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Dynamics of shear-transformation zones in amorphous plasticity:
Energetic constraints in a minimal theory

J. S. Langer and L. Pechenik
Department of Physics, University of California, Santa Barbara, California 93106-9530, USA

~Received 5 August 2003; published 23 December 2003!

We use energetic considerations to deduce the form of a previously uncertain coupling term in the shear-
transformation-zone~STZ! theory of plastic deformation in amorphous solids. As in the earlier versions of the
STZ theory, the onset of steady deformation at a yield stress appears here as an exchange of dynamic stability
between jammed and plastically deforming states. We show how an especially simple ‘‘quasilinear’’ version of
this theory accounts qualitatively for many features of plasticity such as yielding, strain softening, and strain
recovery. We also show that this minimal version of the theory fails to describe certain other phenomena, and
argue that these limitations indicate needs for additional internal degrees of freedom beyond those included
here.

DOI: 10.1103/PhysRevE.68.061507 PACS number~s!: 46.35.1z, 81.40.Lm, 65.60.1a, 62.20.Fe
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I. INTRODUCTION

In developing a ‘‘shear-transformation-zone’’~STZ!
model of plasticity in oncrystalline solids, we have encou
tered several fundamental questions that pertain to the wa
which mechanical work done on the system is stored rev
ibly and dissipated irreversibly during plastic deformatio
We find that the constraints imposed on our phenomenol
cal theory by such considerations, plus one simple assu
tion, resolve an earlier uncertainty about the STZ theory a
in fact, determine essentially all the details of its simpl
version. With this assurance about the theory’s internal s
consistency, we can look more carefully at the observed p
nomena to determine what additional physical ingredie
are needed to achieve quantitative predictive capabili
within this basic framework. The present paper provides
account of the first stages of this investigation.

A few preliminary comments may be useful. We reco
nize that the conventional approaches to plasticity the
have, for almost a century, been extremely successful in
gineering applications. There are, however, some puzz
internal inconsistencies that pervade all of solid mechan
and that will have to be resolved if this field is to me
modern technological challenges. Questions of this gen
nature seem certain to arise in attempts to understand o
strongly nonequilibrium phenomena such as those that o
in geology, polymer science, and especially biology.

The most basic of these questions is: What are the fun
mental distinctions between brittle and ductile behaviors
brittle solid breaks when subjected to a large enough str
whereas a ductile material deforms plastically. Remarka
we do not yet have a fundamental understanding of the
tinction between these two behaviors. Conventional theo
of crystalline solids say that dislocations form and mo
more easily through ductile materials than brittle ones, t
allowing deformation to occur in one case and fracture in
other. But the same behaviors also occur in amorphous
ids; thus the dislocation mechanism cannot be the esse
ingredient of all theories. Moreover, the brittleness or duc
ity of some materials depends upon the speed of load
1063-651X/2003/68~6!/061507~8!/$20.00 68 0615
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which implies that a proper description of deformation a
fracture must be dynamic, that is, it must be expressed in
form of equations of motion rather than the convention
phenomenological rules and yielding criteria@1#.

A second fundamental question is: What is the origin
memory effects in plasticity? Standard, hysteretic, stre
strain curves for deformable solids tell us that these mater
have rudimentary memories. Roughly speaking, they ‘‘
member’’ the direction in which they most recently ha
been deformed. When unloaded and then reloaded in
original direction, they are hardened and respond only e
tically, whereas, when loaded in the opposite direction, th
deform plastically. The conventional way of dealing wi
such behavior is to specify phenomenological rules sta
how the response to an applied stress is determined by
history of prior loading; but such rules provide little insig
about what is actually happening or what might be the nat
of a theory based more directly on molecular mechanism

A better way to deal with memory effects is to introdu
internal state variables that carry information about previo
history and determine the current response of the system
applied forces. All too often, however, the plastic strain its
is used as such a state variable. For example, in many
nomenological descriptions the plastic strain is said to
proportional to a ‘‘hardening parameter’’@1#. Such a proce-
dure violates basic principles of nonequilibrium physics b
cause it implies that a material must somehow remembeall
of its prior history of deformation starting from some primo
dial reference state. That cannot be possible for an am
phous solid any more than it is for a liquid, where it is we
understood that only displacement rates, and not the
placements themselves, may appear in equations of mo
The question remains, then: What are the appropriate inte
state variables for amorphous solids?

