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Network rigidity at finite temperature: Relationships between thermodynamic stability,
the nonadditivity of entropy, and cooperativity in molecular systems
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A statistical mechanical distance constraint mad@®CM) is presented that explicitly accounts for network
rigidity among constraints present within a system. Constraints are characterized by local microscopic free-
energy functions. Topological rearrangements of thermally fluctuating constraints are permitted. The partition
function is obtained by combining microscopic free energies of individual constraints using network rigidity as
an underlying long-range mechanical interaction, giving a quantitative explanation for the nonadditivity in
component entropies exhibited in molecular systems. Two exactly solved two-dimensional toy models repre-
senting flexible molecules that can undergo conformational change are presented to elucidate concepts, and to
outline a DCM calculation scheme applicable to many types of physical systems. It is proposed that network
rigidity plays a central role in balancing the energetic and entropic contributions to the free energy of biopoly-
mers, such as proteins. As a demonstration, the distance constraint model is solved exactlyfbeltkego
coil transition in homogeneous peptides. Temperature and size independent model parameters are fitted to
Monte Carlo simulation data, which includes peptides of length 10 for gas phase, and lengths 10, 15, 20, and
30 in water. The DCM is compared to the Lifson-Roig model. It is found that network rigidity provides a
mechanism for cooperativity in molecular structures including their ability to spontaneously self-organize. In
particular, the formation of a characteristic topological arrangement of constraints is associated with the most
probable microstates changing under different thermodynamic conditions.
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[. INTRODUCTION microscopically be in a floppy or rigid state, having a well
defined rigidity percolation threshold. Experimen,5]
Network rigidity deals with a system of particles sub- have shown that many physical properties in covalent glasses

jected to a set of constraints. Depending on the number an@re related to the rigidity transition. In spite of the unique
position of these constraints, the system will have a residudnsight that the theory of network rigidity offers, it is unfor-
number of independent degrees of freedom. A simple way ofunate that it still remains a relatively obscure subject. An
characterizing the degree of mechanical stability of a giverRuthoritative source on concepts of rigidity and its broad
framework is to ignore the way constraints are positioned@n9¢€ of interdisciplinary applications can be found in Ref.
and to treat all constraints as independent. In this approximgr6 :

tion, the number of independent degrees of freedom govern- Nketworlk rligti_dity exhibti_ts Ig_r]lfg-r?tnge_ chgratct@f‘r'] that th
ing internal motions,F, in the framework is given by Makes calcuiating Properues ditticult using brute force meth-

. . . ods on elastic networkg8]. However, the mathematics of
=dN—N;—d(d+1)/2, whered is the dimension of the sys- _. o ’ . .
tem, N is the number of verticed\N. the number of con- first order graph rigidity{9—11] referred to in the physics

; d the trivial riaid bod . f th . literature asgeneric rigidity greatly simplifies calculations
straints, and the trivial rigid body motions of the entire [12,13. Atomic coordinates are not required in generic rigid-

