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Dynamics of shear-transformation zones in amorphous plasticity:
Energetic constraints in a minimal theory
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We use energetic considerations to deduce the form of a previously uncertain coupling term in the shear-
transformation-zonéSTZ2) theory of plastic deformation in amorphous solids. As in the earlier versions of the
STZ theory, the onset of steady deformation at a yield stress appears here as an exchange of dynamic stability
between jammed and plastically deforming states. We show how an especially simple “quasilinear” version of
this theory accounts qualitatively for many features of plasticity such as yielding, strain softening, and strain
recovery. We also show that this minimal version of the theory fails to describe certain other phenomena, and
argue that these limitations indicate needs for additional internal degrees of freedom beyond those included
here.
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I. INTRODUCTION which implies that a proper description of deformation and
fracture must be dynamic, that is, it must be expressed in the
In developing a “shear-transformation-zone(STZ)  form of equations of motion rather than the conventional
model of plasticity in oncrystalline solids, we have encoun-phenomenological rules and yielding criteft.
tered several fundamental questions that pertain to the way in A second fundamental question is: What is the origin of
which mechanical work done on the system is stored revergnemory effects in plasticity? Standard, hysteretic, stress-
ibly and dissipated irreversibly during plastic deformation. strain curves for deformab!e solids tell us that t_hese materials
We find that the constraints imposed on our phenomenologi?@ve rudimentary memories. Roughly speaking, they “re-
cal theory by such considerations, plus one simple assumg)gember” the direction in which they most recently have
tion, resolve an earlier uncertainty about the STZ theory an een deformed. When unloaded and then reloaded in the

in fact, determine essentially all the details of its simplestOrlglnal direction, they are hardened and respond only elas-

version. With this assurance about the theory’s internal sel tically, whereas, when loaded in the opposite direction, they

consistency, we can look more carefully at the observed phed_eform plastically. The conventional way of dealing with

. . . ) . such behavior is to speci henomenological rules statin
nomena to determine what additional physical ingredient pecify p g g

ded hi o dicti bilit ow the response to an applied stress is determined by the
are needed to achieve quantitative predictive capabiliti€figiqry of prior loading: but such rules provide little insight