The STZ theory that we shall discuss here is an attemp
identify those state variables and their equations of moti
The original ideas are largely due to Falk@3–5#, who used
molecular dynamics simulations of shear deformations
two-dimensional, amorphous, Lennard-Jones solids to s
that, as postulated by Cohen, Turnbull, Spaepen, Argon,
others@6,7#, irreversible deformations are localized in dilu
©2003 The American Physical Society07-1
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distributions of shear-transformation zones. Falk showed
these zones behave like two-state systems. That is, in
presence of a shear stress, they can deform by only a fi
amount in one direction before they become jammed b
once they have done so, they can transform in the oppo
direction in response to a reversed stress. The STZ’s
ephemeral; they are created and annihilated during irrev
ible deformations of the material. This picture implies th
the relevant state variables are the population densities o
STZ’s in their various orientations. The equations of moti
for these populations have interesting implications, the m
important of which is the notion that the onset of stea
deformation at a yield stress occurs as an exchange of
namic stability between jammed~nondeforming! and un-
jammed~deforming! states of the system. Section II of th
paper contains a brief review of the original ideas and
way in which they are specialized for use here in a minim
but useful version of an STZ theory of amorphous plastic

In Sec. III, we show how the constraints imposed by
first and second laws of thermodynamics determine
structure of the equations of motion for the STZ state va
ables. We argue that the rate of energy dissipation du
deformation must be proportional to the rates at which ST
are annihilated and created. With this hypothesis, we c
pute both the dissipation rate and the recoverable en
stored in the plastic degrees of freedom.

Finally, in Sec. IV, we discuss some implications of the
results. We compute theoretical stress-strain curves for
tems driven both at constant strain rates and at fixed stre
~creep tests!. Our goal here is to demonstrate qualitative
the wide range of phenomena that are described by
theory, and also to show what qualitative features are m
ing. We conclude by making some remarks about the b
ingredients of a more complete dynamical theory of am
phous plasticity.

II. SUMMARY OF STZ DYNAMICS

As in Ref. @3#, we consider only strictly two-dimensiona
noncrystalline systems. We further restrict ourselves to m
lecular materials in contact with thermal reservoirs, so t
we may assume that an ambient temperature determine
underlying fluctuation rate which, in turn, determines t
rates at which the molecules explore their configuratio
Thus, we shall not~for the present! consider granular mate
rials or foams where ordinary thermal kinetic energies
negligibly small, and where the motions of the particles d
ing rearrangements must be driven entirely by the exte
forces applied to the system.

We consider here only situations in which the orientat
of the stress and strain tensors remains fixed. A tenso
version of this theory, applicable to more general situatio
where the stresses rotate during plastic deformation, has
used in our earlier studies of microstructural shear band
@8# and necking instabilities@2#, and is developed in more
detail in Ref.@9#. With the restriction of fixed stress orienta
tion, it is sufficient to assume that the population of STZ
consists simply of zones oriented along the principal axe
the two-dimensional stress tensor. It is shown in Ref.@9# that
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exactly the same equations as the ones we shall use her
be derived starting from the assumption that thea priori
orientations of the zones is circularly symmetric.

Let the deviatoric stress be diagonal along thex, y axes;
specifically, letsxx52syy5s and sxy50. Then choose the
‘‘ 1’’ zones to be oriented~elongated! along thex axis, and
the ‘‘2’’ zones along they axis; and denote the populatio
density of zones oriented in the1/2 directions by the sym-
bol n6 . With these conventions, the plastic strain rate is

ėxx
pl 52 ėyy

pl [ėpl5l„R2~s!n22R1~s!n1…. ~2.1!

