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Phase diagrams of classical spin fluids: The influence of an external magnetic field
on the liquid-gas transition
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The influence of an external magnetic field on the liquid-gas phase transition in Ising,XY, and Heisenberg
spin fluid models is studied using a modified mean field theory and Gibbs ensemble Monte Carlo simulations.
It is demonstrated that the theory is able to reproduce quantitatively all characteristic features of the field
dependence of the critical temperatureTc(H) for all the three models. These features include a monotonic
decrease ofTc with risingH in the case of the Ising fluid as well as a more complicated nonmonotonic behavior
for the XY and Heisenberg models. The nonmonotonicity consists in a decrease ofTc with increasingH at
weak external fields, an increase ofTc with rising H in the strong field regime, and the existence of a minimum
in Tc(H) at intermediate values ofH. Analytical expressions forTc(H) in the large field limit are presented as
well. The paramagnetic-ferromagnetic phase transition is also considered in simulations and described within
the mean field theory.
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I. INTRODUCTION

The investigation of continuum fluid models with couple
translational and spin degrees of freedom is of current th
retical interest@1–3#. The importance of such models lies
their property to display a rich variety of transitions betwe
solid, liquid, and gas, as well as magnetically ordered a
disordered phases, which may occur in real systems@4,5#.
The liquid-gas and paramagnetic-ferromagnetic~para-ferro!
phase transitions in spin fluids were studied previously
the mean field theory@3,6–10#, the method of integral equa
tions @11–16#, and Monte Carlo~MC! simulation techniques
@2,11,14,17–21#. The theoretical studies dealt mainly wit
spatially one- (d51) and three-dimensional (d53) Ising
(n51) as well as three-dimensional Heisenberg (n53) flu-
ids ~heren denotes the spin dimensionality!. In a computer
experiment, the magnetic transition was investigated for
Heisenberg model@2,17# as well as for three-@19# and two-
dimensional Ising fluids@20# using canonical MC simula
tions. The combined canonical and Gibbs ensemble
~GEMC! simulations were performed for a Heisenberg s
tem (d53, n53) to determine both the magnetic an
liquid-gas transitions@11,14,18#.

In most of the previous works, the liquid-gas coexisten
was evaluated in the absence of an external magnetic
(H50). Only a few papers@10,14,15# were devoted to the
oretical study of the fluid behavior atHÞ0. It was found
that for systems of hard spheres carrying Ising spins, an
ternal magnetic field decreases the temperatureTc of the gas-
liquid critical point @10#. On the other hand, the presence
Heisenberg spins can lead to the inverse effect at str
enough fields@14,15#. As a result, a nonmonotonic behavi
of Tc may arise in Heisenberg fluids due to a subtle interp
between the translational and spin degrees of freedom@15#.
To our knowledge, no confirmation of the nonmonotonic
in Tc(H) has been given within computer experiments
1063-651X/2003/68~6!/061510~12!/$20.00 68 0615
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continuum fluid models of spin systems. In the only wo
@14# done on GEMC simulations atHÞ0 for a Heisenberg
fluid, it has been concluded that the application of an ex
nal field increases the gas-liquid critical temperatureTc . But
this conclusion has been made on the basis of results co
sponding to just one finite~sufficiently large! value ofH.

It is worth mentioning also that, as far as we are aware,
theoretical calculations and computer simulations ofTc(H)
have been performed for the planarXY spin fluid model (n
52, d53) and no simulations on liquid-gas coexistence
the presence of an external field have been reported for
three-dimensional Ising fluid. Note that we are consider
genuine fluid models in which spatial positions of spins a
changed continuously~contrary to the simplified so-called
lattice gas schemes@22–24# where spins are allowed to oc
cupy only positions belonging to sites of a chosen lattic!.
Moreover, all the works dealt with nonmagnetic repulsi
interactions in the form of the simplest hard-sphere poten
exclusively. In addition, the magnetic interactions were tru
cated, as a rule, at some finite interatomic separation, with
taking into account long range corrections. The question
how these restrictions impact the behavior ofTc(H) has not
been considered as well.

In this paper we present a comprehensive study of
influence of an external magnetic field on the liquid-gas
existence properties of fluid models with Ising,XY, and
Heisenberg spin interactions. The corresponding phase
grams are calculated in the whole region of varyingH with
the help of the GEMC simulation technique and a modifi
version of the mean field theory. As is shown, a good agr
ment between the MC data and theoretical results forTc can
be achieved for all the models and for any valueH of the
external field, including the limitH→`. At H50, it is dem-
onstrated that the mean field theory predicts a tricritical po
independent of the dimensionn of the magnetic order param
eter. The simulation results for the Ising model agree w
©2003 The American Physical Society10-1
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this topology, whereas for theXY and Heisenberg fluids a
critical end point, beside a gas-liquid critical point in th
ferromagnetic phase, is indicated.

II. MEAN FIELD THEORY

A. Models

Let us consider three models of magnetic fluids for spa
dimensiond53 with spin interactions of Ising (n51), pla-
nar XY (n52), and Heisenberg (n53) types. Within all
these models, the total potential energy of theN-particle sys-
tem can be cast in the form

U5
1

2 (
iÞ j

N

@w~r i j !2J~r i j !si•sj #2H•(
i 51

N

si , ~1!

where r i5(r ix ,r iy ,r iz) denotes the spatial coordinate,si is
the n-dimensional spin vector@i.e., (six,0,0), (six ,siy,0), or
(six ,siy ,siz) for n51, 2, or 3, respectively# of unit length
(usi u51), and r i j 5ur i2r j u. For convenience, the homoge
neous external magnetic fieldH5(H,0,0) is directed along
axis X of the laboratory system of coordinates. The Yuka
function

J~r !5
es

r
expFs2r

s G ~2!

is used to describe the internal magnetic interactions, wh
s ande relate to the size of particles and coupling consta
respectively. The nonmagnetic interactionw between par-
ticles can be modeled by the hard sphere~HS!

wHS~r !5H `, r ,s

0, r>s
~3!

or soft core~SC!

wSC~r !5H 4eF S s

r D 12

2S s

r D 6G1e, r ,A6 2s

0, r>A6 2s

~4!

repulsion potentials. Note that the attraction between p
ticles is formed exclusively due to ferromagnetic intera
tions. This corresponds to a so-called ‘‘ideal’’ class of sp
fluids, where the attractive part of nonmagnetic interactio
is absent~see comments at the end of the paper!.