within this basp framework. Thg Preser_‘t paper provides anyy ot what is actually happening or what might be the nature
account of the first stages of this investigation. of a theory based more directly on molecular mechanisms.
A few preliminary comments may be useful. We recog- A petter way to deal with memory effects is to introduce
nize that the conventional approaches to plasticity theorynternal state variables that carry information about previous
have, for almost a century, been extremely successful in emjstory and determine the current response of the system to
gineering applications. There are, however, some puzzlingpplied forces. All too often, however, the plastic strain itself
internal inconsistencies that pervade all of solid mechanicg used as such a state variable. For example, in many phe-
and that will have to be resolved if this field is to meet nomenological descriptions the plastic strain is said to be
modern technological challenges. Questions of this generglroportional to a “hardening parametefl]. Such a proce-
nature seem certain to arise in attempts to understand othdure violates basic principles of nonequilibrium physics be-
strongly nonequilibrium phenomena such as those that occwause it implies that a material must somehow remeralber
in geology, polymer science, and especially biology. of its prior history of deformation starting from some primor-
The most basic of these questions is: What are the fundadial reference state. That cannot be possible for an amor-
mental distinctions between brittle and ductile behaviors? Ahous solid any more than it is for a liquid, where it is well
brittle solid breaks when subjected to a large enough stressnderstood that only displacement rates, and not the dis-
whereas a ductile material deforms plastically. Remarkablyplacements themselves, may appear in equations of motion.
we do not yet have a fundamental understanding of the disFhe question remains, then: What are the appropriate internal
tinction between these two behaviors. Conventional theoriestate variables for amorphous solids?
of crystalline solids say that dislocations form and move The STZ theory that we shall discuss here is an attempt to
more easily through ductile materials than brittle ones, thusdentify those state variables and their equations of motion.
allowing deformation to occur in one case and fracture in theThe original ideas are largely due to Fdk-5], who used
other. But the same behaviors also occur in amorphous somolecular dynamics simulations of shear deformations in
ids; thus the dislocation mechanism cannot be the essentialo-dimensional, amorphous, Lennard-Jones solids to show
ingredient of all theories. Moreover, the brittleness or ductil-that, as postulated by Cohen, Turnbull, Spaepen, Argon, and
ity of some materials depends upon the speed of loadingythers[6,7], irreversible deformations are localized in dilute
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distributions of shear-transformation zones. Falk showed thagxactly the same equations as the ones we shall use here can
these zones behave like two-state systems. That is, in tHee derived starting from the assumption that theriori
presence of a shear stress, they can deform by only a finiterientations of the zones is circularly symmetric.
amount in one direction before they become jammed but, Let the deviatoric stress be diagonal along xhg axes;
once they have done so, they can transform in the oppositepecifically, lets,,= —s,,=s ands,,=0. Then choose the
direction in response to a reversed stress. The STZ's are+” zones to be orientedelongated along thex axis, and
ephemeral; they are created and annihilated during irrevershe “—" zones along they axis; and denote the population
ible deformations of the material. This picture implies thatdensity of zones oriented in the/— directions by the sym-
the relevant state variables are the population densities of theol n.. . With these conventions, the plastic strain rate is
STZ's in their various orientations. The equations of motion
for these populations have interesting implications, the most efl=— gglyz e'=N(R_(s)n_—R.(s)n,). (2.2
important of which is the notion that the onset of steady
deformation at a yield stress occurs as an exchange of dyHere\ is a material-specific parameter with the dimensions
namic stability between jammethondeforming and un-  of (lengthf, which must be roughly equal to the area of an
jammed(deforming states of the system. Section Il of this STz, that is, a few square molecular spacings. The quantity
paper contains a brief review of the original ideas and thdn parentheses in Eq2.1) is the net rate per unit area at
way in which they are specialized for use here in a minimalwhich STZ's are transforming from- to + orientations.
but useful version of an STZ theory of amorphous plasticity.Here, R, (s) and R_(s)=R_.(—s) are the rates for+ to
In Sec. Ill, we show how the constraints imposed by the— and — to + transitions, respectively. For simplicity, we
first and second laws of thermodynamics determine thevrite these rates as explicit functions of only the deviatoric
structure of the equations of motion for the STZ state vari-stresss, although they depend implicitly on the temperature
ables. We argue that the rate of energy dissipation duringnd pressure and perhaps on other guantities.
deformation must be proportional to the rates at which STZ's The equations of motion for the populatioms. must
are annihilated and created. With this hypothesis, we comhave the form
pute both the dissipation rate and the recoverable energy
stored in the plastic degrees of freedom. . N,
Finally, in Sec. IV, we discuss some implications of these ~ N+ =R=(S)N=—R.(s)n. +I'(s, ...)[ 5 —n. |,
results. We compute theoretical stress-strain curves for sys- (2.2)
tems driven both at constant strain rates and at fixed stresses
(creep tests Our goal here is to demonstrate qualitatively where the last two terms in parentheses, proportiondl,to
the wide range of phenomena that are described by thidescribe creation and annihilation of STZ's. Here, the con-
theory, and also to show what qualitative features are missstantn,, is the total density of zones that would be generated
ing. We conclude by making some remarks about the basim a system that is undergoing steady plastic deformation.
ingredients of a more complete dynamical theory of amorintroducingn.. in Eqg. (2.2) is simply a way to characterize
phous plasticity. the ratio of the creation and annihilation rates in terms of a
physically meaningful quantity. To understand E22), it is
useful to think of the creation and annihilation events as
Il. SUMMARY OF STZ DYNAMICS local density fluctuations, dilations, and contractions, respec-
As in Ref.[3], we consider only strictly two-dimensional tively, which do not contribute to the shear deformation. The

noncrystalline systems. We further restrict ourselves to mofactor I' that determines the rates of these fluctuations is a
lecular materials in contact with thermal reservoirs, so thafunction of the stress and the strain rate or, equivalently, the
we may assume that an ambient temperature determines §HeSs and the population densities. The choice isfone of
underlying fluctuation rate which, in turn, determines thethe principal topics of this paper; we discuss it in detail in
rates at which the molecules explore their configurationsS€c: - . . _ . _
Thus, we shall notfor the presentconsider granular mate- We define dimensionless internal state variables by writ-
rials or foams where ordinary thermal kinetic energies aré"9