Herel is a material-specific parameter with the dimensio
of (length)2, which must be roughly equal to the area of
STZ, that is, a few square molecular spacings. The quan
in parentheses in Eq.~2.1! is the net rate per unit area a
which STZ’s are transforming from2 to 1 orientations.
Here, R1(s) and R2(s)5R1(2s) are the rates for1 to
2 and 2 to 1 transitions, respectively. For simplicity, w
write these rates as explicit functions of only the deviato
stresss, although they depend implicitly on the temperatu
and pressure and perhaps on other quantities.

The equations of motion for the populationsn6 must
have the form

ṅ65R7~s!n72R6~s!n61G~s, . . . !S n`

2
2n6D ,

~2.2!

where the last two terms in parentheses, proportional toG,
describe creation and annihilation of STZ’s. Here, the c
stantn` is the total density of zones that would be genera
in a system that is undergoing steady plastic deformat
Introducingn` in Eq. ~2.2! is simply a way to characterize
the ratio of the creation and annihilation rates in terms o
physically meaningful quantity. To understand Eq.~2.2!, it is
useful to think of the creation and annihilation events
local density fluctuations, dilations, and contractions, resp
tively, which do not contribute to the shear deformation. T
factor G that determines the rates of these fluctuations i
function of the stress and the strain rate or, equivalently,
stress and the population densities. The choice ofG is one of
the principal topics of this paper; we discuss it in detail
Sec. III.

We define dimensionless internal state variables by w
ing

L[
n11n2

n`
, D[

n12n2

n`
. ~2.3!

These quantitiesL andD are the internal state variables, o
order parameters, that we believe are appropriate for a
namical theory of amorphous plasticity. In a more gene
treatment@9#, L remains a scalar density, butD becomes a
traceless symmetric tensor with the same transforma
properties as the deviatoric stress. We also define

S[ 1
2 ~R22R1!, C[ 1

2 ~R21R1!, T[
S
C . ~2.4!
7-2
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DYNAMICS OF SHEAR-TRANSFORMATION ZONES IN . . . PHYSICAL REVIEW E68, 061507 ~2003!
Then the STZ equations of motion become:

ėpl5e0 C~s!„L T~s!2D…, ~2.5!

Ḋ52 C~s!„L T~s!2D…2G~s,L,D!D, ~2.6!

and

L̇5G~s,L,D!~12L!. ~2.7!

Here, we have definede0[l n` . This is the only material-
specific parameter remaining explicitly in these equationse0
is roughly the fraction of the total area of the system cove
by the STZ’s, therefore, to be consistent with our basic
sumptions, it must be much smaller than unity.

Throughout the rest of this paper, we shall use only w
we call the ‘‘quasilinear’’ version of these equations@4#. Us-
ing the fact thatT is an odd function ofs andC is even, we
make the simplest possible approximation

T~s!>s, C~s!>1, ~2.8!

so that Eqs.~2.5! and ~2.6! become

ėpl5e0~L s2D!, ~2.9!

Ḋ52 ~L s2D!2G~s,L,D! D. ~2.10!

We have written the right-hand sides of Eqs.~2.8! without
factors whose dimensions would be inverse stress and
verse time respectively. This means that without loss of g
erality, we are implicitly expressing all stresses and~later!
elastic moduli in units of some unspecified characteris
stress. That characteristic stress will turn out to be the
namic yield stress, which implicitly contains the temperatu
and pressure dependence of the ratesR6 . Similarly, we have
set the unit of time equal to the inverse of the rate fac
contained in the functionC(s).

