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Network rigidity at finite temperature: Relationships between thermodynamic stability,
the nonadditivity of entropy, and cooperativity in molecular systems

Donald J. Jacobs,* S. Dallakyan, G. G. Wood, and A. Heckathorne
Physics and Astronomy Department, California State University, Northridge, California 91330, USA

~Received 14 July 2003; published 31 December 2003!

A statistical mechanical distance constraint model~DCM! is presented that explicitly accounts for network
rigidity among constraints present within a system. Constraints are characterized by local microscopic free-
energy functions. Topological rearrangements of thermally fluctuating constraints are permitted. The partition
function is obtained by combining microscopic free energies of individual constraints using network rigidity as
an underlying long-range mechanical interaction, giving a quantitative explanation for the nonadditivity in
component entropies exhibited in molecular systems. Two exactly solved two-dimensional toy models repre-
senting flexible molecules that can undergo conformational change are presented to elucidate concepts, and to
outline a DCM calculation scheme applicable to many types of physical systems. It is proposed that network
rigidity plays a central role in balancing the energetic and entropic contributions to the free energy of biopoly-
mers, such as proteins. As a demonstration, the distance constraint model is solved exactly for thea-helix to
coil transition in homogeneous peptides. Temperature and size independent model parameters are fitted to
Monte Carlo simulation data, which includes peptides of length 10 for gas phase, and lengths 10, 15, 20, and
30 in water. The DCM is compared to the Lifson-Roig model. It is found that network rigidity provides a
mechanism for cooperativity in molecular structures including their ability to spontaneously self-organize. In
particular, the formation of a characteristic topological arrangement of constraints is associated with the most
probable microstates changing under different thermodynamic conditions.

DOI: 10.1103/PhysRevE.68.061109 PACS number~s!: 05.20.2y, 05.70.2a, 87.15.Aa, 87.15.Cc
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I. INTRODUCTION

Network rigidity deals with a system of particles su
jected to a set of constraints. Depending on the number
position of these constraints, the system will have a resid
number of independent degrees of freedom. A simple wa
characterizing the degree of mechanical stability of a giv
framework is to ignore the way constraints are position
and to treat all constraints as independent. In this approxi
tion, the number of independent degrees of freedom gov
ing internal motions,F, in the framework is given byF
5dN2Nc2d(d11)/2, whered is the dimension of the sys
tem, N is the number of vertices,Nc the number of con-
straints, and the trivial rigid body motions of the enti
framework subtracted out. The use of constraint counting
determine structural stability in macroscopic systems da
back to Maxwell@1#. Nearly 25 years ago, Philips@2# real-
ized that constraint counting is applicable to microstruct
in covalent glasses by treating central and bond-bend
forces in covalent bonds as nearest and next nearest neig
distance constraints. This simple global counting of co
straints is commonly referred to as Maxwell counting, whi
may result in positive or negative values forF. A negativeF
indicates the network is overconstrained. Philips@2# qualita-
tively explained why covalent glass networks with low ave
age coordination form more easily. Shortly afterward,
notion of rigidity percolation was introduced by Thorpe@3#,
where depending on chemical composition a network wo
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microscopically be in a floppy or rigid state, having a we
defined rigidity percolation threshold. Experiments@4,5#
have shown that many physical properties in covalent glas
are related to the rigidity transition. In spite of the uniq
insight that the theory of network rigidity offers, it is unfo
tunate that it still remains a relatively obscure subject.
authoritative source on concepts of rigidity and its bro
range of interdisciplinary applications can be found in R
@6#.

Network rigidity exhibits long-range character@7# that
makes calculating properties difficult using brute force me
ods on elastic networks@8#. However, the mathematics o
first order graph rigidity@9–11# referred to in the physics
literature asgeneric rigidity greatly simplifies calculations
@12,13#. Atomic coordinates are not required in generic rigi
ity. Only the connectivity property of the network is impo
tant, making it possible to calculate many static mechan
properties exactly using an integer based combinatoric a
rithm. In particular, the exact number of internal independ
degrees of freedom can be calculated, all rigid substructu
can be identified, as well as all correlated motions t
couple the network of rigid clusters. One such algorith
referred to as thepebble game, is available for general net
works in two dimensions@14# and for bond-bending net
works in three dimensions@15#. A bond-bending network has
the property that all angles between the central-force c
straints that stem outward from an atom are fixed. In ad
tion, dihedral angles can be constrained.

Covalent glasses are ideal systems to model a
quenched bond-bending network, where there is a nat
separation between hard-strong forces~central and bond-
bending forces! and soft-weak forces~torsional and non-
bonding forces!. The large gap in force strength justifies th
n.
©2003 The American Physical Society09-1
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treatment of covalent glass networks at room temperatur
be modeled as a mechanical network—essentially aT50
calculation. Recently, constraint counting has been applie
protein structure@16# where covalent bonds, salt-bridges, h
drogen bonds and torsional forces on resonant bonds~the
peptide bond, for example! were modeled as mechanical di
tance constraints. By treating the folded protein structure
quenched mechanical bond-bending network, flexible
rigid regions were identified and found to correlate well w
biologically relevant motions. Network rigidity in protein
has also been found to correlate with protein folding pa
ways @17,18#. The success of theT50 calculations on pro-
tein structure suggest that the folded state of the protein
very much like a mechanical machine under the conditi
responsible for the native fold to be thermodynamica
stable. This result is reassuring, as it has been well app
ated that protein function is very precise in its response
molecules it encounters having a high degree of specifi
that makes it appear to respond like a mechanical mach
This empirical observation motivated the use of network
gidity calculations atT50 in the first place. In spite of the
success that many mechanical aspects of a protein fold
be quantitatively characterized, it is also well known@19,20#
that protein stability is a result of a delicate balance betw
many weak noncovalent interactions. In particular, entha
and entropic contributions must be part of the ledger of
counts to understand protein stability.

The study of protein stability has motivated this work
generalizing the concept of network rigidity to be applicab
at finite temperatures in physical systems having interact
that do not divide into strong and weak compared tokT.
When viewing a protein as a mechanical network, two s
ous problems immediately become apparent. First, hydro
bonds are continually breaking and forming consistent w
thermal fluctuations and, second, hydrogen bonds hav
wide variety of strength that is dependent on their local
vironment@21,22#. In prior work an energetic cutoff criterion
@16,23# was introduced to determine a set of hydrogen bo
to model as a constraint. As the energy cutoff was varie
hierarchical analysis of rigid clusters was used to charac
ize the protein structure. Unfortunately, the energy cut
was not directly related to thermodynamic stability, nor t
entropy from molecular flexibility was considered, whic
limited the range of validity of the~T50! rigidity model to
be near the native structure. These problems can be reso
by modeling microscopic interactions as distance constra
where each distance constraint represents a free-energy
ponent within the system. Assigning free-energy contrib
tions to specific types of interactions is commonly done
interpret experimental measurements and used in theore
discussions on protein stability@24,25#. However, the utility
of such a decomposition is questionable because, in gen
it is not possible to obtain the total free-energy by simp
summing the free-energy components@26#. It will be shown
that the free-energy of a system can be obtained from
free-energy components by employing network rigidity c
culations at finite temperature, which combines mechan
and thermodynamic points of view.

In Sec. II a distance constraint model~DCM! is intro-
06110
to

to

a
d

-

ts
s

ci-
o
ty
e.
-

an

n
ic
-

s

i-
en
h

a
-

s
a
r-

ff

ed
ts,
m-
-
o
cal

ral,

ts
-
al

duced that enables the partition function to be calculated
terms of an ensemble of mechanical frameworks. After
concept of a constraint is generalized to contain thermo
namic information, each mechanical framework of co
straints provides an underlying interaction that couples
thalpic and entropic terms appearing in Boltzmann factors
Sec. III two simple two-dimensional toy models are work
out to illustrate the details involved in a calculation. As
final example, an exact solution of a distance constra
model for homogeneous peptides that undergo ana-helix to
coil transition is considered in Sec. IV. In Sec. V, the resu
from all three models are discussed, and the standard Lifs
Roig model for a helix-coil transition is compared with th
DCM. Conclusions are made in Sec. VI.

II. DISTANCE CONSTRAINT MODEL

Lord Kelvin said, ‘‘I never satisfy myself until I can mak
a mechanical model of a thing. If I can make a mechani
model I can understand it!’’ The DCM that will be intro
duced and carefully discussed in the following sectio
closely adheres to Kelvin’s belief. The objective is to use
mechanical model to understand thermal stability in biopo
mers~the focus of this paper! as well as other systems suc
as formation of chalcogenide glasses.

The DCM begins by representing a macromolecule a
interactions therein as a mechanical bar-joint framework.
a single static structure, generic network rigidity propert
can be calculated exactly using a graph-algorithm that d
not depend on geometrical coordinates of atoms, but only
the topologicalarrangement of distance constraints. Netwo
rigidity is used here as an umbrella phrase to refer to
following mechanical properties of a bar-joint framewor
~1! Identification of all rigid clusters, where each distin
cluster of atoms forms a rigid body;~2! identification of all
overconstrained regions, within which elastic strain ene
resides;~3! identification of all flexible regions, wherein th
atomic structure can continuously deform; and~4! identifica-
tion of all independent constraints and degrees of freedo

These basic mechanical properties are quite usefu
characterizing a single static structure. In this paper, we
generalize the mechanical description~at T50) by employ-
ing an ensemble-based approach to account for therm
namics. Thermodynamics determines the fate of a biopo
mer, albeit kinetic detours and traps. For example, a pro
unfolds when an increase in conformational entropy o
weighs a gain in enthalpy from an associated loss of m
favorable intramolecular noncovalent interactions. Furth
more, a functional protein in the native state is stable aga
thermal fluctuations through enthalpy-entropy compensat

The DCM uses network rigidity as an underlying intera
tion. Through nonlocal mechanical interactions, network
gidity answers the question about which degrees of freed
are independent, and directly relates to the nonadditivity
measured component free energies. Although the total
thalpy is additive, the entropy is not. This nonadditive pro
erty of component entropies derives from not knowing wh
degrees of freedom in the system are independent or re
dant. However, generic network rigidity properties can
9-2
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NETWORK RIGIDITY AT FINITE TEMPERATURE: . . . PHYSICAL REVIEW E 68, 061109 ~2003!
calculated exactly with the pebble game by recursively a
ing one constraint at a time to build a framework. As co
straints are added, some atoms will become part of a r
cluster. A new constraint is redundant when added to an
ready rigid region and independent when it removes a de
of freedom. All distance constraints are treated the sam
the pebble game, and there is a clear distinction betwe
constraint and degree of freedom.

In the DCM, interactions are represented as distance c
straints, each characterized by an enthalpy and an ent
contribution assumed to depend only on local structu
properties. Constraints are quantified as being strong or w
based on their entropy contribution. A greater or lesser
tropy contribution implies a weaker or stronger constra
The key aspect of the DCM is that stronger constraints m
be placed in the network before weaker ones in order
generalize network rigidity to finite temperatures. This lea
to a preferential ordering, which is implemented operatio
ally as the following.

~1! Sort all constraints based on entropy assignment
increasing order, thereby ranking them from strongest
weakest.

~2! Add constraints recursively one at a time using t
pebble game according to the rank ordering from stronges
weakest, until the entire structure is completely rigid.