negligibly small, and where the motions of the particles dur- N _

ing rearrangements must be driven entirely by the external A= nyTN- A N+ n,' 2.3

forces applied to the system. N, N

We consider here only situations in which the orientation )
of the stress and strain tensors remains fixed. A tensorigihese quantities\ andA are the internal state variables, or
version of this theory, applicable to more general situation®rder parameters, that we believe are appropriate for a dy-
where the stresses rotate during plastic deformation, has be@amical theory of amorphous plasticity. In a more general
used in our earlier studies of microstructural shear banding€atment9], A remains a scalar density, bitbecomes a
[8] and necking instabilitie$2], and is developed in more traceles_s symmetric _tens_or with the same tr_ansformanon
detail in Ref.[9]. With the restriction of fixed stress orienta- Properties as the deviatoric stress. We also define
tion, it is sufficient to assume that the population of STZ's s
consists simply of zones oriented along the principal axes of _1 _ _1 __©
the two-dimensional stress tensor. It is shown in R&fthat §=2(R-—Ry), C=2(R-+Ry), 1= c’ 24
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Then the STZ equations of motion become: correct over a wider range of stresses, and the quasilinear
) theory might have the merit of being the simplest description
€”'=€,C(s)(A T(s)—A), (2.5  of dynamic plasticity consistent with the symmetries of the

_ system and the choice of order parameters.
A=2C(s)(AT(s)—A)—T'(s,A,A)A, (2.6 Another limitation of the quasilinear theory is that it loses
some of the STZ memory effects, specifically, those that re-
and side in the stress dependence(¢$). This is an important
. topic that we shall address in Sec. IV as part of a more
A=T(s,A,A)(1-A). (2.7 general discussion of possible extensions of this theory.

, . ) On the plus side, the quasilinear theory has the great ad-

Here, we have defineé,=\ n.,. This is the only material- \antage of simplicity. It is easy to interpret and to use in

specific parameter remaining explicitly in these equatieps. ,merical calculations such as those reported in our recent

is roughly the fraction of the total area of the' system coyerecgtudy of the necking instabilitj2]. It may be the closest we

by the STZ's, therefore, to be consistent with our basic aszan come to a description of deformable amorphous solids

sumptions, it must be much smaller than unity. that is comparable in utility to the Navier-Stokes equations
Throughout the rest of this paper, we shall use only what, ¢.id dynamics.

we call the “quasilinear” version of these equatiddg. Us-
ing the fact that7 is an odd function ok andC is even, we

make the simplest possible approximation Ill. ENERGY BALANCE
T(s)=s, C(C(s)=1, (2.9 We turn now to the energetics of the quasilinear STZ
model. The introduction of the internal state variableand
so that Egs(2.5) and(2.6) become A raises the question of whether recoverable energy might be
) associated with these degrees of freedom and, if so, what the
”'=¢ey(As—A), (2.9 form of that energy function might be. A related question is
the relation between the state variables and the rate of energy
A=2 (As—A)-T'(s,A,A) A. (2.10 dissipation during plastic deformation. These are important

questions; the energy stored in plastic degrees of freedom
We have written the right-hand sides of E@8.8) without = may, along with stored elastic energy, drive recovery of plas-
factors whose dimensions would be inverse stress and irtic strain. That energy might also be partially recoverable, for
verse time respectively. This means that without loss of genexample, during neckinf] or fracture, thus affecting esti-
erality, we are implicitly expressing all stresses dfater) mates of failure rates or the Griffiths threshold.
elastic moduli in units of some unspecified characteristic The energy-balance equatidthe first law of thermody-
stress. That characteristic stress will turn out to be the dynamics for this model has the form
namic yield stress, which implicitly contains the temperature
and pressure dependence of the rétes Similarly, we have d
set the unit of time equal to the inverse of the rate factor zgplszzeo(A s—A)s=eg— (A, A)+Q(s,A,A).
contained in the functiod(s). dt

Note that the quasilinear version of the STZ theory looks 3.1

directly comparable to some conventional phenomenology
[1]. In particular, the quantith apparently plays the role of The left-hand side of Eq(3.1) is the rate at which plastic
the back stress or hardening parameter in(Ed), although  work is being done. On the right sideg ¢ is the state-
it has a different physical interpretation here than elsewheralependent recoverable energy density @his the dissipa-
If the nonlinear term—T"A were missing on the right-hand tion rate.Q must be positive in order for the system to sat-
side of Eq.(2.10, then we would be able to integrate both isfy the second law of thermodynamics, that is, for the work
sides of that equation over time and deduce that directly  done in going around a closed cycle in state space to be
proportional to the total plastic strain. The ephemeral natur@ositive.