Note that the quasilinear version of the STZ theory loo
directly comparable to some conventional phenomenol
@1#. In particular, the quantityD apparently plays the role o
the back stress or hardening parameter in Eq.~2.9!, although
it has a different physical interpretation here than elsewh
If the nonlinear term2GD were missing on the right-han
side of Eq.~2.10!, then we would be able to integrate bo
sides of that equation over time and deduce thatD is directly
proportional to the total plastic strain. The ephemeral nat
of the STZ’s, as expressed in2GD, precludes any such in
terpretation except, perhaps, in situations where the pla
strain is so small that the nonlinear term is negligible.

The quasilinear theory has important advantages but
serious limitations. On the negative side, whens.1, the
linear approximation forT(s) in Eq. ~2.8! violates the in-
equalityT(s),1 implied by the definitions in Eq.~2.4!. This
is a serious shortcoming if we are to take the STZ pict
literally, that is, if we make the strong assumption that all
zones have the same size and interact with one another
in a mean-field sense. If the latter conditions are not true,
if the basic picture of localized deformations remains va
then the linear representation forT(s) might be qualitatively
06150
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correct over a wider range of stresses, and the quasilin
theory might have the merit of being the simplest descript
of dynamic plasticity consistent with the symmetries of t
system and the choice of order parameters.

Another limitation of the quasilinear theory is that it los
some of the STZ memory effects, specifically, those that
side in the stress dependence ofC(s). This is an important
topic that we shall address in Sec. IV as part of a m
general discussion of possible extensions of this theory.

On the plus side, the quasilinear theory has the great
vantage of simplicity. It is easy to interpret and to use
numerical calculations such as those reported in our re
study of the necking instability@2#. It may be the closest we
can come to a description of deformable amorphous so
that is comparable in utility to the Navier-Stokes equatio
for fluid dynamics.

III. ENERGY BALANCE

We turn now to the energetics of the quasilinear S
model. The introduction of the internal state variablesL and
D raises the question of whether recoverable energy migh
associated with these degrees of freedom and, if so, wha
form of that energy function might be. A related question
the relation between the state variables and the rate of en
dissipation during plastic deformation. These are import
questions; the energy stored in plastic degrees of freed
may, along with stored elastic energy, drive recovery of pl
tic strain. That energy might also be partially recoverable,
example, during necking@2# or fracture, thus affecting esti
mates of failure rates or the Griffiths threshold.

The energy-balance equation~the first law of thermody-
namics! for this model has the form

2ėpls52e0~L s2D!s5e0

d

dt
c~L,D!1Q~s,L,D!.

~3.1!

The left-hand side of Eq.~3.1! is the rate at which plastic
work is being done. On the right side,e0 c is the state-
dependent recoverable energy density andQ is the dissipa-
tion rate.Q must be positive in order for the system to sa
isfy the second law of thermodynamics, that is, for the wo
done in going around a closed cycle in state space to
positive.

Next, consider the functionG(s,L,D), which is defined
in Eq. ~2.2! as determining the rates at which STZ’s a
annihilated and created. In Ref.@3#, G was chosen to be the
rate at which plastic work is done on the system, that is,
left-hand side of Eq.~3.1!. As pointed out in Ref.@3#, this
interpretation cannot be generally correct because the w
rate can be negative~for example, during strain recovery!,
but the factorG appearing in the creation and annihilatio
rates must always be positive or zero. There are not m
other simple choices forG, however. On physical grounds
we expectG to be quadratic in the driving force in a quas
linear theory such as this one. Annihilation and creation
zones should be induced by local dilations or contractio
7-3
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J. S. LANGER AND L. PECHENIK PHYSICAL REVIEW E68, 061507 ~2003!
and dilational strain is a second-order response to s
stress. The simplest non-negative possibility is (ėpl)2, which
has been explored in Ref.@10#. As we shall see, the latte
expression is close to being correct.

On general grounds, we expectQ also to be quadratic in
the driving force or, equivalently, in the strain rate; that
we expectQ and G to be similar functions. We therefor
propose thatG be the dissipation rate per STZ

Q~s,L,D!5e0LG~s,L,D!. ~3.2!