B. Equations of state

Following the spirit of works@8,25#, the Gibbs free en-
ergy per particle corresponding to Hamiltonian~1! can be
presented as

F5Fw1
^ ln f ~s!&

b
1E

0

1

daFJa
2H•m. ~5!

Here Fw is the free energy of the reference system~in the
absence of magnetic interactions and external fields!, f (s)
relates to the normalized single-particle function describ
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the distribution of spins in orientational space,b215kBT is
the temperature withkB being the Boltzmann’s constant,^ &
denotes the statistical averaging, and

m5^s&5
1

N K (
i 51

N

si L 5E sf ~s!ds ~6!

defines the magnetization of the system. The contribution
the free energy caused by spin interactions with the par
etrized Yukawa functionJa(r ) can be written in the form

FJa
52

r

2E ga~r ,s1 ,s2!
dJa~r !

da
s1•s2f ~s1! f ~s2!drds1ds2 ,

~7!

wherer5N/V is the number density withV being the vol-
ume, andga(r ,s1 ,s2) introduces the pair distribution func
tion of a system corresponding toa switched on magnetic
interactions withJa50 at a50 andJa5J(r ) at a51.

Equation~5! formally leads to exact results but require
the knowledge of functionga(r ,s1 ,s2) for each intermediate
state 0<a<1. Since, in general, this function cannot b
determined exactly, some approximations are needed to
culate F. Within the mean field~MF! approximation it is
assumed thatga(r ,s1 ,s2) does not depend ona and assumes
the form of the pair distribution functiongw(r ) of the refer-
ence system. The latter function can further be approxima
by its values in the low density regime,gw(r )
'exp@2bw(r)#. Then in view of Eqs.~2! and ~6!, the inte-
grations in Eqs.~5! and~7! can be performed explicitly. This
results in

F5Fw1kBTE dsf ~s!ln f ~s!2
1

2
arm22H•m, ~8!

where

a54pE
0

`

gw~r !J~r !r 2dr58g~T!pes3 ~9!

is the magnetic interaction strength, and the multiplier

g~T!5

E
0

`

exp@2bw~r !#J~r !r 2dr

E
s

`

J~r !r 2dr

~10!

takes into account the softness of nonmagnetic repulsion
tential w.

Considering the free energy~8! as a functional off (s), it
can be shown that the minimum ofF is achieved at

f ~s!5
exp~bh•s!

E exp~bh•s!ds
, ~11!

where

h5H1arm ~12!
0-2
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can be treated as the effective field, consisting of the exte
term H and the averaged internal contributionarm. Equa-
tion ~11! defines, therefore, the equilibrium single-partic
distribution function in the MF approximation. Then, takin
into account the fact that the vectorm is parallel toH, the
right-hand side of Eq.~6! can be integrated in quadrature
The result is

m55
tanhS H1arm

kBT D , n51

I 1S H1arm

kBT D
I 0S H1arm

kBT D , n52

cothS H1arm

kBT D2
kBT

H1arm
, n53,

~13!

where I l(x)51/p*0
pex cosc cos(lc)dc denotes the modified

Bessel function of the first kind and orderl. Relation ~13!
represents the magnetic equation of state~MES! of the sys-
tem. Note that the form of this equation depends on the n
ber n of components of the magnetic order parameterm.

The pressure equation of state~PES! can readily be ob-
tained by partially differentiating Eq.~8! with respect tor,
using the thermodynamic relationP5r2(]F/]r)T,H with
Eqs.~11! and~12!. As a consequence, one finds that the to
pressure is the sum of two terms,

P5Pw2 1
2 ar2m2, ~14!

namely, the pressurePw5(r2]Fw /]r)T,H corresponding to
the reference system and the part coming from the magn
zation. For the HS reference system~3! we use the quasiex
act Carnahan-Starling relation@26#

Pw~r,T!5rkBT~11h1h22h3!~12h!23, ~15!

with h5prs3/65pr* /6 being the packing fraction. In th
case of a SC potential~4!, the softness ofw is taken into
account by replacing in Eq.~15! the HS diameters by its SC
counterpartsw . The latter quantity can be determined b
requiring the second virial coefficients related to the HS s
tem with the particle’s diametersw and the SC system with
the real potentialw to be equal. This leads to

sw~T!5j1/3~T!s, ~16!

where

j~T!5
3

s3E0

`

$12exp@2bw~r !#%r 2dr. ~17!

Then the SC pressure can be obtained using Eq.~15! with
h[hw5prsw

3/65j(T)pr* /6. This is justified by the fact
that the SC potential~4! is close enough to the HS functio
~3! @wSC(r ) increases rapidly to infinity with decreasingr in
the ranger ,s, whereas it quickly tends to zero atr .s].
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al

-

l

ti-

-

Relations~9!, ~13!, and~14! constitute the main results o
the MF theory. In the case of the HS potential~4! @when
gw(r )51 for r>s and gw(r )50 at r ,s and, thus,g5j
51, see Eqs.~10! and ~17!#, they coincide completely with
those obtained earlier@7,8# ~for n51 and 3!. Our expressions
are more general, since they do not restrict us to the
convention only, but are also directly applicable to more
alistic SC magnetic systems~including the casen52).

C. Phase separations

Analyzing the MES~13! at H50, it can be shown tha
nontrivial ~nonzero! solutions in the magnetic ordering pa
rameterm exist for temperatures lower than the Curie te
peratureTl5ar/(nkB). In the dimensionless representatio
r* 5rs3 and T* 5kBT/e, the magnetic phase transitio
curve readsTl* 58pr* g(Tl* )/n. Since, in general, the func
tion g(T) may depend on temperature in a characteris
way, the last equality represents a nonlinear equation wh
should be solved with respect toTl* at fixedr* . In the case
of a SC potential~4!, the computations show that the devi
tions of g(T) from unity do not exceed about 3% in a wid
temperature range of 0.3,T* ,6. For this reason we can pu
g(T)51 without loss of precision~at least in the range men
tioned above!. Hence, the Curie temperature is found analy
cally, Tl* 58pr* /n. It linearly depends on the density and
inversely proportional to the number of spin componen
Near the Curie line atT&Tl , the MES can be expanded in
series with respect to the deviationt5(Tl2T)/Tl , yielding

lim
t→10

m2
Tl

Tl2T
5c, ~18!

wherec is a constant depending on the spin dimensionalitn
~see Table I!.