of the STZ's, as expressed inl'A, precludes any such in- Next, consider the functiol’'(s,A,A), which is defined
terpretation except, perhaps, in situations where the plastin Eq. (2.2) as determining the rates at which STZ's are
strain is so small that the nonlinear term is negligible. annihilated and created. In R¢8], I' was chosen to be the

The quasilinear theory has important advantages but als@te at which plastic work is done on the system, that is, the
serious limitations. On the negative side, when1l, the left-hand side of Eq(3.1). As pointed out in Ref[3], this
linear approximation for7(s) in Eg. (2.8 violates the in- interpretation cannot be generally correct because the work
equality7(s) <1 implied by the definitions in Eq2.4). This  rate can be negativfor example, during strain recovery
is a serious shortcoming if we are to take the STZ picturebut the factorl” appearing in the creation and annihilation
literally, that is, if we make the strong assumption that all therates must always be positive or zero. There are not many
zones have the same size and interact with one another onbther simple choices foF, however. On physical grounds,
in a mean-field sense. If the latter conditions are not true, buive expectl” to be quadratic in the driving force in a quasi-
if the basic picture of localized deformations remains valid,linear theory such as this one. Annihilation and creation of
then the linear representation f@fs) might be qualitatively ~ zones should be induced by local dilations or contractions,
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and dilational strain is a second-order response to shear 1.5 — - ,
stress. The simplest non-negative possibilityd®)?, which \ ’
has been explored in Ref10]. As we shall see, the latter AN s
expression is close to being correct. \ e

On general grounds, we expegtalso to be quadratic in N
the driving force or, equivalently, in the strain rate; that is,
we expectQ andI' to be similar functions. We therefore
propose thal” be the dissipation rate per STZ

O(s,A,A)= €Al (S,A,A). (3.2) o5
With this hypothesis, we can use E@2.10 and(2.7) to
write Eq. (3.1) in the form
Iy iy
2(As—A)s=—T(1-A)+ —(2(As—A)—TA)+AT. 0 , . ‘
JIA A 0 0.5 1 15 2
(3.3 Stress s
Then, solving forl’, we find FIG. 1. Locus of steady-state solutions of the STZ equations in
. 2(As—A)(s—aplaA) 0a the plane of the dimensionless variabteand A.
A (L—A)(IPIN)— A(dplIA) ' AA(AS—A)?
I'(s,A,A)= : (3.10
In order that the numerator in E¢B.4) be nonnegative for (1+A)(A*=A?)
all s, we must choose
and
A
—=—, 3. A A?
dA A 39 w(A,A)=§(1+P). (3.11

so that the numerator becomed Zs—A/A)2. Then ) ] ) )
Our special choice offy(A) means that the inequality

A%< A2, required by Eq(2.3), is saturated at the dynamical
P(A,A)= ﬁJ’ Po(A), (3.6 boundary. Values ofj, of the formc A with 0<c=<1/2 re-
main consistent with the inequality and, so far as we can see,
where ;o(A) is an as-yet undetermined constant of integra-are not ruled out by our analysis.

2

tion. We now have To see what these results mean for the STZ dynamics,
) note first that the positivity of tells us thatA=1 is always
2A (s—A/N) the stable fixed point of Eq2.7). If we then letA—1 in Eq.
F(s,A.8)= M(AA) @7 (2.10, we find
where . 2(s—A)(1-sA
A— # (3.12
A2 1-A

o
M(A,A)=A (1+A)2A2+(1 A) IN " 38 From this expression, it is clear by inspection that the
jammed(nondeforming steady-state solutios=A is stable
The second-law constraint requires tha(A,A) remain ¢ fixeds for s<1, and the unjamme(teforming steady-
positive along all the system trajectories determined by OUEtate solutions=1/A is stable fors>1. This situation is
equations of motion in the space of variablesndA. This  jjystrated in Fig. 1, where the arrows in the figure indicate
happens automatically so long as all the trajectories start %e sign ofA for fixed s. The lineA=1 is the uncrossable

points whereM (A, A)>0. The locus of points along which boundary described above. This picture remains qualitatively

M(A,A) changes sign is a dynamical boundary for thesecorrect in the more general situation wheds allowed to

trajectorie;; the.dissipation rate diverges at 'th'at boundar)(,am and even in circumstances whenaries in response to
and the trajectories are strongly repelled from itin a way tha'i:ontrolled changes in the strain. The exchange of stability

does_no_t all_ow the”? to Cross into unphysical regions Whe.r%etween nondeforming and deforming states always occurs
the dissipation rate is negative. Our only free option, at this