The DCM is mathematically well defined and physica
intuitive. The essential idea is that weak constraints all
more conformational freedom than do strong constrai
Stronger constraints take precedence in defining rigid st
tures because weaker constraints are more accommoda
Thus, a weak constraint acts like a degree of freedom rela
to a strong constraint. Consequently,the notion of a con-
straint and degree of freedom cannot be distinguished cle
once entropy price tags are introduced. Rather, a quantitative
measure for conformational entropy is obtained for the str
ture, whereas theT50 style of constraint counting simpl
regards the structure as completely rigid. In this way
DCM provides a natural mechanism for enthalpy-entro
compensation. For example, if by some fluctuation a str
constraint breaks~such as a hydrogen bond!, there will be a
destabilizing gain in enthalpy, but also a compensating g
in conformational entropy as a weaker constraint substitu
The technical aspects and mathematical details of the D
are now addressed.

A. Relating thermodynamics to constraint topology

The DCM views a physical system at a coarse-grain le
as defining a mechanical bar-joint framework. A framewo
is constructed from distance constraints that are used to
resent microscopic interactions. Each distance constrain
fines an equation of the formR5const, whereR is the dis-
tance between a pair of atoms. A microscopic interact
involving a group of atoms~more than two! can be modeled
by more than one distance constraint, where the collectio
distance constraints between different pairs of atoms are
ply referred to as aconstraint~without the worddistanceas
a qualifier!. A hydrogen bond is an example of a many bo
interaction that will be modeled as a particular type of co
06110
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straint consisting of three~pairwise! distance constraints. Th
enthalpy and entropy contributions from a specific type
interaction characterize the corresponding constraint ty
Therefore, letDHt , (DS) t be the change in enthalpy~en-
tropy! that quantifies constraint typet when it is added to a
framework. Over the ensemble of all accessible atomic c
figurations, many different geometries between atoms w
potentially result in a vast number of constraint types t
must be introduced. However, as demonstrated below, a
markably few number of constraint types will often be su
ficient to quantitatively capture the essential physics.

The microstates of a system are specified in terms of
chanical frameworksF where each framework uniquely de
fines thetopology of all distance constraints. The DCM is
built upon the idea that each frameworkF having a specific
topology represents a mini ensemble of bar-joint networks
strict distance constraints within the tolerance allowed by
geometrical coarse graining. One framework consists
many possible atomic-coordinate realizations of strict d
tance constraints. However, because generic rigidity pro
ties are sought that do not depend on the geometrical de
of atomic coordinates, each realization in this mini ensem
has exactly the same network rigidity properties. Thus,
framework label F represents an ensemble of bar-joi
frameworks sharing identical network rigidity properties th
are calculated using strict distance constraints.

The relation to thermodynamics can be made becaus
framework uniquely identifies a mini ensemble having co
stant constraint topology, enabling a free-energy, given
G(F), to be meaningfully assigned. To this end, the to
enthalpy of a framework is given by

DH~F!5(
t

DHtNt~F!, ~1!

where Nt is the number ofconstraintsof type t that are
present. By exploring all accessibleatomic configurations,
an ensemble of frameworks~each representing a distinct to
pology! is generated. The ensemble of frameworks partitio
phase space into discrete parts, each having a constan
thalpy over a limited range of conformational freedom
Therefore, the partition function is given by

Z5(F V~F!e2bDH(F), ~2!

where V~F! is the conformational degeneracy of fram
work F.

The novel aspect of the DCM is that the conformation
entropy, given byDS(F)5klnV(F), is obtained by adding
component entropies over independent distance constr
that are explicitly identified using generic rigidity. Simpl
adding component entropies overall distance constraints wil
generally lead to a drastic overestimate forV~F!. However,
identification of whether a distance constraint is independ
or redundant is not unique. The freedom in choosing wh
distance constraints are independent is akin to the freedo
choosing an independent basis set of vectors to span a v
space. Consequently, the addition of component entro
9-3
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over independent distance constraints will lead to multi
answers forDS(F) if based on arbitrary selections. Ther
fore, an auxiliarypreferential selection criterionfor how to
choose the optimal set of independent distance constrain
required. The crucial part of the DCM is that it enforces
preferential selection criterion that corresponds to the de
mination of theminimumpossible value ofDS(F).

The total conformational entropy for frameworkF is
given by

DS~F!5(
t

DStI t
(p)~F!, ~3!

whereI t
(p) is the number of independentdistance constraints

of type t present in the framework as determined by t
preferential~p! selection criterion. The method for determi
ing linearly independent constraint equations involves bu
ing a basis set by iteration, where a new constraint equa
is checked for independence against the current basis s
the new constraint equation is independent, then the basi
expands. The procedure is continued until all distance c
straints in the framework are checked. The preferential se
tion criterion is defined asdistance constraints with lowe
component entropies take precedence in the order that
are checked for linear independence. By applying the pref-
erential selection criterion in conjunction with exact co
straint counting for generic rigidity, the change in Gibbs fre
energy for frameworkF is given as

DG~F!5DH~F!2TDS~F!>(
t

DGt~F!. ~4!

Only in the case thatall distance constraints in the frame
work are independent willDG(F) be equal to a straightfor
ward sum over the component free energiesDGt(F) associ-
ated with each constraint type. The partition function
calculated as

Z5(F e2bDG(F) ~5!

in accordance to the standard form, except that each
crostate corresponds to a generic mechanical frameworF
made up of ~infinitely strong! holonomic distance con
straints, and the ensemble consists of all topologically d
tinct frameworks.

B. Generic rigidity and nonadditivity of entropy

Meaningful thermodynamic properties are directly tied
local atomic structure because of coarse graining over g
metrical bins. To reflect the geometrical aspect of the DC
the indext is represented by two indicesi ,q, where i now
specifies the type of constraint andq labels a specific geo
metrical bin. For example, a hydrogen bond is a particu
type of interaction, but its strength depends on its local
ometry. The component free-energy of thei-th type of mi-
croscopic interaction is expressed as a free-energy func
DGq

i , which accounts for all atomic positions of the group
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atoms under consideration within theqth geometrical bin.
The process of obtaining a free-energy decomposition@26#
~the set ofDGq

i used in the model! is not unique because
different types of interactions will involve one or more ove
lapping atoms. Also there will be unavoidable many bo
effects, such as electrostatic interactions between the at
of interest with all other atoms, including those in solve
The nonuniqueness of a free-energy decomposition can
used as an advantage in the process of defining constit
types of constraints.

An effective strategy in employing the DCM is to define
minimum number of constraint types with a limited numb
of geometries that will yield a desired level of accuracy
predictions. For eachi ,q, the enthalpy and entropy contribu
tions denoted asDHq

i , andDSq
i can, in principle, be deter

mined self-consistently in lieu of not being unique. Se
consistency is satisfied when the free-energy assignmen
small clusters of atoms used in defining constraint typeslo-
cally obey the preferential selection criterion. This mea
that various clusters of atoms~for example, those within an
amino acid or hydrogen bond! define subsystems that ar
treated in the same way as the full system. Knowing
thermodynamic properties of a cluster of atoms allows c
straint types to be defined and characterized with aDHq

i and
DSq

i . It is worth mentioning that, in principle, ahierarchical
set of constraint types can be constructed iteratively by
fining constraints with lowest component entropies first, a
in succession defining constraints with the next lowest co
ponent entropy, etc.

The procedure to determine the local thermodynam
functionsDHq

i , DSq
i for all constraint types and their geom

etries constitutes a preliminary step in the DCM. In princip
explicit calculations forDGq

i could be made using accura
physical theories~i.e., quantum mechanical calculations! in-
volving clusters of atoms within a coherent potential a
proximation scheme. This type of bottom up approa
should be tractable and the results would be very use
However, these difficult calculations can be sidestepp
~completely or in part! by writing down the parametric form
of a microscopic free-energy function with empirically d
rived parameters. The important outcomes are given as
lows.

~1! Interactions are modeled as constraints character
by two quantitiesDHq

i , DSq
i that can be determined by the

oretical means or fitting to large sets of experimental dat
~2! The DCM parameters can be expected to be trans

able between systems that are well described by the sam
of constraint types.

The DCM invokes a probabilistic interpretation that a
distance constraint realizations between atoms are unifor
distributed within a geometrical bin. By allowing each ato
a finite amount of freedom, it is ensured that the framew
can be treated as generic. Although there will be configu
tions that have atypical atomic positions, these will be
zero measure. Therefore, the system is modeled as a co
tion of generically placed holonomic constraints, for whi
many mechanical properties can be calculated using e
constraint counting algorithms. The connection to thermo
9-4
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namics enters into the rigidity calculation by determining t
correct Boltzmann weight assignment to each mechan
framework, which is related to the nonadditivity of comp
nent entropies. The selected set of independent constr
under the preferential selection criterion does not depend
coordinates insofar that the same framework is maintai
over alimited range of conformational freedom. This limited
range of conformational freedom is quantified by the to
entropyDS(F) which depends strongly on the topology
distance constraints present in the system.

Calculating the exact value forDS(F) will unfortunately
not be possible in the DCM. The preferential selection cr
rion is enforced to obtain the best estimate for each fra
work. Fundamentally, overlap in phase space can occur w
two constraints are independent but not orthogonal. The
rect result of adding component entropies associated
only independent constraints is that less phase space wi
‘‘double counted.’’ Therefore, adding component entrop
over independent constraints gives anupper bound for
DS(F). The preferential selection criterion ensures the lo
est possible upper bound because thestrongestdistance con-
straints defined by the smallest entropies are taken as i
pendent beforeweaker distance constraints having larg
entropies. The utility of the DCM will depend on the degr
of accuracy in estimating conformational degeneracy. N
that distance constraints not sharing atoms are orthogo
and do not contribute in overcounting phase space. Altho
the distance constraints that share atoms will not generall
orthogonal, by construction of a self-consistent hierarch
series of constraints, phase space overlap between th
selves locally is correctly taken into account. Therefore
accurateV(F) can be expected by using acomplete setof
self-consistent constraint types. The phrase ‘‘complete se
used to mean that for any position of atomic coordinatesa
framework is always defined such that after all constrai
are placed it is rigid. As more constraint types are defined
framework becomes increasingly more overconstrain
which can only lead to a better lowest upper bound.

The preferential selection criterion has a simple phys
interpretation. Each constraint that is added to a system
potentially reduce entropy. However, a redundant dista
constraint does not reduce entropy@27#. This is because
when a constraint is added to a rigid region that is formed
stronger constraints, the weaker constraint will accommod
the structural geometry dictated by the cohort of stron
constraints@28#. The strength of a constraint~strong or weak!
is tied to phase space volume. Therefore, a clear distinc
between a constraint and degree of freedom is not poss
The rigidity calculation at finite temperature treats co
straints and degrees of freedom on equal footing in the se
that weaker constraints act as degrees of freedom relativ
stronger constraints. The entropy loss associated with
overconstrained region is paid at a premium by the stron
member constraints. Fortunately, the pebble game algor
@14,15# for determining distance constraint independence
based on a recursive procedure of building a framework
constraint at a time. The new implementation only requi
using a presorted list of distance constraints from stronge
weakest. It is worth noting that this algorithm does not mo
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a kinetic process as the constraints in a particular framew
are present all the time. Rather, the entropy loss from a c
straint is concerned with itseffectivenessrelative to all other
constraints in the framework.

