once nucleated, inversion walls cathere are studies of the textural transitions in thermotropic
shrink, pinch, or annihilate with other walls or other defectsLCPs(TLCPS [29,35-31.
[9]. All these nucleation and coarsening defect processes The theoretical and computational framework for the
have an impact on the viscoelastic response of the systemijidely reported flow-induced texture and pattern formation
since elastic and dissipative mechanisms are involved. Modshenomena in liquid crystal materials has been investigated
els and theories of nucleation and coarsening of textures unn several studiegl]. For low-molecular weight liquid crys-
der flow is a topic of current interegsee, for example, Refs. tals[38-40, it is found that for low shear rates the flow may
[1,9-13). The anisotropic properties of nematics give rise tobecome unstable when the director is perpendicular to the
novel field-induced reorientation mechanisms and defecshear plane. Furthermore, in Rg41] this study is extended
nucleation[8,14,15. The emergence of field-induced inver- to the shearing flow of tumbling LCPs. Moreover, a texture
sion walls in several lyotropic and thermotropic nematicinvolving twist distortions has been predicted in a nonlinear
polymers has been well characterizgd10,16—20. Typi-  fast flow of a flow-aligning nematig42]. Thus the condition
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A>1 is not guaranteed that a uniform molecular alignment Fe4
will emerge, as previously believed. -

Numerical integration of the classical Leslie-Ericksen o n=(0,0.1)
nematodynamics equatiof43,44 has shown that band for- ' *
mation during the start-up of sheared LCPs can be explained j 1
by twist distortions which dominate in flow over splay and H &v
bend. A very complete analysis of the symmetry-breaking 7/
transient states with the director out of the shear plane, which n=(0,0,1)
partially coexist with the in-plane states, is given in Réf] L
for rodlike molecular weight and polymeric LCs in simple /
shear flow, using a nonlinear relaxation equation for the 2) z
alignment tensor. The hydrodynamics induced symmetries
and broken symmetries for uniaxial nematic liquid crystals A
are presented in R€f46]. A computational simulation, using y
a tensorial theory, is used in Rd#7] to study the spatial
inhomogenity of the director field, which plays an important
role in a highly textured thermotropic LCP. The flow in lyo-
tropic LCPs has been investigated through numerical simu-
lations, in several studies, using Landau—de Gennes theory
[11], Doi-Marruci-Greco theory48], and extensions of Doi
theory for nematic polymergl9]. They all capture important S —
aspects of flow-induced pattern formation. The aim of this ) \l X
paper is to extend the study of flow-induced texture genera-
tion to flow-aligning thermotropic polymeric NLCs.

The specific objectives of this paper dtb to elucidate b)
the mechanisms that control textural transformation in
sheared, flow-aligning, rigid-rod, nematic polymers, under FIG. 3. Definition of the flow geometry and coordinates system
isothermal conditions(2) to characterize how the texture for simple shear flow(a) The lower plate is at rest and the upper
length scale depends on the imposed shear rate(3n  Plate moves in the direction with a constant velocity, H is the
explain the observef31,32 shear-induced texture cascade 9ap separation(b) Cartesian coordinate system withthe flow
unorlented monodoma‘;ndefect texturg}o”ented monodo_ direction,y the VelOCity gradient direction, argthe VOI’tiCity axis.
main using the classical equation of nemato-dyanmics irfhe directom is defined by the tilt angl® and the twist anglep.
conjunction with analytical, scaling, and computational

methods. ' 2

This paper is organized as follows. In Sec. Il we present Q= | |uu—zjedw, @)
the governing equations that describe the microstructure for
polymeric liquid crystals under arbitrary flow, and the nu-\hereu is the unit vector parallel to the rodlike molecules
merical procedure. Analytical results are presented in Segsee Fig. 1, | is unit tensor, ando is the orientation distri-

Ill. In Sec. IV we present, classify, and discuss the simula{,iion function. The symmetric and traceless tensor order
tion results. Section V discusses the essence of the pred'Ct‘E)%rametelQ can be expressed by

results in conjunction with relevant experimental results.
Section VI presents the conclusions. 1
+§P(mm—ll), 3)

1
Q= S( nn— =1
Il. THEORY AND GOVERNING EQUATIONS 3
In this section, we present the Landau—de Gennes theonyhere the following restrictions apply:
for nematic liquid crystals, and the parametric equations used
to describe liquid crystalline polymers texture formation. As - 1
mentioned above, the theory is well suited to simulate tex- Q=Q', WQ)=0, - 5=S5<1, -
ture formation since defects are nonsingular solutions to the
governing equations. In this paper we study a rectilinear 1 0 0
simple start-up shear flow with Cartesian coordinates, as
shown in Fig. 8a). The lower plate is fixed and the upper n-n=m-m=I-1=1, nn+mm+Ill=1={0 1 Of,
0 0 1

<P<

)

N w
N[ w

plate starts moving at=0 with a known constant velocity
V; the plate separation id. The z axis is coaxial with the (5)
vorticity axis and the shear plane is spanned byxtheaxes.
_ o The uniaxial directon corresponds to the maximum eigen-
A. Landau—de Gennes mesoscopic model for liquid values,=2/3S, the biaxial directorm corresponds the sec-
crystal polymers ond largest eigenvalue,,= — 1/3(S—P), and the second
The microstructure of liquid crystal polymeteCP9 is  biaxial directorl (=nXxm) corresponds to the smallest ei-
described conveniently in terms of a second order, symmetrigenvalues ,= — 1/3(S+ P). The orientation is defined com-
and traceless tensor order param&efi8]: pletely by the orthogonal director triagh, m, ). The mag-
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nitude of the uniaxial scalar order paramefeis a measure
of the molecular alignment along the uniaxial direatpand

is given asS= 3/2(n-Q-n). The magnitude of the biaxial
scalar order parametéris a measure of the molecular align-

ment in a plan perpendicular to the direction of uniaxial di-

rectorn, and is given byP=3/2(m-Q-m—1-Q-I).
The Landau—de Gennes theory of liquid crys{&8] de-

scribes the viscoelastic behavior of nematic liquid crystals

PHYSICAL REVIEW E68, 061704 (2003

Q-UQ-Q

SF I8! 1
—[%} =(ukT)®= —(,ukT)[(l— 3Y

1
Uy (Q:QQ+ 3 (Q:Q)I |+ (ukT)

—Lyigiz kT(V(v Q

using the second moment of the orientation distribution func-

tion, known as the tensor order parame@erThe governing
equations for liquid crystal flows follow from the dissipation
function A:

A=t3A+ukTO-Q, 7)
wheret® is the viscoelastic stress tensprjs the concentra-

tion of molecules per unit volumé, the Boltzmann constant,
andT the absolute temperaturg,is the symmetric traceless

rate of deformation tenso€) is the molecular field, an@ is

HV(V-Q}T ——tf{V(V Q)}lﬂ (10

and contains short-rangéhomogeneoys and long-range

(gradien} contributions. Expanding the forced®( Q) in
terms of fluxeqA, ukT®), and taking into account thermo-
dynamic restrictions and the symmetry and tracelessness of
the forces and fluxes we can obtain the equationgfand