In order to get the liquid-gas critical pointTc , one has to
look where the inverse compressibility goes to zero. T
liquid-gas phase transition occurs on the Curie line, so tha
view of Eqs.~14!, ~15!, and~18! one finds atT5Tl that

bS ]P

]r D
T,H

5
]

]h Fh
11h1h22h3

~12h!3 G2
cn

2
50. ~19!

Thus solving Eq.~19! with respect toh yields a tricritical
point atr t* 56h t /p andTt* 58pr t* /n548h t /n. Within the
HS version of the MF theory, the solutionsh t allow to be

TABLE I. Mean field theory results ind53.

Model n c Tl* r t*
HS Tt*

HS r t*
SC Tt*

SC

Ising 1 3 8pr* 0.098 2.462 0.104 2.621
XY 2 2 4pr* 0.169 2.119 0.176 2.207
Heisenberg 3 5

3 8p

3
r*

0.224 1.876 0.229 1.920
0-3
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presented analytically: h t511@Aq2(432/Aq272
2q)1/2#/6 with q56(4p)1/3224296(2/p)1/3 and p583
13A993 for n51, h t511Aq2(1/Aq212q)1/2 with q
5(p1/322217/p1/3)/6 and p58213A1293 for n52, and
h t511@2Aq2(72/Aq22424q)1/2#/6 with q5(p/2)1/3

226(2/p)1/322 andp524519A1609 forn53. The values
for r t* and Tt* with three digits after the decimal point ar
collected in Table I and marked by the superscript HS. In
case of the SC version, we should replace~after taking the
partial derivative! the packing fractionh entering in Eq.~19!
by its effective valuehw5j(T)pr* /6. It can be shown tha
for the SC potential defined by Eq.~4!, the multiplierj1/3(T)
decreases monotonically from 1.05 to 0.94 with increas
the temperature in the intervalT* P@0.3,6#. This behavior
has a simple physical meaning, namely, with increasingT the
particles can approach one another more closely due to
increase of their thermal velocities. As a consequence,
effective diametersw5j1/3(T)s will decrease. In such a
situation @when j[j(T* ) with T* 58pr* /n], Eq. ~19!
transforms into a complicated nonlinear equation inr* and
must be solved numerically@integration~17! has been car-
ried out numerically too#. The results of these computation
are shown in Table I as well and marked by the supersc
SC.

In the presence of an external field~i.e., whenHÞ0)
there is a liquid-gas phase transition curve ending in a c
cal pointTc . The critical temperatureTc and densityrc can
be obtained numerically by solving the following system
two equations:

S ]P

]r D
T,H

50, S ]2P

]r2 D
T,H

50, ~20!

where, in view of Eqs. ~13! and ~14!, the pressure
P(r,T,m)5P„r,T,m(r,T,H)…[P(r,T,H) should be con-
sidered as a function ofr, T, andH. Therefore, the solutions
Tc(H) and rc(H) to system ~20! must be found self-
consistently with the solutionm[m(r,T,H) of the nonlinear
equation~13!. The latter equation requires to be handled n
merically as well. In the casen52, we have used a repre
sentation of the modified Bessel functions@appearing in Eq.
~13!# in the form of the infinite series I l(x)
5(x/2)l(k50

` (x/2)2k/@k!(k1 l )! # ~restricted to a finite but
large enough number of terms!.

The liquid-gas coexistence curve can be found atT,Tc
by applying the Maxwell construction to pressure~14!. Al-
ternatively, we can introduce the chemical potential using
relationm5F1P/r and Eqs.~8!, ~11!, and ~14!. Then one
obtains

m5mw2kBT lnE exp~bh•s!ds, ~21!

where
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E exp~bh•s!ds55
2 coshS H1arm

kBT D , n51

2pI 0S H1arm

kBT D , n52

4p

sinhS H1arm

kBT D
H1arm

kBT

, n53,

~22!

and mw is the chemical potential of the reference syste
which should take its Carnahan-Starling form

mw5kBTF ln r1
h~829h13h2!

~12h!3 G ~23!

to be self-consistent with Eq.~15!. Note that the chemica
potential and the pressure factor Zw(h,T)
5Pw(r,T)/(rkBT) are connected by the~exact! relat-
ion bmw(h,T)5*0

h@Zw(h8,T)21#/h8dh81Zw211 ln(Lr)
@the term kBTlnL, with L being the thermal de Broglie
wavelength, has been excluded from the right-hand side
Eq. ~23!, since it depends only onT and is irrelevant for our
consideration, see Eq.~24! below#. The gas and liquid coex
istence densitiesrG(T) and rL(T) are then determined ap
plying the well-known mechanical and chemical equilibriu
conditions

P~rG,T!5P~rL ,T!, m~rG,T!5m~rL ,T!. ~24!

In the regime of large magnetic fields, we can solve
MES ~13! analytically taking into account the smallness
z5kBT/(H1arm)!1. This gives

mz!155
122e2[2(H1ar)]/kBT1O~e24/z2

!, n51

12
1

2

kBT

H1ar
1O~z2!, n52

12
kBT

H1ar
1O~z2!, n53,

~25!

where the terms of the second and higher orders fore22/z

and z have been omitted, and the inequalitye22/z!z has
been used. Substituting Eq.~25! into the PES~14!, taking the
derivative ofP with respect tor, and solving the resulting
equation (]P/]r)T,H50 for T, we obtain the critical tem-
perature as a function ofH. The result is