C. Quenched and fluctuating constraints

The termquenched constraintrefers to a constraint type
that will be present among a particular group of atoms in
frameworks of the ensemble. For example, over the temp
ture range of biological importance, covalent bonding b
tween atoms within a protein is modeled as a set of quenc
constraints. Furthermore, the central and bond-bend
forces that make up covalent bonding are modeled by c
straints having microscopic free energies associated wi
single geometrical bin. The torsional force component w
also be modeled by a quenched constraint~as the torsional
force is always present! but will have a microscopic free
energyDGq

i , with multiple geometrical bins~labeled byq)
depending on the dihedral angle. A system modeled b
complete set of quenched constraints will generally be as
ciated with an ensemble of frameworks because the entha
and entropic characteristics of distance constraints depen
local geometry. In the extreme case where only one fram
work is accessible, the DCM will not provide optimal acc
racy whereas normal mode analysis is more appropriate.
example, if a fcc solid is modeled using one central-for
constraint type, then the DCM is equivalent to the Einst
model.

The termfluctuating constraintrefers to a constraint type
that may or may not be present among a particular group
atoms having a fixed geometry. When a fluctuating constr
is present, it is associated with a microscopic free-ene
DGq

i in the same way as a quenched constraint. Howeve
fluctuating constraint is not strictly tied to geometry becau
it may not be present. The DCM allows for fluctuating co
straints to account for degrees of freedom~dof! that are not
explicitly part of a system. For example, solvent dof coup
to protein atoms defining a system. The solvent-protein
teractions are modeled as fluctuating constraints on the
tem. In this way, hydration shells around protein atoms
modeled as fluctuating constraint types characterized by
thalpy, DHq

i , and entropy,DSq
i , contributions that accoun

for the many body interactions. Even more basic is the
drogen bond. Hydrogen bonding is modeled as a fluctua
constraint because~1! the protein atom electronic dof are no
explicitly described and~2! solvent dof compete with in-
tramolecular hydrogen bonding for a given geometry. Th
the DCM provides a real-space description involving m
chanical constraints, which directly accounts for fluctuati
hydrogen bonding, such as that found in proteins and wa

D. Temperature independent model parameters

The enthalpy and entropy contributions,DHq
i , DSq

i as-
signed to the various constraint types are functions of te
perature, pressure, and other thermodynamic conditions d
ing with the chemical environment, such aspH, ionic
strength, or whether the local geometry is in a hydropho
9-5
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or polar neighborhood. Therefore, caution must be exerc
in the ordering of the constraints from strongest to weak
because this ordering may change as the thermodyna
conditions change. Consequently, the environmentally
duced reordering of constraint types by relative stren
could potentially cause dramatic conformational chan
However, the utility of the DCM can best be appreciated
using a simplified description.

Model parameters will be taken as constants. Furth
more, the entropic term will be distributed equally over
the distance constraints that model a particular constr
type. Then, all microscopic free energies will have the
neric form

DGq
i 5eq

i 2Tkmigq
i ~6!

whereeq
i is energy,gq

i is a dimensionless variable referred
as pure entropy, andmi is the number of distance constrain
that are used to model thei th constraint type. Pure entropie
are taken to be positive because they are fundamentally
lated to the number of accessible quantum states that
associated with a specified geometrical bin tolerance, gi

by egq
i
>1. Figure 1 shows two example constraint types t

will be used in Sec. IV to model ana-helix to coil transition.
A constraint type is now generically characterized
(eq

i ,migq
i ). These parameters can be interpreted as be

derived by Taylor expanding to first order the true micr

FIG. 1. ~a! The torsion interaction within the backbone of a
amino acid is modeled by two distance constraints shown as da
lines that lock two dihedral angles. Except for proline, the tors
constraint is characterized by (Vq ,2dq), whereq denotes a geo-
metrical bin within a two dimensional (f,c) space. When the ge
ometry is such that both angles fall within regionq, the energy isVq

and each distance constraint hasdq pure entropy. For thea helix to
coil transition,q represents either aa helical or coil geometry.~b!
The hydrogen bond interaction is modeled by three distance
straints shown as dashed lines. The hydrogen bond constrai
characterized by (Uq ,3gq), whereq labels geometrical bins tha
can be defined in different ways. For thea helix to coil transition,
q represents the geometry formed by spanning across three
secutive amino acids that can independently be in eithera-helical
or coil geometry.
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scopic Gibbs free-energy about some temperature of m
interest. Analogous to Eq.~1!, the total energy of a frame
work is given as

E~F!5 (
$( i ,q) j %

eq
i hq

i
j~F!, ~7!

wherehq
i

j (F) equals~1,0! when thej th constraint of thei th
type is present or not present within theqth geometrical bin.
Analogous to Eq.~3! the total pure entropy of a framework i
given as

t~F!5 (
$( i ,q) j %

gq
i sq

i
j~F!, ~8!

where sq
i

j (F) is the number of independent distance co
straints within thej th constraint of the system, in accordan
with generic rigidity and the preferential selection criterio
Note that$0, 1, . . . ,mi% are the possible values thatsq

i
j (F)

can take.
The partition function is now written as

Z5(F et(F)e2bE(F)5(F )
$( i ,q) j %F

egq
i sq

i
je2beq

i hq
i

j , ~9!

where the form of Eq.~9! suggests that the energy and e
tropy contributions are independent. However, not only
the values of$sq

i
j% depend on calculations from generic r

gidity, but also whenhq
i

j (F)50 thensq
i

j (F)50. Thus, the
energy and entropy of each framework are coupled thro
topology via the underlying interaction of network rigidity
For example, consider the entropy loss associated with
formation of a hydrogen bond. As shown in Fig. 1b the h
drogen bond constraint is modeled as three distance
straints. For a particular geometry, the hydrogen bond c
tributes energyUq and it contributes$0, gq , 2gq , 3gq%
amount of pure entropy to the system, depending on whe
it has$0, 1, 2, 3% independent distance constraints. Ifgq is
comparatively small indicating arelatively strong distance
constraint, then the greatest entropy loss for the system
curs when all three distance constraints are independen
contrast, ifgq is comparatively large indicating a relativel
weak distance constraint, then the greatest entropy loss
the system occurs when all three distance constraints ar
dundant. Since the results depend on the topological arra
ment of all constraints in the system,no a priori statement
can be made about whether the formation of a hydrog
bond will supply a favorable or unfavorable entropic contr
bution.

III. TOY MODELS IN TWO DIMENSIONS

The ~internal! partition function for the two-dimensiona
molecule shown in Fig. 2 is calculated to illustrate ba
concepts. The molecule consists of four identical atoms c
nected together by four strong central-force bonds formin
quadrilateral. The central force~cf! bonds are modeled a
quenched constraints characterized by energyUc f and pure
entropy gc f . Four torsional forces are also modeled

ed
n

n-
is

n-
9-6



al
an

e

tin

rm
d

o
s

o
th

ive

a
se
-

o
e

e
-
and
the

tion

est
per-
c-
-

ture
d as
gle

b-
by

his
ms

f a
w
o

the
s

nd
e

at-
lly

e-
rm-
on-
ide:
less

gid

NETWORK RIGIDITY AT FINITE TEMPERATURE: . . . PHYSICAL REVIEW E 68, 061109 ~2003!
quenched constraints. In two dimensions~2D! the torsion
force ~tf! is a function of the angle between a pair of centr
force bonds. It is modeled as a next nearest neighbor dist
constraint characterized by energyVt f and pure entropyd t f .
The torsional free-energy surface is assumed shallow ov
large range of angles. A hydrogen bond~hb! in 2D is consid-
ered a single central force, and is modeled as a fluctua
constraint characterized by energyUhb and pure entropy
ghb . Within a length tolerance, a hydrogen bond can fo
between a pair of atoms along either diagonal of the qua
lateral.

As Fig. 2 shows, there are only two distinct types
frameworks, labeled asL andH when the hydrogen bond i
and is not present. This is a two-level system~three states are
required for distinguishable atoms!. Employing the DCM,
the first step is to rank order the distance constraints fr
strongest to weakest. This ranking is based on sorting
pure entropies from lowest to highest, assumed to be g
as

pure entropy: gc f,ghb,d t f

rank: 1 2 3. ~10!

The second step requires calculating the total energy
pure entropy for each framework using the preferential
lection criterion. In stateH there are eight distance con
straints ~four cf and four tf! and in stateL there are nine
distance constraints~four cf, four tf, and one hb!. There are
eight dof, three of which involve global translations and r
tations. Five distance constraints will always be independ
making the framework rigid. From Eqs.~7! and~8! it follows
that

state H:tH54gc f1d t f , EH54Uc f14Vt f ,

state L:tL54gc f1ghb , EL54Uc f14Vt f1Uhb.
~11!

FIG. 2. A small two-dimensional ring molecule in the shape o
quadrilateral. The shaded regions schematically show the allo
geometrical variation for fixed topology indicative of the degree
flexibility. Configuration~a! is topologically distinct from~b! and
~c!. For identical atoms at each corner, configurations~b! and ~c!
represent the same topology of constraints, but are distinct o
wise. The framework in~a! is referred to as state H; where it ha
greater energy and conformational entropy than~b!/~c!. The @~b!
and/or ~c!# framework is referred to as state L; where the bo
along the diagonal leads to a lower energy and conformational
tropy than~a!.
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Therefore, the~internal! partition function is given as

Z5etLe2bEL1etHe2bEH. ~12!

With Uhb,0, as expected for chemical bonding, th
statesL andH will be more probable at low and high tem
peratures, respectively. Since for both states, the energy
pure entropy terms associated with the cf constraints and
energy terms for the tf constraints are the same, the parti
function simplifies to

Z5Z0@eghbe2bUhb1ed t f#, ~13!

whereZ0 contains the terms common in bothL andH states.
This example illustrates a general result that the strong
quenched constraints play a passive role. Molecular coo
ativity is controlled by competition among weaker intera
tions. It is worth mentioning that if the two-level approxima
tion does not produce a sufficiently accurate tempera
response, then the model parameters could be regarde
temperature dependent functions. Alternatively, the sin
geometrical bin for the assumed weakly varying~as a func-
tion of temperature! torsional free-energy can be further su
divided to better account for thermodynamic response
creating more terms in the partition function.

The ~internal! partition function for a more interesting
two-dimensional molecule shown in Fig. 3 is calculated. T
molecule consists of five backbone and five side-chain ato

ed
f

r-

n-

FIG. 3. A small two-dimensional chain molecule. Backbone
oms are denoted by filled circles. There are only four topologica
distinct conformations~a!–~d! accessible to the molecule as it d
forms during the process of hydrogen bonds breaking and refo
ing. Dashed lines represent hydrogen bonding. Left side: All c
formations have a large conformational degeneracy. Right s
When all hydrogen bonds are present the molecule has much
conformational degeneracy. In particular, for conformation~d! a
rigid state is defined when all four side chain atoms form a ri
cluster from hydrogen bonding.
9-7
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connected by central forces. A side-chain atom at the en
the chain can swing around the backbone atom, but i
assumed that a potential barrier must be crossed. The hig
point of the energy barrier is when the side-chain atom
collinear with the backbone chain. Therefore, the molecul
regarded to have four topologically distinct conformation
each having the same characteristic energy basin. Fin
side-chain atoms that are in sufficient proximity of one a
other can hydrogen bond.

