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Phase diagrams of classical spin fluids: The influence of an external magnetic field
on the liquid-gas transition
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The influence of an external magnetic field on the liquid-gas phase transition in Xsthgand Heisenberg
spin fluid models is studied using a modified mean field theory and Gibbs ensemble Monte Carlo simulations.
It is demonstrated that the theory is able to reproduce quantitatively all characteristic features of the field
dependence of the critical temperatdrgH) for all the three models. These features include a monotonic
decrease of ; with rising H in the case of the Ising fluid as well as a more complicated nonmonotonic behavior
for the XY and Heisenberg models. The nonmonotonicity consists in a decreagewth increasingH at
weak external fields, an increaseTqfwith rising H in the strong field regime, and the existence of a minimum
in Ty(H) at intermediate values ¢i. Analytical expressions fof(H) in the large field limit are presented as
well. The paramagnetic-ferromagnetic phase transition is also considered in simulations and described within
the mean field theory.
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[. INTRODUCTION continuum fluid models of spin systems. In the only work
[14] done on GEMC simulations &+ 0 for a Heisenberg

The investigation of continuum fluid models with coupled fluid, it has been concluded that the application of an exter-
translational and spin degrees of freedom is of current themal field increases the gas-liquid critical temperaflire But
retical interesf1-3]. The importance of such models lies in this conclusion has been made on the basis of results corre-
their property to display a rich variety of transitions betweensponding to just one finitésufficiently large value ofH.
solid, liquid, and gas, as well as magnetically ordered and Itis worth mentioning also that, as far as we are aware, no
disordered phases, which may occur in real systpfs.  theoretical calculations and computer simulationsTgfH)

The liquid-gas and paramagnetic-ferromagnétiara-ferro  have been performed for the planéy spin fluid model @
phase transitions in spin fluids were studied previously by=2, d=3) and no simulations on liquid-gas coexistence in
the mean field theor{3,6—10, the method of integral equa- the presence of an external field have been reported for the
tions[11-16, and Monte CarldMC) simulation techniques three-dimensional Ising fluid. Note that we are considering
[2,11,14,17-2]L The theoretical studies dealt mainly with genuine fluid models in which spatial positions of spins are
spatially one- =1) and three-dimensionald&3) Ising  changed continuouslycontrary to the simplified so-called
(n=1) as well as three-dimensional Heisenbeng-@) flu- lattice gas schemg®2-24 where spins are allowed to oc-
ids (heren denotes the spin dimensionalityn a computer cupy only positions belonging to sites of a chosen la}tice
experiment, the magnetic transition was investigated for théloreover, all the works dealt with nonmagnetic repulsion
Heisenberg modd2,17] as well as for threef19] and two-  interactions in the form of the simplest hard-sphere potential
dimensional Ising fluid420] using canonical MC simula- exclusively. In addition, the magnetic interactions were trun-
tions. The combined canonical and Gibbs ensemble MQated, as a rule, at some finite interatomic separation, without
(GEMCO) simulations were performed for a Heisenberg sys-taking into account long range corrections. The question of
tem (=3, n=3) to determine both the magnetic and how these restrictions impact the behaviorTgfH) has not
liguid-gas transition$11,14,18§. been considered as well.

In most of the previous works, the liquid-gas coexistence In this paper we present a comprehensive study of the
was evaluated in the absence of an external magnetic fieléfluence of an external magnetic field on the liquid-gas co-
(H=0). Only a few paper§10,14,19 were devoted to the- existence properties of fluid models with IsingY, and
oretical study of the fluid behavior & +0. It was found Heisenberg spin interactions. The corresponding phase dia-
that for systems of hard spheres carrying Ising spins, an exgrams are calculated in the whole region of varykhgvith
ternal magnetic field decreases the temperalyi® the gas-  the help of the GEMC simulation technique and a modified
liquid critical point[10]. On the other hand, the presence of version of the mean field theory. As is shown, a good agree-
Heisenberg spins can lead to the inverse effect at stronment between the MC data and theoretical resultSTforan
enough field§14,15. As a result, a nonmonotonic behavior be achieved for all the models and for any valdeof the
of T, may arise in Heisenberg fluids due to a subtle interplayexternal field, including the limiH — . At H=0, it is dem-
between the translational and spin degrees of freeidh  onstrated that the mean field theory predicts a tricritical point
To our knowledge, no confirmation of the nonmonotonicity independent of the dimensiarof the magnetic order param-
in T,(H) has been given within computer experiments foreter. The simulation results for the Ising model agree with
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this topology, whereas for th¥Y and Heisenberg fluids a the distribution of spins in orientational spag, *=kgT is
critical end point, beside a gas-liquid critical point in the the temperature withg being the Boltzmann’s constart)

ferromagnetic phase, is indicated. denotes the statistical averaging, and
N
II. MEAN FIELD THEORY 1
o m=<s):N<_E s>=f sf(s)ds (6)
A. Models =1

Let us consider three models of magnetic fluids for spatiabiefines the magnetization of the system. The contribution to
dimensiond=3 with spin interactions of Isingn=1), pla-  the free energy caused by spin interactions with the param-
nar XY (n=2), and Heisenbergn(=3) types. Within all  etrized Yukawa functiod (r) can be written in the form
these models, the total potential energy of kparticle sys-
tem can be cast in the form P dJa(r)

F3,=~ gf 9a(1:81,82) 51 Sf(s)f(s)drds,ds,,
()

wherep=N/V is the number density witN being the vol-
ume, andg,(r,s;,s,) introduces the pair distribution func-
tion of a system corresponding t switched on magnetic
interactions with],=0 ata=0 andJ,=J(r) ata=1.
Equation(5) formally leads to exact results but requires
the knowledge of functiog(r,s;,s,) for each intermediate
gState G=a<1. Since, in general, this function cannot be
determined exactly, some approximations are needed to cal-
culate 7. Within the mean field MF) approximation it is
assumed thag (r,s;,S,) does not depend o and assumes
(2)  the form of the pair distribution functiog,(r) of the refer-
ence system. The latter function can further be approximated
is used to describe the internal magnetic interactions, wherdy its values in the low density regimeg,(r)
o ande relate to the size of particles and coupling constant;~eXf —B¢(r)]. Then in view of Eqs(2) and (6), the inte-
respectively. The nonmagnetic interactign between par- grations in Eqs(5) and(7) can be performed explicitly. This