L . ats=1.
point, is to choose the functiofio(A). If we let yo=A/2, Our use of the term “jamming{11] is intended to evoke

then a simple picture of the exchange of stability at the yield
1+ A A2 stress. At small strgsses, the system is Iitera_lly jammed in the
M(A,A)= _< 1— _) , (3.9  sense that the majority of the zones are oriented parallel to
2 A? the applied stress and therefore are not able to contribute to
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FIG. 3. Recoverable energy corresponding to calculations
FIG. 2. Stress-strain curves for constant-strain-rate calculationshown in Fig. 2. The dimensions gfare e, X (yield stress

for three different initial densities of STZ's. Stress is in units of the
yield stress. Dimensionless strain raje=1. The results shown in Figs. 2 and 3 are qualitatively simi-

lar to the experimental data of Hasan and Bojt2 13 and
further deformation in that direction. The stable steady statef Marano and Rink14], both of which groups measured the
is the one in which the strain rate and, accordingly, the rateesponse of polymeric materials to compressive stress. Like
of annihilation and creation of zones are all zero. Above theheirs, our stress-strain curves in Fig. 2 show characteristic
yield stress, on the other hand, jammed zones are annihilatggbaks and subsequent strain softening. The peak stress is
and new unjammed zones are created fast enough to sustaitost pronounced for the more highly annealed specimens,
a stable, nonzero strain rate. We shall examine these behawhich correspond in our language to lower valuedgf i.e.,

iors in more detail in the following section. smaller initial densities of STZ’s. The cagg,=0.01 is in
effect the limit of perfect annealing. In contrast, the peak
IV. PREDICTIONS AND LIMITATIONS disappears entirely al,=0.8. The peak occurs because

when the initial density of STZ’s is small, the plastic strain

To examine the predictions of this version of the STZrate must also be small, and the fixed total strain rate must be
theory, we first consider simple experiments in which theproduced largely by the elastic response to increasing stress.
stress is measured as the system undergoes pure shear &saa result, the stress in the more highly annealed cases
constant total strain rate, sa}’"®= €, qo. Here we make the shown here initially rises above the yield stress. Softening
same crucial simplifying assumptions that we have used ithen occurs whem\ becomes large enough to permit sub-
earlier work. Specifically, we assume that the total strain ratgtantial plastic flow. Note that the nominal STZ yield stress
€°® or more generally, the rate of deformation tensor, is thes=1 is not the peak stress but, rather, is the steady-state
sum of elastic and plastic parts; and we further assume that
the elastic rate of deformation is related to the rate of change 2
of the stress by linear elasticity. Thus, with the plastic strain
rate given by Eq(2.9), the equation of motion fos is

5=2uex(go— AS+A), (4.1) 187

whereu is the elastic shear modulus. In Figs. 2—4, we show

the results of solving Eq4.1) along with Egs.(2.10 and

(2.7 for A andA. In all of these calculations, we have cho-

sen 2u €5=5, which might correspond, for example, ¢g 7, — g,=001

~.025 andu~100. Figure 2 shows stressas a function of 05| #

total strain forqy=1 and for three different initial values of /
/
/

Stress s
—
.,

A, Ay=0.01, 0.2 and 0.8. The strain is shown in unitsgf
that is, in units roughly of order 1. In Fig. 3, we show the
recoverable energy(A,A), also as a .funcFion of total strain, 0 0 0.61 0_'02 0_63 0"04 0.05
for the same sets of parameters. Fig 4 illustrates the depen- total

dence on strain rate; that is, the three stress-strain curves

shown there are foigy=0.01, 0.5, and 1.0, all forA, FIG. 4. Stress-strain curves for three different strain ratgs,
=0.5. =0.5.