Q. In this paper we concentrate on the dynamicofand
hence we assume that the velocity field of the shear flow is

the Jaumann derivative of the tensor order parameter, giveknown and given by

by
~ 0Q

Q=—r+(v-V)Q-W-Q+Q-W, (8a)

1
=§(VV—VVT), (8b)

1
= E(Vv+ vvh, (80)

_[eR]E [ af of s

(MkT)®——% =70~V vo (8d)

where F is the total free energy antl is the free energy
density:

1::fsr"'flrv (9a)
1 1 1
fsrz(,ukT){E(l—gu Q:Q-3UQ(QQ)
1
+ZU(Q:Q)2,} (9b)
P {{VQ'(VQ) ; (9c)
Ir 2ukT : 2ckT

wherefg, is the homogeneoughort rangg energy density,
f|, is the gradientlong range energy densityl) =3T*/T is
the nematic potentialT* is the isotropic-nematic transition

temperaturel.; andL, are theLandau coefficients, and the
superscrip s] denotes symmetric and traceless. Using the
Landau—de Gennes free energy density, the molecular field is

given by

V=(7y.0,0), (11)

where the constant shear rate is givenybyV/H. The dy-
namics of the tensor order parameter is given by the follow-
ing sum of flowF, short-range®*', and long-rang®" con-
tributions[51]:

Q=F(Q,Vv)+0, (129

0=0%(Q,D,(Q)+0"(VQ), (12b)

(i) flow contributionl,
2 2
F(QVV)=3BA+B A Q+Q A= Z(A:Q)

1
~5A(AQIQTAQ-Q+Q-A-Q+Q-Q-A

—{(Q-Q):A}], (13
(i) short-range elastic contributio®®",
_ _ 1
0°(Q,D,(Q))= —6Dr[ ( 1- §U)Q— uQ-Q
Ui (Q:QQ+ 3 (Q Q)IH (14

and (iii ) long-range elastic contributio®",
®"(V-Q)=6D, 2Q+ -2 V(V-Q)
2 ukT

+{V(V-Q)}T—gtf{V(V-Q)}lﬂ, (15
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— D, and are the ratio of viscous flow effects to long-range order

Dr:3—2v (16)  elasticity, and short-range order elasticity to long-range order
(1— —Q;Q> elasticity, respectively. Here is a characteristic viscosity.

2 The Deborah number De, or the ratio between flow effect

= . . ) ... and short range energy effect, is given b
whereD, is the microstructure dependent rotational diffusiv- g oy g y

ity, D, is the pre-averaged rotational diffusivity here taken to
be constant ang is a thermodynamic parameter which is
not determined by molecular shape since our model contains

no specific molecular information. The dimensionless formgng its magnitude controls the amplitude of effects associ-

_Er_ y

De= R 6—Dr, (21)

of the governing equation for the tensor order param@teyr

ated with the scalar order parameters.
The Landau—de Gennes model for nematic liquid crystals

ErQ* =Er EﬂA* +B|A*-Q+Q-A* — E(A* :Q)l has an external length scdleand an internal length scale
3 3 .
as follows:
1
— * *.0. A% .O-A* L
5BLA*:QQ+A*-Q Q+Q-A*-Q+Q-Q-A (=H, €= /3 I 22
o
3 R
—{(Q-Q):A*}]|— U7 3 12 It should be noted that the external length scale governs the
1— _Q:Q) directors’ orientatior(n, m, I) while the internal length scale
2 governs the scalar order paramet& P). The externalr,
1 and internalr; time scales of model are ordered as follows:
x 1—§U)Q—UQ-Q+U (Q:Q)Q H? 1
L 3 Te——3L1 , Ti—D—r, TS T (23
+ §(Q:Q)l} 32|V
(1_ —Q:Q) The external time scale describes slow orientation variations
2 and the internal length scale describes fast order parameter

variations. Finally the presence of shear flow of ratmtro-

ZLF | wr(vr. *(y*.ONT uces a flow time scale; :
+ ;Lz V*(V*.Q)+{V*(V*.Q)} d flow ti |
2 - (24)
— 3V (V- Q] (17 Ty
and a flow length scalé; :
t*=yt=1y, A*=.é, W*=V.—v,
Y Y o L,
=\, o6=—, (25)
L, Y 1
V*=HV, L3=—, (19 , ) . — .
Ly where § is the orientation diffusivity. The relation between

the time scales, length scales and the dimensionless numbers

where the star superscript denotes dimensionless quantitieg,e

vy is the shear rate, angis the strain. The dimensionless free

energy densityf* is given by 7, H2
Er=—=—, (269
3 3 T Lf
f*=Uf:r+ ﬁfr; . (19)
Te H?
The dimensionless numbers Hfricksen numberand en- R= T €7 (26D
ergy ratioR [50] are given by
S2 P
Er= 7'3 7]' (Zoa) De ?f— €—% (26C)
1
3H2uk T Related to the values of Deborah numbers we have two pro-
= , (20b)  cesses(a) Orientation process (Bel): the time scale or-
Ly dering isTi< ;< 7., the orientation processes dominate the
KT rheology, and the scalar order parameter is close to its equi-
_H librium value. In this regime the flow affects the eigenvectors
7= 3D, (200)

of Q, but does not affect the eigenvalues@f(b) Molecular
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process (D& 1): the time scales ordering is<7,< 7., and microstructure is described by the directorand the scalar
the flow affects the eigenvectors and eigenvalue® of order parametes is assumed to remain constant, that is,
unaffected by the flow, and always equal to its value at equi-
librium: S= S, while the biaxial order parameter P is equal

) ] to zero. The total extra-stress tensband the director bal-
The model equationgl?) are a set of five coupled non- 5nce equation in the LE theof$2] are
linear parabolic partial differential equations. The equations

are solved using Galerkin finite elements for spatial discreti- af,
zation and a fourth order Runge-Kutta time adaptive method.I' =P~ @vnyT -Vn+aAinnnn+ a;nM + asMn + e, A
Convergence and mesh independence were established in all

B. Computational methods and auxiliary data

cases using standard methods. Spatial discretization was ju- + asnn-A+ agA-nn, (283
diciously selected taking into account the length scale of our
model. The selected adaptive time integration scheme is able 0=T"°+Tv, (28b)

to efficiently take into account the stiffness that rises due to

the disparity between time scalg< 7. af, af,
The boundary conditions fd@ are I'=—nX FrERA (ﬁVn))'
I

Qs(y*=0)=Q4(y*=1)= Seq( NgNs— 5) . (279 I"=—nX(y1M+y,A-n), (293
n.=(0,0,1), (27b) Y1=@3Tap, Y= @ as (29b)
1 3 8 where f,, is the Frank long-range energy density, given in

Seq=— + = /1_ — (270 terms of the following splay K,,), twist (K,,), and bend
14 4 3u (K39 modes:

describing a fixed director orientation along the vorticity 2 f =K,,(V-n)2+K,y(n-V xn)2+Kasg nmx V xn|2.