1 N N
U=2 2 [e(rp)=d(rps-sl-H-2 5, (D
i#] i=1
wherer;=(riy,ri,,ri,) denotes the spatial coordinat,is
the n-dimensional spin vectdi.e., (si,0,0), (Six,Siy,0), or
(Six,Siy»Siz) for n=1, 2, or 3, respectivelyof unit length
(Is|=1), andrj;=|r;—r;|. For convenience, the homoge-
neous external magnetic field=(H,0,0) is directed along
axis X of the laboratory system of coordinates. The Yukaw
function

€T o—Tr
J(r)=Tex;{—

o

ticles can be modeled by the hard sphéts) results in
©  r<c F=F,+kgT dsf(s)lnf(s)—la m’—H-m, (8
ens=1 o = 3 o T 2% |
y r=o
or soft core(SC) where
a\¥? [a|® 6 o (NJI(r)r2dr=8y(T)meo?® 9)
d4el|—| —[=] |[+e, <20 i Og‘P —onljmea
esdr)= r r 4
0, r??/io is the magnetic interaction strength, and the multiplier
repulsion potentials. Note that the attraction between par- o )
ticles is formed exclusively due to ferromagnetic interac- o exd — Be(r)]I(r)rodr
tions. This corresponds to a so-called “ideal” class of spin YT)= - (10
fluids, where the attractive part of nonmagnetic interactions J J(r)radr
is absentsee comments at the end of the paper o
B. Equations of state iglr(]ttaizlinto account the softness of nonmagnetic repulsion po-
. - . ®-
Following the spirit of works[8,25], the Gibbs free en-  considering the free energ) as a functional of (s), it

ergy per particle corresponding to Hamiltonigh can be  ¢an pe shown that the minimum &f is achieved at
presented as

exp Bh-s)
— +<'”f(s)>+Jld P . f(9=——, (1D)
e B o (T3 M ©® fexr(ﬁh-s)ds
Here 7, is the free energy of the reference systémthe  \yhere
absence of magnetic interactions and external fieltis)
relates to the normalized single-particle function describing h=H-+apm (12
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can be treated as the effective field, consisting of the external TABLE I. Mean field theory results inl= 3.
term H and the averaged internal contributiepm. Equa-
tion (11) defines, therefore, the equilibrium single-particle Model — n ¢ Ty pffS  TEHS  pEsc Trse
Q|str|but|on function in the MF appro>_<|mat|on. Then, taking Ising 1 3 8rp* 0098 2462 0104 2621
into account the fact that the vector is parallel toH, the .
right-hand side of Eq(6) can be integrated in quadratures 2 2 Amp 0.169  2.119 0176 2.207
. AT :
The result is Heisenberg 3 3 8—7Tp* 0.224 1.876 0.229 1.920
3
( H-+apm
tan kT ) n=1
B . . .
H+ Relations(9), (13), and(14) constitute the main results of
N Hrapm the MF theory. In the case of the HS potentid) [when
_4 kgT h=2 (13 g,(r)=1 for r=0¢ andg,(r)=0 atr<o and, thus,y= ¢
m= H+apm)’ (13 =1, see Egs(10) and(17)], they coincide completely with
lo TkaT those obtained earli¢?,8] (for n=1 and 3. Our expressions
B . .
are more general, since they do not restrict us to the HS
cot H+apm|  KkgT _3 convention only, but are also directly applicable to more re-
\ kgT H+apm’ ’ alistic SC magnetic systentgicluding the case=2).

where |(x) = 1/m [ Je* ¥ cos(4)dys denotes the modified

Bessel function of the first kind and orderRelation (13) C. Phase separations

represents the magnetic equation of stM&S) of the sys- Analyzing the MES(13) at H=0, it can be shown that
tem. Note that the form of this equation depends on the numrontrivial (nonzerg solutions in the magnetic ordering pa-
ber n of components of the magnetic order parameter rameterm exist for temperatures lower than the Curie tem-

The pressure equation of stafeES can readily be ob- peratureT, =ap/(nkg). In the dimensionless representation
tained by partially differentiating Eq8) with respect top,  p*=po® and T*=kgT/e, the magnetic phase transition
using the thermodynamic relatioR=p?(dF/dp)ry With  curve read§y =8mp* y(T})/n. Since, in general, the func-
Egs.(11) and(12). As a consequence, one finds that the totakion y(T) may depend on temperature in a characteristic

pressure is the sum of two terms, way, the last equality represents a nonlinear equation which
B 12 o should be solved with respect d at fixedp*. In the case
P=P,—zap™m’, (14 ofasc potential4), the computations show that the devia-

tions of y(T) from unity do not exceed about 3% in a wide

— 2 H
namely, the pressure,=(p af(P/ap)T'H_correspondmg to temperature range of 0<3T* <6. For this reason we can put
the reference system and the part coming from the magneti

. el ¥(T)=1 without loss of precisiofat least in the range men-
zation. For the HS .referenc_e systéd) we use the quasiex tioned abovg Hence, the Curie temperature is found analyti-
act Carnahan-Starling relatigg6]

cally, TY =8mp*/n. It linearly depends on the density and is
_ 2 _3yiq1_ . \-3 inversely proportional to the number of spin components.

PelpT)=pkeT(1t 7t 7 =o)L= = (19 Near the Curie line af<T, , the MES can be expanded in a

with = mpa?l6=mp* 16 being the packing fraction. In the Series with respect to the deviation (T, —T)/T, , yielding

case of a SC potentid), the softness ofp is taken into

account by replacing in Eq15) the HS diameter by its SC lim m?2

counterparto,. The latter quantity can be determined by tmro T

requiring the second virial coefficients related to the HS sys-

tem with the particle’s diameter, and the SC system with

the real potentialp to be equal. This leads to

=c, (18

wherec is a constant depending on the spin dimensionality
(see Table)l

T =£53T)o, 16 In order to get the liquid-gas critical poifit., one has to
oM =¢AT)o (16) look where the inverse compressibility goes to zero. The
liquid-gas phase transition occurs on the Curie line, so that in

view of Egs.(14), (15), and(18) one finds aflf =T, that
Then the SC pressure can be obtained using(Eg). with