framevv_ork subtracted out_. _Thfa use of consj[raint counting t‘?ty. Only the connectivity property of the network is impor-
determine structural stability in macroscopic _s_ystems date{sdnt, making it possible to calculate many static mechanical
back to Maxwell[1]. Nearly 25 years ago, Philig2] real-  properties exactly using an integer based combinatoric algo-
ized that constraint counting is applicable to microstructur&ithm. In particular, the exact number of internal independent
in covalent glasses by treating central and bond-bendingegrees of freedom can be calculated, all rigid substructures
forces in covalent bonds as nearest and next nearest neighb@in be identified, as well as all correlated motions that
distance constraints. This simple global counting of concouple the network of rigid clusters. One such algorithm,
straints is commonly referred to as Maxwell counting, whichreferred to as th@ebble gameis available for general net-
may result in positive or negative values forA negativeF  works in two dimensiong14] and for bond-bending net-
indicates the network is overconstrained. Philipsqualita-  works in three dimensioni45]. A bond-bending network has
tively explained why covalent glass networks with low aver-the property that all angles between the central-force con-
age coordination form more easily. Shortly afterward, thestraints that stem outward from an atom are fixed. In addi-
notion of rigidity percolation was introduced by Thorf#d,  tion, dihedral angles can be constrained.
where depending on chemical composition a network would Covalent glasses are ideal systems to model as a
quenched bond-bending network, where there is a natural
separation between hard-strong fordeentral and bond-
*Corresponding author. Electronic address: donald.jacobs@csubending forceps and soft-weak forcegtorsional and non-
edu; URL: http://www.csun.edu/dj54698 bonding forces The large gap in force strength justifies the
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treatment of covalent glass networks at room temperature tduced that enables the partition function to be calculated in
be modeled as a mechanical network—essentially=s0  terms of an ensemble of mechanical frameworks. After the
calculation. Recently, constraint counting has been applied teoncept of a constraint is generalized to contain thermody-
protein structur¢16] where covalent bonds, salt-bridges, hy- namic information, each mechanical framework of con-
drogen bonds and torsional forces on resonant b(ﬁﬂ‘ds straints prOVides an Underlying interaction that COUples en-
peptide bond, for examplevere modeled as mechanical dis- thalpic and entropic terms appearing in Boltzmann factors. In
tance constraints. By treating the folded protein structure as 88¢- Il two simple two-dimensional toy models are worked
quenched mechanical bond-bending network, flexible an@ut to illustrate the details |nv_olved in a palculatlon. As a
rigid regions were identified and found to correlate well with final example, an exact solution of a distance constraint
biologically relevant motions. Network rigidity in proteins Model for homogeneous peptides that undergadrelix to
has also been found to correlate with protein folding path_con transition is conS|dereq in Sec. IV. In Sec. V, the regults
ways[17,18. The success of thE=0 calculations on pro- from all three models.are (_jlscusgca_d, a}nd the standarq Lifson-
tein structure suggest that the folded state of the protein acf80ig model for a helix-coil transition is compared with the
very much like a mechanical machine under the condition®CM. Conclusions are made in Sec. VI.
responsible for the native fold to be thermodynamically
stable. This result is reassuring, as it has been well appreci-
ated that protein function is very precise in its response to
molecules it encounters having a high degree of specificity Lord Kelvin said, “I never satisfy myself until | can make
that makes it appear to respond like a mechanical machina mechanical model of a thing. If | can make a mechanical
This empirical observation motivated the use of network ri-model | can understand it!” The DCM that will be intro-
gidity calculations aff=0 in the first place. In spite of the duced and carefully discussed in the following sections
success that many mechanical aspects of a protein fold carlosely adheres to Kelvin's belief. The objective is to use a
be quantitatively characterized, it is also well knol®,20)  mechanical model to understand thermal stability in biopoly-
that protein stability is a result of a delicate balance betweemers(the focus of this paperas well as other systems such
many weak noncovalent interactions. In particular, enthalpi@s formation of chalcogenide glasses.
and entropic contributions must be part of the ledger of ac- The DCM begins by representing a macromolecule and
counts to understand protein stability. interactions therein as a mechanical bar-joint framework. For
The study of protein stability has motivated this work in a single static structure, generic network rigidity properties
generalizing the concept of network rigidity to be applicablecan be calculated exactly using a graph-algorithm that does
at finite temperatures in physical systems having interactionsot depend on geometrical coordinates of atoms, but only on
that do not divide into strong and weak comparedkin thetopologicalarrangement of distance constraints. Network
When viewing a protein as a mechanical network, two seritigidity is used here as an umbrella phrase to refer to the
ous problems immediately become apparent. First, hydrogefollowing mechanical properties of a bar-joint framework:
bonds are continually breaking and forming consistent with(1) Identification of all rigid clusters, where each distinct
thermal fluctuations and, second, hydrogen bonds have @uster of atoms forms a rigid body2) identification of all
wide variety of strength that is dependent on their local enoverconstrained regions, within which elastic strain energy
vironment[21,22. In prior work an energetic cutoff criterion resides;(3) identification of all flexible regions, wherein the
[16,23 was introduced to determine a set of hydrogen bondsitomic structure can continuously deform; ddgidentifica-
to model as a constraint. As the energy cutoff was varied, &ion of all independent constraints and degrees of freedom.
hierarchical analysis of rigid clusters was used to character- These basic mechanical properties are quite useful in
ize the protein structure. Unfortunately, the energy cutoffcharacterizing a single static structure. In this paper, we will
was not directly related to thermodynamic stability, nor thegeneralize the mechanical descripti@i T=0) by employ-
entropy from molecular flexibility was considered, which ing an ensemble-based approach to account for thermody-
limited the range of validity of th€T=0) rigidity model to  namics. Thermodynamics determines the fate of a biopoly-
be near the native structure. These problems can be resolvetkr, albeit kinetic detours and traps. For example, a protein
by modeling microscopic interactions as distance constraintsjnfolds when an increase in conformational entropy out-
where each distance constraint represents a free-energy comeighs a gain in enthalpy from an associated loss of many
ponent within the system. Assigning free-energy contribufavorable intramolecular noncovalent interactions. Further-
tions to specific types of interactions is commonly done tomore, a functional protein in the native state is stable against
interpret experimental measurements and used in theoreticdlermal fluctuations through enthalpy-entropy compensation.
discussions on protein stabilifR4,25. However, the utility The DCM uses network rigidity as an underlying interac-
of such a decomposition is questionable because, in generaipn. Through nonlocal mechanical interactions, network ri-
it is not possible to obtain the total free-energy by simplygidity answers the question about which degrees of freedom
summing the free-energy componef@$]. It will be shown are independent, and directly relates to the nonadditivity of
that the free-energy of a system can be obtained from iteneasured component free energies. Although the total en-
free-energy components by employing network rigidity cal-thalpy is additive, the entropy is not. This nonadditive prop-
culations at finite temperature, which combines mechanicagrty of component entropies derives from not knowing which
and thermodynamic points of view. degrees of freedom in the system are independent or redun-
In Sec. Il a distance constraint mod@CM) is intro-  dant. However, generic network rigidity properties can be