axis, a uniaxial state with the scalar order parameter equal to (30)

its equilibrium value. The initial state is assumed to be

uniaxial and at equilibrium. The orientation of the director atA is the rate of deformation tensdy} is the Jaumann de-
t=0 is assumed to be parallel tg, with thermal fluctua- rivative of the directom:

tions introduced by infinitesimal Gaussian noise. The ther-

modynamic parameteB and the nematic potential are used M=n—n-W. (3D

to calculate the reactive parameterwhich indicates if the

system is flow aligning or not. In this paper the values for{«;}, i=1 and 6, are the six Leslie viscosities coefficients,
these parameters are chosen to assure xhafl (flow-  where only five of these are independent due to Parodi’'s
aligning systemm U=4, B=1.2. The selected ranges relation[53]

for the dimensionless parameters are 3d®<10°,

0<Er<2x10’, and 0<De<20. ag— as=ay+ as. (32

In the Landau—de Gennes model used Hére. (17)] Ky,

=Ks3. To break the splay-bend equality higher order terms

A. Orientation modes predicted by the Leslie-Ericksen model are required, but for the present paper they are unnecessary
The most successful and established theory applicable fgecause the phenomena of interest is independent of this an-

slow uniaxial nematic flows is that of Leslie and EricksenSotropy. In the LE theory the reactive parametethat con-

[52]. It was shown[50] that when the ratio between the trols flow alignment is given by

Ericksen number an® is insignificant(i.e., slow flow, the

Landau—de Gennes model reduces to the Leslie-Ericksen A= — Y2 _ axtas (33)

IIl. ANALYTICAL RESULTS

(LE) theory, when the splay and bend elastic modikee V1 az—ay’
Egs.(28)] are equal. Since the Landau—de Gennes model at
sufficiently slow flows becomes the LE model, it is useful to As mentioned above, the characteristic flow behavior of a
use the easily obtained predictions of the LE model in ordenematic liquid crystal depends only the sign and magnitude
to explain and classify the response of the more complicatedf the reactive parameter or equivalently on the Leslie vis-
Landau—de Gennes model. We note that all our computasosity coefficientsy, and az. When shearing a nematic lig-
tional results discussed in the following sections were obid crystal two different types of flow behavior are possible,
tained using the original Landau—de Gennes equatibds  depending on the signs of, anday. For rodlike molecules,
As mentioned above the LE theory neglects the shortw; is always negative, whilex, can be negative for flow
range order elasticity, and hence it is unable to describe thalignment systems\(>1) or positive for nonalignment sys-
changes of the scalar order parameter due to the impositicems[54] (0<A<1). The flow-alignment angle is known as
of sufficiently strong flow. Consequently, in this theory, thethe Leslie angled,;, and is given by
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trajectory 1 to the stable sin&; corresponding tod, and
¢=0 or trajectory 2 to the stable sirs, corresponding to
the antipode- 6, and ¢= 7.

Introducing elasticity allows for two new features. If Er is
sufficiently low, flow is weak, and the boundary effects sta-
bilize the orientation along the vorticity direction. If Er is
sufficiently large the two equivalent flow attractors become
dominant. In this case a director field aligned along the vor-
ticity axis may evolve to a unique attractor, or to both attrac-
tors. Since evolving to both attractors introduce further dis-
tortions, these modes may arise at higher Er. In the presence
of one attracton, is symmetric, while in the equipresence of
two attractors it is antisymmetric. Multisampling of the two
attractors gives rise to a layered mode. Thus the LE model
that subjecting a NLC witm=(0,0,1) the following solution
multiplicity: (@) Homogeneous mode H):0<x<H, n

FIG. 4. Phase plane trajectories in thep plane for\=1.43. =(0,0,1). (b) Symmetric mode $): O<x<H, sgn)=+.
The stable §;) sink nodes correspond to the Leslig angle, and  (c) Antisymmetric mode (AT):&x<H/2, sgnf)=+; H/2
the stable sink nodes) to — 6, while the twist angle is equal te. <x<H, sgnf)=—. (d) Defect lattice mode (DL):6x

The vorticity direction ¢ axis) is an unstable saddle point. If the ¢ sgnfy)=+; £<x<2¢, sgnf)=—, ... .
director is initial aligned along the vorticity directiong€0,¢

=90) the director can take trajectory 1, to the stable Spkorre- sgn is the sign, and is the layer thickness and where the
sponding tod, and ¢=0 or trajectory 2, to the stable sing,, other trivially distinct cases are omitted for brevity. For ex-
corresponding to the antipoded_ and ¢= . ample the equivalers mode to the one stated i@ corre-
sponds to sgm()=—, and so on. Modesa)-(b)-(c) have
1 been previously analyzed5,56. The symmetry breakings
COS Wg =1 (34 (nonhomogeneous modesre induced by the flow. The

minimum Ericksen number required for the nonhomoge-
neous modegb)-(c)-(d) can be predicted using linear stabil-

and exists fori>1. As seen from Eq(34), for shear- ity analysis. For simplicity we assume the constant approxi-
aligning rods the flow tends to align the average molecularty ysis. pacity bp

orientation along the flow direction. mation ~ (Ky=Kz=Kgy=K), and neglect backfiow

: . . hydrodynamic flow induced by orientation, for details see
Next we briefly present the LE predictions to simple shear( ) ’
when the director is along the vorticity that are relevant toRef' [53]). For a cell of thicknesst, under a constant shear

this paper. In Cartesian component form, the director is Writ-rate ¥ Nno backfiow, and aligned along the vorticity,(

; _ : : =1) at the bounding surfaceyy€£ =H/2) the linear LE
ten as[Fig. 3(b)] n=(cosfcos¢,sing,cosdsin ), where ; Ny I
is the tilt angle ands is the twist angle. The in-plane orien- €duations for the twisp” and tilt ¢" angles measured from

tation corresponds te¢=0, and the out-of-plane orientation the vorticity (z) axis are

corresponds t@# 0. The velocity gradient for shear can be a2’ 2
assumed uniform across the sample:(yy,0,0). Replacing K——7=a3y¢’, K——7=ayy0 . (36)
the director and velocity fields in Eq§28) in the angular dy dy

momentum balance equatig®9), and neglecting the Frank
elasticity, the following coupled nonlinear differential equa-
tions resulf52]:

The equations admit the following multiplicity:

, nmwz 1 ™
do ¢ =¢oCOo T+(n_ )E'
(a3—a2)a+ ;}/(6(3 C052 60— Qo S|n2 6)COS¢:0,

nmwz T
(359 0’=60c05{?+(n—1)§ , n=12,.... (37

The n=0 mode represents the symmetric mode; 1 the
antisymetric mode, and>2 the defect mode. Theth mode
exists when the Ericksen number satisfies

d
(a3—a2)cosad—f— Ya, sinf sing=0. (35b

Figure 4 shows the phase plane trajectories inélgeplane )

for A=1.43, obtained by solving Eq§36). The stable §,) Er—= yHK > (nr)? (39)
sink nodes correspond to the Leslig angle, and the stable Vapag ’

sink node §,) to — #, while the twist angle is equal ta.

