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Shape fluctuations of a deformable body in a randomly stirred host fluid
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We consider a deformable body immersed in an incompressible fluid that is randomly stirred. Sticking to
physical situations in which the body departs only slightly from its spherical shape, we investigate the defor-
mations of the body. The shape is decomposed into spherical harmonic modes. We study the correlations of
these modes for a general class of random flows that include, as a special case, the flow due to thermal
agitation. Our results are general, in the sense that they are applicable to a large class of deformable bodies
with energy that depends only on the shape of the body, and a general class of random flows.
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[. INTRODUCTION just a particular case and will be worked out as an example
of the general approach.

In recent years we have witnessed a dramatic increase in Clearly, the actual treatment of a system of many interact-
the volume of research of deformable objects in a host liquidng objects is extremely difficult. This is because such a sys-
[1-13. The immersed objects that are of scientific or indus-tem is not just a many-body system of objects interacting via
trial interest are very diverse, giving rise to a large number othe hydrodynamic interactions, but each object is character-
subfields. The objects can be bulk objects, like droplets of &ed by an infinite number of degrees of freedom, corre-
different liquid[11—16 or elastic colloidal particlef17,18, sponding to its possible deformations. All of these deforma-
or they can be membranes separating various regions of tH®ns interact. The problem is somewhat simplified if the
host liquid [19]. Membranes can be categorized as liquiddeformation of the objects from spherical shape remains
membranes[1,5,11,12,20 or elastic membranef21-23.  Small and the fluid is in the linear regime, as in the case of
Liquid membranes are characterized by an energy that déhe Stokes approximation to the Navier-Stokes equation.
pends only on the shape of the membrane and liquid proper- ©Y final goal is to obtain the response of the composite
ties on the surface of the membrane like the local density o _yste_m, of deformable _mte_:ractlng ObJeC.tS' tp agiven velo<_:|ty
the membrane moleculd®,20,24. Elastic membranes are ield imposed on the liquid. The velocity field we have in

characterized by additional fields like tangential strains, etcmInd may pe f|xed in time, like S|mp|e sheqr, or randomly
fluctuating in time and space. Even in the first case the ve-

e e e o v ooty eldeac objectexerences must have a andom part
o T . . due to the random passage of other objects nearby. Therefore
to properties like viscosity and. temperatlﬂﬂe3,9,12,'13,19 effects of random flow are important to the understanding of
The effeqt of temperature on dlffl.Jsmn'and fluctuations of. thesuch systems. First we wish to know the response of a single
deformations has been studied in numerous article§eformable object to a general random velocity field. Once
[1,3,10,12,13,19,25giving the diffusion constant and corre- the response of a single object is known, we can obtain the
lations of the deformations of a Single deformable body a?esponse of the fu”, many_body System, by using the re-
equal times and at a general time separation. The effect &ponse of each body as a source of an additional velocity
temperature has been recently studied even for the case fild. In a former papef10] we studied the motion of the
objects that are stretched by external sHddi. While the  center of a deformable object in the presence of a random
effect of thermal agitation on deformable objects in solutionflow and derived its mean-squared displacem@®t®D). In
is obviously very important, it is certainly not the only way this paper, we investigate the deformation degrees of free-
in which the host liquid may be agitated. Clearly, in indus-dom, completing thus the description of the response of a
trial and biological environments, the host liquid can besingle object to a random velocity field. Decomposing the
stirred, vibrated, pumped, etc. For instance, Wu and Libchdeformation into spherical harmonic modes, we consider the
aber have studied the effect of bacteria motion on the diffucorrelations between deformation modes. We find, among
sion of small beads and have suggested that the source fother things, that different modes are decoupled and that the
the Brownian-like motion is the collective motion of the bac- correlation function does not depend on the parammtef
teria[26]. Further, nanoscale mechanical fluctuations of thethe Y, ., spherical harmoni¢following from spherical sym-
red blood cell surface have been measured and shown toetry). We also obtain a method to calculate these correla-
depend strongly on the biochemical environment and notions as a function of time, build typical drop shapes from
only on temperatur€27-30. In fact, in many cases the re- the correlation functions, and discuss several interesting
sulting agitation is much more important to the behavior ofcases.
the deformable objects than thermal agitation. The purpose The plan of this paper is as follows: In Sec. Il we describe
of the present paper is to contribute to the understanding dhe system we have in mind and formulate the basic equa-
such more general systems by viewing them in a unified waytions. In Sec. Il we introduce the deformation coefficients
such that the case of thermal agitation will be shown to beand obtain their correlations for the simple case where the
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external velocity is uncorrelated in time. General correlationtion function is decomposed into spherical harmonics,
functions are considered in Sec. IV. We obtain the deformaf (Q,t)=3 ;3! __/f,.(1)Yim(Q) (clearly theYq, term can
tion correlations and simplify them for equal times. An algo-be absorbed in the definition &). Our goal is to obtain the
rithm for numerical computation of the correlations in the correlations between the deformation coefficiehtg(t).