B( ﬁP) 9

ap TH Jan

n=n,= 7Tp0'z/6= E&(T)mp* /6. This is justified by the fact

that the SC potentiald) is close enough to the HS function Thus solving Eq.(19) with respect ton yields a tricritical
(3) [¢sd(r) increases rapidly to infinity with decreasingn  point atp; =67,/7 and T} =8mp; /n=48x,/n. Within the
the ranger <o, whereas it quickly tends to zero at-o]. HS version of the MF theory, the solutiong allow to be

where

N P 2
ém=— | -ext—petryrar.  az rerererd] cn
—3_—:0. (19)
(1=7n)

K 2
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presented analytically:  7=1+[q— (432/\/q—72 ( H-+apm

—q)¥?)/6 with q=6(4p)**—24—96(2p)*® and p=83 2 COS'{? ; n=1
+3,993 for n=1, 7=1+Jgq—(1Ng—1—q)2 with q °
=(p¥*-2-17p*3/6 and p=82+31293 forn=2, and 2l (H+apm n=2
n=1+[2\q— (T2Nq—24—4q)¥?)/6  with q=(p/2)*® f h-9ds—{ o kgT )
—26(2p)Y3—2 andp=245+9./1609 forn=3. The values expBh-s)ds= ~ [H+apm

for pf and T} with three digits after the decimal point are Slm—(kB—T

collected in Table | and marked by the superscript HS. In the 4WH+—’ n=3,
case of the SC version, we should repldatter taking the HTaem

partial derivative the packing fractiony entering in Eq(19) \ kgT

by its effective valuen,= &(T)mp*/6. It can be shown that (22

for the SC potential defined by E(), the multiplier£¥3(T) _ _ _

decreases monotonically from 1.05 to 0.94 with increasing"d #, is the chemical potential of the reference system
the temperature in the interval* e[0.3,6]. This behavior ~Which should take its Carnahan-Starling form

has a simple physical meaning, namely, with increa3itige

particles can approach one another more closely due to the

increase of their thermal velocities. As a consequence, the me=kgT
effective diameters,=&*¥T)o will decrease. In such a
situation [when £=£(T*) with T*=8wp*/n], Eq. (19
transforms into a complicated nonlinear equatiopfnand otential and the ressure factor Z,(7,T)
must be solved numericalljintegration(17) has been car- E P oA
ried out numerically top The results of these computations . _ Po(p.T)/(pkeT) are connected by theexac) relat-

: on Buy(n,T)=Jd[Z,(n" . T)=11/n"dn’ +Z,~1+In(Ap)
grg shown in Table | as well and marked by the superscri the term KoTInA, with A being the thermal de Broglie

wavelength, has been excluded from the right-hand side of
Eq.(23), since it depends only ofi and is irrelevant for our
consideration, see E(24) below|. The gas and liquid coex-
istence densitiepg(T) and p (T) are then determined ap-
plying the well-known mechanical and chemical equilibrium

7(8=97+37%°)

Inp+
(1-7)°

(23

to be self-consistent with Eq15). Note that the chemical

In the presence of an external fielde., whenH#0)
there is a liquid-gas phase transition curve ending in a criti
cal pointT.. The critical temperatur@; and densityp, can
be obtained numerically by solving the following system of
two equations:

conditions
aP aZP P(pGlT)zp(pL!T)v Iu’(pG!T)zlu“(vaT) (24)
— =0, |— =0, (20
ap T.H ap TH In the regime of large magnetic fields, we can solve the

MES (13) analytically taking into account the smallness of
{=kgT/(H+apm)<<1. This gives
where, in view of Egs.(13) and (14), the pressure

P(p,T,m)=P(p,T,m(p,T,H))=P(p,T,H) should be con- 1_28—[2(H+ap)]/kBT+O(e—4/§2), n=1
sidered as a function gf, T, andH. Therefore, the solutions

TJ(H) and p(H) to system (200 must be found self- _ E KeT +0(2?) n=2
consistently with the solutiom=m(p,T,H) of the nonlinear Myec1= 2H+ap '

equation(13). The latter equation requires to be handled nu- keT

merically as well. In the case=2, we have used a repre- 1- +0(?), n=3,
sentation of the modified Bessel functidrgppearing in Eq. H+ap 5
(13)] in the form of the infinite series I|(x) (25

=(x12)'Si_o(xI2)?¥I[ k! (k+1)!] (restricted to a finite but
large enough number of terms

The liquid-gas coexistence curve can be found &tT,.
by applying the Maxwell construction to pressufef). Al-
ternatively, we can introduce the chemical potential using th
relation u=F+P/p and Eqs.(8), (11), and(14). Then one

where the terms of the second and higher ordersefct*
and { have been omitted, and the inequalgy?‘<¢ has
been used. Substituting E@5) into the PES14), taking the
derivative of P with respect top, and solving the resulting
%quation ¢P/dp)r w=0 for T, we obtain the critical tem-
perature as a function ¢f. The result is

obtains
4(Wg,—1)e”#VkeTes, n=1
KgT e
m=pu,—KgTIn | exp(Bh-s)ds, (22 T(H)—Te == n=
T - H (26)
~ 2KgT e s
where H ’
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where T.=lim, T(H)=ap../(keW.) and pc. lll. COMPUTER SIMULATION AND THEORY

=lim, _ p(H) are the critical temperature and density in CALCULATIONS

the infinite magnetic field imitW., = a/dn[ 7(1+ n+ 7 A. Simulation procedures

—7)/(1—9)°1|,-,_ with 7e.=mp..c%6, and it was as- Two kinds of MC simulations have been carried out to
Co

sumed that the external field is much larger than both thdhvestigate the critical behavior. First, in order to determine
kinetic energy and the internal magnetic field, i.é, the liquid-gas coexistence properties we have applied the
>kgTe. andH>ap,. . From Eq.(26) we conclude that with GEMC approact{27] within an advanced biasing scheme
increasing the external field, the critical temperature aplll for handling spin degrees of freedom. The GEMC simu-
proaches its limiting value from the top, when=1, and lations were performed for two system sizes, namely, with
from the bottom, whem=2 or 3. Note that the factor N="500 and 1000 particle@r only with N=500 or 1000 for
W'(#)—1 is positive for all physical densitieg<1. More- ~ SOM€ temperatures and nonzero valuesiolo save com-
over, for the Ising fluid model, the critical temperatigH) puter timg. In each case, the particles were distributed over

tends toT .. exponentially with increasingl. This is not the WO boxes with volumes which fluctuated under the con-
case forXY and Heisenberg fluids, whefe(H) reachesT .. straint of fixed total volume. The GEMC configurations were

slower, according to the inverse power I& .. ggnergted in cycles, Wherelone cycle cgnsisted of g«itlnN