The vorticity direction ¢ axis) is an unstable saddle point where we used a slightly different definition of the Ericksen
(Fig. 4). We can see that if the director is initial aligned along number, to follow the classical results of Pieranski and
the vorticity direction §=0, $=90), the director can take Guyon[57]. Starting with the director along the vorticity and
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with strong surface anchoring, neglecting backflow, when the ¢
Ericksen number is slightly greater thar?, we can observe 3
the symmetric, antisymmetric or the defect solutions under
simple shear flow. Which solution is selected for a given Er
is determined by the basin of attraction of each mode, as
shown below.

N

[y

B. Single and multiple inversion walls

The steady LE equations including elasticity, and neglect-

ing back-flow for the tiltd and twist¢ angles are a) y
d?e A
KWZ=+'}/(a3 cog 60— a, sir? )cosp, (393 2
20
d2
K cosad—yzz — Ya, Sin@sin . (39b) 15
10
At sufficiently high shear rateg we can assume that the tilt
angle 6 is aligned along the Leslie anglg , and the latter 5
equation(39b) gives the steady sine-Gordon equation:
b) 0.2 0.4 0.6 0.8 1
d?e K A—1
2 —gj = — P

FIG. 5. (8 The twist angle as a function gi=y/¢ for p
where a, was assumed to be negative, in accordance with=0.9999.(b) The periodA as a function of the modulus. As p
flow-aligning rod-like nematic$54], where ¢ is the coher- >1, an array of inversion walls appear, whose period increases
ence length or wall thickness. In terms of the flow thicknessgexponentially withp.
introduced in Eq(40), the wall thickness is
A=4¢pE(p), (440

=

7 [A—
§=o-ty, o= [ag] VA+1’ (4D \where SN is the Jacobian elliptic functif8] of modulusp,
and A is the distance between walls. Figur@)sshows the
where o is a material constant of order one. The inversiontwist angle as a function &f=y/& for p=0.9999, and Fig.
wall thicknessé= o - £ is inversely proportional to the shear 5(b) the periodA as a function of the modulys As p>1, an
rate. An inversion wall solution to this steady sine-Gordonarray of inversion walls appear, whose period increases ex-

equation[58], for ¢=0 aty=—«, ando=m at y=+, ponentially withp. The number of walls in a shear cell of

>

and whose midplane is locatedat y is thicknessH is N(p) =H/E (p).
We have shown that when Er is high enough the nonho-
tanf:exp((y—)’o)). (42) mogenous modes exhibit the following inversion wall phe-
2 & nomena(a) Symmetric mode$): there are two half-walls at

) ) ) _ the bounding surface. The net charge is always zero. If the
Using Eg.(1) we find that for solution42) the topological top surface ha€=—1/2 the bottom surface has a charge
charge of the inversion wall i€=+1. A positive charge  c=11/2, (b) Antisymmetric mode(AT): there are three
corresponds to anti-clockwise rotation for increasyngrhe  \ajis. The net charge is always zero. The surfaces have equal

correspondingC=—1 wall is charge.(c) Defect lattice modéDL): there aren walls. The
o (Y=yo) original net charge is zero. Since, as shown below, wall
= Y~ Yo 43 coarsening and pinching processes take place in this mode,
tan ex . (43 \ |
2 3 and since charge is not conserved, the net charge when coars-

. . . .. ening and pinching occur has to be computed.
At the surfaces the director is anchored along the vorticity g P g P

and inversion walls next to the surface will be called half-
walls since the rotation across in ont§f2 radians.

The steady sine-Gordon equation also admits soliton lat- Coarsening processes of inversion walls under shear can
tice solutions, that represent an array of inversion wallsinvolve (a) pinching[4], (b) a wall-bounding surface reac-
separated by a constant periad The periodic array of in- tion, and(c) wall-wall annihilation. Wall pinching eliminates

C. Wall interactions and coarsening phenomena

version walls, of alternating charge is given [B8] an inversion wall by nucleating a defect pair, and will be
discussed in the next section since it involves spatial changes
A y in the scalar order paramet8& Wall-surface reactions and
sin| 6 =SN 21, (443 L ) .
2 ép wall-wall annihilation are driven by a decrease in the energy
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of the system. As in other defects, the topological charge irfe) defect gas modéDG), and (f) planar mode P). The
these two processes is conserved: complete characterization of the six modes inclu@gsthe
symmetry of the twist angle profiles(y*), (2) the net topo-
logical chargeC, and(3) the layer periodicity in the presence

where the subscript is the charge of the wall in the bulk or aPf Multiple walls. The additional two modes for the
the bounding surface. Recall that at the bounding surfaces andau—de Germes equations arise because scal_ar order
nonhomogeneous modes have an inversion wall. When th 1anges at sufficiently high De introduce coarsening by
tails of two neighboring walls come into contact, the forcesPINching processes. L

of attraction between the walls drive the interaction leading Fi9ure 6 shows the complete characterization of all the

to a decrease in the number of walls. To estimate the force ofta0le steady state solutions to E#j7) with auxiliary data

attraction between walls in these two coarsening procességn' including_ representati\_/e computed yisualizations, sym-
we derive a dynamical free energy per unit aFeaassoci- metry properties of the twist angle profile, net topological

ated with Eq.(40): _charge due to the presence of inversion walls, and pgriodicity

in the presence of an array of walls. The representative com-
£(de puted visualizations of the director field are ®r10°. The
?(d_y dark dots represent the inversion walls. By increasing the

For a train of inversion wallgsoliton lattice solution(443a)],

the integrand is a positive constaBt greater than 1 B

>1) [58]:

Ci+Cj:Ci+j’ (45)

2
+Ccos¢

A

Fa= "y|a2|sin HLJ dy (46)