The central-force constraint is characterized by (Uc f ,
gc f), and the hydrogen bond constraint is characterized
(U, g). There are two types of torsion force constraints
volving angles betweenBBB atoms, orBBSatoms, whereB
andS represent backbone and side-chain atoms respecti
The torsional constraint type for theBBB angle is character
ized by (VBBB , dBBB) and the torsional constraint type fo
theBBSangle is characterized by (V, d). The distance con-
straints are now ranked from strongest to weakest, assu
given as

pure entropy: gc f,g,d,dBBB,

rank: 1 2 3 4. ~14!

Since both torsion constraint types are quenched constra
it follows that the pure entropy parameter for theBBB type
of angle is always irrelevant for all frameworks in the e
semble. This example illustrates an important point t
weak forces often need not be associated with an entr
term, because they will always be redundant. Neverthel
many weak forces can still play an important role in t
energetics.

There are a total of 112 possible frameworks, correspo
ing to 24 different frameworks~due to fluctuating hydrogen
bonds!, for each of the topologically distinct conformation
shown in Figs. 3~a!–~c! and 26 frameworks for the confor-
mation shown in Fig. 3~d!. Once all the central-force con
straints are placed~first! there are eight internal dof remain
ing in the molecule. If no hydrogen bond constraints a
placed, then the total pure entropy of the molecule will
9gc f18d, which gives the maximum possible value. As h
drogen bond constraints are added, the total pure ent
will decrease. The best chance of finding a redundant hy
gen bond is when the maximum number is present for e
distinct topology. By inspection, only one framework out
112 has a redundant hydrogen bond constraint, corresp
ing to the six hydrogen bonds, all simultaneously presen
the conformation shown in Fig. 3d. Recall that the para
eters associated with the quenched constraints common
frameworks can be factored out. Therefore, relative to
conformations containing no hydrogen bonds, the chang
Gibbs free-energyDG(n) for the molecule havingn hydro-
gen bonds is given by

DG~n!5nU2kT@ng1~82n!d# for n50,1, . . . ,5,

DG~6!56U2kT@5g13d#.
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The factor of (82n) appears because each independent
drogen bond constraint eliminates an angular dof. The
maining~weakest! torsion force constraints rigidify the mol
ecule.

In this example many of the frameworks have degene
Gibbs free-energy. The Gibbs free-energy already acco
for conformational degeneracy, but there is also a configu
tional degeneracy in the number of hydrogen bond comb
tions that are possible. Therefore, the partition function
written as

Z5(
n

g~n!e2bDG(n), ~15!

whereg(n) is the number of frameworks withn hydrogen
bonds. The values ofg(n) for different n are tabulated in
Table I, which is obtained by straightforward counting.

The heat capacity is plotted in Fig.4~a!, showing a peak
near 310 K, where the model parameters were fixed to c
venient values to show interesting features. This peak
manifestation of a structural transition from therigid state
@defined in Fig. 3~d!# at low temperature to aflexiblestate at
high temperature. The degree of rigidity is also shown
plotting the equilibrium probabilityPR for the molecule to
be described by a framework with five or six hydrog
bonds, where

PR~T!5~e2bDG(6)1g~5!e2bDG(5)!/Z ~16!

TABLE I. Hydrogen bond configurational degeneracy.

n 0 1 2 3 4 5 6

g(n) 4 18 33 32 18 6 1

FIG. 4. ~a! Heat capacity as a function of temperature.~b! Prob-
ability for the molecule to form a rigid structural unit. The select
parameters were obtained by choosing the marked point on
phase diagram in Fig. 5, and fixing the transition temperature to
near 310 K.
9-8
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NETWORK RIGIDITY AT FINITE TEMPERATURE: . . . PHYSICAL REVIEW E 68, 061109 ~2003!
represents only the frameworks that form a rigid structu
unit. The probability for being in the rigid state is used as
order parameter. A phase diagram is shown in Fig. 5, wh
the solid line corresponds to the maximum heat capa
used to locate the transition temperature. The shaded
defines a broad transition region defined as 0.1,PR,0.9,
indicating no substantial preference for either the rigid
flexible states.

IV. a-HELIX TO COIL TRANSITION

The DCM is employed to describe a transition from
stablea-helix structure that is rigid at low temperature to
flexible coil involving many disordered conformations
high temperature. The backbone of a homogeneous pep
chain, as depicted in Fig. 6~a!, is considered for simplicity.
Compared to the Zimm-Bragg@29# or Lifson-Roig@30# mod-
els, the DCM is mathematically more complicated beca
network rigidity is a long-range interaction that will be e
plicitly quantified in terms of a direct product between
rigidity state space and a conformational state space, f
which a transfer matrix is constructed.

Four constraint types are used here to model cen
bond-bending, and torsional forces involved in covale
bonds as well as hydrogen bonds. The strongest two c
straint types, modeling the central and bond-bending for
are placed in the network before the weaker constraint ty
Thus, a chain ofn amino acids has 2n dof along the back-
bone because only thef and c dihedral angles in each
amino acid~proline is not considered here! are free to rotate.
The energy and pure entropy parameters for the central
bond-bending constraint types are not of concern beca
they play a passive role in the partition function, as explain
in Sec. III. The remaining two constraint types depend on
local conformation of the backbone, as determined by thf
andc dihedral angles. Explicit side-chain to side-chain a

FIG. 5. The phase diagram of the two-dimensional chain m
ecule. The difference in pure entropy between the hydrogen b
and torsional force constraints, and the hydrogen bond en
scaled by thermal energy are the only two relevant variables.
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side-chain to backbone interactions are not considered in
analysis given here.

The third constraint type describes a torsion interacti
Torsion constraints along the backbone are partitioned
distinct geometrical bins depending on thef andc angles.
For example, different bins can be defined using a Ra
achandran plot@31,32# for each type of amino acid. Here, th
a-helical and coil geometries, labeleda andc, respectively,
are considered to be the only two accessible conformatio
states. The coil geometryc includes all other secondar
structures~non-a-helical! such as ab-strand, 3-10 helix, or
left-handeda helix. The energy and pure entropy of th
a-helical and coil torsion constraints are given by (Va ,
2da), and (Vc , 2dc) respectively. As shown in Fig. 1~a!, the
torsion constraint contains two distance constraints to l
the f andc angles. Each distance constraint carries a p
entropy ofda or dc in the a-helix or coil geometry, respec
tively.

The fourth constraint type describes hydrogen bondi
For simplicity, only backbone hydrogen bonds between
carbonyl oxygen of thei th amino acid and the amine nitro
gen of the (i 14)th amino acid are considered accessib
The energy and pure entropy for a hydrogen bond constr
are given byUxyz and 3gxyz, wherex, y, andz specify the
local (a or c) backbone geometries of thei 11, i 12, and
i 13 amino acids that are spanned. As shown in Fig. 1~b!, a
hydrogen bond constraint contains three distance constra
where each distance constraint carries a pure entropy
gxyz. Noting that there are eight possible geometries, e
requiring the two parametersUxyz andgxyz, gives a tally of
16 parameters for the hydrogen bond constraint type.

The peptide chain is decomposed into triplets, denoted
@xyz# i , wherex, y, andz representa or c geometries for the
$ i , i 11, i 12% amino acids. To account for hydrogen bon
fluctuations, a triplet may or may not have a spanning hyd
gen bond. Another variablel i5(1,0) is used to specify
whether a hydrogen bond constraint is present or not ac

l-
nd
gy

FIG. 6. ~a! The backbone of a peptide chain. The dihedral an
of the peptide bond~C-N! cannot rotate. The long curved dashe
line represents a possible hydrogen bond.~b! An example of poly-
alanine. The dihedral angle between Ca-Cb can rotate.
9-9
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the i th triplet. When present, a hydrogen bond spans thei th
triplet by connecting thei 21 amino acid to thei 13 amino
acid. The greatest number of hydrogen bonds that can f
within an a helix of n amino acids isn24, since the only
triplets that can have a spanning hydrogen bond arei
52,3, . . . ,n23). Note that the variablel i corresponds to
the i th amino acid in the chain, and therefore it is associa
with the leading edge of a triplet. A triplet~not at the ends!
will have 16 possible conformational states correspondin
eight different local geometries with or without a hydrog
bond. The complete specification of the conformation o
triplet has the general forml@xyz#. An energyU0 is intro-
duced for triplets of the form 0@xyz#, which represents the
hydrogen bond energy resulting between the peptide b
bone and solvent. Therefore,U0 is an additional hydrogen
bond parameter~17 total! in the DCM considered here.

A. Rigidity propagation rule

To facilitate exact constraint counting subjected to
preferential selection criterion, the degree of rigidity for
triplet is specified by alocal rigidity state, denoted asu lrs&.
The local rigidity state contains the minimum amount of
formation about rigidity at the end of a chain such that wh
the next amino acid is added, the local rigidity state of
end triplet is uniquely specified. The set of all accessi
local rigidity states,$u lrs&%, will serve as a basis set for
rigidity state space. A complete basis set will be genera
using the rigidity propagation rule.

Each triplet has six dof, six torsional force distance co
straints, and when there is a spanning hydrogen bond t
additional hydrogen bond distance constraints. The pure
tropies of each type of distance constraint is rank orde
from 1 to 10 because there are eight differentgxyz and two
differentdx assuming no degeneracies. A torsional force d
tance constraint~tfdc! and a hydrogen bond distance co
straint ~hbdc! lock dihedral angles differently. A tfdc is con
fined to lock a specific dihedral angle, whereas a hbdc sp
all six dof within a triplet. A hbdc can be used to lock any
these six dof, and should lock the one which will minimi
the total conformational entropy of the chain. In this sen
hydrogen bond distance constraints are promiscuous. Co
quently, the dof that are best to lock cannot be determi
solely on the local triplet conformation because network
gidity is a long-range interaction. Therefore, an algorithm
propagating the local rigidity state must be established.

A local rigidity state specifies thecurrent rank assignmen
of constraints used to lock the first four dof in a triplet. T
rank assignment corresponds only toindependentcon-
straints. The local rigidity state is represented as

u lrs&5ur 1 ,r 2 ,r 3 ,r 4&, ~17!

wherer k is the rank of the distance constraint that locks
kth dihedral angle in a triplet. The ranks of the last tw
dihedral angles within a triplet will become important in d
termining the local rigidity state of the next triplet upo
propagation. The explicit form foru lrs& in Eq. ~17! provides
a bookkeeping device to calculate the preferential sum
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pure entropies over independent constraints. The algori
for propagating rigidity from left to right takes the followin
form.

~1! Given ur 1 ,r 2 ,r 3 ,r 4&: Retain the fourtemporaryrank
assignments and augment the two ranks from the torsio
constraint on the third amino acid, thus forming a tempor
template involving six ranks, given by$r 1 ,r 2 ,r 3 ,r 4 ,r 5 ,r 6%.

~2! If no hydrogen bond is present continue to the ne
step. Otherwise, perform the following operations when
hydrogen bond spans the new triplet. Attempt to place o
distance constraint at a time, each having a rank ofr hb . Find
the maximum rank, denoted asr i

(1) , out of the six current
ranks in the template. The superscript~1! indicates that this
is the maximum rank, and the indexi specifies its location
within the template. Ifr hb>r i

(1) , continue to the next step
because this and any of the remaining hydrogen bond
tance constraints are redundant. Otherwise, replace the m
mum rank byr hb . Working from right to left~the direction
opposite to propagation! find the next maximum rank, de
noted asr j

(2) . If r j
(2).r hb then swap ranks. That is, letr i

5r j
(2) and r j5r hb . Continue the process of swapping ran

r hb with the next greatest rank to its left, until it can n
longer be shifted to the left. Continue to the next step wh
all three hydrogen bond distance constraints have b
placed.