It is important to remark that in the saturation limit of trial dlsplaceme"nts and spin reorientations of particles cho-
infinite magnetic fieldH— o, all the spin fluid models con- S€N at randomii) one attempted volume rearrangement of
sidered reduce to the sanieonmagneticfluid with the in-  the boxes; or(iii) N, attempts to exchange the particles
terparticle potential(r)=o(r)—J(r) consisting of the between the simulation boxes. The type of each cycle was
hard- or soft-core repulsion part as well as the Yukawa-likeselected at random and with equal probability among the
attraction. The reason is that then the spins align exactljpbove three possible steps. _ . .
along the field vector, so that the scalar prodsics; will be The bias has been used during the spin reorientation and
equal to 1[see Eq(1)] for any pairs of particles. The term €xchangginsertion steps, so that a new attempted direction
H-3;s will tend to a (infinite) constant and thus can be for vectors was generated with a probability that favors
ignored in Eq.(1) (because we are entitled to accept a neworientations parallel to the local magnetic field. This bias was
level for counting the energy of the systerihe MF theory  taken into account when considering the acceptance prob-
also leads to identical results for eack 1, 2, and 3, when abilities corresponding to stegs and (iii) as well as when
H—o. Indeed, it follows from Eqs(13) and (25) that the calculating the chemical potential. The analytical expressions

limitlim,,__m=1 is independent af. The critical tempera-  for such probabilities have been obtained by modifying the
T . . hard-sphere acceptance rulé4] to the case when the soft-
ture and dens[ty at such a magnetu_: saturgﬂon can be fou'ﬁﬁstead of hard- core nonmagnetic repulsion potential is
as usually, using the 'generflisrelatl()m) W|th*ggtt|ng M present. The acceptance ratios for the particle moves and
=1in Eq. (15‘2- This y'eldSchC ~0.249 andT,,®~2.264  \5jyme changes were adjusted to lie in a range of 30—60 %.
as well aspg,,™~0.262 andr,”*~2.380 for the HS and SC  The value forN,, was chosen to yield a success rate of
versions, respectively. Note also that in the lifit>, ex-  particle transfers of 0.1-3 %, depending on the temperature.
pressions(21) and (22) for the chemical potential can be The chemical potential was calculated during the exchange
reducedby extracting an infinite constant depending only oninsertior) step using the generalized Widom's metHad],
H) to the formu=pu,—ap that corresponds to a nonmag- while the pressure was obtained employing the virial theo-
netic system with the potentiab. rem.

Simulations show(see the following sectigrthat for the Second, the Binder crossing technigiZ29] has been
Yukawa-fluid (YF) potential(r)=¢(r)—J(r) with the SC  ytilized to study the magnetic phase transitigits the ab-
repulsion, the critical liquid-gas temperature is equal{e  sence of an external magnetic figltHere, the usual canoni-
~2.680. It is somewhat highdwithin 12%) than the tem- cal MC simulations have been performed for system sizes of
peratureT* S“~2.380 obtained within the SC version of the N;=250 andN,=500 particles at several particle humber
MF theory. It can be assumed that a significant part of thelensitiesp and temperature3. At each value ofp, the
above temperature discrepancy may come from the approxBinder parameteB=1—M,/(3M3) was plotted as a func-
mate form used for the equation of stésee Eq(15), where  tion of T for the two system size&his parameter represents
n=£Emp* /6] of the SC reference system. Therefore, it be-a fourth-order cumulant witt,=(s') ands=|2;s|). The
comes quite natural to introduce an adjustable @SC)  critical temperaturdl,(p) of the para-ferro phase transition
version of the MF theory, where the second virial parametewas then obtained from the position of the intersection point
¢(T) of the reference systefiEq. (17)] is replaced by its  of curves By (T) and By,(T), i.e., from the condition

rescaled analog(T)=Dbg&(T). The constanb can then be Bn,(Th) =Bn,(T)). As in the case of GEMC simulations,

determined by requiring that the critical temperatlife(b)  the orientational biasing technig{i£l] was used to improve
CO|nC|deS W|th the exact l‘esu|t. ThIS |eadSkI§ 0902 a.nd the Convergence Of the Canonica| Ca|cu|ations_

corresponds to a slight decreagby a factor of b'® Within both the GEMC and canonical simulations, the
~0.966) of the effective diameter when calculating the presyykawa function was truncated at half the box length. In
sure according to Eq15) with 7= &(T) mp*/6. order to reduce the finite-size effects, a long range correction
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was taken into accourvithin periodic boundary conditions

by including an additional term to the potential energy of the

system. This term was deriveflll] by integrating the

Yukawa function beyond the cutoff radius and assuming that

the binary distribution function is equal to unity in this re-

gion. For sufficiently large system sizéss in our casesuch

an assumption should lead to virtually exact results. No ad- g

ditional finite size scaling corrections were applied in deter- 2

mining the critical temperatures, assuming that they are o5t §,, !
g
i

N\ ferromagnetic
)

liquid

metastable
coexistence
region

small on the scale of phenomena considered. The number of
MC cycles used to achieve an equilibrium state varied from 24 F
2x10* to 5x10°, depending on the system and external \
field value. Note that in the GEMC simulations, the pressure 2% 0 o 2 5 4 5 I6 08
and chemical potential should be the saiwéhin statistical ’ ’ k ’ ’
noise at equilibrium in the twagas and liquigilboxes. After P

achieving the equilibrium, the investigated quantities were

measured by averaging oveixA0® to 2.5x 10° cycles(de- . i . : . .
. . . mulation datgcircles for a soft-core Ising fluid at various values
pending on the model, ensemble, thermodynamic point, and o o
field strength. The statistical uncertainties have been esti-Of the e_xternal magnetic field. The_par.a-ferro p_hase transitiéa
ted USi .th block tha H=0) is plotted by the dasheurie) line passing through open
mated using the block averages met/faé]. squaregobtained in canonical MC simulationsThe critical points