With this hypothesis, we can use Eqs.~2.10! and ~2.7! to
write Eq. ~3.1! in the form

2~L s2D! s5
]c

]L
G~12L!1

]c

]D
~2~Ls2D!2GD!1LG.

~3.3!

Then, solving forG, we find

G5
2~Ls2D!~s2]c/]D!

L1~12L!~]c/]L!2D~]c/]D!
. ~3.4!

In order that the numerator in Eq.~3.4! be nonnegative for
all s, we must choose

]c

]D
5

D

L
, ~3.5!

so that the numerator becomes 2L (s2D/L)2. Then

c~L,D!5
D2

2L
1c0~L!, ~3.6!

wherec0(L) is an as-yet undetermined constant of integ
tion. We now have

G~s,L,D!5
2 L ~s2D/L!2

M ~L,D!
, ~3.7!

where

M ~L,D!5L2~11L!
D2

2L21~12L!
]c0

]L
. ~3.8!

The second-law constraint requires thatM (L,D) remain
positive along all the system trajectories determined by
equations of motion in the space of variablesL andD. This
happens automatically so long as all the trajectories sta
points whereM (L,D).0. The locus of points along which
M (L,D) changes sign is a dynamical boundary for the
trajectories; the dissipation rate diverges at that bound
and the trajectories are strongly repelled from it in a way t
does not allow them to cross into unphysical regions wh
the dissipation rate is negative. Our only free option, at t
point, is to choose the functionc0(L). If we let c05L/2,
then

M ~L,D!5
11L

2 S 12
D2

L2D , ~3.9!
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G~s,L,D!5
4L~Ls2D!2

~11L!~L22D2!
, ~3.10!

and

c~L,D!5
L

2 S 11
D2

L2D . ~3.11!

Our special choice ofc0(L) means that the inequality
D2,L2, required by Eq.~2.3!, is saturated at the dynamica
boundary. Values ofc0 of the formc L with 0,c<1/2 re-
main consistent with the inequality and, so far as we can
are not ruled out by our analysis.

To see what these results mean for the STZ dynam
note first that the positivity ofG tells us thatL51 is always
the stable fixed point of Eq.~2.7!. If we then letL→1 in Eq.
~2.10!, we find

Ḋ→ 2~s2D!~12sD!

12D2 . ~3.12!

From this expression, it is clear by inspection that t
jammed~nondeforming! steady-state solutions5D is stable
at fixed s for s,1, and the unjammed~deforming! steady-
state solutions51/D is stable fors.1. This situation is
illustrated in Fig. 1, where the arrows in the figure indica
the sign ofḊ for fixed s. The lineD51 is the uncrossable
boundary described above. This picture remains qualitativ
correct in the more general situation whereL is allowed to
vary, and even in circumstances wheres varies in response to
controlled changes in the strain. The exchange of stab
between nondeforming and deforming states always oc
at s51.

Our use of the term ‘‘jamming’’@11# is intended to evoke
a simple picture of the exchange of stability at the yie
stress. At small stresses, the system is literally jammed in
sense that the majority of the zones are oriented paralle
the applied stress and therefore are not able to contribut

FIG. 1. Locus of steady-state solutions of the STZ equation
the plane of the dimensionless variabless andD.
7-4
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DYNAMICS OF SHEAR-TRANSFORMATION ZONES IN . . . PHYSICAL REVIEW E68, 061507 ~2003!
further deformation in that direction. The stable steady s
is the one in which the strain rate and, accordingly, the r
of annihilation and creation of zones are all zero. Above
yield stress, on the other hand, jammed zones are annihi
and new unjammed zones are created fast enough to su
a stable, nonzero strain rate. We shall examine these be
iors in more detail in the following section.