~3! The first two degrees of freedom in the triplet a
permanently locked by distance constraints that are ass
ated with the ranksr 1 andr 2 in the template. The remaining
four ranks in the template define the current local rigid
state of the new triplet given asur 185r 3 , r 285r 4 , r 385r 5 ,
r 485r 6&. Repeat this process@back to step~1!# until the
propagation through all triplets is finished.

Step~2! can be understood conceptually. Ranks within
template act as a dof relative to a hbdc rank whenever t
are greater thanr hb , otherwise they act as a constrain
Among the ranks acting as a dof, a lower rank acts a
constraint relative to a greater rank. Therefore, the grea
rank should be replaced byr hb . However, it could happen in
a future test~as the chain is propagated from left to righ!
that the largest rank within the current template could
replaced by a different hbdc that spans a different trip
downstream. If this happens, it would be better to use
current hbdc to lock the second highest rank. Replacing
highest rank, or replacing the second highest rank, depe
on the relative rank of a future hbdc, if any appear at all. T
makes the transfer matrix approach different than the us
case, because rigidity is nonlocal where the conformati
down the chain will affect the optimal rank substitution at t
current triplet.

The first hbdc encountered down the line that overla
with part of the current triplet will be effective as a constra
within the current tripletonly if its rank is lower than the
greatest rankr (1) found in Eq. ~17!. The second effective
hbdc must have a rank lower than the second greatest
r (2). If no effective hbdc is encountered, it is best to repla
r (1) with r hb in step ~2! of the algorithm. If one effective
hbdc is encountered, it is best to replacer (2) with r hb . More
generally, if n effective hbdc are encountered, it is best
9-10
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NETWORK RIGIDITY AT FINITE TEMPERATURE: . . . PHYSICAL REVIEW E 68, 061109 ~2003!
replacer (n11) with r hb if possible. All these cases are pro
erly handled by building the definition of a local rigidit
state achain reactionthat automatically swaps higher rank
into lower rankswhen needed. The chain reaction is initial-
ized in step~2! by the process of swapping ranks within
triplet from highest to lowest working in theoppositedirec-
tion of propagation. The outcome of the above algorithm
that both the long-range interaction of rigidity and the glob
preferential selection criterion are properly described.

Figure 7 shows how the rigidity propagation rule is imp
mented on a short chain in a particular framework. The
tial description of the chain includes the ranks of all torsi
and hydrogen bond constraints that are present. This fra
work contains 18 redundant constraints since the chain
any conformationis always just rigid~isostatic! whenever
there are no hydrogen bonds along the backbone, and
there are 33 ~six hydrogen bonds! extra distance con
straints. The final description shows the ranks of only in
pendent distance constraints that remain after being pe
nently assigned in step~3! of the propagation rule. The fina
ordering of ranks generally depends on the direction
propagation, but the final distribution of ranks~i.e., number
of independent constraints having rank 1, 2,. . . ) is invari-

FIG. 7. The top schematic describes the backbone of a 13-
peptide chain in a conformation that has torsional constraints w
pure entropy ranked either 3 or 5 and occasional hydrogen b
constraints~pictorially represented as bars spanning three cons
tive pairs of dihedral angle dof! with pure entropy ranked either 1
2, or 4. Each step in the propagation of the local rigidity state fr
left to right is shown along the diagonal. The final ranks that rem
after propagating from left to right (L→R) is given on the third to
last row. The final ranks obtained by propagating from right to l
(R→L) are given on the second to last row. The last row labels
amino acids. Both propagation directions yield three rank-1,
rank-2, five rank-3, two rank-4, and four rank-5 independent d
tance constraints.
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ant. Moreover, the final rank distribution is identical to th
of a preferential selected set of independent constraints
tained by placing the strongest distance constraints be
weaker ones in otherwise arbitrary order.

Referring to Fig. 7, the entire process of propagating fr
left to right is shown. The first triplet has a local rigidity sta
given byu5,5,3,3&. This first triplet does not have a spannin
hydrogen bond, therefore, the next triplet~after the first
propagation! has a local rigidity state given byu3,3,5,5&.
During the first propagation step, each tfdc within the fi
amino acid is recorded as independent, locking thef1 and
c1 dihedral angles. The pure entropy associated with th
two distance constraints is recorded in terms of the two ra
$5,5%. For the second propagation step, the spanning hy
gen bond across the second triplet changes the tempo
rank assignments as follows:

initial ulrs&: u3, 3, 5, 5&

tfdc template: $3, 3, 5, 5, 3, 3%

plus first hbdc: 2,

intermediate 1: $2, 3, 3, 5, 3, 3%

plus second hbdc: 2,

intermediate 2: $2, 2, 3, 3, 3, 3%

plus third hbdc: 2

intermediate 3: $2, 2, 2, 3, 3, 3%

final ulrs&: u2, 3, 3, 3%. ~18!

f2 andc2 are considered to be locked by two of the prom
cuous hydrogen bond distance constraints, and recorde
the two ranks$2,2%.

The rigidity propagation rule applied to a specified fram
work F allows the total pure entropyt(F) to be calculated
as the sum over pure entropies associated with the rank
the distance constraints used to permanently lock thef and
c dof. For a given framework, the alternative calculation f
t(F) is to use the pebble game algorithm@14,15#, where the
distance constraints with lowest ranks are placed in the
work first. The propagation algorithm was explicitly teste
@33# against exact calculations using the pebble game.
though preferential constraint counting offers an exact ca
lation method by incorporating the rigidity propagation ru
into a transfer matrix,t(F) no longer requiresexplicit cal-
culation on each framework in the ensemble.

B. Transfer matrix and the partition function

The transfer matrix is constructed from a direct produ
space formed by a triplet conformational state denoted
ul,x,y,z&, wherel is one when a hydrogen bond spans t
x,y,z triplet, zero otherwise andx,y,z are eithera helix ~a!
or coil (c). A triplet is completely specified as

Striplet5ul,x,y,z& ^ ur 1 ,r 2 ,r 3 ,r 4&, ~19!

wherer 1 andr 2 are the ranks of the constraints on thef and
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c angle~backbone angles! of the x state, andr 3 and r 4 are
the corresponding ranks of the constraints on they state. The
four ranks on the first two amino acids, the presence or
sence of a spanning hydrogen bond, and the conformati
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state ~helix or coil! of each residue together complete
specify a state.

Most elements of the transfer matrixT will be zero. The
nonzero matrix elements have the form given by
^l8,x85y,y85z,z8u ^ ^r 18 ,r 28 ,r 38 ,r 48uTul,x,y,z& ^ ur 1 ,r 2 ,r 3 ,r 4&5eDtpe2bDep, ~20!
of

the
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where after a propagation to the right the new first am
acid corresponds to the prior middle amino acid and the n
middle amino acid corresponds to the prior right amino ac
In addition to this, the matrix element will only be nonzero
the set of final ranks in the local rigidity state obey the rig
ity propagation rules. The nonzero matrix element then c
tributes a Boltzmann factor that accounts for both the ene
and pure entropy contributions of the constraints enco
tered. The variablesDtp and Dep , respectively, represen
the change in pure entropy and energy upon propaga
along the chain. The contribution toDtp at each propagation
step is given by the sum of pure entropies of the two c
straints that permanently lock the two dof within the fir
amino acid of a triplet. ThusDtp is determined by the rigid-
ity state space in accordance to step~3! of the rigidity propa-
gation rule. In contrast,Dep is determined by the conforma
tional state space where it is a function of onlyl@xyz# and it
is found by summing the hydrogen bond energy given
Uxyz whenl51 andU0 whenl50, with the torsional force
constraint energy given byVx . By construction, the zero
and nonzeros of the transfer matrix account for the rigid
propagation rules, thereby correctly propagating rigidity.

Ignoring boundary conditions momentarily, the~internal!
partition function could be calculated as
o
w
.

-
-
y
-

n

-

y

y

Zn5^ f uTnu i &. ~21!

The method for constructing the transfer matrixT is ex-
plained by working through an example. Consider a chain
13 amino acids where the framework given as

0 1 0 1 1 1 0 0 1 1 0 0 0

c a c a a a c c c a a c c s s

~22!
is one realization taken from an ensemble of 2(1319) frame-
works describing all accessible chain conformations~of a
chain of length 13!. The numbers of 1 or 0 on top of ana or
c specify l in a triplet, l@xyz#. A number placed over an
amino acid describes a hydrogen bond that spans it and
next two amino acids to the right. In order for a chain
lengthn to be represented byn triplets, twos solvent states
are explicitly shown as being augmented at the right end
the chain. Effects of this state are discussed below un
boundary conditions. The first and last three zeros~in bold!
correspond to triplets for which an intramolecular hydrog
bond cannot form.

The dimension and form of the transfer matrixT strongly
depends on the rank ordering of pure entropies. For the
pose of illustration, consider the rank ordering
pure entropy: 0 , gaaa , H gcaa

gaca

gaac

, da , H gcca

gcac

gacc

, dc , gccc ,

rank: 0 1 2 3 4 5 6, ~23!
s
s
s is

to

hat
where rank 0 is associated with the specials conformation
and rank 6 is associated with a hydrogen bond that spa
local @ccc# geometry. In this case,gccc plays no role be-
cause it will always be redundant. In this example, int
molecular hydrogen bonds that span the same numbe
coil states within a triplet are degenerate. Thus,gcaa5gaca
5gaac andUcaa5Uaca5Uaac , etc.

The initial product vector that needs to be propagated
given as u0,c,a,c&u5,5,3,3&, where the symbol̂ will be
dropped from now on. This vector is obtained below by co
sidering the process of propagating triplet 0@ssc# to 0@sca#
a

-
of

is

-

before arriving to the current triplet 0@cac#. Using the rigid-
ity propagation rule, the first matrix multiplication byT
propagates the initial vector into vectoru1,a,c,a&u3,3,5,5&,
while the second matrix multiplication give
u0,c,a,a&u2,3,3,3&. The shifts in the conformational state
are obvious, and the propagation of the local rigidity state
calculated according to example~18!. In fact, the initial con-
figuration of ranks shown in Fig. 7 precisely correspond
the framework given in example~22!. In the first propagation
step, the contribution of pure entropies from constraints t
lock the f1 and c1 dihedral angles is given asDt152dc .
9-12
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TABLE II. A short list of selected matrix elements that are generated from the framework give
example~22!. Refer to Fig. 7 to check the correspondence between the pure entropy contributionDtp on the
p th propagation step with the final ranks listed from left to right propagation.