II. DISTANCE CONSTRAINT MODEL
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calculated exactly with the pebble game by recursively addstraint consisting of thregairwise distance constraints. The
ing one constraint at a time to build a framework. As con-enthalpy and entropy contributions from a specific type of
straints are added, some atoms will become part of a rigiéghteraction characterize the corresponding constraint type.
cluster. A new constraint is redundant when added to an alfherefore, letAH,, (AS); be the change in enthalpien-
ready rigid region and independent when it removes a degreteopy) that quantifies constraint tygewhen it is added to a
of freedom. All distance constraints are treated the same iframework. Over the ensemble of all accessible atomic con-
the pebble game, and there is a clear distinction between figurations, many different geometries between atoms will
constraint and degree of freedom. potentially result in a vast number of constraint types that
In the DCM, interactions are represented as distance comaust be introduced. However, as demonstrated below, a re-
straints, each characterized by an enthalpy and an entropyarkably few number of constraint types will often be suf-
contribution assumed to depend only on local structuraficient to quantitatively capture the essential physics.
properties. Constraints are quantified as being strong or weak The microstates of a system are specified in terms of me-
based on their entropy contribution. A greater or lesser enehanical frameworksF where each framework uniquely de-
tropy contribution implies a weaker or stronger constraintfines thetopology of all distance constraintyhe DCM is
The key aspect of the DCM is that stronger constraints mugbuilt upon the idea that each framewafkhaving a specific
be placed in the network before weaker ones in order td@opology represents a mini ensemble of bar-joint networks of
generalize network rigidity to finite temperatures. This leadsstrict distance constraints within the tolerance allowed by the
to a preferential ordering, which is implemented operation-geometrical coarse graining. One framework consists of
ally as the following. many possible atomic-coordinate realizations of strict dis-
(1) Sort all constraints based on entropy assignments itance constraints. However, because generic rigidity proper-
increasing order, thereby ranking them from strongest tdies are sought that do not depend on the geometrical details
weakest. of atomic coordinates, each realization in this mini ensemble
(2) Add constraints recursively one at a time using thehas exactly the same network rigidity properties. Thus, the
pebble game according to the rank ordering from strongest ttramework label F represents an ensemble of bar-joint
weakest, until the entire structure is completely rigid. frameworks sharing identical network rigidity properties that
The DCM is mathematically well defined and physically are calculated using strict distance constraints.
intuitive. The essential idea is that weak constraints allow The relation to thermodynamics can be made because a
more conformational freedom than do strong constraintstramework uniquely identifies a mini ensemble having con-
Stronger constraints take precedence in defining rigid strucstant constraint topology, enabling a free-energy, given as
tures because weaker constraints are more accommodating(F), to be meaningfully assigned. To this end, the total
Thus, a weak constraint acts like a degree of freedom relativenthalpy of a framework is given by
to a strong constraint. Consequentllge notion of a con-
straint and degree of freedom cannot be distinguished clearly _
once entropy price tags are introduceRlather, a quantitative AH(H= 2 AHN(F), @
measure for conformational entropy is obtained for the struc-
ture, whereas th&=0 style of constraint counting simply where N, is the number ofconstraintsof type t that are
regards the structure as completely rigid. In this way thepresent. By exploring all accessibéomic configurations
DCM provides a natural mechanism for enthalpy-entropyan ensemble of frameworKsach representing a distinct to-
compensation. For example, if by some fluctuation a strongology) is generated. The ensemble of frameworks partitions
constraint breakssuch as a hydrogen bondhere will be a  phase space into discrete parts, each having a constant en-
destabilizing gain in enthalpy, but also a compensating gaithalpy over a limited range of conformational freedom.
in conformational entropy as a weaker constraint substitutesherefore, the partition function is given by
The technical aspects and mathematical details of the DCM

are now addressed. Z=2 Q(F)e FAHX), )
]_‘

A. Relating thermodynamics to constraint topology where Q(F) is the conformational degeneracy of frame-

The DCM views a physical system at a coarse-grain levelork .
as defining a mechanical bar-joint framework. A framework The novel aspect of the DCM is that the conformational
is constructed from distance constraints that are used to reentropy, given byA S(F) =kInQ)(F), is obtained by adding
resent microscopic interactions. Each distance constraint deomponent entropies over independent distance constraints
fines an equation of the foriR=const, whereR is the dis- that are explicitly identified using generic rigidity. Simply
tance between a pair of atoms. A microscopic interactioradding component entropies oal distance constraints will
involving a group of atomgmore than twd can be modeled generally lead to a drastic overestimate (F). However,
by more than one distance constraint, where the collection dfientification of whether a distance constraint is independent
distance constraints between different pairs of atoms are siner redundant is not unique. The freedom in choosing which
ply referred to as @onstraint(without the worddistanceas  distance constraints are independent is akin to the freedom in
a qualifiey. A hydrogen bond is an example of a many bodychoosing an independent basis set of vectors to span a vector
interaction that will be modeled as a particular type of con-space. Consequently, the addition of component entropies
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over independent distance constraints will lead to multipleatoms under consideration within tlggh geometrical bin.
answers forAS(F) if based on arbitrary selections. There- The process of obtaining a free-energy decompositiéj
fore, an auxiliarypreferential selection criterioffior how to (the set ofA(_?,iq used in the modglis not unique because
choose the Optlmal set of independent distance constraints dﬁf‘ferent types of interactions will invo've one or more over-
required. The crucial part of the DCM is that it enforces alapping atoms. Also there will be unavoidable many body
preferential selection criterion that corresponds to the detelsffects, such as electrostatic interactions between the atoms
mination of theminimumpossible value oA S(F). _ of interest with all other atoms, including those in solvent.
. The total conformational entropy for framewo is g nonuniqueness of a free-energy decomposition can be
given by used as an advantage in the process of defining constituent
types of constraints.
AS(F) =2, ASIP(F), (3) An effective strategy in employing the DCM is to define a
t minimum number of constraint types with a limited number
of geometries that will yield a desired level of accuracy in

wherel ™ is the nu.mber of independedistance cpnstralnts predictions. For eachq, the enthalpy and entropy contribu-
of type t present in the framework as determined by thetions denoted asH' andAS can. in princiole. be deter-
preferential(p) selection criterion. The method for determin- a q Can, in principie,