general case is described in the Appendix. The center of the bodg, is chosen to be the point around
which the deformation coefficients with=1 vanish: fq,
Il. SYSTEM =0. A different definition of the center will introduce three

Consid indle def ble bodv i qi h dditional equations for the deformation coefficients with
onsider a singie detormable body Immersed In a NOSf_ 1 \ve are not interested in those since in the first order

fluid. : . X . i
. . L the spherical harmonics with=1 describe a translation of
(i) The deformable body is fluid, in the sense that the o .
velocity field is well defined everywheréoth inside and the body[10,14,3. Let y(r) be a three-dimensional scalar

) . field, defined everywhere in such a way that the equation
outside the body Each surface element moves with the ve- _ . .
locity of the flow at its position: ()= 0 describes the surface of the bd@y5]. The gradient

of ¢ is assumed to exist and not to vanish in the vicinity of
#(F)=0. Straightforward manipulation of Eql) gives rise
to a continuity equation fogs, presented here in a coordinate

(ii) Both the body and the host fluid are incompressible,SyStem that moves with the center of the body:

V-u=0.

(iii) The body is characterized by an energy that depends
on its shape(i.e., changing the orientation or switching
places of two surface particles while keeping the shape co
stant does not change the energihe energy may be sur-
face tension energf31], Helfrich bending energy20,24,
etc. The shape of minimum energy is a sphere. Deformation = P +f(Q,t)—1, (5)
of the shape changes the energy, exerts a force density on the R
gg%lgfegngy;rfrefore generates an additional velocity fleld'the right-hand side_of Eq4) is equal, in the first order, to

(iv) We investigate the regime where the hydrodynamicQ=(1/R){p-[Uey— o]} (see Ref.[2]), wherep is a unit
equations are linear in the velocitye., a velocity field in-  vector directed outwards from the center of the body. Since
duced by several sources is equal to the sum of the velocitthe minimum energy of the body is obtained for a spherical
fields that each source induces separatéfpr instance, if shape, the velocity induced by the body is zero when the
the flow is governed by the Navier-Stokes equation, then ousphere is undeformed. Therefore the leading order of the
assumption implies that the Reynolds number is small andelocity 7, must be, in general, a linear functional of the
Fhatl'thethSttqkes appr;)ximterl]tion tiS ?pp:ica}?i; the t'LneafitYdeformationf(Q,t). The termi -V is obtained in the
Implies that in our systém the actual velocity Ield IS e SUMya 4 qing order by taking  on the original sphere angl, to
of the imposed velocity field/,; (the velocity field that first or%ler in thg defogn{gtion. Usingg E) ?or v, tﬁ?ge-

V.VOUI(.JI have existed if the bOdY was abseaind the velocity neric equation for the deformation coefficidit, must be of
field induced by the deformations,,, the form

F=0(F). (1)

Yt V= — (Gex—To)- Vb (4)

rAssuming thatv oy — f*o| is small on the surface and express-
ing the field¢ in the vicinity of the surface as

U=Uextt Uy 2 af1m(t)
(v) We consider cases in which the external velocity field at
is random, with zero average. The velocity correlation func- o
tion is known and depends only on distance and time differWhereQn is given by
ence. We also assume that the external velocity is small 1
enough to allow the body to remain almost spherical. Q'm:§J AP [Fex— ol Yim(Q)} 7

+ N fim(t) = —Qm(1), (6)

IIl. DEFORMATIONS UNDER WHITE NOISE FLOW L. . .
and vy, is evaluated on the undeformed body in the direc-