Strain €
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FIG. 5. Creep tests for three different final stresses. Strain as a Strain etotal

funciton of dimensionless time.
FIG. 6. Stress-strain curves for two loading histories.

stress at large strain in the limit of vanishing strain rg8ze
Fig. 4 and the discussion belgw. conversely, the strain rate is nonzero f&r>1. A notable

The stored-energy curves shown in Fig. 3 look qualitafeature here is that, unlike the STZ models discussed in Refs.
tively like those shown in Ref(12], where they have been [3] and[4], this version of the quasilinear model does not
obtained by calorimetric techniques. Measurements of thi®ave a diverging time scale near the yield stress. We can see
kind, supplementing the purely mechanical tests, may be eshis property by noting that the denominator- A2 on the
pecially useful for probing more detailed features of STZzright-hand side of Eq(3.12 did not appear in the earlier
theories. theories. This quantity vanishes as>1 along the jammed

In Fig. 4, the cas@,=0.01 is effectively the limit of zero steady state withA=s or along the flowing state witiA
strain rate. That stress-strain curve looks like a conventionar 1/s. Thus, when we linearize this equation about either of
perfectly elastic-perfectly plastic model; but in fact it is not. those states, the relaxation rate that previously vanished as
The slope of the “elastic” section is notg2 but rather S—1 now becomes just unity.
2ul(1+ wey/2). This is one example of a common feature  This version of the STZ theory also exhibits strain recov-
of the quasilinear STZ theory — that plastic yielding mayery on unloading; in fact, the effect is exaggerated. Suppose
occur at all stresses, even those well below the yield stres#at we have reduced the stress to zero so rapidly that no
depending upon the internal state of the system as charactgiastic response has taken place ancketains the value that
ized by A and A. Note that the plastic part of this limiting it had in the stressed state. Also suppose for simplicity that
stress-strain curve lies exactly at the yield stressl as A=1. Then the equation of motion fa, that is, Eq.(3.12
expected. The other two curves in Fig. 4, for larger strainfor s=0, becomes
rates, illustrate that this model exhibits a substantial strain-

rate sensitivity, perhaps too large a sensitivity as we shall A
mention below. A= —se. 4.3
Next, we consider a series of creep tests in which the (1-4%

strain is measured while the system is loaded to a stress, say,

S and then is held at that stress for an indefinitely long timeClearly, A decreases exponentially to zero on a time scale of
That is, we solve Eq4.1) in the form order unity. The associated decrease in the plastic strain can
be computed from Eq2.9) once we knowA (t). The situa-

tion is only slightly more complicated if unloading occurs
slowly and some plastic strain recovery takes place before
vanishes. The important point is that the total strain recovery
in this theory depends on the unloading rate. This history
dependence of the recovered plastic strain suggests that it is
where nows(t) is a predetermined function of tinte Spe-  not an intrinsic anelastic property of the deformed system as
cifically, we lets(t) rise linearly from zero to a valug, ina  suggested in Refl14].

time interval At=1. The relevant numerical results are  We illustrate these effects in Fig. 6 by showing stress-
shown in Fig. 5 for the case,=0.025 andu=100 (consis-  strain curves for two cases in which the system is first loaded
tent with the values chosen above for the constant strain-rate s, as in Fig. 5, later unloaded, and then loaded again. The
calculations. We also choosé\ =1, which maximizes the specific loading history is shown in the inset. All parameters
early plastic response. Clearly, the system becomeare the same as those used in computing Fig. 5. We have
jammed—the strain rate vanishes—for stresggsl; and, chosen the caseg=0.9 ands,=1.1 for use here in order to

'ema':i+e (As—A) 4.2
2;u O ' '
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compare behaviors of jammed and unjammed systemsnost, experiments of this kind. Since the publication of Ref.
Strain recovery during unloading as well asat0 is appar- [8], we have found that the STZ theory exhibits shear band-
ent in both cases. ing in a wide variety of circumstances. We hope to report on
The preceding discussion of strain recovery illustrates theéhose investigations in future publications.
loss of memory effects in the quasilinear theory. Because The problem of understanding spatial localization of plas-
orientational memory is carried here by the state variahle tjc flow in shear banding is closely related to the issue of
the fact thatA vanishes on a time scale of order unity implies missing length scales in plasticity theories. Like almost all
that the system loses memory of its deformed state on thgther theories of plastic deformation in solids, the version of
same time scale as that which characterizes plastic respongg STz theory described here contains no intrinsic length
to driving forces. In a fully nonlinear theory such as thatgcaie For example, there are no terms comparable to the
described in Ref[3], the transition rate®.(s) that deter- ;scqsity in fluid dynamics or the gradient energy in the