ing linearly independent constraint equations involves buildMN€d self-consistently in lieu of not being unique. Self-
ing a basis set by iteration, where a new constraint equatioRNSIStency is satisfied when the free-energy assignment to
is checked for independence against the current basis set, §fall clusters of atoms used in defining constraint types
the new constraint equation is independent, then the basis sgily obey the preferential selection criterion. This means
expands. The procedure is continued until all distance confhat various clusters of atonifor example, those within an
straints in the framework are checked. The preferential sele@Mino acid or hydrogen bondlefine subsystems that are
tion criterion is defined aslistance constraints with lower teated in the same way as the full system. Knowing the
component entropies take precedence in the order that the§/€rmodynamic properties of a cluster of atoms allows con-
are checked for linear independendgy applying the pref- Straint types to be defined and characterized WM and
erential selection criterion in conjunction with exact con-AS;. Itis worth mentioning that, in principle, laierarchical
straint counting for generic rigidity, the change in Gibbs free-set of constraint types can be constructed iteratively by de-
energy for frameworkF is given as fining constraints with lowest component entropies first, and
in succession defining constraints with the next lowest com-
ponent entropy, etc.
AG(JT)ZAH(E_TAS(JT)BZ AG(F). (4) The procedure to determine the local thermodynamic
functionsAH'q, AS{q for all constraint types and their geom-

Only in the case thaall distance constraints in the frame- etries constitutes a preliminary step in the DCM. In principle,
work are independent wilAG(F) be equal to a straightfor- €xplicit calculations forAG'q could be made using accurate
ward sum over the component free energj@t(f) associ- physical theorieséi.e., quantum mechanical calculatic)ris-
ated with each constraint type. The partition function isvolving clusters of atoms within a coherent potential ap-
calculated as proximation scheme. This type of bottom up approach
should be tractable and the results would be very useful.
B _BAG(H) However, these difficult calculations can be sidestepped
Z_; € (5) (completely or in pajtby writing down the parametric form
of a microscopic free-energy function with empirically de-

in accordance to the standard form, except that each mfived parameters. The important outcomes are given as fol-
crostate corresponds to a generic mechanical framework lows.

made up of (infinitely strong holonomic distance con- (1) Interactions are modeled as constraints characterized
straints, and the ensemble consists of all topologically disby tWo quantitiesAH,, AS, that can be determined by the-
tinct frameworks. oretical means or fitting to large sets of experimental data.

(2) The DCM parameters can be expected to be transfer-
able between systems that are well described by the same set
of constraint types.

Meaningful thermodynamic properties are directly tied to  The DCM invokes a probabilistic interpretation that all
local atomic structure because of coarse graining over geaistance constraint realizations between atoms are uniformly
metrical bins. To reflect the geometrical aspect of the DCMdistributed within a geometrical bin. By allowing each atom
the indext is represented by two indicesq, wherei now  a finite amount of freedom, it is ensured that the framework
specifies the type of constraint andabels a specific geo- can be treated as generic. Although there will be configura-
metrical bin. For example, a hydrogen bond is a particulations that have atypical atomic positions, these will be of
type of interaction, but its strength depends on its local gezero measure. Therefore, the system is modeled as a collec-
ometry. The component free-energy of thth type of mi-  tion of generically placed holonomic constraints, for which
croscopic interaction is expressed as a free-energy functiomany mechanical properties can be calculated using exact
AG:q, which accounts for all atomic positions of the group of constraint counting algorithms. The connection to thermody-

B. Generic rigidity and nonadditivity of entropy
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namics enters into the rigidity calculation by determining thea kinetic process as the constraints in a particular framework
correct Boltzmann weight assignment to each mechanicare present all the time. Rather, the entropy loss from a con-
framework, which is related to the nonadditivity of compo- straint is concerned with itsffectivenesselative to all other
nent entropies. The selected set of independent constraintenstraints in the framework.

under the preferential selection criterion does not depend on

coordinates insofar that the same framework is maintained C. Quenched and fluctuating constraints

over alimited range of conformational freedormhis limited
range of conformational freedom is quantified by the total
entropy AS(F) which depends strongly on the topology of

The termquenched constraimtefers to a constraint type
that will be present among a particular group of atoms in all
distance constraints present in the system. frameworks of the ensemble. For example, over the tempera-