0

Ericksen number the following director symmetry transition
cascade is observed: symmetriantisymmetric
—symmetric or antisymmetrie asymmetrie-symmetric or
antisymmetric. In terms of net charge the transition cascade
is: C=0—C=0,£n(n=1,2...)-C=0,=1. In terms of the
2 periodicity in the defect modes, the transition cascade is:
+cos¢=B, (47 monotonic- periodic— defect aperiodie>monotonic.  The
values of transition Ericksen numbers dfer R=10) ap-
proximately. Ef,g=70, Eiga=10%, Eraxp =9X 10, Efppo
=1.2x10°, and Ep p=1.8x 10°, where the subscript indi-
cate the two modes involved in the transition: HS;
homogeneous-symmetric; SA, symmetric-asymmetric; ADL,
asymmetric-defect lattice; DLDG, defect lattice-defect gas;
DGP, defect gas-planar. The interval between two successive
critical Ericksen and Deborah numbers defines the basin of
attraction of the shown mode. The main differences between
the LE defect lattice mode obtained with the one constant
approximation and fixed alignment angle approximations
(see Eq(44a] and the computed Landau—de Gennes defect
mode is that the former is period[see Eq.(44b) for the
eriod A] with zero net chargeG=0), while the latter ex-
ibits weak deviations from perfect periodicity, although the
Yhet charge is zero because no coarsening process has taken
effect. The weak deviations from periodicity in the predicted
Landau—de Genned solutions arise because of the elastic an-
isotropy (K,,#Kq11=Ks3) and because the equations are
lly coupled; this weak deviation is not significant in the
escription of the essence of this mode, and hence we retain
the defect lattice label. Since as mentioned above the
Landau—de Gennes equations converge into the LE equa-
tions [with K;;=K33; when using Eq.(29)] the first four
modes(i.e., H-S-AT-DL ) are predicted by both theories. As
Er increases and De becomes closer to 1, wall pinching pro-
In this section we present the main characteristics of theesses emerge, and the solutions of both models diverge, and
six type of steady state solutions predicted by the Landau—déne last two modes are only predicted by the Landau—de
Gennes equations, for initial conditions and boundary condiGennes model. Hereafter we concentrate on the prediction of
tions along the vorticity direction. As shown above, the LEthe Landau—de Gennes model since it allows for shear-
equations predict the existence of four stable steady staieduced textural transformations. The defect gas and planar
modes. On the other hand, we find that as the Ericksen nunmodes that occur at higher Ericksen numbers are the result of
ber increases the Landau—de Gennes equations predict tbefect coarsening process. Since in one-dimensional simula-
existence of two additional stable steady state modes, as falions pinching extinguishes a wall without a defect pair

£as

2\ dy

whose magnitude is related to the modupugnd hence to
the wall-wall separation distanck=4&pE(p) as follows
[58]:
2
B=1+ F(l—pz). (48

The force of attraction per unit arda between two oppo-
sitely charged walls is then

dF,

=-a

:_’.}/|a’2|sin0|_B. (49)
Below we show that the simulations predict that in a range oﬁ
Ericksen numbers, wall-wall and wall-surface coarsenin

processes driven by attractive interactions take place.

IV. NUMERICAL RESULTS AND DISCUSSION

We next classify, characterize, and discuss the numericd
solutions to Eqs(17), obtained using the auxiliary dafa?).
All transient results are shown as a function of strajn:

=yt

A. Classification of steady state solutions

lows: (2) homogeneous modé(), (b) symmetric mode$),
(c) antisymmetric mod€AT), (d) defect lattice modé€DL),

nucleation, the net topological charge in the defect gas after
wall pinching is undetermined. In addition since coarsening
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Solution Homogeneous Symmetric Antisymmetric Defect Lattice Defect Gas Planar
Type H S AT DL DG P
+1/2
w0
=
2
g -1
=
g
]
=
i +1/2
Basin of Er=0— Erg=70 Brus— FBre,=10° | Ere—Erap=9x10" | Etanw— Browe=1.2x10° | Efpiws— Erper=1.8x10° Er > Efper
Attractions | 0o De=De=7x10" | Deys— Des,=107 | Dess — Deyy=9x10" Desp— Deppe=1.2 Depipe — Deper=1.8 De > Depge
Symmetric Symmetric
Symmetry NA Symmetric Antisymmetric or Asymmetric or
Antisymmetric Antisymmetric
0,£n
i +
Net Charge 0 0 0 0 (=12,.) 0, £1
Periodicity NA NA Periodic Periodic Aperiodic NA

FIG. 6. Characterization of all the stable steady state solutions to(Efswith auxiliary data(27), including representative computed
visualizations, symmetry properties of the twist angle profile, net topological charge due to the presence of inversion walls, and periodicity
in the presence of an array of walls, fB=10°. The dark dots represent the inversion walls. By increasing the Ericksen number the
following director symmetry transition cascade is observed: symmetittisymmetrie->symmetric or antisymmetrie asymmetric
— symmetric or antisymmetric. In terms of net charge the transition casc&te G-~ C=0,+n(n=1,2...)-C=0,%=1. In terms of texture,
unoriented monodomain defect lattice— defect gas-oriented monodomain. The values of transition Ericksen numberg@r&= 10°)
approximately: Egs= 70, Ega=10%, Eryp =9X10°, Erp ps=1.2X10%, and Ep, p=1.8X 10°, where the subscript indicate the two modes
involved in the transition. HS: homogeneous-symmetric; SA: symmetric-asymmetric; ADL: asymmetric-defect lattice; DLDG: defect lattice-
defect gas; DGP: defect gas-planar.

by wall-wall annihilation takes places, the periodicity of the B. Shear-induced texture coarsening mechanisms

dgfect lattice is destroyed. The high she_ar rate p_Ianar mode The steady state texture of a liquid crystal is given by the
differs from the low shear rate symmetric mode in that théyg|ance of nucleation and coarsening processes. Coarsening
symmetry and charge are undetermined, since the plan@gents |imit the lifetime of an inversion wall, and a texture
mode is the result of multiple pinching processes. Since the,, e viewed as a balance between birth-death events in the
objective of this paper is the characterization of texturalegime that leads to the defect gas and planar modes. In this
transformation under shear we restrict the discussion to thgaction we characterize the following texture coarsening pro-
defect lattice, defect gas, and planar modes. cesses{a) wall-wall annihilation (mode WW, (b) a wall-
Figure 1a) shows the steady state twigtand tilt 6 angles  hounding surface reactidmode WS, and(c) wall pinching
as a function of dimensionless distange, for R=10°, Er  (mode WB. We also characterize the dependence of the
=7x10* (De=0.7). The figure represents typical anglescoarsening process on the governing length and time scale
profiles for the defect lattic€DL) mode, with two inversion ratiosR, Er, and De. Since the governing time scales at high
walls in the bulk. At these relatively low Er no coarsening shear rates are the flow time schdee Eq(24)], all transient
takes place, the net charge is zero, and the director is peniesults are plotted as a function of strais yt. Although De
odic. Figure Tb) shows the steady state twigtand tilt & and Er are related by Ed21), below we emphasize their
angles as a function of the dimensionless distayitefor  distinct role.
R=10C°, and EE=1.2x10° (De=1.2). The figure represents Figure 8a) shows a computed gray scale visualization of
typical angles profiles for the defect gd3G) mode, with  director componenh, (0<y*<1) as a function of strain,
five inversion walls. At these relatively high Er coarseningfor R=10%, De=1.2 (Er=1.2x 10%), corresponding to wall-
took place, the net charge is not zero, and the director isvall interaction in the planarR) mode. Black represents an
aperiodic. In this particular case the net charge is zero.  in plane orientationrf,=0) and light represents an orienta-
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30 200 shows a manifestation of molecular elasticity represented by
- 180 De. When the flow is strong enough, the scalar order param-
180 eter changes since flow time scales are faster than scalar
- 140 order parameter time scales, and new coarsening routes ap-
pear. Figure &) shows an order paramet8rvisualization
corresponding to Fig. 8). Light corresponds tdS=S,
=0.68 [see EQ.(27)] and black toS=0. When the walls
pinch S at the center of the wall decreases to zero, leaving
| w0 behind a planar field. Figure(® shows a computed gray
L 2 scale visualization of director componemt (O<y*<1) as
Lo a function of strain for R=10°, De=0.9 (Er=RDe

30 =9x10°), corresponding to wall-bounding surface interac-

0 1 tion in the defect lattice mode. Black represents in plane

2) y orientation (,=0) and light orientation along the vorticity
(n,=1). For y<80 there are two oppositely charged inver-
sion walls in the bulk. As the strain increases one wall is
absorbed by the bounding surface.