Consider a spherical body which is slightly deformed. Thetion of the spatial angl€) (for further details, see Ref10]).
equation The above equation is a honhomogeneous linear equation,
where the nonhomogeneity is due to the random driving ex-
ternal flow. The homogeneous part of the equation does not
depend on the external flow and represents the decay of de-
formations in the absence of external flow. Therefore there is
defines its surface, yielding for each spatial directidrthe  no system of coordinates that may be preferred over others
distance,p=|F—ry|, of the surface from the center of the (even locally at a given point in space and tjmEhis is the
bodyry,. Ris the radius of the undeformed sphere. The deteason that the decay eigenvalugsdepend only o and
formation functionf(£2,t) defines the shape. The deforma- not onm. Otherwise the decay of a given shape depends on

P _
§+f(Q,t)—1—O 3

061202-2



SHAPE FLUCTUATIONS OF A DEFORMABLE BODY IN. .. PHYSICAL REVIEW B8, 061202 (2003

a choice of coordinates and this is impossible. An important _ _ o a9
point to notice is that different physical deformable objects, <vgxt(r,t1)vgxt(r*',t2)>:f dge 4 5, — '—2'
obeying the conditions outlined in Sec. Il, differ only in the q
A/'s. ~

It is convenient to write the correlation function of the X $(q)d(ty— 1), (12)

cauise the random velosity feld 1 transuereal when the i NEre Jex(70) IS the velociy at timet at placer o the

is incompressible. Consequently, in real space, the flow mu%urface anfs_ro(t)JrRr. The average an_d correlations of
' . ! ' im follow easily from the previous equations. The average

always be correlated in a very complex way. On the other .

hand, in momentum space we can simply use a projectioff Qim is zero. The ternp- 'y, in Eq.(7), does not contribute

operator on the transversal part of a general field: to any component oR,,, except for those with=1. In
addition, the centefy has been chosen to be the point around
qig which the three deformation coefficientg, with =1 are
~ > | . .
vexq(Q)E; ( 5ij— q—zj) u; (a), (8)  equal to zero. Therefor®, is zero, and for any othdr f

can be dropped out of the expression @, .
Straightforward calculation of th®,,,, correlations, using
s definition, Eq.(7), and the velocity correlations, Eq8)—

the projection operator that removes the longitudinal part o 11), yields

4, and therefore yields a general transversal velocity fiel

Uext- Next, the correlations of the external velocity are easily (Qim(t) Qi (t2)) = Qi rmpy S(ta—t1), (13
expressed using the correlations of the general fieldVe

are interested in cases were the system is statistically isotr
pic, homogeneous, and stationary. In these cases, the general

: _ 1
field must obey: QII’mm’EEI de dQ,f d3*q Yy, ()Y}, (Q)

(U(G.t)un(P.t2)) = md(G+P) (a,t— 1), (9)

whered is a general vector field and the bracketed term i]t

gx_lhere

(14)

where §), is the Kronecker delta§ is the Dirac delta func- Li=xy.z
tion, and¢ is a general function of and the time difference.
In addition we assume that

The spherical symmetry of the system implies that only for
(u(g,1))=0. (100  the terms for which’ =1 andm’ = — m differ from zero, and
those terms do not depend am Hence
In the rest of this section we consider a frequently used fam-
ily of random flows in which the external velocity is uncor- Qiimn = Qii00di" 1 0m, —m- (15

related in time, , . -
The correlations of the deformation coefficietfits, are ob-

~ tained, using Eq(6) and the correlations , by direct
d(Q,t2—1t1) = (q) St —1y). (11) integration,g q(6) a®@m, by

Clearly, any random process of physical origin cannot haVQim(f,m(t)f|,m,(t+At)>

strict § function correlations. Equatiofll) above is a rea- t—=

sonable approximation for systems in which the decay times 0 At

of the velocity correlations are much shorter than the decay :f dtlf o[ (Qu(t1) Qe (1) YNNI (12720
times of the deformations, ¥y. In fact, even a weaker re- — —

striction suffices. Fourier components of the velocity field (16)
with wave vectorg,vq, obeyinggR<1 are not relevant for

the description of the deformation of the shape because theyhere the limitt— o is taken to avoid the initial conditions
correspond to variations over length scales much larger thags the deformation.