Tc~H !2Tc`

Tc`
55

4~Wc`8 21!e22H/kBTc`, n51

2
kBTc`

H
, n52

2
2kBTc`

H
, n53,

~26!
0-4
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where Tc`5 lim
H→`

Tc(H)5arc` /(kBWc`8 ) and rc`

5 lim
H→`

rc(H) are the critical temperature and density

the infinite magnetic field limit,Wc`8 5]/]h@h(11h1h2

2h3)/(12h)3#uh5hc`
with hc`5prc`s3/6, and it was as-

sumed that the external field is much larger than both
kinetic energy and the internal magnetic field, i.e.,H
@kBTc` andH@arc` . From Eq.~26! we conclude that with
increasing the external field, the critical temperature
proaches its limiting value from the top, whenn51, and
from the bottom, whenn52 or 3. Note that the facto
W8(h)21 is positive for all physical densitiesh,1. More-
over, for the Ising fluid model, the critical temperatureTc(H)
tends toTc` exponentially with increasingH. This is not the
case forXY and Heisenberg fluids, whereTc(H) reachesTc`

slower, according to the inverse power lawH21.
It is important to remark that in the saturation limit o

infinite magnetic fieldH→`, all the spin fluid models con
sidered reduce to the same~nonmagnetic! fluid with the in-
terparticle potentialf(r )5w(r )2J(r ) consisting of the
hard- or soft-core repulsion part as well as the Yukawa-l
attraction. The reason is that then the spins align exa
along the field vector, so that the scalar productsi•sj will be
equal to 1@see Eq.~1!# for any pairs of particles. The term
H•( isi will tend to a ~infinite! constant and thus can b
ignored in Eq.~1! ~because we are entitled to accept a n
level for counting the energy of the system!. The MF theory
also leads to identical results for eachn51, 2, and 3, when
H→`. Indeed, it follows from Eqs.~13! and ~25! that the
limit lim

H→`
m51 is independent ofn. The critical tempera-

ture and density at such a magnetic saturation can be fo
as usually, using the general relation~20! with putting m
51 in Eq. ~14!. This yieldsrc*̀

HS'0.249 andTc*̀
HS'2.264

as well asrc*̀
SC'0.262 andTc*̀

SC'2.380 for the HS and SC
versions, respectively. Note also that in the limitH→`, ex-
pressions~21! and ~22! for the chemical potential can b
reduced~by extracting an infinite constant depending only
H) to the formm5mw2ar that corresponds to a nonma
netic system with the potentialf.

Simulations show~see the following section! that for the
Yukawa-fluid~YF! potentialf(r )5w(r )2J(r ) with the SC
repulsion, the critical liquid-gas temperature is equal toTYF*
'2.680. It is somewhat higher~within 12%! than the tem-
peratureTc*̀

SC'2.380 obtained within the SC version of th
MF theory. It can be assumed that a significant part of
above temperature discrepancy may come from the appr
mate form used for the equation of state@see Eq.~15!, where
h5jpr* /6] of the SC reference system. Therefore, it b
comes quite natural to introduce an adjustable SC~ASC!
version of the MF theory, where the second virial parame
j(T) of the reference system@Eq. ~17!# is replaced by its
rescaled analogj̃(T)5bj(T). The constantb can then be
determined by requiring that the critical temperatureTYF* (b)
coincides with the exact result. This leads tob'0.902 and
corresponds to a slight decrease~by a factor of b1/3

'0.966) of the effective diameter when calculating the pr
sure according to Eq.~15! with h5 j̃(T)pr* /6.
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III. COMPUTER SIMULATION AND THEORY
CALCULATIONS

A. Simulation procedures

Two kinds of MC simulations have been carried out
investigate the critical behavior. First, in order to determ
the liquid-gas coexistence properties we have applied
GEMC approach@27# within an advanced biasing schem
@11# for handling spin degrees of freedom. The GEMC sim
lations were performed for two system sizes, namely, w
N5500 and 1000 particles~or only with N5500 or 1000 for
some temperatures and nonzero values ofH to save com-
puter time!. In each case, the particles were distributed o
two boxes with volumes which fluctuated under the co
straint of fixed total volume. The GEMC configurations we
generated in cycles, where one cycle consisted of either~i! N
trial displacements and spin reorientations of particles c
sen at random;~ii ! one attempted volume rearrangement
the boxes; or~iii ! Nex attempts to exchange the particle
between the simulation boxes. The type of each cycle w
selected at random and with equal probability among
above three possible steps.

The bias has been used during the spin reorientation
exchange~insertion! steps, so that a new attempted directi
for vector si was generated with a probability that favo
orientations parallel to the local magnetic field. This bias w
taken into account when considering the acceptance p
abilities corresponding to steps~i! and ~iii ! as well as when
calculating the chemical potential. The analytical expressi
for such probabilities have been obtained by modifying
hard-sphere acceptance rules@11# to the case when the soft
~instead of hard-! core nonmagnetic repulsion potential
present. The acceptance ratios for the particle moves
volume changes were adjusted to lie in a range of 30–60
The value forNex was chosen to yield a success rate
particle transfers of 0.1–3 %, depending on the temperat
The chemical potential was calculated during the excha
~insertion! step using the generalized Widom’s method@28#,
while the pressure was obtained employing the virial th
rem.

Second, the Binder crossing technique@2,29# has been
utilized to study the magnetic phase transitions~in the ab-
sence of an external magnetic field!. Here, the usual canoni
cal MC simulations have been performed for system size
N15250 andN25500 particles at several particle numb
densitiesr and temperaturesT. At each value ofr, the
Binder parameterB512M4 /(3M2

2) was plotted as a func
tion of T for the two system sizes~this parameter represen
a fourth-order cumulant withMl5^sl& and s5u( isi u). The
critical temperatureTl(r) of the para-ferro phase transitio
was then obtained from the position of the intersection po
of curves BN1

(T) and BN2
(T), i.e., from the condition

BN1
(Tl)5BN2

(Tl). As in the case of GEMC simulations
the orientational biasing technique@11# was used to improve
the convergence of the canonical calculations.

Within both the GEMC and canonical simulations, th
Yukawa function was truncated at half the box length.
order to reduce the finite-size effects, a long range correc
0-5
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was taken into account~within periodic boundary conditions!
by including an additional term to the potential energy of t
system. This term was derived@11# by integrating the
Yukawa function beyond the cutoff radius and assuming t
the binary distribution function is equal to unity in this r
gion. For sufficiently large system sizes~as in our case! such
an assumption should lead to virtually exact results. No
ditional finite size scaling corrections were applied in det
mining the critical temperatures, assuming that they
small on the scale of phenomena considered. The numb
MC cycles used to achieve an equilibrium state varied fr
23104 to 53105, depending on the system and extern
field value. Note that in the GEMC simulations, the press
and chemical potential should be the same~within statistical
noise! at equilibrium in the two~gas and liquid! boxes. After
achieving the equilibrium, the investigated quantities w
measured by averaging over 23105 to 2.53106 cycles~de-
pending on the model, ensemble, thermodynamic point,
field strength!. The statistical uncertainties have been e
mated using the block averages method@28#.