Step Transfer matrix element Boltzmann factor

1 ^1,a,c,au^3,3,5,5uTu0,c,a,c&u5,5,3,3& e2dce2b(Vc1U0)

2 ^0,c,a,au^2,3,3,3uTu1,a,c,a&u3,3,5,5& e2gacae2b(Va1Uaca)

3 ^1,a,a,au^3,3,3,3uTu0,c,a,a&u2,3,3,3& egcaa1dae2b(Vc1U0)

4 ^1,a,a,cu^1,3,3,3uTu1,a,a,a&u3,3,3,3& e2gaaae2b(Va1Uaaa)

A A A
10 ^0,a,c,cu^2,2,3,3uTu1,a,a,c&u2,3,3,3& e2gcaae2b(Va1Uaac)

11 ^0,c,c,su^3,3,5,5uSu0,a,c,c&u2,2,3,3& e2gaace2b(Va1U0)

12 ^0,c,s,su^5,5,0,0uRu0,c,c,s&u3,3,5,5& e2dae2b(Vc1U0)

13 ^0,s,s,su^0,0,0,0uQu0,c,s,s&u5,5,0,0& e2dce2b(Vc1U0)
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The energy contribution isDe15Vc1U0 , which reflects the
hydrogen bond energy between peptide and solvent. At e
propagation step another product vector will be genera
The second step takes the vectoru1,a,c,a&u3,3,5,5& into vec-
tor u0,c,a,a&u2,3,3,3&. The energy contribution isDe25
Va1 Uaca , which reflects the intramolecular hydrogen bo
energy that depends on local geometry@aca#. The pure en-
tropy contribution is given byDt25 2gaca , resulting from
two rank 2 pure entropy values. All matrix elements are
termined by energy contributions from consecutive trip
conformation states described in example~22!, and pure en-
tropy contributions are determined by the final rank order
~from left to right! listed in Fig. 7. Some matrix elemen
generated by the framework given in example~22! are listed
in Table II.

1. Boundary conditions

In addition to constructing the transfer matrixT the
boundary conditions on both the left and right ends of
chain must be specified. The boundary conditions are of
ticular importance for peptides that are experimentally st
ied because most often they are less than 20 amino a
long. The approach taken here is to add auxiliary trip
states before and after the chain to take into account so
tion effects. A requirement that the left and right bounda
conditions must satisfy is: left to right propagation and rig
to left must yield identical results for all observable quan
ties. This basic requirement is satisfied by the approach u
here.

An infinite number of auxiliarys conformations are ap
pended to the beginning and end of the chain to repre
bulk solvent. A triplet of auxiliarys conformations is of the
form 0@sss#, and it is used as a reference state. The tran
matrix propagates the triplet 0@sss# into another 0@sss# trip-
let with a Boltzmann weight of 1by definition. The auxiliary
s conformations play a passive role in the calculation~as if
they are not present! except in triplets at the ends of the cha
where they mix witha or c conformations within the chain
Physical boundary conditions require the local rigidity st
of the last 0@sss# solvent triplet just before the chain to b
equal to the local rigidity state of the first 0@sss# solvent
triplet at the end of the chain. Furthermore, this local rigid
06110
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state must be the same for any peptide, regardless o
length or composition. Therefore, the local rigidity state f
the 0@sss# solvent triplet is defined asur s ,r s ,r s ,r s&, where
r s[0 to represent the lowest rank associated with a m
mum pure entropy,gs[0, which is the lowest physically
realizable value. Consequently, when propagating from
solvent triplet to the nextDtp50, and by settingDep[0,
then the Boltzmann weight of 1 is ensured. With the
boundary conditions no bulk properties of solvent~the reser-
voir! are calculated, while peptide to solvent interactions
taken into account by fluctuating constraints acting on
peptide~the system!.

Consider propagating from left to right. Then the le
boundary condition is most conveniently represented a
column vector in the direct product space, denoted asu i &.
The form of the initial vector is given by

u i &5 (
x,y,z

e2b(De0ssx1De0sxy)u0,x,y,z& ^ ur x ,r x ,r y ,r y&.

~24!

The ranksr x and r y are, respectively, associated with th
pure entropy of a tfdc in conformation state (x of the first
amino acid! and (y of the second amino acid!. No entropic
contributions arise in propagating from the 0@sss# triplet to
the 0@xyz# triplet because of the rigidity propagation ru
when no hydrogen bonds are present and the definition of
specials conformation. However,De0ssx andDe0sxy account
for solvation energy between the peptide and solvent. He
triplet with no spanning hydrogen bond is taken to contrib
U0 energy. Therefore, the initial state vector simplifies to

u i &5 (
x,y,z

e2b2U0u0,x,y,z& ^ ur x ,r x ,r y ,r y&. ~25!

The right-end boundary condition is implemented usi
three special transfer matrices that involve thes conforma-
tion. Starting from thel@xyz#n23 triplet, transfer matricesS,
R, and Q are defined to, respectively, propagate fro
l@xyz#n23 to 0@yzs# to 0@zss# and finally to the 0@sss#
triplet. These three matrices in succession channel all p
sible local rigidity states accessible at tripletl@xyz#n23 to
9-13
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TABLE III. Some examples of possible results that can be obtained after sorting the set of DCM
entropies from lowest to highest, and then assigned ranks of 1 and greater, respectively. Pure entrop
listed on the leftmost column are rank ordered in the various columns. The letter R indicates th
constraint is always redundant, and therefore is always ineffective in reducing conformational entrop
last row gives the dimension@34# of the transfer matrixT for the particular rank ordering. Column
corresponds to the rank ordering used in example~23!. Column l is similar to column h except that dege
eracy is lifted from all thegxyz pure entropies.

a b c d e f g h i j k l

da 1 1 1 2 2 2 2 3 3 4 4 5
dc 2 3 3 3 4 5 6 5 6 5 6 9
gaaa R 1 or 2 1 or 2 1 1 1 1 1 1 1 1 1
gcaa R R 2 2 3 3 3 2 2 2 2 2
gaca R R 2 2 3 3 3 2 2 2 2 3
gaac R R 2 2 3 3 3 2 2 2 2 4
gcca R R R R R 4 4 4 4 3 3 6
gcac R R R R R 4 4 4 4 3 3 7
gacc R R R R R 4 4 4 4 3 3 8
gccc R R R R R R 5 R 5 R 5 R
dim(T) 16 16 28 60 60 96 140 200 244 376 436 44
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ur s ,r s ,r s ,r s& when the 0@sss# solvent triplet is reached
Therefore, the only nonzero component in the direct prod
space after matrixQ is applied is given by the vecto
u0,s,s,s& ^ ur s ,r s ,r s ,r s&, which is denoted asu f &. By con-
struction, the final vector does not change upon furt
propagation from 0@sss# to all remaining 0@sss# solvent
triplets @34#.

Including boundary conditions, the~internal! partition
function is calculated as

Zn5^ f uQRSTn23u i & ;n>3 ~26!

for homogeneous peptide chains withn amino acids, and it
involvesn matrix multiplications overn triplets. The form of
Eq. ~26! is independent of the direction used to propag
rigidity. By inspection the partition function for a tripeptid
(n53) reduces to

Z35e2b5U0 (
x,y,z

e2(dx1dy1dz)e2b(Vx1Vy1Vz). ~27!

The expression forZ3 highlights two subtleties about th
simplifying assumptions invoked here that are worth m
tioning.

~1! Unlike the intramolecular hydrogen bonds, the ene
U0 for hydrogen bonding between the peptide and solven
not considered to depend on the local peptide geom
~specified by@xyz#.!

~2! No pure entropy parameter~given byg0) is associated
with the peptide-solvent hydrogen bonds because it has b
assumed to be larger than all other pure entropies that c
acterize the four constraint types introduced above. As ill
trated by the second toy model in Sec. III, constraints hav
a pure entropy greater than all others that are always re
dant do not contribute entropically. Not allowing for entrop
contributions from peptide-solvent hydrogen bonds impl
the solvent molecules~aqueous solution being of primar
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interest! are unstructured around the peptide. In other wo
hydration effects due to structured water around the pep
is explicitly modeled@35# as an additional constraint type.

2. Generating the complete basis set

With Eq. ~26! at hand, what remains is to generate t
complete basis set of vectors in the product space. Thi
done during the process of constructing the transfer matri
The procedure for generating the transfer matrices,T, S, R,
and Q begins by considering all eight possibilities for th
starting product space vector. Then propagation to all p
sible next triplets is performed. Each distinct vector that
created defines another basis vector. For each basis v
that was not previously generated, it is propagated to
possible next triplets. Eventually the same vectors conti
to be generated by recursively considering all vectors
indicating a complete basis set is formed. It is worth me
tioning that the product space is ergodic, in the sense
starting from any vector representing a triplet state of
peptide chain, any other vector can be reached by some n
ber of transfer matrix multiplications. In some cases, t
number can be quite long, depending on the size of the tra
fer matrix. A priori, the number of distinct product spac
vectors is not known because the number of local rigid
states must be calculated using the rigidity propagation r
In Table III the dimensionM of the product vector space i
listed for several choices of rank orderings. A large mat
size is an indication of the long-range nature of rigidity th
manifests itself as molecular cooperativity.

C. DCM results compared to Monte Carlo simulation

The transition from a rigida-helical state to a flexible coi
state is characterized by helix content, which serves as
order parameter. The helix content is defined as the ave
fraction of amino acids in the chain havingf andc dihedral
9-14
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NETWORK RIGIDITY AT FINITE TEMPERATURE: . . . PHYSICAL REVIEW E 68, 061109 ~2003!
angles ofa-helix geometry. The conformational state of th
first and last amino acids is explicitly taken into accou
Helix content is given by the number of amino acids in t
a-helical conformation divided by the number of amino a
ids in the chain. Applying standard transfer matrix metho
helix content and specific heat are numerically calculated
any specified set of model parameters. Using simulated
nealing methods, the DCM parameters were optimized to
to Monte Carlo~MC! simulation data@36# for polyalanine of
length 10 in both gas phase~no solvent! and model-water
solvent 1, as well as MC simulation data@37# for chain
lengths of 10, 15, 20, and 30 in model-water solvent 2.

The DCM parameters describing the backbone dof fo
homogeneous peptide in solvent include$Va , da , Vc , dc %.
Since the amino acids located at the N and C termini
exposed to solvent differently, it is expected that the ba
bone parameters for the first and last amino acids shoul
modified. To keep the number of model parameters to a m
mum, the set of parameters given by$Va8 , da8 , Vc8 , dc8% are
used for both the N and C termini. Besides these eight
rameters describing dihedral angle characteristics along
backbone, 17 parameters describe hydrogen bonding. To
tain a more manageable number of model parameters, m
hydrogen bond parameters are considered to be degene
where it is assumed that~1! Ucca5Ucac5Uacc , ~2! Ucaa
5Uaca5Uaac , ~3! gcca5gcac5gacc , ~4! gcaa5gaca
5gaac . This simplification reduces the number of hydrog
bond parameters to nine. Taking advantage of the arbitr
ness in absolute energies and entropies, the parametersgaaa ,
U0 , Va , and Va8 can be preset without affecting the hel
content or the specific heat. Therefore, all backbone dof
fully described by 13~81924! DCM parameters.

Fitting the DCM to MC simulation of polyalanine re
quires additional parameters to account for the flexibility
the alanine side chain. The side chain of alanine consist
one dihedral angle between the Ca and Cb atoms as shown
in Fig. 6~b!. An additional torsion constraint type was a
plied to this single side chain dihedral angle. The side ch
torsion constraint is partitioned into two geometrical bin
Only differences in energy and pure entropy between the
states are required, which are characterized by (Vs , ds).
Since no interactions are considered between an alanine
chain with the backbone or other side chains, the value
(Vs , ds) have no affect on helix content, but do affect sp
cific heat. Another fitting variablecb ~not a model parameter!
is introduced to represent a constant base line for the spe
heat. The variablecb is required because the DCM is define
at a coarse-grained level, and as such it cannot accoun
residual energy fluctuations.