Calculating the exact value faxS(F) will unfortunately ~ tUre range of biological importance, covalent bonding be-
not be possible in the DCM. The preferential selection crite-'We€N atoms within a protein is modeled as a set of quenched
rion is enforced to obtain the best estimate for each frameeonstraints. Furthermore, the central and bond-bending
work. Fundamentally, overlap in phase space can occur whe@rces that make up covalent bonding are modeled by con-
two constraints are independent but not orthogonal. The distraints having microscopic free energies associated with a
rect result of adding component entropies associated witingle geometrical bin. The torsional force component will
only independent constraints is that less phase space will l@so be modeled by a quenched constréas the torsional
“double counted.” Therefore, adding component entropiesforce is always presenbut will have a microscopic free-
over independent constraints gives apper boundfor  energyAG,, with multiple geometrical binglabeled byq)
AS(F). The preferential selection criterion ensures the low-depending on the dihedral angle. A system modeled by a
est possible upper bound becausedtiengestistance con-  complete set of quenched constraints will generally be asso-
straints defined by the smallest entropies are taken as indgrated with an ensemble of frameworks because the enthalpic
pendent beforeweaker distance constraints having larger and entropic characteristics of distance constraints depend on
entropies. The utility of the DCM will depend on the degree|ocal geometry. In the extreme case where only one frame-
of accuracy in estimating conformational degeneracy. Noteyork is accessible, the DCM will not provide optimal accu-
that distance constraints not sharing atoms are orthogonalcy whereas normal mode analysis is more appropriate. For
and do not contribute in overcounting phase space. AlthougBxample, if a fcc solid is modeled using one central-force
the distance constraints that share atoms will not generally bgonstraint type, then the DCM is equivalent to the Einstein
orthogonal, by construction of a self-consistent hierarchicapodel.
series of constraints, phase space overlap between them- The termfluctuating constraintefers to a constraint type
selves locally is correctly taken into account. Therefore arthat may or may not be present among a particular group of
accurate)(F) can be expected by usingc@mplete sedf  atoms having a fixed geometry. When a fluctuating constraint
self-consistent constraint types. The phrase “complete set” iss present, it is associated with a microscopic free-energy
used to mean that for any position of atomic coordinaes, AG/ in the same way as a quenched constraint. However, a
framework is always defined such that after all constraintsqyctuating constraint is not strictly tied to geometry because
are placed it is rigid As more constraint types are defined, ajt may not be present. The DCM allows for fluctuating con-
framework becomes increasingly more overconstrainedstraints to account for degrees of freed¢uof) that are not
which can only lead to a better lowest upper bound. explicitly part of a system. For example, solvent dof couple
~ The preferential selection criterion has a simple physicatp protein atoms defining a system. The solvent-protein in-
interpretation. Each constraint that is added to a system cagractions are modeled as fluctuating constraints on the sys-
potentially reduce entropy. However, a redundant distancgm. In this way, hydration shells around protein atoms are
constraint does not reduce entropg7]. This is because modeled as fluctuating constraint types characterized by en-
when a constraint is added to a rigid region that is formed thaIpy, AH! | and entropyAS,, contributions that account
stronger constraints, the weaker constraint will accommodatg), the maqny body interactioﬁls. Even more basic is the hy-

the structural geometry dictated by the cohort of strongegogen bond. Hydrogen bonding is modeled as a fluctuating
constraint§28]. The strength of a constraifgtrong or weak  constraint becausd) the protein atom electronic dof are not

is tied to phase space volume. Therefore, a clear distinctiogxpncmy described and?) solvent dof compete with in-

between a constraint and degree of freedom is not possiblg.qmoelecular hydrogen bonding for a given geometry. Thus,
The_ rigidity calculation at finite temperature treats con-ihe pC provides a real-space description involving me-
straints and degrees of freedom on equal footing in the Sens§anical constraints, which directly accounts for fluctuating

that weaker constraints act as degrees of freedom relative P%/drogen bonding, such as that found in proteins and water.
stronger constraints. The entropy loss associated with an ’

overconstrained region is paid at a premium by the strongest
member constraints. Fortunately, the pebble game algorithm . .
[14,15 for determining distance constraint independence is The enthalpy and entropy contributiorYSH{q, AS{q as-
based on a recursive procedure of building a framework onsigned to the various constraint types are functions of tem-
constraint at a time. The new implementation only requiregerature, pressure, and other thermodynamic conditions deal-
using a presorted list of distance constraints from strongest tmg with the chemical environment, such gdd, ionic
weakest. It is worth noting that this algorithm does not modelkstrength, or whether the local geometry is in a hydrophobic

D. Temperature independent model parameters
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scopic Gibbs free-energy about some temperature of most
interest. Analogous to Ed1), the total energy of a frame-
work is given as

E(A)= 2  eqmy(F), (7)
{(a)j}

where 77141'(}7 equals(1,0) when thejth constraint of theth
type is present or not present within thh geometrical bin.
Analogous to Eq(3) the total pure entropy of a framework is
given as

(F)= 2 yhoh(P), (8)
{(ia)j}

where aiqj(f) is the number of independent distance con-
FIG. 1. (a) The torsion interaction within the backbone of an st_raints Wit_hin_thej_th constraint of the s_ystem, in_ acco_rda_nce
amino acid is modeled by two distance constraints shown as dashé%'th generic rigidity and the preferential selection criterion.

lines that lock two dihedral angles. Except for proline, the torsionNOte thaf{0, 1, ... m'} are the possible values thag; (F)
constraint is characterized by,25,), whereq denotes a geo- Can take. - o .

metrical bin within a two dimensionald, ) space. When the ge- The partition function is now written as

ometry is such that both angles fall within regigithe energy i%/

an_d each_(_jlstance constraint hfspure entropy. Fgr the helix to 7= 2 eT(Pea=BE(A) = E H equ"quefﬁEIq”lqi, 9
coil transition,q represents either a helical or coil geometry(b) T F A0}

The hydrogen bond interaction is modeled by three distance con-

straints shown as dashed lines. The hydrogen bond constraint {ghere the form of Eq(9) suggests that the energy and en-
characterized by, ,3y,), whereq labels geometrical bins that tropy contributions are independent. However, not only do
can be defined in different ways. For thehelix to coil transition,  the values oi{oiqj} depend on calculations from generic ri-

q rep_resents_, the geometry formed by spanning across tr_lree Coa'ldity, but also When;yi (=0 theno {(FH=0. Thus, the
secut_lve amino acids that can independently be in eighfelical energy and entropy O?Jeach framewoqrjk are coupled through
or coil geometry. topology via the underlying interaction of network rigidity.

or polar neighborhood. Therefore, caution must be exerciseﬁ)?aqzﬁir:%f é chc;r:jsrl(()dge ént hbeor? g tfg);:]%sﬁniisg%atfg t\;]\"et hh;[fe

in the ordering of the constraints from strongest to Weakestdrogen bond constraint is modeled as three distance con-

beca_u_se this ordering may change as the_ thermOdyna.m!s?raints. For a particular geometry, the hydrogen bond con-
conditions change. Consequently, the environmentally Nt ibutes ener W, and it contributes{0 5 3y
duced reordering of constraint types by relative strength Ia » Yar £Yq) 9%q

could potentially cause dramatic conformational changeamount of pure entropy to the system, depending on whether

However, the utility of the DCM can best be appreciated byIt has{0, L 2, 3 mdgpe_ndgnt d'Stance constralntsyg IS
. L gy comparatively small indicating eelatively strong distance
using a simplified description.