the size of the deformable object. Therefore it is enough that Finally, Eqs.(13), (15), and(16) yield

the g-dependent decay times of the correlations involvigg
andv _ 4 are short compared to the decay times of the defor-
mations only fogR>1. In these systems we can replace the <f|m(t)fl’m’(t+At)>tﬂw:QII002—)\l 810w ~m-

e_)\I‘At‘

exact correlation details with the effective delta function the (17)
strength of which is obtained by integrating the true correla-
tion over time. For equal timesAt=0, these correlations, that are just the

Transforming, we can calculate the correlation of the vevariances of thd,,,,, are important because they contain the
locity at two points on the sphere, that are characterized byull statistical information about possible shapes of the ob-
the directiong andf” relative to the center. This yields jects. In Fig. 1 these correlations are used to generate typical
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(A)

FIG. 1. Atypical realization of
a deformable body subjected to a
random flow of the forme¢(q)
=Cd(qé—1)6(t) with (A) R
=2¢, (B) R=4¢, (C) R=6¢, and
(D) R=8¢.

shapes of droplets governed by surface tension and randooan be terminated and therefore that the expansion we use
flow given by ¢(q,t) =Cd(£g—1)5(t). As can be seen, the here will be useful for systems in which; is small. The
surface of the body develops bumps. It is obvious that theorrelation functions depicted in Fig. 3 correspond, in the
typical size of these surface features depends on the ratigmit R/¢<1, to velocity correlations due to thermal agita-
n1=RIE. As p, increases, different surface elements be+jon. Due to the importance of that problem we work out in
come less and less correlated. Therefore, we expect to s@e following a full analytic derivation of the time-dependent
features of smaller siz@vhich correspond, clearly, to spheri- shape correlations. Such correlations were obtained in the
cal harmonics of higher orderThe smallest features corre- past by various methode.g., equipartition of energy, Kirk-

spond to _deformation coeffici_ents wilh:_,ul (or I=2_ it wood equation, ett. In a previous papefl0] we have
p1=2). Figures 2 and 3 depict equal time correlations agnoyn that the correlation function for the external velocity
function of | for two correlation functions of the form due to thermal agitation has the forme(q,t)
#(q)=Cq™“G(éq), wherea==2, G is a function that has  =[K,T/(27)37][ 5(t)/q?], where 7 is the viscosity of the

a cutoff at{q=1 and¢ is the decay length scale. There arefjyid (notice that this holds fogé<1 where¢ is of the order
two independent dimensionless parameters=R/& and  of the intermolecular distance. FB/£>1 it is easy to show
w2=CI(R>“\"", where\["" is the minimal value of the that the cutoff onq can be ignored It is important to note
N's (1=2---). In the case of a body characterized by that our velocity correlations are not obtained by matching
surface tension energy;=\/ 7R where\ is the surface ten- our general result, Eq14), with previous results on corre-
sion andz is the viscosity. We varyt; and u, by keeping lations of deformations in the presence of thermal agitation.
&=1andCxn/\A=1 and changin@R. As can be seen, there are Indeed, we obtain the equilibrium velocity correlations in
two possibilities: either the=2 term dominates the curve or Ref.[10] from a general argument not related at all to the
there is a maximum alty~R/&. It is easy to see that the problem of deformable objects. We substitute the thermal
decay forl>1, is exponential. This suggests that there is avelocity correlation given above into E¢L4) and using the
cutoff on the deformation coefficients at which the expansiordimensionless parametge= gR we obtain
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FIG. 2. The correlation of the deformation coefficiefits as a

function of integerl, for ¢(q)=Cq?e %€ and several values of
R/¢ (Go=pw,). In the figure, # denotes points wheRé&é=1/2 and
R/é=1 have the same value. x denote points whHefté=1/2,1,2
values coincide.

Qllm,fm
= > dQJdQ Y Q) YF QORI A,
i,j=xy,z R2

(18

where

1 I KgT 1
AiJ-:—J' def y2dye V-1 5, — y.y, e
R (2m)n y?

(19

We rotate they coordinate system in such a way that its
axis is in the direction of {—7"). Furthermore, we use the
fact that/” .dyexp(—iyx)=2md(x) and calculate the rotated
tensor,

~ m?