In total, 16 variables are to be determined by fitting
helix content and specific heat data generated by MC si
lation @36,37#. Although each DCM parameter has a physic
basis, 16 variables create the unfortunate problem that h
content and specific heat can be simultaneously fitted wi
multitude of excellent best-fit solutions. This over parame
zation can be quickly avoided, however. An important asp
of the DCM is that although many parameters have b
initially generated when the set of constraint types were
fined for the helix-coil system; there is no size dependen
06110
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Furthermore, the number of parameters grow slowly wh
fitting to different solvents because no solvent dependenc
assumed for~1! intramolecular hydrogen bond paramete
~2! backbone dihedral angle parameters not depending
coil conformations,~3! side chain dihedral angle paramete
and ~4! the specific heat base line.

The cohort of MC data allows 12 curves to be fitted
multaneously. Superscriptsg, 1, and 2 are used to, respe
tively, refer to gas phase and model-water solvents 1 an
Both model-water solvent 1 and 2 refer to the MC data g
erated using the ECEPP/2 force field@38#. Initially, it was
assumed that the model-water solvent of both simulati
could be treated identically, since both groups used the s
force field. However, as shown in Fig. 8 there are sufficie
differences between the chain length ten data to war
treating them asdifferent model-water solvents. Between the
two model-water solvents, 10 solvent independent para
eters are in common and~515! solvent dependent param
eters are required. Including the gas phase data requir
more solvent dependent parameters. In total, 25 fitting
rameters to 12 distinct curves eliminates overfitting.

FIG. 8. The ~a! helix content and~b! specific heat from two
Monte Carlo simulations are shown. The deviation between the
simulation data for chains of length 10 creates an intrinsic error
prevents us finding a ‘‘good’’ fit when both results are treated a
single solvent type. Ignoring these deviations makes the meanin
goodness not sufficiently restrictive, which allows too ma
‘‘good’’ parameter solutions. Instead, these data are treated as
different solvents, where squares and circles represent model-w
solvents 1 and 2, respectively.
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TABLE IV. Listing nine solvent independent parameters. Units of energy is in kcal/mol, and pure e
pies are dimensionless. The numbers with three digits represent a typical best-fit solution, which we
to generate Figs. 9–12 and 14. The numbers directly below these are the averages obtained over eigh
simulated annealed fitting solutions, including standard deviations for statistical errors. In addition to
DCM parameters, the specific heat base line was considered solvent independent and was g
0.001 33 kcal/(mol K) with average and standard deviation given as 0.001460.0001 kcal/(mol K).

aaa aca cac ccc

Uxyz 24.637 22.827 22.339 0.000a

24.9560.39 23.1160.32 22.5660.33 0.000a

gxyz 2.000a 2.149 2.760 2.917
2.000a 2.1960.07 2.8160.04 2.9960.12

Va da Va8 da8 Vs ds

0.000a 2.656 0.000a 2.000a 1.590 3.614
0.000a 2.5660.24 0.000a 2.000a 1.5760.13 3.3860.15

aArbitrarily fixed parameters.
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Interestingly, it was found~from several good best fits!
that some parameters are consistently in close proximit
one another. A greater fitting error was exchanged fo
maximum reduction of free parameters@39#. Specifically, it
was possible to obtain good fits when forcing different p
rameters that were found in close proximity to be equal. T
results in demanding~1! dc

15dc
25dc

g , ~2! Vc
15Vc

g , ~3! Vc8
1

5Vc8
2 , ~4! dc8

15dc8
2 and ~5! U0

25U0
g—as suggested by th

unconstrained fits. With this reduction, 19 free parame
were used to fit 12 distinct curves simultaneously.

The results of the simulated annealed best fits are give
Table IV for solvent independent DCM parameters, a
Table V for solvent dependent DCM parameters. Figure
and 10 respectively, show the fit of helix content and spec
heat for both gas phase and model-water solvent 1. Fig
11 and 12, respectively show the fit of helix content a
specific heat for all chain lengths in model-water solvent
Good fits to helix content were achieved for all six datase
with the chain length of 30 in model-water solvent 2 sho
ing greatest deviations in the helical phase. Likewise, the
to specific heat were in remarkably good quantitative agr
ment, considering that the DCM parameters are taken as
perature independent over a 400 K temperature range. M
over, employing temperature dependent parameters app
unnecessary for removing systemic error, because it ca
attributed to the oversimplified model of representing
peptide-solvent hydrogen bonding as asinglestate. Overall,
the minimalist network rigidity model has successfully ca
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V. DISCUSSION

The toy models in Sec. III and the helix-coil transition
Sec. IV demonstrate how generic rigidity calculations a
used to construct a partition function at finite temperatur
Each framework in the ensemble is weighted by a conform
tional degeneracyet that depends on the type of constrain
present and their specific placement relative to one anot
Effectively, the conformational degeneracy represents
free volume available to a particular framework. It has lo
been recognized@40# that free volume plays an importan
role in both phase change and relaxation in structural glas
In the DCM, free volume is quantified byt(F), which de-
pends on the strongestindependentconstraints that limit mo-
tion. A direct connection between free volume and the deg
of mechanical flexibility is established through netwo
rigidity—an inherently long-range cooperative interactio
Although the importance of rigidity in the conceptual unde
standing of structural transitions is not new, the DCM allo
the role of network rigidity at finite temperatures to be c
culated quantitatively.

In some respects the DCM is similar to a normal mo
analysis in thatentropies are additive over independent d
grees of freedom. If the system of interest can be well ap
proximated as a network of coupled harmonic oscillato
then the normal modes define an appropriate set of inde
IV.
TABLE V. List of five solvent dependent DCM parameters per solvent type. The same units and notation are used as in Table

U0 Vc dc Vc8 dc8

Gas 20.399 20.321 3.603 21.344 4.034
20.6760.34 20.3560.08 3.5860.09 21.1860.22 3.6260.25

Solvent 1 21.154 20.321 3.603 23.095 3.523
21.4060.33 20.3560.08 3.5860.09 22.7360.18 3.5560.14

Solvent 2 20.399 20.857 3.603 23.095 3.523
20.6760.34 20.8760.09 3.5860.09 22.7360.18 3.5560.14
9-16
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dent coordinates. However, normal mode analysis app
to the soft condensed phase is subject to difficulties beca
of anharmonic potentials@41# that limit the range of validity
over the assumed harmonic motions. In the DCM,
‘‘strength’’ of a constraint is inversely proportional to it
free volume quantified by a pure entropy. An extreme
weak constraint having a large free volume will pose
effective restrictions on conformational freedom. Althou
normal mode analysis is not intrinsically suited to deal w
bonds breaking and forming via thermal fluctuations,
self-consistent phonon theory@42# has been used to accou
for breaking and forming of hydrogen bonds in prote
structure. Both the DCM and normal mode analysis of
approximation schemes, but from opposite directions.
example, soft anharmonic~or flat! potentials are easier t
deal with in the DCM because they require less geometr
partitioning.

The DCM explicitly accounts for fluctuating topologica

FIG. 9. Best fit to helix content for gas and model-water solv
1, obtained by simultaneous fitting 19 parameters to the coho
MC data.

FIG. 10. Best fit to specific heat for gas and model-water solv
1, obtained by simultaneous fitting 19 parameters to the coho
MC data.
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constraints, allowing a global picture to emerge in und
standing structural self-organization. From the three work
examples presented, we observe the following.

~1! The effectiveness of a constraint in changing the fr
energy of the system depends on temperature and its loca
in relation to all other constraints.

~2! Molecular cooperativity derives from competition b
tween frameworks having different energetic and entro
contributions. More generally, a change in thermodynam
conditions ~temperature, pressure,pH, etc.! can lead to a
global rearrangement of optimally well placed constraints

~3! The most probable microstates will often correspo
to a characteristic pattern of constraints, manifesting itsel
structural self-organization. For example, in the helix-c

t
of

t
of

FIG. 11. Best fit to helix content for model-water solvent
obtained by simultaneous fitting 19 parameters to the cohort of
data. The large deviation seen in the chain of length 30 is a
acceptable level when the trustworthiness of the MC data in
helical phase itself is factored in.

FIG. 12. Best fit to specific heat for model-water solvent
obtained by simultaneous fitting 19 parameters to the cohort of
data. A systematic fitting error can be seen, where the DCM~as
presented here! predicts too fast an increase in the maximum pe
as a function of chain length.
9-17



m

dit
re
er

on
n

on
o

50
ch

el
a
n
ls

tfu
o

ra
on
iti
he
M
e
ll
t

it
p

e
-

s

ed

a
e

e
to
ice
lic

nt

r

13
, as
ion
ed
are

s a
-

ined
f a
r-

r in
ting

ee-
lix

u-

gth
ms
ary
m-
y-
ent:
of
ons
tally,
in

e
-
ork
un-

ter
epa-

in
rom

JACOBSet al. PHYSICAL REVIEW E 68, 061109 ~2003!
transition, mechanical frameworks switch character as so
constraint types tend to break (a-helical torsion constraints
and backbone hydrogen bond constraints! while others tend
to form ~coil torsion constraints!. This type of structural self-
organization has been produced in athermal network rigi
models@43# applied to covalent glass networks, where
dundant constraints were suppressed to avoid strain en
In other work to be published elsewhere@35#, hydration ef-
fects are included in the DCM. Structured water around
hydration site is considered to impose another type of c
straint on the peptide, where it is enthalpically favorable a
entropically unfavorable. Under certain thermodynamic c
ditions, cold denaturation occurs as the character of c
straint type and pattern changes.

A. The helix-coil transition

The helix-coil transition has been studied for nearly
years@44,45#. For a simple statistical mechanical approa
the Zimm and Bragg~ZB! @29# and Lifson and Roig~LR!
@30# models are commonly used. The ZB and LR mod
share two types of parameters—referred to as nucleation
propagation parameters. Only two- and three-dimensio
transfer matrices are required for the ZB and LR mode
respectively@46#. Without a doubt, the application of the LR
model to explain experimental data has been very frui
over the years. The question then arises, why use the m
complicated DCM when the traditional LR model will do?

The DCM clearly makes a distinction between a coope
tive process governing a structural transition to that of a n
cooperative process that happens to have a sharp trans
A true signature for the degree of cooperativity is in how t
transition temperature depends on chain length. The
simulation data from Y. Penget al. @37# shows a large degre
of cooperativity, as the transition temperature dramatica
increases by 130 K when increasing chain length from 10
30. The DCM is able to capture this degree of cooperativ
without requiring temperature or size dependent model
rameters.

For comparison, the LR model was also fitted to mod
water solvent 2 MC data@37#. LR relates the so called nucle
ation parameterv and the propagation parameterw to partial
configurational integrals defined by coarse-grain section
dihedral angle space~helical or coil conformations! along the
backbone. These dimensionless parameters are expect
be functions of temperature, where2kTlnv and 2kTlnw
represent microscopic component free energies, and
treated phenomenologically@47#. The LR parameters can b
written in a form similar to the DCM, wherev5e2dv and
w5e2dwe2bVw. Here the parameters$dv , dw , andVw% are
taken as temperature independent, and fitted to the four h
content curves. Note that thev parameter is assumed here
be temperature independent, following common pract
Since the LR model as commonly invoked does not exp
itly account for end effects, two additional parameters~not
model parameters! are required to account for helix conte
base lines.

Helix content for chain lengths 10, 15, 20, and 30 we
individually fitted with the LR-model, each with five fitting
06110
e

y
-
gy.

a
-

d
-

n-

,

s
nd
al
,

l
re

-
-

on.