The Critical_ tl_amperatu_reTC and densityp. have been are shown as crosses, whereas the tricritical point is presented by
evaluated by fitting the discrete set of GEMC data near thene star. The values df are given in the dimensionless fork*

criticality to the dependencg.=p.+C(1-T/T.)=C,(1 —H/e.
—T/TJ)” (the constant€,; andC, should minimize the de-
viations betweem .. and simulation valugsHere the law of  shape of the Ising binodals has been verified by the multiple-
rectilinear diameters g +pg)/2=p.+Cy(1-T/T,), the histogram reweightingMHR) method[31] and agreement
power law behaviop, — pg=2C,(1—T/TJ)#, and the criti-  with the GEMC results was observed.
cal exponent3=0.32 have been assumed as in H&0] In making the above conclusion on the phase diagram
(where results for a Lennard-Jones fluid were analyzed topology atH=0 we cannot be absolutely sure, since the
Note that forH+0 the magnetic para-ferro phase transitionGEMC simulations(as well as the MHR techniqu&lo not
disappears and the liquid-gas coexistence curves behave lilggovide us with precise enough data for temperatures which
those of nonmagnetic fluids with the effective attraction po-are very close to the critical region. Near this region, the
tential Jeu(r)=—(s;-S)ud(r). At H=0, where both the particle fluctuations become too large, so that the two GEMC
liguid-gas and magnetic para-ferro transitions exist simultaboxes (which consist of finite numbers of particlesan
neously, we should be careful in treating the fitting results inswitch their identity many times during the simulations. This
a region which is very close to the magnetic transiti@u-  prevents one from obtaining good mean density values of the
rie) line, because then the above laws will not work properlysystem in gas and liquid phasesTat T, (although the den-
(see Sec. llIBL sity distributions over the boxes can still indicate the exis-
tence of two phasgsOn the other hand, having a discrete set
B. Results and discussion of GEMC coexistence points lying relatively far from the
criticality region, it is impossible to apply the fitting proce-
dure (see at the end of the preceding subsegtiarthe vi-
Examples of the liquid-gas coexistence obtained in thecinity of the expected tricritical point, wher@~T,(pc)
GEMC simulations for the soft-core Ising fluid at various =T, because then the liquid and magnetic transitions are
values,H* =H/e=0, 0.1, 0.5, 1, 5, aneb, of the external coupled. The question concerning the topology of critical
field are shown in Fig. 1. As can be seen clearly, the criticapoints atH=0 goes beyond the scope of the present paper
temperaturd ;. goes down monotonously with rising the field and requires additional investigations by more sophisticated
strength and rapidly tends to its minimal value in the infinitesimulation techniquegsuch as finite-size scaling2], for
field limit. For instance, already &t* =5, the gas and liquid examplg.
binodal branches are practically indistinguishable from those The primary goal of this work is to study the liquid-gas
corresponding to the cas¢—cec. In addition, with increas- phase transition in the presendé=0) of an external field,
ing H the shape of the coexistence curves becomes widdpcusing on the calculations &f; as a function ofH. The
near the critical point. AH=0, all the simulated points results of these calculations obtained in the case of the Ising
belonging to the gas phase lie on a curve which is very clos#luid within HS, SC, and ASC versions of the MF theory are
in form to a straight line left of the magnetic para-ferro tran-shown in Fig. 2 together with the simulation data. Here, a
sition Curie line. The intersection of these lines defines anore extended set of external field values has been used. It
critical end point which coincides with the liquid-gas critical can be seen that the HSMF and SCMF schemes are able to
point as expected for a tricritical point, i.&,=T.=T;. In  predict qualitatively the monotonic decrease of the critical
other words, the Ising fluid exhibits a tricritical behavior. The temperatureT . with rising H. The relative deviations be-

Curie line

FIG. 1. The liquid-gas coexistence curves obtained from GEMC

1. Ising fluid
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FIG. 2. The critical temperaturg; as a function of the external FIG. 3. The gas-liquid coexistence of the Ising fluid obtained
magnetic fieldH obtained for the soft-core Ising fluid from GEMC within the ASC version of the MF theory. The MF para-ferro tran-
simulations(circles in comparison with the results of the HS, SC, sition is plotted by the dashed line. For other notations see the
and ASC versions of the MF theo(golid curves. The critical level  caption of Fig. 1.

corresponding to the infinite value of the external field is plotted by

he horizontal hed line. Vertical bars indi istical uncer; .
:aiiti:s ontal dashed line. Vertical bars indicate statistical unce theory, one has to solve numerically E@4). At the same

time, the HS, SC, and ASC functiofig(H) are obtained by

tween the simulation data and SCMF predictions Torare finding numerical solutions to E¢20) at given values of.
. o Taking into account that the magnetic equation of sta
of order 10—-15%, i.e., they are not so large in view of as- ng | . ghec equat (a8

sumptions made within the MF approach. When the ASCmUSt be handled numerically oo, the Calculf':\tiorpgt;(T) .
version is used, the theoretical and simulation data appear %ndb':'c(H)TEregents, n f E‘I(I:t’ ta rat'hetrhcompllc)zt;,ad tetc hnical
be practically indistinguishable and the disagreements do n(ptro_ em. 1his IS especially true in the case system
exceed the GEMC statistical noise. At weak external fieldd"=2) and in SC and ASC versions of the MFT, where the
(H*=0.5), the functionT(H) behaves asT(0)—cH2> integration in Eq(17) as well as the computation of Bessel's
(see Fig. 2 where the Iaiter dependence i; plotted with functions are required additionally. Similar difficulties arise
—0.258 for the ASC cageThis confirms the MF prediction N MC simulations ofXY fluids when applying the orienta-
lim . [TJ(H)—T(0)]<—H?3 obtained previously in tional biasing techniquEll]. The reason is that then the trial

H=0 ! , .o . orientation vectors should be generated with distributions,
Refs.[10,33. In the strong field regimeH*=2), the criti-  \hich cannot be presentddontrary to the cases=1 and
cal temperature decreases exponentially, according to t

. ) ; X X =3) by simple algebraic expressions, and the use of time-
Egalgg):?l formula derived in Sec. Il see the first line of ¢, ming Bessel-like functions is required. Nevertheless,

he Isi lauid . | 4 withi developing an efficient algorithm has allowed us to over-
The Ising gas-liquid coexistence curves evaluated withiny, e the technical difficulties and calculate the coexistence

the ASC version of the MF theory as well as the MF Para-crves for all the models, including they.

ferro transition line are presented in Fig. 3. The deviations in 1 oy y gas-liquid binodals evaluated in the GEMC simu-
the theoretical and simulation binod#fsease compare Figs. | tions are presented in Fig. 4 for the B&t=0, 2, 5, 10, 40