R[f =7 (277)

(1+573)8,- (20)

Rotating the axes back we find that

RPN R
X|f-F'+
[F—¢'| |F—7']
m? [ KgT | 3cosy—1 @
" 2R (2m)3n) V2y1—cosy’
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FIG. 3. The correlation of the deformation coefficieffg as a

function of integer, for ¢(q)=Cq 2e~ %€ and several values of
R/¢. (The values are given above each corresponding) liNete
that for R> ¢ the curves coincide with the curves for thermal agi-
tation (Go=w,).

where y is the angle betweef andf’. Next, we develop

1/Jy1—cosy in Legendre polynomials, use recurrence rela-
tions and the addition theorem

E (D)™ m(Q)Y,-(Q"),
(22)

Pi[cos )]= 5777

and find

2KgT (1+1)l

Qim,~m= 2R (2I-1)(21+1)(21+3)°

(23

For a deformable body governed by surface ten§in

N (+2)(+DI(1-1)
AR (143)(1+ (-3

(24)

Therefore, in the case of a body governed by surface tension
under thermal agitation, Eqél7), (23), and(24) imply that
the correlations of the deformations are given by

(fim(D o (t+AD))

KgT 1
W (-1D)(1+2)°

“MIAYS, S - (25)

Schwartz and Edward$] considered the special case of a
deformable body in equilibrium at temperatureusing the
Kirkwood equation. They found identical correlations in the
deformations. That derivation, however, has been tailored for
thermal agitation and cannot be generalized to take into ac-
count any other type of correlations in the host fluid.

So far we have shown how to implement E47) for
flows that are uncorrelated in time to obtain the correlations
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in the deformations of the shape. In the following we gener- oo C 8/ amiG- AT\ amiG- (= /)R
alize to correlations that are not instantaneous in time. (Vexd P t)vb, (P ,t2)>:J d°q(e ' o)e '

_ad;

IV. GENERAL NOISE x| 8 2)¢(q,At)- (28)
q

In many cases white noise correlations are not sufficient
to describe what really happens in the liquid, especially if theassuming Gaussian distribution of the displacements of the
correlation time is of the order of other time parameterscenter,
Such is the case of a system of many droplets immersed in a
host fluid. The random flow a droplet is subjected to results <e*iq‘-Ar‘o>:ef(q2/6)<(Ar’o)Z>_ (29
from the random motion and deformation of other droplets
that pass nearby. It is obvious that in this case the approxin a previous papef10], we considered the mean-squared
mation of the flow to be uncorrelated in time is not justified. displacemen{MSD) of the center of a deformable body in a
Hence we need to generalize our description. flow that is correlated in a general way. We found that the
Suppose thatp(q,At) is a general function off and the MSD in a period of timeAt obeys the equation
time differences\t. The correlations of the external velocity A
are now extended in time. In order to calculate averages on _ B R T ,
the droplet at different times, we must now consider also the F(At)_l&TJ'o dt fo e W)
motion of the droplet. The definition &,,,, Eq.(7), implies ] ]
that the correlations of the normal component of the external X[jo(qR) +j2(qR)]?(At—t")g’dq,  (30)
velocity field on the spheré&hat to first order of the defor-
mation is an adequate approximation of the external velocit
field on the surface of the bogwre

here F(At)=((Afo)?) and j,(x) is the spherical Bessel
unction of ordem. Therefore the correlation of the external
velocity at two points on the surface, characterized by the
directionsf andf’, measured at two different times with a

(Qim(t) Qv (t2)) time gap ofAt, is given by
1 . . o
:Ef de dQ'Yin(Q) Y] (Q) <U'ext(f,t1)véxt(f',tz)>:f d3qe (IO (A0gid-(=F")R
X D[RR (b P v )] (26) x| 8- ] g(g,a0. @D
i,i=xy,z J q2

The correlation of the velocity at two points on the droplet, EQuations(30) and (31) enable us to calculate the correla-
located in the directiond and?’ and measured at different tons of Qim [Eq. (26)]. Again, spherical symmetry implies

times, obviously depends on the displacement of the centdf@t these correlations are nonzero only for-l and m’
AF,. We first calculate the correlation for a general displace-— — M- Note that if the correlations were to be calculated at
ment of the center and then average the result according {8©d Afo instead of fixed time difference, spherical symme-
the probability of finding the center at each point. To do this,'Y Would have been violated. Spherical symmetry holds in
we first express the velocity correlations by means of thé?Ur case because the probability of having a g for a