20

120
100
- 80
I 60

Tilt Angle, O (degrees)
Twist Angle, ¢ (degrees)

-20 4

30 200

F 180
I 160
e C_1+Cy=>C_yp, (52
F 120
leaving behind a single wall in the bulk. The figure shows a
manifestation of the attractive interaction between oppositely
charged wall§see Eq(52)]. In this case charge is conserved
since the charge of the lower bounding surface changes from
+1/2 before the absorption te 1/2 afterwards. Figure(f)
is a unique example of a defect-bounding surface interaction.
Models of surface defect emission have been postu[dt&d

0 1 and also observed experimental®6] but never simulated
b) y with the classical nematodynamics equations.

L 100
L 80
L 60
I 40

Twist Angle, ¢ (degrees)

Tilt Angle, 0 (degrees)

20

-30

FIG. 7. (a) Steady state twis$ and tilt 6 angles as a function of
dimensionless distancg*, for R=10° Er=7x10* (De=0.7) for
the defect latticé DL) mode, with two inversion walls in the bulk.
At these relatively low Er no coarsening takes place, the net charge Next we characterize the dependence of defect nucleation
is zero, and the director is periodit) The steady state twigkand  rates and coarsening rates as a function of the time and
tilt 6 angles as a function of dimensionless distagée for R |ength scales ratios ER, and De. For efficiency we refer to
=10°, and Er1.2x10° (De=1.2), for the defect gatDG) mode,  the three coarsening process@éw, WS, WP, and to wall
with five inversion walls. At these relatively high Er coarsening nycleation as defect events. The number of coarsening events
took place, the net charge is not zero, and the director is aperiodi¢s denoted:. The number of nucleation events is denoted by

C. Shear-induced defect nucleation and coarsening mechanisms
and texture scaling

tion along the vorticity (,=1) axis. Fory<70 there are  Eigyre 9 shows the total number of nucleated walls during
two oppositely charged inversion walls in the bulk. As straingynamical simulations as a function of the Ericksen number,
increases the walls annihilate, for R: (a) 10%, (b) 10°, and(c) 1CP. At sufficiently highR, a
C..+C_ =0 (50) power I.aw regime emerges. _FRr= 10° and E_r> Erap. , the
1 = simulation results are the fitted curve using a power law
leaving behind a planar director field. The figure shows anodel:
manifestation of the attractive interaction between opposi-
tively charged wall§see Eq(50)]. Figure 8b) shows a com- N=eY (Er—Erap.) VEr—Erap,
puted gray scale visualization of director component(0
<y*<1) as a function of strain foR=10" and De=1.8
(Er=RDe=1.8x 10%), corresponding to wall pinching in the
planar mode. Black represents in plane orientation=0)
and light orientation along the vorticityn(=1). For vy
H = €fN \/1+

(53

whereY is the Heaviside function. The corresponding values
of the amplitudes =0.0147 forR=10°. In terms of length
scales the power law scaling gives, forHEr,p, ,

<50 there are two oppositely charged inversion walls in the
bulk. As strain increases the walls pinch separately,

ErapL \/ ErapL
N ~ENA[1+ N (54

C,;=0, C_;=0, (51  Wwhere we used Eqg41) and(53). The asymptotic regimes
are
leaving behind a planar director field. Since two walls disap-
pear in this case, the net charge is conserved. The figure N<VErpL, H=~EErap, , (55a
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1.0 - 1.0 -

*
%.05- >05 -
0.0 - ‘ ' ; ' J 0.0 - ;
20 40 60 80 100 0 20
a) strain b)
1.0 - 0.20 -
0.15 -
| —
% 05 - *.,0.10 -
e
0.05 -
0.0 - | i ' ! ; 0.00 - ! y ) ' '
0 20 40 60 80 100 0 20 40 60 80 100
c) strain d) strain

FIG. 8. Computed gray scale visualization of director compomenf0<y*=<1) as a function of strain. Black represents in plane
orientation f,=0) and light orientation along the vorticity{=1): (a) wall-wall interaction in a planar mode, Er.2x 10*, R=10". (b)
Wall pinching in a planar mode, Er1.8x 10*, R=10%. (c) The order parametes visualization corresponding td). Light corresponds to
S=S,4=0.68 and black t&=0. When the walls pinch, the order parame3eat the center of the wall decreases to zero, leaving behind a
planar field.(d) Wall-bounding surface interaction in the defect lattice modes &x 10°, R=105.

N> Erap, H=~E&N. (55  all R the most significant mechanism is wall pinching. Rs
increases the rate of pinchirit: increases rapidly with De.
The length scale of the textutg=H/N is given by The computations show for De 1, the the coarsening pro-
cess follows a power law:
y " (56
t— .
eY (Er—Erap) VEr—Erap, C= xy(De—Dep pe)" (57
Thus in the absence of coarsening the texture length scale
decreases with a 3 power law. with xy=29.3 andn~1. For largeR=10° the figure shows

Figure 10 shows the total number of coarsening evénts that pinching starts at Rgpg~21. This condition implies,
during the dynamic simulations, as function of the Deboralusing Eq.(21), that Er~R. This equality implies the follow-
number forR: (a) R=10%, (b) R=10, and(c) R=1C°. For  ing equality of length scales:
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FIG. 10. Total number of coarsening evefitduring the dy-
FIG. 9. Number of nucleated walls during dynamical simula- namic simulations, as a function of the Deborah numbeiRfo(a)

tions as a function of the Ericksen number, Rir(a) 1¢%, (b) 18, ~ R=10%, (b) R=10" and(c) R=10P. For allR the most significant

and (c) 10°. At sufficiently highR, a power law regime emerges. Mechanism is wall pinching. AR increases the rate of pinchirig:

The points are the simulation results and the solid lines are the fitteficréases rapidly with De.

curve using a power law modéb8). The amplitude i =0.0147.