IV. PREDICTIONS AND LIMITATIONS

To examine the predictions of this version of the ST
theory, we first consider simple experiments in which t
stress is measured as the system undergoes pure shea
constant total strain rate, sayė total5e0 q0. Here we make the
same crucial simplifying assumptions that we have used
earlier work. Specifically, we assume that the total strain r
ė total, or more generally, the rate of deformation tensor, is
sum of elastic and plastic parts; and we further assume
the elastic rate of deformation is related to the rate of cha
of the stress by linear elasticity. Thus, with the plastic str
rate given by Eq.~2.9!, the equation of motion fors is

ṡ52me0~q02Ls1D!, ~4.1!

wherem is the elastic shear modulus. In Figs. 2–4, we sh
the results of solving Eq.~4.1! along with Eqs.~2.10! and
~2.7! for D andL. In all of these calculations, we have ch
sen 2m e055, which might correspond, for example, toe0
;.025 andm;100. Figure 2 shows stresss as a function of
total strain forq051 and for three different initial values o
L, L050.01, 0.2 and 0.8. The strain is shown in units ofe0,
that is, in units roughly of order 1022. In Fig. 3, we show the
recoverable energyc~L,D!, also as a function of total strain
for the same sets of parameters. Fig 4 illustrates the de
dence on strain rate; that is, the three stress-strain cu
shown there are forq050.01, 0.5, and 1.0, all forL0
50.5.

FIG. 2. Stress-strain curves for constant-strain-rate calculat
for three different initial densities of STZ’s. Stress is in units of t
yield stress. Dimensionless strain rateq051.
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The results shown in Figs. 2 and 3 are qualitatively sim
lar to the experimental data of Hasan and Boyce@12,13# and
of Marano and Rink@14#, both of which groups measured th
response of polymeric materials to compressive stress. L
theirs, our stress-strain curves in Fig. 2 show character
peaks and subsequent strain softening. The peak stre
most pronounced for the more highly annealed specime
which correspond in our language to lower values ofL0, i.e.,
smaller initial densities of STZ’s. The caseL050.01 is in
effect the limit of perfect annealing. In contrast, the pe
disappears entirely atL050.8. The peak occurs becaus
when the initial density of STZ’s is small, the plastic stra
rate must also be small, and the fixed total strain rate mus
produced largely by the elastic response to increasing str
As a result, the stress in the more highly annealed ca
shown here initially rises above the yield stress. Soften
then occurs whenL becomes large enough to permit su
stantial plastic flow. Note that the nominal STZ yield stre
s51 is not the peak stress but, rather, is the steady-s

ns
FIG. 3. Recoverable energyc corresponding to calculation

shown in Fig. 2. The dimensions ofc aree0 3 ~yield stress!.

FIG. 4. Stress-strain curves for three different strain rates,L0

50.5.
7-5
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J. S. LANGER AND L. PECHENIK PHYSICAL REVIEW E68, 061507 ~2003!
stress at large strain in the limit of vanishing strain rate.~See
Fig. 4 and the discussion below.!

The stored-energy curves shown in Fig. 3 look quali
tively like those shown in Ref.@12#, where they have bee
obtained by calorimetric techniques. Measurements of
kind, supplementing the purely mechanical tests, may be
pecially useful for probing more detailed features of S
theories.

In Fig. 4, the caseq050.01 is effectively the limit of zero
strain rate. That stress-strain curve looks like a conventio
perfectly elastic-perfectly plastic model; but in fact it is no
The slope of the ‘‘elastic’’ section is not 2m, but rather
2m/(11me0 /2). This is one example of a common featu
of the quasilinear STZ theory – that plastic yielding m
occur at all stresses, even those well below the yield str
depending upon the internal state of the system as chara
ized by L and D. Note that the plastic part of this limiting
stress-strain curve lies exactly at the yield stresss51 as
expected. The other two curves in Fig. 4, for larger str
rates, illustrate that this model exhibits a substantial stra
rate sensitivity, perhaps too large a sensitivity as we s
mention below.