The critical temperatureTc and densityrc have been
evaluated by fitting the discrete set of GEMC data near
criticality to the dependencer65rc1C1(12T/Tc)6C2(1
2T/Tc)

b ~the constantsC1 andC2 should minimize the de-
viations betweenr6 and simulation values!. Here the law of
rectilinear diameters (rL1rG)/25rc1C1(12T/Tc), the
power law behaviorrL2rG52C2(12T/Tc)

b, and the criti-
cal exponentb50.32 have been assumed as in Ref.@30#
~where results for a Lennard-Jones fluid were analyze!.
Note that forHÞ0 the magnetic para-ferro phase transiti
disappears and the liquid-gas coexistence curves behave
those of nonmagnetic fluids with the effective attraction p
tential Jeff(r )52^s1•s2&HJ(r ). At H50, where both the
liquid-gas and magnetic para-ferro transitions exist simu
neously, we should be careful in treating the fitting results
a region which is very close to the magnetic transition~Cu-
rie! line, because then the above laws will not work prope
~see Sec. III B 1!.

B. Results and discussion

1. Ising fluid

Examples of the liquid-gas coexistence obtained in
GEMC simulations for the soft-core Ising fluid at variou
values,H* 5H/e50, 0.1, 0.5, 1, 5, and̀ , of the external
field are shown in Fig. 1. As can be seen clearly, the criti
temperatureTc goes down monotonously with rising the fie
strength and rapidly tends to its minimal value in the infin
field limit. For instance, already atH* 55, the gas and liquid
binodal branches are practically indistinguishable from th
corresponding to the caseH→`. In addition, with increas-
ing H the shape of the coexistence curves becomes w
near the critical point. AtH50, all the simulated points
belonging to the gas phase lie on a curve which is very cl
in form to a straight line left of the magnetic para-ferro tra
sition Curie line. The intersection of these lines define
critical end point which coincides with the liquid-gas critic
point as expected for a tricritical point, i.e.,Tce5Tc5Tt . In
other words, the Ising fluid exhibits a tricritical behavior. T
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shape of the Ising binodals has been verified by the multip
histogram reweighting~MHR! method@31# and agreemen
with the GEMC results was observed.

In making the above conclusion on the phase diagr
topology atH50 we cannot be absolutely sure, since t
GEMC simulations~as well as the MHR technique! do not
provide us with precise enough data for temperatures wh
are very close to the critical region. Near this region, t
particle fluctuations become too large, so that the two GEM
boxes ~which consist of finite numbers of particles! can
switch their identity many times during the simulations. Th
prevents one from obtaining good mean density values of
system in gas and liquid phases atT;Tc ~although the den-
sity distributions over the boxes can still indicate the ex
tence of two phases!. On the other hand, having a discrete s
of GEMC coexistence points lying relatively far from th
criticality region, it is impossible to apply the fitting proce
dure ~see at the end of the preceding subsection! in the vi-
cinity of the expected tricritical point, whereT;Tl(rc)
5Tc , because then the liquid and magnetic transitions
coupled. The question concerning the topology of critic
points atH50 goes beyond the scope of the present pa
and requires additional investigations by more sophistica
simulation techniques~such as finite-size scaling@32#, for
example!.

The primary goal of this work is to study the liquid-ga
phase transition in the presence (HÞ0) of an external field,
focusing on the calculations ofTc as a function ofH. The
results of these calculations obtained in the case of the I
fluid within HS, SC, and ASC versions of the MF theory a
shown in Fig. 2 together with the simulation data. Here
more extended set of external field values has been use
can be seen that the HSMF and SCMF schemes are ab
predict qualitatively the monotonic decrease of the criti
temperatureTc with rising H. The relative deviations be

FIG. 1. The liquid-gas coexistence curves obtained from GEM
simulation data~circles! for a soft-core Ising fluid at various value
of the external magnetic fieldH. The para-ferro phase transition~at
H50) is plotted by the dashed~Curie! line passing through open
squares~obtained in canonical MC simulations!. The critical points
are shown as crosses, whereas the tricritical point is presente
the star. The values ofH are given in the dimensionless formH*
5H/e.
0-6
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tween the simulation data and SCMF predictions forTc are
of order 10–15 %, i.e., they are not so large in view of
sumptions made within the MF approach. When the A
version is used, the theoretical and simulation data appe
be practically indistinguishable and the disagreements do
exceed the GEMC statistical noise. At weak external fie
(H* &0.5), the functionTc(H) behaves asTc(0)2cH2/5

~see Fig. 2, where the latter dependence is plotted witc
50.258 for the ASC case!. This confirms the MF prediction
lim

H→0
@Tc(H)2Tc(0)#}2H2/5, obtained previously in

Refs.@10,33#. In the strong field regime (H* *2), the criti-
cal temperature decreases exponentially, according to
analytical formula derived in Sec. II C@see the first line of
Eq. ~26!#.

The Ising gas-liquid coexistence curves evaluated wit
the ASC version of the MF theory as well as the MF pa
ferro transition line are presented in Fig. 3. The deviations
the theoretical and simulation binodals~please compare Figs
1 and 3! are larger than the discrepancy in the case of fu
tion Tc(H) ~see Fig. 2! and they cannot be reduced to ze
even within the ASCMF. For instance, the theory somew
overestimates the gas phase densities and underestimat
densities in the liquid phase. As a result, the shape of
binodals appears to be narrower with respect to that of
simulation coexistence curves. A more accurate the
should be applied to describe quantitatively the liquid-g
phase diagrams in the whole density, temperature, and m
netic field ranges.

2. XY-spin fluid model

As was pointed out in the Introduction, until now no com
puter experiments and theoretical investigations on
liquid-gas coexistence have been performed for the pla
XY spin fluid model. In this respect it should be mention
that in order to obtain the coexistence curves within the

FIG. 2. The critical temperatureTc as a function of the externa
magnetic fieldH obtained for the soft-core Ising fluid from GEMC
simulations~circles! in comparison with the results of the HS, SC
and ASC versions of the MF theory~solid curves!. The critical level
corresponding to the infinite value of the external field is plotted
the horizontal dashed line. Vertical bars indicate statistical un
tainties.
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theory, one has to solve numerically Eq.~24!. At the same
time, the HS, SC, and ASC functionsTc(H) are obtained by
finding numerical solutions to Eq.~20! at given values ofH.
Taking into account that the magnetic equation of state~13!
must be handled numerically too, the calculation ofrL,G(T)
and Tc(H) presents, in fact, a rather complicated techni
problem. This is especially true in the case ofXY system
(n52) and in SC and ASC versions of the MFT, where t
integration in Eq.~17! as well as the computation of Besse
functions are required additionally. Similar difficulties aris
in MC simulations ofXY fluids when applying the orienta
tional biasing technique@11#. The reason is that then the tria
orientation vectors should be generated with distributio
which cannot be presented~contrary to the casesn51 and
n53) by simple algebraic expressions, and the use of tim
consuming Bessel-like functions is required. Neverthele
developing an efficient algorithm has allowed us to ov
come the technical difficulties and calculate the coexiste
curves for all the models, including theXY.