C

y
o
y
a-

l-

of

to

re

lix

.
-

e

parameters, requiring a total of 20 parameters. Figure
shows the simulation data for chain lengths 10 and 30
well as the best fit for each size. In addition, the predict
for helix content for chain lengths 30 and 10 using the fitt
parameters from chain lengths 10 and 30, respectively,
shown. The LR model in its three parameter form doe
very good job in fitting to each helix content curve. How
ever, as Fig. 13 clearly shows, the fitted parameters obta
for one size cannot be used to predict helix content o
different size.The LR parameters are inherently nontransfe
able because they depend on the size of the system.Although
the sharpness of the helix content curve is accounted fo
the so called nucleation parameter, the mechanism crea
the cooperativity is completely missed in this simplest thr
parameter form. To be fair, a simultaneous fit to all four he
content curves was attempted using 12 parameters~four
model parameters and eight base line parameters!. The extra
LR-model parameter was introduced by lettingv
5e2dve2bVv. Not surprising, no good simultaneous fit sol
tions were possible.

Bierzynski and Pawlowski~BP! @48# show that the nucle-
ation parameter is required to be a function of chain len
due to the long-range character of helix formation. It see
unsporting to us to predict a helix with parameters that v
with chain length. Furthermore, BP demonstrate that a co
mon implementation of the LR model predicts thermod
namic state functions that are erroneously path depend
giving slightly different results depending on which end
the peptide the computation begins at, and wrong predicti
when prenucleated peptides are considered. Fundamen
the so called nucleation parameter is ill defined for use
calculating a partition function@48#, and its widespread us
has created misconceptions@49#. The DCM avoids these is
sues. The DCM has long-range character through netw
rigidity, thus recourse to length dependent parameters is
necessary.

FIG. 13. The solid lines through the MC data for model-wa
solvent 2 show the best five parameter fit for each size chain s
rately using the standard LR model. The dashed line on the~left,
right! corresponds to the LR prediction of helix content for a cha
of lengths 30 and 10 using the best-fit parameters obtained f
chain lengths 10 and 30.
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NETWORK RIGIDITY AT FINITE TEMPERATURE: . . . PHYSICAL REVIEW E 68, 061109 ~2003!
The DCM is actually very similar to the LR model. Bot
models are based on parameters that can be derived
local microscopic free energies. The difference is that
DCM attempts to include nonlocal cooperative interactio
explicitly by using generic rigidity calculations to accou
for the nonadditivity of entropy. Yet it is possible to constru
a DCM where there is very little entropic competition b
tween constraint types, such as given in column a in Ta
III. In this case, the DCM for a helix-coil transition isiden-
tical to thegeneral formof the LR model. It is worth noting
that the two commonly used LR parameters@47# (v,w) are
only a subset of 16 parameters that must be defined for e
possible type of propagation~i.e., aac → aca, and 15
more!. Lifson and Roig simplified the model considerably
solve it analytically. Unfortunately, the advantages of simp
fying the mathematical form of the model has lead to no
transferability of parameters that have created many inc
sistencies in the literature@50#. With modern computers it is
no longer necessary to invoke the two-parameter form of
LR model. The disadvantage of retaining the two-parame
form is that the parameters become strongly dependent f
tions of temperature@36,37,51# and chain length@36,37,48#.

B. Solvent effects on the helix-coil transition

The DCM parameters naturally divide into two categor
that are expected to be either weakly or strongly depend
on solvent conditions. Moreover, the results obtained by
ting the DCM to MC simulation data indicate the essen
physics of the helix-coil transition for polyalanine is we
described by the ten solvent independent parameters in T
IV and 5 solvent dependent parameters given in Table V.
these DCM parameters Fig. 14 shows the affect of solven
the helix-coil transition. Comparing gas phase and mod
water solvents 1 and 2 with each other, we see that the t
sition temperature and the sharpness of the transition ca
substantially modified. Not surprising, the gas phase tra
tion temperature is elevated with respect to model-water
vent, because alternate hydrogen bonds from backbon
solvent cannot replace intrahydrogen bonds as they br
The greater energy cost to unravel the rigid helical struct
requires a higher transition temperature where gains in c
formational entropy can begin to compensate. It is also s
that the transition temperature as a function of chain len
for model-water solvents 1 and 2 are very similar, as o
might expect if the differences shown in Fig. 8 are viewed
systematic uncertainties, rather than two different solven

The sharpness of the transition, as characterized by
maximum in specific heat, is found to depend on the parti
lar combination of solvent dependent parameters. With
spect to the gas phase, from Fig. 14 it is seen that the t
sition sharpens considerably for model-water solvent 1,
remains virtually the same for model-water solvent 2. Th
results correctly reproduce the observations of the auth
that generated the original MC simulation data@36,37#. Of
course, model-water solvents 1 and 2 are actually the sa
albeit systematic uncertainties shown in Fig. 8. This unc
tainty and the differences seen in Fig. 14 are the resul
differences found in parameters (U0 andVc), listed in Table
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V. Therefore, it is easy to interpolate between the two diff
ent MC results within a two-dimensional parameter spa
The interpolation was done by fitting only to model-wat
solvent 2 data. LettingU0 range between21.4 and20.4
kcal/mol, a one-parameter fit to obtain the optimalVc was
performed, while holdingU0 and all other 17 parameter
given in Tables IV and V fixed. It was found that the DCM
model predictions smoothly change as a function ofU0 . In
Fig. 15, the helix content is shown for model-water solve
but now the uncertainties in the parametersU0 and Vc en-
compass both MC simulation results for the chain length
10. Chain lengths of 10, 15, and 30 are shown in Fig.
which gives some indication of the true uncertainties in he
content for model-water solvent~using the ECEPP/2 force
field!.

In the DCM presented here, solvent effects on the he
coil transition were described well using just five paramete
A better description is possible by including more states r
resenting the peptide to solvent interactions. In other w
@35# hydration constraints are included, for example. Furth
more, inverted transitions from coil to helix as temperatu
increases from low to high can be described.

C. Molecular cooperativity

Admittedly, the DCM requires more effort than the L
model to describe the helix-coil transition. The benefit of th

FIG. 14. The~a! transition temperature and~b! maximum value
of the specific heat as a function of chain length for gas phase
model-water solvents 1 and 2. The parameters used in gener
these curves are given in Tables IV and V.
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JACOBSet al. PHYSICAL REVIEW E 68, 061109 ~2003!
additional labor is that the final parametrization for und
standing the nature of competing microscopic interacti
becomes considerably less complicated in the end. In
ticular, the DCM offers the potential of having transferabili
of parameters. Parameter transferability is intimately tied
the proper summation of component entropies, which
quantified in the DCM via the long-range underlying m
chanical interaction between constraints. From the fit
model parameters~given in Tables IV and V! it is seen from
column i in Table III that a 2443244 transfer matrix was
necessary to describe the MC simulation results. The la
size of the transfer matrix is an indication of a high degree
cooperativity among the hydrogen bonding along the ba
bone.

In exchange for the nontransferable nucleation param
to characterize the degree of cooperativity, it is characteri
by a rigidity correlation length in the DCM. The rigidity
correlation length gives an indication of how far away fro
a point of interest that perturbations in constraints will le
to little affect at the point of interest. It can be roughly es
mated at the helix-coil transition by locating the crosso
point where the shift in transition temperature becomes sm
as chain length increases. From Fig. 14, the rigidity corre
tion length is estimated to be'40 amino acids for both ga
and model-water solvents, also corresponding to the infl
tion point on the curves for maximum specific heat. T
correlation length is quite long considering that in on
dimension thermal fluctuations severely reduce the effect
ness of the long-range nature of network rigidity.

FIG. 15. Large graph: The dashed and solid curves show
dictions for chain lengths 10, 15, and 30 that are obtained i
one-parameter best fit forVc when settingU0520.4 and U0

521.4 respectively. The circles and squares show the result
MC simulation from Penget al. @37# and Okamoto@36#, respec-
tively. Inset: The solid line shows the best-fit value ofVc along the
ordinate as a function ofU0 along the abscissa. The circle an
square indicates theVc andU0 values used to generate the dash
and solid lines in the large graph. Due to the intrinsic uncertainty
the MC data, perhaps the best DCM parameter estimates arU0

520.900 kcal/mol andVc520.485 kcal/mol, which split the dif-
ferences roughly in to half.
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The primary motivation for introducing the DCM is t
study flexibility and stability in proteins@53#. The concept of
a rigidity correlation length applies to any topology of co
straints, such as found in globular proteins. The DCM can
used to directly study the affect of hydrogen bonds on p
tein stability, which has been difficult to ascertain expe
mentally and theoretically. Not only does the answer dep
on the specific thermodynamic conditions, but also on
particular hydrogen bond in question. Stability questions
particularly difficult to answer when there is a high degree
cooperativity in a molecular system. Proteins are particula
interesting, where it has been suggested that the folding p
way is encoded in the hydrogen bond network@17,18#. In
addition, mechanical stability probed by single-molecu
force spectroscopy appears to depend on the kinetic stab
of the hydrogen bond network@52#—also a cooperative pro
cess that can be addressed within a DCM. More gener
the DCM describes protein folding as a manifestation o
structural self-organization caused by the topological opti
zation of constraint placement. Indeed, all model calculati
presented here suggest that the most probable framew
correspond to well defined structural units~such as second
ary structure, protein domains, etc.! that change characte
under different thermodynamic conditions.

VI. CONCLUSION

The DCM generalizes theT50 generic rigidity calcula-
tion to finite temperatures by quantifying constraints w
energetic and entropic characteristics. The effectiveness
constraint strongly depends on its type and where it is pla
in the network in relation to all other constraints. Gene
rigidity is then used as an underlying long-range mechan
interaction between constraints, providing the mechanism
the nonadditive property of component entropies. The DC
accounts for fluctuating topological patterns of constra
placements. From a computational point of view, the netw
rigidity calculations are easy to implement by invoking fa
graph algorithms that are available in two dimensio
@12,14# for general networks and in three dimensions@16# for
bond-bending networks.

In this paper, a DCM applied to the helix-coil transitio
was considered in detail and compared to the Lifson-R
model. Thermodynamic state functions are calculated
actly, without recourse in using a nucleation parameter. T
helix-coil transition in peptides is special only in that it ca
be exactly solved as a one-dimensional system using a tr
fer matrix method. Our use of the DCM has been to coa
grain into the smallest number of states necessary to des
the physics at hand. For example,a helix and coil backbone
states are used in modeling the helix-coil transition. In t
work, 12 different thermodynamic response functions w
described well by the DCM using 20 parameters that
independent of temperature and chain length. The entro
parameters indicate that the degree of cooperativity exte
over '40 amino acids.

As a practical application, the DCM may be able to pr
dict helix formation in proteins with parameters derived fro
helix-coil transition studies. The DCM is readily scalable
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include more types of interactions, where far more backb
states could have been introduced such as 3-10 helixb
sheet,b turn, hydrated or not hydrated, buried or surfa
exposed. If the DCM parameters are found to be transfer
~as we expect! flexibility and stability studies on protein
will be far more feasible, because the DCM gets more ph
ics out with fewer parameters. The DCM has the potentia
gain a better understanding of these issues from a mecha
point of view. More generally, the DCM gives a descriptio
of a coarse-graining procedure to describe physical syste
nd
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Its applicability goes beyond biopolymers, offering a ne
paradigm not previously available.
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