Next, we consider a series of creep tests in which
strain is measured while the system is loaded to a stress,
s0 and then is held at that stress for an indefinitely long tim
That is, we solve Eq.~4.1! in the form

ė total5
ṡ

2m
1e0~L s2D!, ~4.2!

where nows(t) is a predetermined function of timet. Spe-
cifically, we lets(t) rise linearly from zero to a values0 in a
time interval Dt51. The relevant numerical results a
shown in Fig. 5 for the casee050.025 andm5100 ~consis-
tent with the values chosen above for the constant strain-
calculations!. We also chooseL051, which maximizes the
early plastic response. Clearly, the system becom
jammed—the strain rate vanishes—for stressess0,1; and,

FIG. 5. Creep tests for three different final stresses. Strain
funciton of dimensionless time.
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conversely, the strain rate is nonzero fors0.1. A notable
feature here is that, unlike the STZ models discussed in R
@3# and @4#, this version of the quasilinear model does n
have a diverging time scale near the yield stress. We can
this property by noting that the denominator 12D2 on the
right-hand side of Eq.~3.12! did not appear in the earlie
theories. This quantity vanishes ass→1 along the jammed
steady state withD5s or along the flowing state withD
51/s. Thus, when we linearize this equation about either
those states, the relaxation rate that previously vanishe
s→1 now becomes just unity.

This version of the STZ theory also exhibits strain reco
ery on unloading; in fact, the effect is exaggerated. Supp
that we have reduced the stress to zero so rapidly tha
plastic response has taken place andD retains the value tha
it had in the stressed state. Also suppose for simplicity t
L51. Then the equation of motion forD, that is, Eq.~3.12!
for s50, becomes

Ḋ52
D

~12D2!
. ~4.3!

Clearly,D decreases exponentially to zero on a time scale
order unity. The associated decrease in the plastic strain
be computed from Eq.~2.9! once we knowD(t). The situa-
tion is only slightly more complicated if unloading occu
slowly and some plastic strain recovery takes place befos
vanishes. The important point is that the total strain recov
in this theory depends on the unloading rate. This hist
dependence of the recovered plastic strain suggests that
not an intrinsic anelastic property of the deformed system
suggested in Ref.@14#.

We illustrate these effects in Fig. 6 by showing stre
strain curves for two cases in which the system is first loa
to s0 as in Fig. 5, later unloaded, and then loaded again.
specific loading history is shown in the inset. All paramete
are the same as those used in computing Fig. 5. We h
chosen the casess050.9 ands051.1 for use here in order to

a

FIG. 6. Stress-strain curves for two loading histories.
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DYNAMICS OF SHEAR-TRANSFORMATION ZONES IN . . . PHYSICAL REVIEW E68, 061507 ~2003!
compare behaviors of jammed and unjammed syste
Strain recovery during unloading as well as ats50 is appar-
ent in both cases.

The preceding discussion of strain recovery illustrates
loss of memory effects in the quasilinear theory. Beca
orientational memory is carried here by the state variableD,
the fact thatD vanishes on a time scale of order unity impli
that the system loses memory of its deformed state on
same time scale as that which characterizes plastic resp
to driving forces. In a fully nonlinear theory such as th
described in Ref.@3#, the transition ratesR6(s) that deter-
mineC(s) via Eq.~2.4! may ~depending on choice of param
eters! become very small when the stress vanishes. Thus
STZ population after unloading may retain the orientat
that it had in its previous stressed state. This is not a f
shortcoming; it is possible to fix within the quasiline
framework if desired, but it seems better to use a fully no
linear theory when the memory effects are of special inter

There are other experimental observations that are no
counted for in this minimal version of the STZ theory. The
shortcomings are informative because they point to pla
where the minimal theory is missing some ingredients.

One potentially important disagreement is in the predic
steady-state relation between stress and plastic strain
which we obtain by settingL51 andD51/s in Eq. ~2.9!:

ėplast5e0H 0 for 0,s,1

~s221!/s for s.1.
~4.4!