1 and 3 are larger than the discrepancy in the case of funcémd:>O of external field values. As can be clearly seen, here

tion T(H) (see Fig. 2 and they cannot be reduced to Z€T0 1 tonol f bh . diff . | ;
even within the ASCMF. For instance, the theory somewhat oem Otﬁgtog%/ tﬁ e Fi siisge ﬂ(ljJ I%griir?sst aILHeLSO”:hzeggg-for%ec s

overestimates the gas phase densities and underestimates Cn C P

N - 9% netic ling(which is incl in Fig. 4 as welinter
densities in the liquid phase. As a result, the shape of th fgg:;cbrar;e(ch gf thse bﬁr:f;;jl at agcritii:ll een:j tsoﬁts
binodals appears to be narrower with respect to that of thﬁ/hich does not coincide with the critical poifit, i.e., |_|_;

simulation coexistence curves. A more accurate theory : .
should be applied to describe quantitatively the liquid-gas Ted #0. So, contrary to the Ising fluid, where the gas can

phase diagrams in the whole density, temperature, and ma%}y be paramﬁgbr)etlc an(jr]the liquid orll:y ferr?]magnetlc, tht?
netic field ranges. system exhibits a richer pattern. Here, the gas can be

either in paramagnetidqwhen T<T.) or ferromagnetic
L (when T <T<T.) state, and thus the liquid-gas transition
2. XY -spin fluid model can take place keeping the ferromagnetic ordering. Secondly,
As was pointed out in the Introduction, until now no com- with increasingH, the critical temperature starts to decrease
puter experiments and theoretical investigations on theapidly reaching its minimal value &t* ~2 and further be-
liquid-gas coexistence have been performed for the planagins to increase much slower tending to the infinite-field
XY spin fluid model. In this respect it should be mentionedlimit T... The shape of the binodals nebgH) also dem-
that in order to obtain the coexistence curves within the MFonstrates a nonmonotonic behavior, namely, it first
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FIG. 4. The gas-liquid(curves and para-ferro(dashed ling FIG. 6. The gas-liquid and para-ferro coexistences of the

phase coexistences obtained from GE different values of an XY-spin fluid observed within the ASC version of the MF theory.

external fieldH) and canonicalat H=0) MC simulations, respec- Notations are similar to those of Fig. 4.

tively, for the XY-spin fluid model. The critical end point is shown

by the star. Other notations are the same as in Fig. 1. simulation data. Here, a crossover to an analytic behavior
with IimHHO dT./9dH=0 is expected because of the lack of a

becomes wider with risingl and then begins to narrow, but tricritical point (| T.—T.d#0). For large fields i* =50),
becomes not as narrow askt=0. the critical temperature tends to the infinite-field valye as

The nonmonotonic dependenceTofon the strengtid of T (H)—T.,«—1/H, which is consistent with MF prediction
the external field observed from the simulations for ¥  (26) at n=2. The saturation regime, whén(H) is almost
fluid is shown in more detail in Fig. 5. The correspondingequal toT.., can be reached here by very strong fields of
results of the HS, SC, and ASC MF approaches are includegrder H* =500 (for the Ising fluid the saturation level is
there too. Again we can see that the HS and SC versions leafluch lower,H* =5, see Fig. 2
to qualitatively correct results and the deviations from the The theoretical liquid-gas coexistence curves and para-
simulation data do not exceed about 15%. In addition, all thgerro transition line of theXY fluid are shown in Fig. 6.
approaches predict a minimum &f(H) at nearly the same Comparing these results with the corresponding GEMC data
external fieldH* ~2. Moreover, the ASC approach provides (see Fig. 4we see that, as in the case of the Ising system, the
us with virtually exact results fof (H) at any value oH.  ASCMF predictions ofg andp, are not as perfect as those
For instance, the theoretical discrepancy is less than the levek the field dependency df.. Again, atH+#0 the shape of
of GEMC uncertainties. However, #1—0 one has to be the binodals becomes narrower because of the overestima-
careful in application of the MFH?® dependencésee Sec. tion and underestimation of gas and liquid densities, respec-
1B 1) to the interpretation of the functiofi(H) build on tively. ForH=0, the ASCMF approach does not predict the

existence of critical and critical end points found in the simu-

28 lations, but leads instead to a tricritical behavior.
H=c
56 3. Heisenberg fluid
‘ ASOME The liquid-gas coexistence curves and the Curie line ob-
tained for the Heisenberg fluid within the simulations and
* 2.4 ASCMF theory are shown in Figs. 7 and 8, respectively. As
B~ SCMF can be seen, the Heisenberg system exhibits a topology of
2.2 71 phase diagrams similar to theY fluid. In particular, accord-

HSMF ing to the simulation results fdd =0, the Curie line ends at
20 a critical end point on the gas side of the binodal, so that
T.e<T., WhereT; should be referred to as the liquid-gas
. . . ‘ critical point located in the ferromagnetic phasee Fig. 7.
It is worth mentioning that some evidence of the lack of a
0 10 ZOH,E’O 40 50 tricritical point in the Heisenberg system has been provided
by GEMC simulations earlief11]. Later on, it was stated
FIG. 5. The critical temperature as a function of the externall 18] that owing to finite size effects it is very difficult to
field obtained for the&X Y-spin fluid model from GEMC simulations come definitely to one of the two possible scenarios: whether
(circles in comparison with the results of the HS, SC, and ASC the Curie line ends at a critical end polat suggested by the
versions of the MF theorysolid curvey. Other notations are the Simulations, see Fig.)7or at a tricritical pointas suggested
same as in Fig. 2. by the MF theory, see Fig.)8Relatively recently, the exis-

1.8
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- . FIG. 9. The critical temperaturg; as a function of the external
FIG. 7. The gas-lqu_ud(curves) and para-ferro(dashed ling field H obtained for the Heisenberg fluid from GEMC simulations
phase coexistence obtained from Gi different values of an ex- (circles in comparison with the results of the HS, SC, and ASC

ternal fieldH) and canonicalat H=0) MC simulations, respec- . . .
) . . i versions of the MF theorysolid curve$. Other notations are the
tively, for the soft-core Heisenberg fluid. Other notations are the y %

in Fi in Fig. 5.
same as in Fig. 4. same as in Fig

where the values of (H) are presented for a more complete

tence of a critical end point for the Heisenberg fluid has beeRgt ot and in more detail at smah respectively. Again

observed within the integral equation theg@p]. However, e theory is able to qualitatively describe the liquid-gas co-

the difference| Tee— Tl Oreportgd there was very small and gyiqtence propertiesee Fig. 8 whereas the functio(H)
amo_unted to ab_ou_t 0.1%, which can be comp_arable with NUzan be calculated within the ASCMF approach quantitatively.
merical uncertainties. On the other hand, this difference ISThe HS and SC versions of the MF theory also reproduce

much smaller than the discrepancy introduced by the meag,o the critical temperature, but they underestimaigeH)
spherical approximation, used in R¢f5] for the closure to within an order of 10%. The minimum oF(H) at H*

relation to the Ornstein-Zernike equation. In our case, the_, ..o pe predicted by either version of the MET. It should