Model parameters will be taken as constants. FurthergonStramt’ then the greatest entropy loss for the system oc-

more, the entropic term will be distributed equally over all curs when all three distance constraints are independent. In

the distance constraints that model a particular constrain(fontraSt’ ifyq is comparatively large indicating a relatively

type. Then, all microscopic free energies will have the ge_weak distance constraint, then the_greatest entropy loss for
) the system occurs when all three distance constraints are re-
neric form . :
dundant. Since the results depend on the topological arrange-
AG=¢ —Tkmy! (6)  Ment of all constraints in the systemo a priori statement
a q can be made about whether the formation of a hydrogen
bond will supply a favorable or unfavorable entropic contri-

whereey, is energy.y, is a dimensionless variable referred to >°')
bution

as pure entropy, anah' is the number of distance constraints
that are used to model thiéh constraint type. Pure entropies
are taken to be positive because they are fundamentally re- IIl. TOY MODELS IN TWO DIMENSIONS

lated to the number of accessible quantum states that are Tpe (interna) partition function for the two-dimensional
associated with a specified geometrical bin tolerance, givefyglecyle shown in Fig. 2 is calculated to illustrate basic
by e”a=1. Figure 1 shows two example constraint types thatoncepts. The molecule consists of four identical atoms con-
will be used in Sec. IV to model as-helix to coil transition.  nected together by four strong central-force bonds forming a
A constraint type is now generically characterized asquadrilateral. The central forcef) bonds are modeled as
(eg,m' y'q). These parameters can be interpreted as beinguenched constraints characterized by endJdgy and pure
derived by Taylor expanding to first order the true micro-entropy y.;. Four torsional forces are also modeled as

061109-6



NETWORK RIGIDITY AT FINITE TEMPERATURE . . . PHYSICAL REVIEW E 68, 061109 (2003

a)
a)
v b ;
FIG. 2. A small two-dimensional ring molecule in the shape of a 0

quadrilateral. The shaded regions schematically show the allowed
geometrical variation for fixed topology indicative of the degree of

flexibility. Configuration(a) is topologically distinct from(b) and

(c). For identical atoms at each corner, configurati@msand (c)

represent the same topology of constraints, but are distinct other-

wise. The framework ina) is referred to as state H; where it has d)
greater energy and conformational entropy thhyi(c). The [(b)

and/or (c)] framework is referred to as state L; where the bond

along the diagonal leads to a lower energy and conformational en-

tropy than(a).

I

hed traints. In t di . the torsi FIG. 3. A small two-dimensional chain molecule. Backbone at-
quenched constraints. In two dimensiof2D) the torsion oms are denoted by filled circles. There are only four topologically

force(tf) is a fu_nctlon of the angle between a p:filr of Cemral'distinct conformationga)—(d) accessible to the molecule as it de-
force bqnds. Itis mo.deled as a next nearest neighbor distangg s during the process of hydrogen bonds breaking and reform-
constraint characterized by energy and pure entropyys.  ing. Dashed lines represent hydrogen bonding. Left side: All con-
The torsional free-energy surface is assumed shallow over @rmations have a large conformational degeneracy. Right side:
large range of angles. A hydrogen baffdh) in 2D is consid-  when all hydrogen bonds are present the molecule has much less
ered a single central force, and is modeled as a fluctuatingonformational degeneracy. In particular, for conformatidi a
constraint characterized by enerdd;,, and pure entropy rigid state is defined when all four side chain atoms form a rigid
vnp- Within a length tolerance, a hydrogen bond can formcluster from hydrogen bonding.

between a pair of atoms along either diagonal of the quadri-

lateral. Therefore, thdinterna) partition function is given as

As Fig. 2 shows, there are only two distinct types of
frameworks, labeled as andH when the hydrogen bond is Z=e"te FEL+eTe ARn, (12
and is not present. This is a two-level systéhree states are . ) )
required for distinguishable atomsEmploying the DCM, With Upp<<0, as expected for chemical bonding, the

the first step is to rank order the distance constraints frongtatesL. andH will be more probable at low and high tem-
strongest to weakest. This ranking is based on sorting thBeratures, respectively. Since for both states, the energy and

pure entropies from lowest to highest, assumed to be giveRUre entropy terms associated_ with the cf constraints anq _the
as energy terms for the tf constraints are the same, the partition

function simplifies to
pure entropy: y¢i< Yhp< s

Z=2Z,[enve PVt gdif], (13
rank: 1 2 3. (10

whereZ, contains the terms common in bdthandH states.
The second step requires calculating the total energy antihis example illustrates a general result that the strongest
pure entropy for each framework using the preferential sequenched constraints play a passive role. Molecular cooper-
lection criterion. In stateH there are eight distance con- ativity is controlled by competition among weaker interac-
straints (four cf and four tf and in stateL there are nine tions. It is worth mentioning that if the two-level approxima-
distance constraint§our cf, four tf, and one hp There are tion does not produce a sufficiently accurate temperature
eight dof, three of which involve global translations and ro-response, then the model parameters could be regarded as
tations. Five distance constraints will always be independeriemperature dependent functions. Alternatively, the single
making the framework rigid. From Eqe7) and(8) it follows  geometrical bin for the assumed weakly varyif@ag a func-

that tion of temperaturgtorsional free-energy can be further sub-
divided to better account for thermodynamic response by
state Hity =4yt + 61, En=4Ucs+4Vyy, creating more terms in the partition function.
The (interna) partition function for a more interesting
state L:7 =4yt Yhp, EL=4Ucs+4V+Upy. two-dimensional molecule shown in Fig. 3 is calculated. This