TheXY gas-liquid binodals evaluated in the GEMC sim
lations are presented in Fig. 4 for the setH* 50, 2, 5, 10, 40,
and` of external field values. As can be clearly seen, h
the topology of phase diagrams differs in several aspe
from that of the Ising fluid. First, atH50 the para-ferro
magnetic line~which is included in Fig. 4 as well! intersects
the gas branch of the binodal at a critical end point,Tce,
which does not coincide with the critical pointTc , i.e., uTc
2TceuÞ0. So, contrary to the Ising fluid, where the gas c
only be paramagnetic and the liquid only ferromagnetic,
XY system exhibits a richer pattern. Here, the gas can
either in paramagnetic~when T,Tce) or ferromagnetic
~when Tce,T,Tc) state, and thus the liquid-gas transitio
can take place keeping the ferromagnetic ordering. Secon
with increasingH, the critical temperature starts to decrea
rapidly reaching its minimal value atH* ;2 and further be-
gins to increase much slower tending to the infinite-fie
limit Tc` . The shape of the binodals nearTc(H) also dem-
onstrates a nonmonotonic behavior, namely, it fi

y
r-

FIG. 3. The gas-liquid coexistence of the Ising fluid obtain
within the ASC version of the MF theory. The MF para-ferro tra
sition is plotted by the dashed line. For other notations see
caption of Fig. 1.
0-7
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becomes wider with risingH and then begins to narrow, bu
becomes not as narrow as atH50.

The nonmonotonic dependence ofTc on the strengthH of
the external field observed from the simulations for theXY
fluid is shown in more detail in Fig. 5. The correspondi
results of the HS, SC, and ASC MF approaches are inclu
there too. Again we can see that the HS and SC versions
to qualitatively correct results and the deviations from
simulation data do not exceed about 15%. In addition, all
approaches predict a minimum ofTc(H) at nearly the same
external fieldH* '2. Moreover, the ASC approach provide
us with virtually exact results forTc(H) at any value ofH.
For instance, the theoretical discrepancy is less than the l
of GEMC uncertainties. However, atH→0 one has to be
careful in application of the MFH2/5 dependence~see Sec.
III B 1 ! to the interpretation of the functionTc(H) build on

FIG. 4. The gas-liquid~curves! and para-ferro~dashed line!
phase coexistences obtained from GE~at different values of an
external fieldH) and canonical~at H50) MC simulations, respec
tively, for theXY-spin fluid model. The critical end point is show
by the star. Other notations are the same as in Fig. 1.

FIG. 5. The critical temperature as a function of the exter
field obtained for theXY-spin fluid model from GEMC simulations
~circles! in comparison with the results of the HS, SC, and AS
versions of the MF theory~solid curves!. Other notations are the
same as in Fig. 2.
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simulation data. Here, a crossover to an analytic beha
with lim

H→0
]Tc /]H50 is expected because of the lack of

tricritical point (uTc2TceuÞ0). For large fields (H* *50),
the critical temperature tends to the infinite-field valueTc` as
Tc(H)2Tc`}21/H, which is consistent with MF prediction
~26! at n52. The saturation regime, whenTc(H) is almost
equal toTc` , can be reached here by very strong fields
order H* *500 ~for the Ising fluid the saturation level i
much lower,H* *5, see Fig. 2!.

The theoretical liquid-gas coexistence curves and pa
ferro transition line of theXY fluid are shown in Fig. 6.
Comparing these results with the corresponding GEMC d
~see Fig. 4! we see that, as in the case of the Ising system,
ASCMF predictions ofrG andrL are not as perfect as thos
of the field dependency ofTc . Again, atHÞ0 the shape of
the binodals becomes narrower because of the overest
tion and underestimation of gas and liquid densities, resp
tively. For H50, the ASCMF approach does not predict t
existence of critical and critical end points found in the sim
lations, but leads instead to a tricritical behavior.

3. Heisenberg fluid

The liquid-gas coexistence curves and the Curie line
tained for the Heisenberg fluid within the simulations a
ASCMF theory are shown in Figs. 7 and 8, respectively.
can be seen, the Heisenberg system exhibits a topolog
phase diagrams similar to theXY fluid. In particular, accord-
ing to the simulation results forH50, the Curie line ends a
a critical end point on the gas side of the binodal, so t
Tce,Tc , whereTc should be referred to as the liquid-ga
critical point located in the ferromagnetic phase~see Fig. 7!.
It is worth mentioning that some evidence of the lack o
tricritical point in the Heisenberg system has been provid
by GEMC simulations earlier@11#. Later on, it was stated
@18# that owing to finite size effects it is very difficult to
come definitely to one of the two possible scenarios: whet
the Curie line ends at a critical end point~as suggested by th
simulations, see Fig. 7!, or at a tricritical point~as suggested
by the MF theory, see Fig. 8!. Relatively recently, the exis

l

FIG. 6. The gas-liquid and para-ferro coexistences of
XY-spin fluid observed within the ASC version of the MF theor
Notations are similar to those of Fig. 4.
0-8
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tence of a critical end point for the Heisenberg fluid has b
observed within the integral equation theory@15#. However,
the differenceuTce2Tcu reported there was very small an
amounted to about 0.1%, which can be comparable with
merical uncertainties. On the other hand, this difference
much smaller than the discrepancy introduced by the m
spherical approximation, used in Ref.@15# for the closure
relation to the Ornstein-Zernike equation. In our case,
distance between the magnetic critical end point and the
liquid critical point on the phase diagram is sufficiently larg
as can be seen in Figs. 4 and 7. It is larger, in particular
comparison with GEMC uncertainties~which are of the or-
der of the size of the symbols in the figures!.