Fourier transform of the velocity, use Eq8) and (9), and  9ivenAt, is a function of the absolute value Afr,.
The correlations of the deformation coefficients can be

obtain _ . _ ' . :

obtained from their basic equatidf) using the correlations
i e j e of Qim>»
<U|ext(r-tl)viext(r -t2)> '

. <flm(t)fl/m/(t+At)>t_m
zf P(AFO)d(AFO)f d3qeiq- Al R(F-F") 0 At
= f_ dtlf_ dtx(Qim(t1) Q- m(t2))
diq;
X( ij_?> #(q,At), (27) xehMltitt-Alg 5 (32)

Equations(26), (30), (31), and (32) form the calculation
where Afg=ry(t;) —rp(ty), At=t,—t;, P(Ary) is the method for the correlations of the deformation coefficients.
probability that the center will be displaced i, in the  The method presented here may be hard to implement nu-
period ofAt. merically, because of the many dimensional integration. In

It is obvious now that averaging over the center displacethe Appendix we describe an algorithm that uses only one
ments will affect only the term-iq-Ar, in the exponent dimensional integration, thus making the computation task
since this is the only term that depends Am, Conse- easier. This algorithm was used to obtain the results pre-
quently, sented in the figures.
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& 3 4 5 6 7 8 [ velocity correlations appropriate for that cag€he velocity
correlations were obtained in the past from general consid-
erations totally unrelated to the problem of deformable ob-
jects. In such a way, the problem of thermal deformation
correlations is treated as a special case of our general ap-
proach. The second was for a general external velocity field
that is correlated both in space and time: E@6), (30),
(31), and(32). We discussed these correlations, used the re-
sults to construct numerically typical surface shapes, and
considered the special case of thermal agitation. In addition,
we pointed out from our numerical results that deformation
coefficients withl>u;=R/¢ seem to decay exponentially
and therefore are essentially unimportant. This suggests that
1 working with spherical harmonics to investigate systems of
In (( fim(0) f,_m(o))) deformable bodies is extremely useful for cases wharés
o small. For example, to describe a systemMNofspheres it
might be enough to use only l2deformation coefficients
FIG. 4. The correlation of the deformation coefficiefitg as a  (that correspond td,,, with | =2,3) while for a description
function of integerl, for a time-correlated VeIOCity fleld)(q,t) by points on the surface, the number of points needed to

_5-:
104

~15

=Ce e U7 andR/¢=1. describe a single surface may be of the order of a hundred.
Our main motivation for developing this method was to

The equal time correlations are given by build the basic tools for the treatment of a many object sys-
tem, in which all the objects interact via the host fluid. The

Fim(OFm (D)o unknown response of the many object system to external

. e Nt flows requires the application of the method presented above

:f dt'(Qim(0)Q,_m(t")) 8 18wy —m- to general random external flows. Therefore we have con-

0 Ay o structed the calculation method in such a way as if the cor-

(33) relation functione(q,t) is externally given. However, in ad-

dition to the main motivation the results presented here can
Note that they still involve nonequal time correlation of the be applied directly to systems of a single deformable object
Q,m's. To demonstrate the applicability of the method pre-in a random flow or to a system of objects in the dilute limit.
sented above, we depict in Fig. 4 the equal time correlation§ fact, we present here a theoretical prediction of the corre-
as a function of. This is done for a time correlated random lations of the deformations of a single deformable body that
flow that has a characteristic correlation lengtland char- can be checked experimentally. The correlations of the ve-
acteristic decay time, ¢(q,t):Cefq2g2e7t/r and for drop- locity induced in one way or another can be measured in the

lets governed by surface tension. Note that the generalizatigiPSence of the object and then when the body is introduced
to other deformable bodies that obey the conditions of Sed!S deformation can be recorded and the correlation analyzed.
II, is quite easy, because the dependence onipeis  Moreover, the deformations of deformable objects of various

simple. The equal time correlations depend on three dimerjadii can serve as some measure of velocity correlations in a

sionless parametersyu;=R/¢, wu,=C7%RS and g llQuid.