length scale pinching occurs. Since the flow scale is the wall

H2 H2 thickness we also find that pinching occurs whiend; .
Er~R=—7~—F={i~{;. (58 Figure 11 shows the total number of nucleation and anni-
& 4 hilation events during the dynamic simulations, as a function

of the Deborah number De fd: (a) R=10% (b) R=10°,
Thus when the flow length scale is close to the internaknd(c) R=10°. The figure shows the existence of three re-
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8 ~10P but for lowerR small adjustments of order 1 occur. In
_ - the defect nucleation regime the length scale ordering is

posaten. <{¢~¢;, and walls nucleate but do not pinch. In the inter-
6 - * mediate nucleation-coarsening regime the length scale order-
ing isH<{¢;~¢;, and thus nucleation and pinching occur at
similar rates. Finally, in the coarsening reginteg ¢, >,
4 and pinching becomes equal with the nucleation. Note that
since {;~¢ [see EQ.(58)] when the wall thickness is
smaller than the internal length scdlg, walls pinch.
5 | A Figure 12 shows a gray-scale plots of the out-of plane
director componenth, as a function of strainy, for R
=10° n,=1 corresponds to white ami,=0 to black, for

o —-— ‘ the following De (Er: (a 1.2 (1.2<10°), (b) 1.6

107 100 10! 102 (1.6x10°), and(c) 2 (2x 10°), representative of the defect
a) Deborah number, De gas and planar modes. In Fig. (&2 five inversion walls
nucleate but since Del.2 andR= 10", there is no annihi-
lation, and the net charge is zero. In Fig.(H)2 De=1.6
there is one wall-wall annihilatioQ/VW) event, leaving be-
- hind a defect gas mode with zero topological charge. In
* Fig. 12c) seven inversion walls nucleate but since=E&
* seven pinching(WP) events take place, leaving behind a
*x planar mode.

Figure 13a) shows the number of inversion walls as a
function of strain corresponding to Fig. 12. Figure(d)3

Advon ¥ shows the corresponding total dimensionless long range free
5 Mo umand energy as a function of strain, computed by integrating the
vy dimensionless free energy density given in E). For the
A higher Er condition, the dimensionless long range energy
) - ” - e function illustrates the existence of three temporal regions.

10 1 (a) Early stage §<30): the out-of-plane orientation and the
b) Deborah number, De long ra?]/ge gneﬁr/gy ar)e close to zgfb) Intermediate stage:

40 nucleation of walls and an increase of long range endajy.
Nucleation * Late stage: coarsening by gnnihilation and a steplike energy
Anninilation * decrease. Each wall that disappears produces an energy step
a0 | decrease. For low Er the response is sigmoidal since no
. coarsening takes place. For the highest Er the response is a
e pulse since coarsening has been eliminated all the walls.

' Figure 14a) shows a gray scale plot of the out-of plane
2t director componemn, as a function of strain foR=10° and

De=12 (Er=1.2x10). When De>1, the number of walls
v increasdin accord with Eq.(44b)] (Er=1.6x10). At suf-
v v ficiently high De (De=16) the layered structure is replaced
v by a homogeneously aligned systfrig. 14(b)]. The figures
X v ovvy N ) N aa show that as De increases the pinching occurs at smaller and

102 10 100 10 smaller strains.
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D. Shear-induced texture formation

FIG. 11. Total number of nucleation and annihilation events Model d hani f h ind d text f
during the dynamic simulations, as function of the Deborah number, 0deIS and mechanisms for shéar-induced texture forma-

for R () R=10", (b) R=10°, and(c) R=1CP. The figure shows tON have been investigated experimentally’] but are not
the following dependences. Bel: nucleation rate annihilation ~ Well understood theoretically. Here we refer to the texture as

rate, Ngo>0; De~1—2: nucleation rateannihilation rate,N,,  the density of defects; the only defects in our one-
>0; De>2: nucleation rate annihilation rateNe= 0. dimensional simulations are inversion walls. The long stand-
ing issue of interest is what mechanisms contribute to the
gimes: (a) Defect nucleation (Brl, De<1): N>C, Ngs nucleation and coarsening processes of textures. The predic-
>0. (b) Defect nucleation and defect coarsening (Detion of a shear-induced defect mode by the classical models
~1-2): N>C, Ngo>0. (c) Defect coarsening (De2): N of nematodynamics provides insights into these questions. In
=(, Ng=0. Ng is the number of walls at the steady state.this section we characterize the parametric dependence of the
The indicated critical De for each regime corresponcRto defect mode length scale as a function of the governing ra-
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FIG. 12. Gray-scale plots of the out-of plane director compongts a function of strain, foR=10% n,=1 corresponds to white and
n,=0 to black, for the following Er{De) (a) 1.2x 10 (1.2), (b) 1.6x10° (1.6), and(c) 2x 1C° (2), representative of the defect gas and
planar modes.

tios of time and length scaleR, Er, and De. To characterize found at Er10°, but for R=10° only five walls emerge at
the steady state texture length scéleinder shear we use its Er=10°. Figure 1%b) shows the number of inversion walls

reciprocal, or the number of inversion walls at steady statéN at steady state as a function of the Deborah De number

Nes. for R: 10%, 10, and 16. The maximum number of walls
Figure 1%a) shows the number of inversion wallésat  occurs at De=1 and the upper threshold of the defect gas
steady state as a function of the Ericksen numbeRfot(*, mode is Dggp=2 for all values ofR. The figures show that
10°, 5x10°, and 16, corresponding to the defect modes. the texture behaviofi.e., number of walls for De<1 is
The figure shows that aR increases the number of walls controlled by the Ericksen number while for B4 it is con-
increases. The figure establishes that the appearance of ttrelled by the Deborah number. Furthermore for-£ tex-
defect modes is only a function of Er, but is independent oftural features are eliminated and a monodomégitanar
R. The figure shows that when €Er,p ~10* no walls are  mode emerges. The computational results shown in Figs. 15
observed for all values d®. The maximum number of walls can be rationalized and approximated by the power law be-
depends ok and Er. For example, fdR=10°, 17 walls are  havior explained in conjunction with Eq&53) and (57), as
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FIG. 13. (aNumber of inversion walls as a function of strain for
the same values &, number andR as in Fig. 12(b) Total dimen-
sionless long range free energy as a function of styaicomputed
by integrating the dimensionless free energy density given in Eg.
(9). The dimensionless long range energy function illustrates the
existence of three temporal regions: early stage:80), the out-
of-plane orientation and the long range energy are close to zero
intermediate stage; nucleation of walls and increase of long range
energy; and late stage; coarsening by annihilation and steplike en g9 - ( ‘ ‘ :
ergy decrease. Each wall that disappears produces an energy st 0 10 20 .30 40 50
decrease. b) stramn

FIG. 14. Gray-scale plots of the out-of plane director component

follows. In terms of the De number, the number of wallg n, as a function of strain, forn,=1 corresponds to white and,

at steady state is given by =0 to black. (@) R=10°, De=12 (Er=1.2x107). (b) R=10F,
De=16 (Er=1.6x10"). When De>1, the number of walls in-
Nee=N—C. (59)  creasdaccording to Eq(44)] (Er=1.6x 10"). At sufficiently high
De (De=16) the defect gas is replaced by a homogeneously aligned
system(b).

Using the power law results we find, for Bdeygp,

N =Y (RDe—Ersp) VvRDe—Ersp,

Using Eq.(60), with n=1, we find that the maximum

nucleation number of WalISN55maXiS
—Y (De—Dep pg) x(De—Deppg)” (60)
I — Nssma= € VRDEp pe— ErapL:  RD€ppe>Efapy -

(61)

indicating that the nucleation growth scales wifbe and is
weaker than the coarsening rate, which scales with {De) The inversion walls vanishN.=0) at the upper critical
andn~1. For De>Depgp, the number of walls ifNs=0. Deborah number Qg;p:
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& VRDEn~o— Efans = x(Denep— D )=D Figure 16 shows the number of walgg as a function of
®ocp™ EfanL = x(Debcr™ Debioc foep the De number foR=10°, from scaling(full line) and com-
~ DeZDLDG, (62 putations(squares The figure shows that scaling resylEq.