Ye pointed out also that the presence of SC repulsion leads to
'an increase of the gas-liquid critical temperature with respect
Mo that of the HS potentiaithe SCMF curve lies above the
HSMF at all values ofH, see Figs. 9 and 10The same
cfonclusion is valid for the Ising andY models(see Figs. 2
%nd 5. The asymptotic behavior of (H) at H*>1 looks

ke T(H)—Te.«c—1/H. Itis identical in form to that of the
XY system, but differs in the value of the coefficient of the
proportionality to 1H. Because this coefficient is twice as

' large atn= 3 [see Eq(26)], the saturation regime will begin
here at stronger fieldsH* =1000).

liquid critical point on the phase diagram is sufficiently large
as can be seen in Figs. 4 and 7. It is larger, in particular, i
comparison with GEMC uncertaintiggvhich are of the or-
der of the size of the symbols in the figures

In the presence of an external field, the change in shape
the liquid-gas binodal and the change of the critical temperag,
ture are nonmonotonic for the Heisenberg fluid, like for the
XY system. This can be seen from Fig. 7 for the K&t
=0, 2,5, 10, 15, 50, an#, as well as from Figs. 9 and 10

2.8
2.2
<A 2.11 gc\‘@
*
B 2.0 , 20f
i 4 &c) 50“‘?
Lol 1.9}
1.8 =
1.2 —_—
0.0 0.2 0.4 06 0.8 1.0 1 S
% .
0 3 6 9 12 15

Jo)

FIG. 8. The gas-liquid and para-ferro coexistences of the
Heisenberg fluid obtained within the ASC version of the MF theory.  FIG. 10. The same as in Fig. 9, but the behaviofTgfH) at
Notations are the same as in Fig. 6. small values oH is shown in more detail.
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FIG. 11. The normalized critical densip/p.. as a function of
the applied external magnetic fiett] evaluated within the ASCMF FIG. 12. The para-ferro coexistence lines obtainecHat0
theory (curves for the Ising f=1), XY (n=2), and Heisenberg Within the MF theory for the Ising{=1), XY (n=2), and Heisen-
(n=3) spin fluid models. The values obtained from GEMC simu-berg (1=3) spin fluid models in comparison with canonical MC
lations are presented by triangles, squares, and circles=fdr, 2, ~ Simulation datacircles.
and 3, respectively.

Finally, the simulation and theory results on the para-ferro
coexistence ati =0 are collected fon=3, 2, and 1 in Fig.
12. It repeats to some extent the Curie lines already shown in
Figs. 1, 3, 4, 6-8, but represents them in a considerably
wider temperature interval. Despite the fact that only a set of

Note also that in the limiH—0, the MF functionT  (H)
behaves like~ —H?® (with 9T ./dH~—H 35— — ) inde-
pendently ofn (see Sec. IY. However, as in the case of the
XY fluid, the functionT,(H) corresponding to simulation a6 MC pointgfor eachn) is available in a restricted den-

data for the Heisenberg modedee Figs. 9 and 3Gshould iy region, it can be stated that the dependencB,ain p is
exhibit an analytic behavior ai—0 with lim,  dTc/dH  aimost linear and excellently coincides with the MF straight

=0, because of the existence of a critical end poijft,( line Ty =(8w/n)p* (the MC uncertainties are of the order of

—T.d#0). the size of the symbols in Fig. 12
For completeness of our consideration we present in detail
in Fig. 11 the normalized dependenciegH)/p... of the IV. CONCLUDING REMARKS

critical density on the external field for the Heisenberg as )

well as XY, and Ising fluids, obtained within the ASCMF N the present study we have obtained a complete set of
theory in comparison with the GEMC results. The normaI-E’,hase" diagrams for a class of Isingy, and Heisenberg
ization allows to make a quite visible presentation of all the |deal_ spin fIU|d_s_. The ph_ase diagrams have been calculated
functions using only one graph. As can be seen, the simul applying a modified version of the MF theory as well as the

tion points agree well with the ASCMF predictions, although bbs- and canomcal-ensemble MC simulation techniques.
"ghe present version takes into account the softness of non-

the deviations are somewhat larger than in the case of th o ; : ,
magnetic interparticle repulsion and corrects the equation of

field dependenc¥ (H) of the critical temperature. The main : .
part of t?]ese de\szgftio)ns should be assogiated with MC statiState of the reference system. This has allowed us to describe

. . o * quantitatively the dependencies of the critical temperaiyre
tical noise. For the absolute vaIues;t{Iﬁ—llmHHx Pc+ T8 of the liquid-gas transition on the strengthof an external
lated to the ASCMF theory and GEMC simulations, we havemagnetic field for all the models considered over the whole
obtained 0.295 and 0.307, respectively. The nonmonotonicityegion of varying H. Note that such models should be
of py(H) for n=3 and 2 is closely connected with the cor- thought of as a good approximation to realistic systems with
responding nonmonotonous behavioMefH). With switch-  anisotropic interactions. For instance, the Ising and Heisen-
ing on the external field and its slight increasing, the criticalberg fluids can give a reasonable description of phase transi-
density begins to increase rapidly for al=1, 2, and 3. tions in Au-Co and CgPd,, melts[4,5,7,10. Observations
Further, the Heisenberg andy dependenciep(H) exhibit  on the Ising model are also directly applicable(tmnmag-

a maximum aH*~2, i.e., approximately at the same point, netic) symmetrical binary fluid mixtureg84]. The XY model
where the functiond (H) have a minimun{see Figs. 5 and can be used for modeling adsorption processes on a surface.
9). Forn=3 and 2, after reaching the maximum, the func- A He3-He4 mixture with its superfluid transitio (ine), the
tions p.(H) decrease, tending to the same limiting valuegas-liquid transition, and the demixing transition for higher
P - On the other hand, far=1 the functionp(H) contin-  concentrations might be considered as an example of¥an
ues to increase monotonically pg,, on the whole interval of magnetic fluid[35].