In the presence of an external field, the change in shap
the liquid-gas binodal and the change of the critical tempe
ture are nonmonotonic for the Heisenberg fluid, like for t
XY system. This can be seen from Fig. 7 for the setH*
50, 2, 5, 10, 15, 50, and̀ , as well as from Figs. 9 and 10

FIG. 7. The gas-liquid~curves! and para-ferro~dashed line!
phase coexistence obtained from GE~at different values of an ex
ternal fieldH) and canonical~at H50) MC simulations, respec
tively, for the soft-core Heisenberg fluid. Other notations are
same as in Fig. 4.

FIG. 8. The gas-liquid and para-ferro coexistences of
Heisenberg fluid obtained within the ASC version of the MF theo
Notations are the same as in Fig. 6.
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where the values ofTc(H) are presented for a more comple
set ofH and in more detail at smallH, respectively. Again,
the theory is able to qualitatively describe the liquid-gas
existence properties~see Fig. 8!, whereas the functionTc(H)
can be calculated within the ASCMF approach quantitative
The HS and SC versions of the MF theory also reprod
well the critical temperature, but they underestimateTc(H)
to within an order of 10%. The minimum ofTc(H) at H*
'2 can be predicted by either version of the MFT. It shou
be pointed out also that the presence of SC repulsion lead
an increase of the gas-liquid critical temperature with resp
to that of the HS potential~the SCMF curve lies above th
HSMF at all values ofH, see Figs. 9 and 10!. The same
conclusion is valid for the Ising andXY models~see Figs. 2
and 5!. The asymptotic behavior ofTc(H) at H* @1 looks
like Tc(H)2Tc`}21/H. It is identical in form to that of the
XY system, but differs in the value of the coefficient of th
proportionality to 1/H. Because this coefficient is twice a
large atn53 @see Eq.~26!#, the saturation regime will begin
here at stronger fields (H* *1000).

e

e
.

FIG. 9. The critical temperatureTc as a function of the externa
field H obtained for the Heisenberg fluid from GEMC simulatio
~circles! in comparison with the results of the HS, SC, and AS
versions of the MF theory~solid curves!. Other notations are the
same as in Fig. 5.

FIG. 10. The same as in Fig. 9, but the behavior ofTc(H) at
small values ofH is shown in more detail.
0-9
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Note also that in the limitH→0, the MF functionTc(H)
behaves like;2H2/5 ~with ]Tc /]H;2H23/5→2`) inde-
pendently ofn ~see Sec. IV!. However, as in the case of th
XY fluid, the functionTc(H) corresponding to simulation
data for the Heisenberg model~see Figs. 9 and 10! should
exhibit an analytic behavior atH→0 with lim

H→0
]Tc /]H

50, because of the existence of a critical end point (uTc

2TceuÞ0).
For completeness of our consideration we present in de

in Fig. 11 the normalized dependenciesrc(H)/rc` of the
critical density on the external field for the Heisenberg
well as XY, and Ising fluids, obtained within the ASCM
theory in comparison with the GEMC results. The norm
ization allows to make a quite visible presentation of all t
functions using only one graph. As can be seen, the sim
tion points agree well with the ASCMF predictions, althou
the deviations are somewhat larger than in the case of
field dependencyTc(H) of the critical temperature. The mai
part of these deviations should be associated with MC sta
tical noise. For the absolute values ofrc*̀ 5 lim

H→`
rc* , re-

lated to the ASCMF theory and GEMC simulations, we ha
obtained 0.295 and 0.307, respectively. The nonmonoton
of rc(H) for n53 and 2 is closely connected with the co
responding nonmonotonous behavior ofTc(H). With switch-
ing on the external field and its slight increasing, the criti
density begins to increase rapidly for alln51, 2, and 3.
Further, the Heisenberg andXY dependenciesrc(H) exhibit
a maximum atH* '2, i.e., approximately at the same poin
where the functionsTc(H) have a minimum~see Figs. 5 and
9!. For n53 and 2, after reaching the maximum, the fun
tions rc(H) decrease, tending to the same limiting val
rc` . On the other hand, forn51 the functionrc(H) contin-
ues to increase monotonically torc` on the whole interval of
varying H ~at the same time, the functionTc(H) monotoni-
cally decreases with risingH, see Fig. 2!.

FIG. 11. The normalized critical densityrc /rc` as a function of
the applied external magnetic fieldH, evaluated within the ASCMF
theory ~curves! for the Ising (n51), XY (n52), and Heisenberg
(n53) spin fluid models. The values obtained from GEMC sim
lations are presented by triangles, squares, and circles, forn51, 2,
and 3, respectively.
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Finally, the simulation and theory results on the para-fe
coexistence atH50 are collected forn53, 2, and 1 in Fig.
12. It repeats to some extent the Curie lines already show
Figs. 1, 3, 4, 6–8, but represents them in a considera
wider temperature interval. Despite the fact that only a se
three MC points~for eachn) is available in a restricted den
sity region, it can be stated that the dependence ofTl on r is
almost linear and excellently coincides with the MF straig
line Tl* 5(8p/n)r* ~the MC uncertainties are of the order o
the size of the symbols in Fig. 12!.

IV. CONCLUDING REMARKS

In the present study we have obtained a complete se
phase diagrams for a class of Ising,XY, and Heisenberg
‘‘ideal’’ spin fluids. The phase diagrams have been calcula
applying a modified version of the MF theory as well as t
Gibbs- and canonical-ensemble MC simulation techniqu
The present version takes into account the softness of n
magnetic interparticle repulsion and corrects the equation
state of the reference system. This has allowed us to desc
quantitatively the dependencies of the critical temperatureTc
of the liquid-gas transition on the strengthH of an external
magnetic field for all the models considered over the wh
region of varying H. Note that such models should b
thought of as a good approximation to realistic systems w
anisotropic interactions. For instance, the Ising and Heis
berg fluids can give a reasonable description of phase tra
tions in Au-Co and Co80Pd20 melts @4,5,7,10#. Observations
on the Ising model are also directly applicable to~nonmag-
netic! symmetrical binary fluid mixtures@34#. TheXY model
can be used for modeling adsorption processes on a sur
A He3-He4 mixture with its superfluid transition (l line!, the
gas-liquid transition, and the demixing transition for high
concentrations might be considered as an example of anXY
magnetic fluid@35#.