=N7/7R (wr3 has been written for the special case of an

object governed by surface tension. We take u;=u- APPENDIX: ALGORITHM FOR THE CALCULATION
=u3=1. The equal time correlations decay exponentially OF THE DEFORMATION CORRELATIONS

with increasind, a behavior that is expected to hold for any The correlations o, [Eq. (14) or Eq. (26)] involve
|m . .

correlation function for values dfthat are larger thap; . four dimensional integration while in the integrand, the cor-
This suggests that only the first few deformation coefficients 9 9 '

are important to the dvnamics of the svstem relations of the external velocity at two poir{tsq. (12) or
P y y ' Eq.(31)] add a three-dimensional integration. As we can see,

the method presented above is very hard to implement.

V. SUMMARY Therefore we must find a way to lower the dimensionality of

We have constructed a method to calculate the correldh€ integrals. The following algorithm illustrates a method to
tions of the deformation coefficients , that correspond to 0 SO using the partial wave expansion

the decomposition of the shape into spherical harmonics,

o |

given the correlations in space and time of an external ve- __ig.(rp)_ N "
locity field. We did it in two stages. The first was for external ~ © =h m:2,| (=147 (AR Yin(2q)Yim(£2),
velocity fields that are uncorrelated in time: Eq$4) and (A1)

(17). To demonstrate the applicability of our method we use
it to calculate the correlations of the deformations in the casevhere () is the solid angle in the direction andj, is the
of thermal equilibrium. This is done by using the specific spherical Bessel function. The result is a finite expression

061202-7
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which is composed of a sum of terms where each term in_-[Y|*1le|
volves only one-dimensional integration. Unfortunately, al-

though finite, this sum is too long to be presented Hees
our website32]).

PHYSICAL REVIEW E68, 061202 (2003

,m,Yim, vanish unless|l;—l|<l,<l,+l3, the
suml;+I1,+13 is even, andm,+mz;=m;. Hence in our
case: the integral ovet) implies thatL=1=1 andM —m
={0,x1}. The integral ovef)’ implies thatL'=1"+1 and

Using the partial wave expansion, the correlations of thay’ + m’={0,+ 1}, while from the integral ovefl, it is easy
external velocity field on the surface are written explicitly t5 see that. —L’={0+2} andM —M'={0,+1,+2}.

using Eqgs(26) and(31) and the partial wave expansion as

(Qim(1)Qyrmr (t+AL))
o L L’
= > X 2 2 (-hiY@w?
1,J=Xx,y,z LL'=0 M=-L pm/=—L"
XUdQYf‘m(Q)YLM(Q)?u)

XUdﬂ’Yﬁmrm'wter(ﬂ’)“)

X

Q|QJ)

f quYfM(Qq)YL'M'(Qq)( o3~ ?

X(jqque_(qZ/G)F(At)jL(qR)jL’(qR)¢(QaAt))-

(A2)

We can perform the angular integrations, in E42), over
the solid angled}, ', and ), by recalling the following
facts:

(i) f, andf; can be expanded in spherical harmonygg
with [=1.

(i) [8,,—(q,05)/9%] can be expanded in spherical har-
monics withl=2 andl =0.

(iii) The expanded expressiofthat are composed of in-
tegrals of three spherical harmonicare easily integrated

Hence the expanded sUm@2] will have a finite number of
terms(about 100,

(Qm(H)Qrmy (t+AL))

1,17, mm’ 2
= E L fqquef(q I6)F (At)
L,L’ M.M’
MM 1,

1,J

XJjL(qR)jL (qR)#(q,At) |, (A3)

where ¢ is a known algebraic expression and the integral
overq is one dimensional.

In a previous articl¢10] we have shown how to calculate
numerically the mean-squared displacenié. (30)] using
the differential equation:

F(t)=167 f:qque‘mz’ﬁ)m)[jo(q R +j2(aR 1?¢(q,t)
(A4)

with F(0)=0 andF(0)=0 [where the latter holds for all
cases exceppx 5(t)]. F can be obtained by direct step by
step integration.

Finally, the correlation between the deformation coeffi-
cients{f|n(t)f/m (t+At)) are calculated using E¢32) for
which the main contribution comes frori~t and t"~t
+ At. For equal time correlationat=0, Eq.(33) for which

using the Clebsch-Gordan coefficients. These integralthe integration is one dimensional applies.
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