(11 molecule consists of five backbone and five side-chain atoms
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connected by central forces. A side-chain atom at the end of TABLE I. Hydrogen bond configurational degeneracy.
the chain can swing around the backbone atom, but it is
assumed that a potential barrier must be crossed. The highest n 0 1 2 3 4 5 6

point of the energy barrier is when the side-chain atom is
collinear with the backbone chain. Therefore, the molecule is
regarded to have four topologically distinct conformations,
each having the same characteristic energy basin. Finall
side-chain atoms that are in sufficient proximity of one an

other can hydrogen bond. o . maining (weakesk torsion force constraints rigidify the mol-
The central-force constraint is characterized Wy, ecule

Yer), and the hydrogen bond constraint is characterized by |, thig example many of the frameworks have degenerate

(U, 7). There are two types of torsion force constraints in-gjpns free-energy. The Gibbs free-energy already accounts
volving angles betweeBBB atoms, oBBSatoms, wher® ¢ conformational degeneracy, but there is also a configura-

andS represent backl_)one and side-chain atoms respectively, 4| degeneracy in the number of hydrogen bond combina-
The torsional constraint type for BB angle is character- {iong that are possible. Therefore, the partition function is
ized by (Vggg, dgge) and the torsional constraint type for |y itten as

theBBSangle is characterized by/( 8). The distance con-
straints are now ranked from strongest to weakest, assumed

given as Z:En: g(n)e AAGM), (15)

a(n) 4 18 33 32 18 6 1

¥he factor of (8-n) appears because each independent hy-
“drogen bond constraint eliminates an angular dof. The re-

pure entropy: yer< y< 9= dgge, whereg(n) is the number of frameworks with hydrogen

rank: 1 2 3 4. (14 bonds. The values of(n) for different n are tabulated in
Table I, which is obtained by straightforward counting.
The heat capacity is plotted in Figa}, showing a peak

Since both torsion constraint types are quenched constraintﬁear 310 K, where the model parameters were fixed to con-

it follows that the pure entropy parameter for BB type | opient values to show interesting features. This peak is a

of angle is always irrelevant for all frameworks in the en- o hitestation of a structural transition from thigid state
semble. This example illustrates an important point tha defined in Fig. &d)] at low temperature to fiexiblestate at
weak E)orces Oﬁﬁn neﬁld TOt bebassoglatgd W't,t} an ehntlro igh temperature. The degree of rigidity is also shown by
term, because they will always be redundant. Nevert eesﬁ1otting the equilibrium probabilityPg for the molecule to
many weak forces can still play an important role in thebe described by a framework with five or six hydrogen

energetics. onds. where
There are a total of 112 possible frameworks, correspondl-) '

ing to 2* different frameworkgdue to fluctuating hydrogen
bonds, for each of the topologically distinct conformations
shown in Figs. 83)—(c) and 2 frameworks for the confor-
mation shown in Fig. @l). Once all the central-force con-
straints are place(first) there are eight internal dof remain-
ing in the molecule. If no hydrogen bond constraints are
placed, then the total pure entropy of the molecule will be
9y.¢+ 84, which gives the maximum possible value. As hy-
drogen bond constraints are added, the total pure entropy
will decrease. The best chance of finding a redundant hydro-
gen bond is when the maximum number is present for each
distinct topology. By inspection, only one framework out of
112 has a redundant hydrogen bond constraint, correspond-
ing to the six hydrogen bonds, all simultaneously present in
the conformation shown in Fig. 3d. Recall that the param- 06
eters associated with the quenched constraints commonto all 2 g4
frameworks can be factored out. Therefore, relative to the

Pr(T)= (e PAC(6)+ g(5)e FACO))/Z (16)

C(T) (keal/(mol K))

08

conformations containing no hydrogen bonds, the change in 02T
Gibbs free-energ\AG(n) for the molecule having hydro- %00 300 200 500
gen bonds is given by T(K)

FIG. 4. (a) Heat capacity as a function of temperatut®.Prob-
AG(n)=nU—-kT[ny+(8—n)s§] for n=0,1,...,5, ability for the molecule to form a rigid structural unit. The selected
parameters were obtained by choosing the marked point on the
phase diagram in Fig. 5, and fixing the transition temperature to be
AG(6)=6U—KkT[5y+345]. near 310 K.
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FIG. 5. The phase diagram of the two-dimensional chain mol- FIG. 6. (a) The backbone of a peptide chain. The dihedral angle
ecule. The difference in pure entropy between the hydrogen bon@f the peptide bondC-N) cannot rotate. The long curved dashed
and torsional force constraints, and the hydrogen bond energline represents a possible hydrogen bofd.An example of poly-
scaled by thermal energy are the only two relevant variables.  alanine. The dihedral angle betweep-C, can rotate.