Let us summarize and discuss the main results found
~i! It has been established that a common feature inhe

-

FIG. 12. The para-ferro coexistence lines obtained atH50
within the MF theory for the Ising (n51), XY (n52), and Heisen-
berg (n53) spin fluid models in comparison with canonical M
simulation data~circles!.
0-10
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in the functionTc(H) is its decrease with turning on an
increasingH. In the case of the Ising model (n51), such a
behavior remains valid for any further increase ofH, includ-
ing the infinite field regime (H→`). For the XY and
Heisenberg models (n52 and 3!, the decrease ofTc with
rising H gradually transforms into the inverse dependen
i.e., into an increase ofTc at intermediate and strong field
In this respect the discrete Ising model~where the spins can
accept only two values,11 or 21) exhibits a very specific
feature which is not observed for theXY and Heisenberg
models with continuous spin distributions.

~ii ! From a physical point of view, the field effects ju
mentioned are caused by the existence of two compe
mechanisms. In order to make the explanation more cl
one uses some expressions of the MF theory~which de-
scribes already the main features of the field dependenc
Tc and rc). Then the spin fluid can be treated as a sim
nonmagnetic system with an effective attraction poten
Jeff(r )52^s1•s2&HJ(r ), where^s1•s2&H5m2 within the MF
approach. This corresponds to the pressureP5Pw

2aeffr
2/2 with aeff5am2 being the effective attraction

strength@see Eq.~14!#. Taking into account the dependen
of m on r ~and H), one obtains thatkBTc5raeff(1
1arx)/W8(r), wherex5]m/]H is the magnetic suscept
bility of the system. This result follows from Eq.~15!, the
condition (]P/]r)Tc

50, and the MF relation]m/]r

5amx @see Eq.~13!#. DifferentiatingTc with respect toH
yields

]Tc

]H
5

amr

kBW8
F2x~11arx!1amr

]x

]HG , ~27!

where the first and second term on the right-hand side sh
be associated with the contributions of two different mec
nisms. The first mechanism is due to the fact that the exte
field favors to align the spins alongH and thus increasesm,
i.e.,x.0 for arbitrary values ofH. For genuine nonmagneti
systems, whereaeff is independent ofr, one obtains the
well-known resultkBTc5raeff /W8. This obviously means
that the critical temperature is higher for fluids with strong
attractions between particles~e.g., the liquid-gas transition
disappears completely for systems with only repulsive in
actions, whenaeff50). In our case, the effective attraction
aeff5am2 will rise with increasing the magnetic field be
cause of risingm, and therefore the critical temperature w
increase also@note that the term 2x(11arx) remains al-
ways positive, see Eq.~27!#.

The second mechanism is more subtle and caused by
dependence ofx on H. At strong enough fields (H@kBT and
H@ar), when the magnetizationm is very close to its satu
ration value, we obtain from Eq.~25! that x5]m/]H
;exp@22H/(kBT)# for n51 as well asx;1/H2 for n52
and 3. Then ]x/]Hun51;2exp@22H/(kBT)#,0 and
]x/]Hun52,3;21/H3,0. Thus forn52 and 3, the influ-
ence of the second term in the right-hand side of Eq.~27! on
the value]Tc /]H can be neglected~this term is higher order
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of smallness inH with respect to the first contribution!. In
other words, the first mechanism dominates and this ind
is observed for theXY and Heisenberg models, whereTc

increases with risingH in the large magnetic field regime
This is, however, not the case for the Ising fluid, where
second term~being negative! appears to be the same order
H and even greater in magnitude than the first contributi
owing to the exponential field dependency. Then the criti
temperature will decrease with increasingH. In particular,
for H→`, combining the two terms gives
lim

H→`
kB]Tc /]H528(Wc`8 21)exp@22H/(kBTc`)#,0.

At weak magnetic fieldsH;0, the second mechanism
will prevail for all the models. Following arguments pre
sented in Ref.@10# at n51, it can be shown within the MF
approximation that]Tc /]H;2C(n)H23/5,0 for any n
51, 2, and 3, whereC(n).0 is then-dependent coefficien
of the proportionality. In order to better understand why t
second mechanism suppresses the liquid-gas separation
rewrites the term amr]x/]H in the equivalent form
r]x/]r2arx2. Then adding it to the first term 2x(1
1arx) results in 2x(11 1

2 arx)1r]x/]r. Thus, the nega-
tive contribution of the second term to the derivati
]Tc /]H directly follows from the fact that the susceptibilit
of the gaseous phase is larger than that of the coexis
dense liquid phase, i.e.,]x/]r,0. This means that the mag
netization of the gaseous phase grows stronger, making
two phases more indistinguishable from one another. T
effect is very strong in the limitH→0, where the gas branc
of the binodal is very close to the Curie line~along which
x→`). At the same time, the liquid branch quickly deviat
from this para-ferro transition line, leading to especia
large negative values of]x/]r ~with limT→Tc

]x/]r→2`

at H→0).
~iii ! We see, therefore, that for the Ising fluid, the seco

mechanism dominates~owing to the discrete nature of spi
reorientations in this case! at all values ofH. This explains
the monotonic decrease ofTc with rising H for n51. With
increasing the numbern of spin components to 2 and 3, th
ability of the external field to decrease the critical tempe
ture becomes smaller, and the first mechanism begins to
vail at larger values ofH. This leads to the nonmonotoni
behavior ofTc(H) for the XY (n52) and Heisenberg (n
53) models. The behavior ofrc(H) can also be explained
by appealing to the interplay between the same two com
ing processes.

~iv! It has been shown that the MF theory does not pred
at H50 the existence of a critical point and critical en
point, found in the simulations forn52 and 3, but leads
instead to a tricritical behavior, observed in the simulatio
for n51. In this context it, first, should be pointed out th
we dealt with a specific class of spin fluids, where the attr
tion between particles is due to ferromagnetic int
actions. According to the general classification, this cor
sponds to an infinite value of the ratioR
5*gw(r )J(r )dr /*gw(r )wattr(r )dr of the integrated strength
of the magnetic interaction and an attractive part of the n
magnetic interaction,R5` ~becausewattr50). For finite
values ofR, different types of the phase diagram topolo
0-11
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can be observed@7,10# within the MF theory~at R50 we
come to the usual nonmagnetic fluids!. Secondly, forR5`
andH50, we have concluded that the question of the top
ogy of phase diagrams is very delicate, and requires m
accurate theories and more sophisticated simulation t
niques. These and related topics will be addressed in fur
investigations.
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