rr:mgcb(s) via Eq.(2.4) mﬁly(ﬁepetﬂdm? on ch0|_cehof p_T}:]""m'theinzburg—Landau or Cahn-Hilliard theories, both of which
eters become very small when the Stress vanisnes. Thus gaiarmine the scales for spatial variations of the relevant
STZ population after unloading may retain the orlentatlonf. Ids. With h lasticity th i
that it had in its previous stressed state. This is not a fata d?ct Zn ir:t'[ricr)ll;ticsf/)vrir:j?hsgc;:r ;esrrr]r;a?obzr?jnocr'%; zogigﬁ \r/]arr)ir:-
shortcoming; it is possible to fix within the quasilinear P

framework if desired, but it seems better to use a fully nondion of the shear flow between the interior of the band and

linear theory when the memory effects are of special interest '€ Nondeforming material outside of it. If the STZ picture of
There are other experimental observations that are not af2Clecular rearrangements is realistic, then it ought to help us
counted for in this minimal version of the STZ theory. Theseldentify plausible candidates for these length scales.
shortcomings are informative because they point to places Polymer chain dynamicsll of the experimental data to
where the minimal theory is missing some ingredients. ~ Which we have referred here pertains to amorphous poly-
One potentially important disagreement is in the predictedneric materials. Equations of motion for polymeric proper-
steady-state relation between stress and plastic strain rafégs such as stretching or entangling will have to be included

which we obtain by setting =1 andA=1/s in Eq. (2.9): in any attempt to produce a quantitative description of poly-
mer plasticity. We have not yet included degrees of freedom
“ plast 0 for 0<s<1 (4.4 describing polymeric configurations in any version of the

€ = €p .

STZ theory; and we expect that we would have to do so in
order to achieve quantitative agreement with experiments
This is essentially a Bingham law, that is, the STZ strain ratesuch as those ¢f12,13. For example, the present version of
rises linearly above the yield stress. Many measurementshe STZ theory could not account for the later-stage strain
even in granular materials, indicate a more rapid increase dfardening seen in those experiments. It would be useful for
the form eP'2s'~s™ wherem may be large. Equivalently, testing the STZ theory to have comparable experimental data
stress-strain curves measured at constant strain rate suchfas nonpolymeric materials such as metallic glasses.
those shown in Figs. 2 and 4 often show very little depen- Dilation and disorder In the original derivation of the
dence on the strain rate. STZ theory[3], the free volume—as an intensive variable,
A second interesting discrepancy is that our curves otonjugate to the true volume and thus roughly analogous to
strain versus time for constant stresseep testsshown in  temperature—played a prominent role in determining trans-
Fig. 5 look qualitatively different from those shown by Has- formation rates. The free volume, however, was treated as a
san and Boyce in Figs. 4 and 5 in REE3]. Specifically, over  fixaq quantity, not as an internal state variable with its own
arange of stresses near the yield stress, their systems remaigy ation of motion. There are many reasons to believe that
jammed at an apparently constant strain for some time, bLghear flow is accompanied by dilation or increased glassy
eventually start to flow plastically. The delay time for the disorder in the form of density fluctuationtSee, for ex-

onset of rap|'d pl'ast_lc flow decreqses as the stress increas ?hple, Ref[15].) Thus, it seems an essential next step in this
Such behavior indicates the existence of a new physica

mechanism with its own characteristic time scale. program to incorporate dyna_mical measures of dilation or
There are many plausible candidates for additional ingre_g'sorde_r Into thedeTZ_ anz;:l_ysgs. Lemaitre has proposed one

dients or mechanisms that might be added to the minimaf'€resting way of doing this16].

STZ model in order to account for these discrepancies. We Efféctive temperatureFinally, we remark that the STZ

close this paper by listing some of those that we expect wilPicture ought to be useful in theories of granular materials,
be important in further investigations. soils, or foams, where the conventional concept of tempera-

Shear bandingIn Ref.[8], we pointed out that the STZ ture is irrelevant. There is increasing evidence that the flow-
theory, when extended to include elastic interactions betweelflg states of such systems are meaningfully characterized by
the zones, predicts an instability against formation of micro-an effective temperature that determines fluctuations and en-
structural shear bands at stresses somewhat lower than taegy flow[17-20. If that is true, then the effective tempera-
yield stress. The delayed onset of shear banding producddre would also be an important ingredient in theories of
theoretical creep-test results that looked qualitatively like theplastic flow in conventional molecular materials; it might
experiments. In general, shear banding is a phenomenon thaten be more important for describing the deforming states
will need to be taken into account in interpreting many, if notof these systems than the thermodynamic temperature.

(s?—1)/s for s>1.
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