(60)] are in excellent agreement with the computations
where we used the fact th&>1, and assumed that Bg>  (Nggma= 17.33 from scaling and 17 from the computatipns
>Deyp. . The scaling predicts that, for large, Depgpis  and hence explain the genesis and extinction of walls in
independent oR, in agreement with computations. FBr  flow-aligning liquid crystal polymers.
=10°, we find that when D pg=1.4 the scaling predicts In terms of texture length scales, E¢60), and ¢,
Depgp=1.96 and the computations give Re=2.1. =H/Ng,

H
€t: ’
&Y (Er—Erap) VEr—Erap. — Y (De— Dep pg) x(De—Dep pe)

(63

where we wrote the nucleation in terms of Er and the coarsThus increasing the energy ratR decreases the texture
ening in terms of De. The smallest texture length scale is length scale since the coarsening process is delayed to higher
and higher shear rates.

H
(64)

eVErpG— EfapL V. DISCUSSION

Figure 17 shows the dimensionless length scale as a func- Shear-induced textural transformations in flow-aligning
tion of De for R=1CP. The figure clearly implies that in the @nd nonaligning low molar mass nematics, lyotropic nematic

nucleation regime the texture refinement follows the sheaPolymers, and thermotropic nematic polymers have been re-
rate scaling cently reviewed[10,18. The most abundant experimental

data on quantitative texture evolution are for nonaligning
1 lyotropic semiflexible nematic polymef81,32. Since the
, (65) present model captures the dynamics of flow-aligning ther-
Vy—a motropic nematic polymers, a validation of the result with
the quantitative datf31,32 is not possible.
while the coarsening follows In Refs.[31,372 samples of lyotropic liquid crystalline
polymers (PBG, racemic mixture, MW: 118 000, 198 000,
1 and 298 00pare sheared in range of Ericksen num{é&d:
W‘ﬁv (66)  1<Er<10’, with sample thickness 10-506m [NB: the
Y 4 definition of Er in Refs[31,32 is slightly different than Eq.
. (209]. The observed textural transitions with increasing
\évch:lgeg{ ttr){e aenr?]grgai;% ctg)r:tsJ?g tiss. ;ﬁidcqgrzgtﬁglsggr;ﬁ;%ricksen numbef31] are controlled by the Deborah number
with scaling proposed by Marrucci for tumbling nematicsWhen the Det_>orah number approaches or excee_ds unity. Us-
[59]. ing optical microscopy, the texture is characterized by the
Lastly we characterize the role of the energy r&ioFig- presence of stripes parallel to the flow. As shear rate in-
creases the stripes parallel to the flow become more intense,

ure 18 shows the maximum number of the twist wllSmax then less intense and finally disappear at higher shear rates
at steady state as a functionRf ForR smaller than or equal " inally disapp '9 :
The transition to the monodomain textures depends on the

to 10°, our simulations predict the absence of a defect mOder'noIecuIar weighti.e.. De: the higher the molecular weight
The data can be fitted to a power law modsolid line), ; gnti.e., ) 9 L 9
given by the higher the shear rate necessary to eliminate the texture.

Furthermore for De-5, textures-free samples are obtained.
N For a fixed geometry and set of material properties the
Nssmar=v1- VR= 2, 67 present model predicts as the shear rate increases the texture
wherev; =0.017, andv,=7142. Using Eq(61) we find that transition cascgde: unoriented rr_lonodomadefect lattice
=defect gas>oriented monodomain.

ErapL
Nssmar=# VDepiog \/ R~ 5 (68) VI. CONCLUSIONS

Er The classical theories of nematodynamics applied to ther-

ADL i i . iani i .

vi=¢ /DeDLDGa va=po (69) motrop|c rodlike shear flow aligning nematic polymers pre
€bLpG dict that, as the shear rate increases, the pathway between an

€t:

061704-17



D. GRECOV AND A. D. REY PHYSICAL REVIEW E68, 061704 (2003

Ero=10* 2

scaling am)
18 16 - 8 computation i

= 10°
= 10°
= 5x10°
= 10°

> 5 B F B
\\
épmoo
Number of walls, N_

z
";“ 10 L2
us A
- 8 L 2K 4
2 o 40 0
E & o %0
4 amm A
4 ©
A A AAAMEY A A A L3 0.01 0.1 1 10
2 4 b 40D & OOSENDT <
/ Deborah number, De
0 T TDC
102 104 10 108 107 il
a) Ericksen number, Er Dean=Erao/R Deowoa
FIG. 16. The number of walldl, as a function of De number
De=z=1 Dever=2 for R=10°, from scaling(full line) and computationgsquares
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FIG. 15. (a) The number of inversion walls at steady sthtgas '
a function of the Ericksen number f&®: 10%, 1¢°, 5x 10°, and
10°, corresponding to the defect lattice and defect gas modeR. As 141
increases the number of walls increases. The appearance of th 42
defect modes is only a function of Er, but is independerRofor o
Er<Er,p ~10* no walls are observed for all values Bf (b) The g
maximum number of inversion walN¥g as a function of the Debo- 4
rah De number foR: 10*, 1¢°, and 16. The maximum number of 6
walls occurs at D=1 and the upper threshold of the defect gas
mode is Dggp~2 for all values ofR. The texture behaviofi.e.,
number of wallg for De<1 is controlled by the Ericksen number 2e
while for De=1 it is controlled by the Deborah number. For De
>2, textural features are eliminated and a monodonplanar

mode emerges. 100 108 106

Energy Ratio, R
oriented nonplanar state and an oriented planar state is F|G. 18. Maximum number of the twist walNg maat steady
through texture formation and coarsening. The two shear-rat&ate as a function &®. For R smaller than or equal with 1000, our
dependent dimensionless numbers that control the texturgmulations predict the absence of the defect mode. The data can be
formation and coarsening process are Ericksen Er and Deb¢itted to a power law mode(solid line), given by Eq.(67), where
rah De numbers. The emergence of texture is independent @f=0.017 andv,=7142.
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the Deborah number, and occurs at=R0". As the shear

rate increases and BrL0* the first texture that arises is a found that the

lattice of inversion walls, whose net topological charge is
zero. Further increases of the shear rate, brings De close to

PHYSICAL REVIEW E 68, 061704 (2003

vanishes since coarsening overpowers defect nucleation. It is

texture transition cascade unoriented
monodomaigs defect lattice> defect gas> oriented monodo-
main is remarkably consistent with the textural transition of

ignites the coarsening processes, and replaces the defect laheared lyotropic tumbling nematic polymers.

tice with a defect gas. The topological charge of the defec
gas is undetermined. The smallest texture length sé€ale

t
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