varying H (at the same time, the functiof,(H) monotoni- Let us summarize and discuss the main results found.
cally decreases with rising, see Fig. 2 (i) It has been established that a common feature inherent
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in the functionT,(H) is its decrease with turning on and of smallness inH with respect to the first contributipnin
increasingH. In the case of the Ising modeh€& 1), such a  other words, the first mechanism dominates and this indeed
behavior remains valid for any further increasefinclud-  is observed for theXY and Heisenberg models, wheTg

ing the infinite field regime fl—~). For the XY and increases with risindd in the large magnetic field regime.
Heisenberg modelsn=2 and 3, the decrease of. with  This is, however, not the case for the Ising fluid, where the
rising H gradually transforms into the inverse dependencesecond terntbeing negativeappears to be the same order in
i.e., into an increase of; at intermediate and strong fields. H and even greater in magnitude than the first contribution,
In this respect the discrete Ising modelhere the spins can owing to the exponential field dependency. Then the critical
accept only two valuest 1 or —1) exhibits a very specific temperature will decrease with increasidg In particular,
feature which is not observed for th€Y and Heisenberg for H-—o, combining the two terms gives
models with continuous spin distributions. lim kgdTe/dH=—8(W.,—1)exd —2H/(kgT...) ]<O.

(i) From a physical point of view, the field effects just "~ o _
mentioned are caused by the existence of two competin _At wea_k magnetic field$H~0, the ;econd mechanism
mechanisms. In order to make the explanation more clea ,'“ preyall for all the moqiels. Following arguments pre-
one uses some expressions of the MF theawich de- sented_ln R_ef[lO] atn=1, it can be sﬁg\évn within the MF
scribes already the main features of the field dependency @PProximation thatdTe/dH~—C(n)H “*<0 for any n
T, and p.). Then the spin fluid can be treated as a simple_ L 2: and 3, wher€(n)>0 is then-dependent coefficient

nonmagnetic system with an effective attraction potentiapf the proportionality. In order to better understand Wh_y the
Jei(r) = —(s1- SHuI(r), where(s; - )y, = m? within the MF second mechanism suppresses the liquid-gas separation, one
e [l

approach. This corresponds to the pressuPe-P, rewr/|tes_ theztefmampad)é/_&H 'tmt tht?] e?w){/atlent fo;m
— a2 with ags=an? being the effective attraction P9X/dp—apx”. Then adding it to the first term &

. l _
strength[see Eq.(14)]. Taking into account the dependence 2PX) regtL)JIts_ n Z(f(l;: ZapX)Jrga{f/ap' :[I'hutsh, thg neg?_
of m on p (and H), one obtains thatkgT,— pag(1 1ve contribution of the second term to the derivative

+apy)/W' (p), wherey=am/dH is the magnetic suscepti- dT./dH directly follows from the fact that the susceptibility
bility of the s3;stem. This result follows from E@15), the of the gaseous ph"%se is larger th_an that of the coexistent
condition (9P/dp); =0, and the MF relationam/dp dense liquid phase, i.elx/dp<0. This means that the mag-

B it . ith netization of the gaseous phase grows stronger, making the
QSII(TSX [see Eq.(13)]. Differentiating T with respect toH 4,5 phases more indistinguishable from one another. This

effect is very strong in the limi — 0, where the gas branch
of the binodal is very close to the Curie lifalong which
x—). At the same time, the liquid branch quickly deviates

a_TC: amp/ 2X(1+apx)+amp(9—x, (27) from this p_ara—ferro transition I_ine,_ leading to especially
dH  kgW dH large negative values ofx/dp (with limy_y_dx/dp— —
atH—0).

(iii) We see, therefore, that for the Ising fluid, the second
where the first and second term on the right-hand side shoulghechanism dominate®wing to the discrete nature of spin
be associated with the contributions of two different mechareorientations in this caget all values ofH. This explains
nisms. The first mechanism is due to the fact that the externahe monotonic decrease ®f, with rising H for n=1. With
field favors to align the spins alortg and thus increases,  increasing the number of spin components to 2 and 3, the
i.e., x>0 for arbitrary values oH. For genuine nonmagnetic ability of the external field to decrease the critical tempera-
systems, where is independent ofp, one obtains the ture becomes smaller, and the first mechanism begins to pre-
well-known resultkgT.= pacs/W'. This obviously means vail at larger values of. This leads to the nonmonotonic
that the critical temperature is higher for fluids with strongerbehavior of T,(H) for the XY (n=2) and Heisenbergn(
attractions between particlés.g., the liquid-gas transition =3) models. The behavior gf(H) can also be explained
disappears completely for systems with only repulsive interby appealing to the interplay between the same two compet-
actions, wherags=0). In our case, the effective attractions ing processes.
a.r=am? will rise with increasing the magnetic field be-  (iv) It has been shown that the MF theory does not predict
cause of risingn, and therefore the critical temperature will at H=0 the existence of a critical point and critical end
increase alsgnote that the term 2(1+apy) remains al- point, found in the simulations fon=2 and 3, but leads
ways positive, see Eq27)]. instead to a tricritical behavior, observed in the simulations

The second mechanism is more subtle and caused by ther n=1. In this context it, first, should be pointed out that
dependence of on H. At strong enough fieldsH>kgT and  we dealt with a specific class of spin fluids, where the attrac-
H>ap), when the magnetizatiom is very close to its satu- tion between particles is due to ferromagnetic inter-
ration value, we obtain from Eq(25 that y=dm/dH actions. According to the general classification, this corre-
~exd —2H/(kgT)] for n=1 as well asy~1/H? for n=2 sponds to an infinite value of the ratioR
and 3. Then dx/dH|,—1~—exd—2H/(kgT)]<0 and =19,(r)I(r)dr/fg,(r) @an(r)dr of the integrated strengths
axlH =23~ —1/H3<0. Thus forn=2 and 3, the influ- of the magnetic interaction and an attractive part of the non-
ence of the second term in the right-hand side of @) on  magnetic interactionR=o (becauseg,,=0). For finite
the valuedT./dH can be neglectetthis term is higher order values ofR, different types of the phase diagram topology
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