This is essentially a Bingham law, that is, the STZ strain r
rises linearly above the yield stress. Many measureme
even in granular materials, indicate a more rapid increas
the form ėplast;sm, where m may be large. Equivalently
stress-strain curves measured at constant strain rate su
those shown in Figs. 2 and 4 often show very little dep
dence on the strain rate.

A second interesting discrepancy is that our curves
strain versus time for constant stress~creep tests! shown in
Fig. 5 look qualitatively different from those shown by Ha
san and Boyce in Figs. 4 and 5 in Ref.@13#. Specifically, over
a range of stresses near the yield stress, their systems re
jammed at an apparently constant strain for some time,
eventually start to flow plastically. The delay time for th
onset of rapid plastic flow decreases as the stress incre
Such behavior indicates the existence of a new phys
mechanism with its own characteristic time scale.

There are many plausible candidates for additional ing
dients or mechanisms that might be added to the mini
STZ model in order to account for these discrepancies.
close this paper by listing some of those that we expect
be important in further investigations.

Shear banding. In Ref. @8#, we pointed out that the STZ
theory, when extended to include elastic interactions betw
the zones, predicts an instability against formation of mic
structural shear bands at stresses somewhat lower tha
yield stress. The delayed onset of shear banding produ
theoretical creep-test results that looked qualitatively like
experiments. In general, shear banding is a phenomenon
will need to be taken into account in interpreting many, if n
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most, experiments of this kind. Since the publication of R
@8#, we have found that the STZ theory exhibits shear ba
ing in a wide variety of circumstances. We hope to report
those investigations in future publications.

The problem of understanding spatial localization of pla
tic flow in shear banding is closely related to the issue
missing length scales in plasticity theories. Like almost
other theories of plastic deformation in solids, the version
the STZ theory described here contains no intrinsic len
scale. For example, there are no terms comparable to
viscosity in fluid dynamics or the gradient energy in t
Ginzburg-Landau or Cahn-Hilliard theories, both of whic
determine the scales for spatial variations of the relev
fields. Without some such term, no plasticity theory can p
dict an intrinsic width for a shear band or the spatial var
tion of the shear flow between the interior of the band a
the nondeforming material outside of it. If the STZ picture
molecular rearrangements is realistic, then it ought to help
identify plausible candidates for these length scales.

Polymer chain dynamics. All of the experimental data to
which we have referred here pertains to amorphous p
meric materials. Equations of motion for polymeric prope
ties such as stretching or entangling will have to be includ
in any attempt to produce a quantitative description of po
mer plasticity. We have not yet included degrees of freed
describing polymeric configurations in any version of t
STZ theory; and we expect that we would have to do so
order to achieve quantitative agreement with experime
such as those of@12,13#. For example, the present version
the STZ theory could not account for the later-stage str
hardening seen in those experiments. It would be useful
testing the STZ theory to have comparable experimental d
for nonpolymeric materials such as metallic glasses.

Dilation and disorder. In the original derivation of the
STZ theory@3#, the free volume—as an intensive variab
conjugate to the true volume and thus roughly analogou
temperature—played a prominent role in determining tra
formation rates. The free volume, however, was treated a
fixed quantity, not as an internal state variable with its o
equation of motion. There are many reasons to believe
shear flow is accompanied by dilation or increased gla
disorder in the form of density fluctuations.~See, for ex-
ample, Ref.@15#.! Thus, it seems an essential next step in t
program to incorporate dynamical measures of dilation
disorder into the STZ analysis. Lemaitre has proposed
interesting way of doing this@16#.

Effective temperature. Finally, we remark that the STZ
picture ought to be useful in theories of granular materia
soils, or foams, where the conventional concept of tempe
ture is irrelevant. There is increasing evidence that the flo
ing states of such systems are meaningfully characterize
an effective temperature that determines fluctuations and
ergy flow @17–20#. If that is true, then the effective tempera
ture would also be an important ingredient in theories
plastic flow in conventional molecular materials; it mig
even be more important for describing the deforming sta
of these systems than the thermodynamic temperature.
7-7
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