. ide-chain to backbone interactions are not considered in the
represents only the frameworks that form a rigid Strucwragnalysis given here

unit. The probability for being in the rigid state is used as an ' The third constraint type describes a torsion interaction.
order parameter. A phase diagram is shown in Fig. 5, whergqsion constraints along the backbone are partitioned into
the solid line corresponds to the maximum heat capacityjisinct geometrical bins depending on tiheand ¢ angles.
used to locate the transition temperature. The shaded aregy, example, different bins can be defined using a Ram-
defines a broad transition region defined as<tPk<<0.9,  achandran pldt31,37 for each type of amino acid. Here, the
indicating no substantial preference for either the rigid ora-helical and coil geometries, labeledandc, respectively,

flexible states. are considered to be the only two accessible conformational
states. The coil geometrg includes all other secondary
IV. @-HELIX TO COIL TRANSITION structures(non—-helica) such as g3-strand, 3-10 helix, or

left-handeda helix. The energy and pure entropy of the

The DCM is employed to describe a transition from aa-helical and coil torsion constraints are given by,
stablea-helix structure that is rigid at low temperature to a 28,), and (V., 24.) respectively. As shown in Fig.(d), the
flexible coil involving many disordered conformations at torsion constraint contains two distance constraints to lock
high temperature. The backbone of a homogeneous peptidee ¢ and ¢ angles. Each distance constraint carries a pure
chain, as depicted in Fig.(®, is considered for simplicity. entropy of 5, or &; in the a-helix or coil geometry, respec-
Compared to the Zimm-Brad@9] or Lifson-Roig[30] mod- tively.
els, the DCM is mathematically more complicated because The fourth constraint type describes hydrogen bonding.
network rigidity is a long-range interaction that will be ex- For simplicity, only backbone hydrogen bonds between the
plicitly quantified in terms of a direct product between acarbonyl oxygen of théth amino acid and the amine nitro-
rigidity state space and a conformational state space, frogen of the {+4)th amino acid are considered accessible.
which a transfer matrix is constructed. The energy and pure entropy for a hydrogen bond constraint

Four constraint types are used here to model centragre given byU,,, and 3y,,,, wherex, y, andz specify the
bond-bending, and torsional forces involved in covalentiocal (a or ¢) backbone geometries of the-1, i+2, and
bonds as well as hydrogen bonds. The strongest two cori-+3 amino acids that are spanned. As shown in Fip),la
straint types, modeling the central and bond-bending forced)ydrogen bond constraint contains three distance constraints,
are placed in the network before the weaker constraint typesvhere each distance constraint carries a pure entropy of
Thus, a chain oh amino acids has 2 dof along the back- v,,,. Noting that there are eight possible geometries, each
bone because only thé and ¢ dihedral angles in each requiring the two parametets,,, andy,,,, gives a tally of
amino acid(proline is not considered herare free to rotate. 16 parameters for the hydrogen bond constraint type.
The energy and pure entropy parameters for the central and The peptide chain is decomposed into triplets, denoted by
bond-bending constraint types are not of concern becaugeyz|;, wherex, y, andz represena or ¢ geometries for the
they play a passive role in the partition function, as explainedi, i+1, i +2} amino acids. To account for hydrogen bond
in Sec. lll. The remaining two constraint types depend on théluctuations, a triplet may or may not have a spanning hydro-
local conformation of the backbone, as determined bygihe gen bond. Another variabla;=(1,0) is used to specify
and ¢ dihedral angles. Explicit side-chain to side-chain andwhether a hydrogen bond constraint is present or not across
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theith triplet. When present, a hydrogen bond spansithe pure entropies over independent constraints. The algorithm
triplet by connecting thé—1 amino acid to the+3 amino  for propagating rigidity from left to right takes the following
acid. The greatest number of hydrogen bonds that can forrform.

within an « helix of n amino acids im—4, since the only (1) Given|rq,r,,rs,r,): Retain the foutemporaryrank
triplets that can have a spanning hydrogen bond are (assignments and augment the two ranks from the torsional
=2,3,...n—3). Note that the variabla; corresponds to constraint on the third amino acid, thus forming a temporary
theith amino acid in the chain, and therefore it is associatedemplate involving six ranks, given by ;,r,,r3.r4,r5.fg}.

with the leading edge of a triplet. A tripléhot at the ends (2) If no hydrogen bond is present continue to the next
will have 16 possible conformational states corresponding tQten  Otherwise, perform the following operations when a
eight different local geometries with or without a hydrogen hydrogen bond spans the new triplet. Attempt to place one

bond. The complete specification of the conformation of &jisance constraint at atime, each having a rank,pf Find
triplet has the general form[xyz]. An energyUo is intro- o vioum rank, denoted a&", out of the six current

duced for triplets of the form [xyZz], which represents the . o .
hydrogen bond energy resulting between the peptide baclg’mks n th? template. The supgrsc_r@ﬂ)} |n(.j|.catgs that t.h's
Is the maximum rank, and the indéxspecifies its location

bone and solvent. Therefore, is an additional hydrogen

bond parametefl7 tota) in the DCM considered here. within the template. Ifr,,=r*, continue to the next step
because this and any of the remaining hydrogen bond dis-

tance constraints are redundant. Otherwise, replace the maxi-
A. Rigidity propagation rule mum rank byr,,,. Working from right to left(the direction
To facilitate exact constraint counting subjected to theopposite to propagatigrfind the next maximum rank, de-
preferential selection criterion, the degree of rigidity for anoted asr{?). If r®>r, then swap ranks. That is, le
triplet is specified by docal rigidity state denoted aslrs). =rj(2) andr;=ry,. Continue the process of swapping rank
The local rigidity state contains the minimum amount of in-r,, with the next greatest rank to its left, until it can no
formation about rigidity at the end of a chain such that wherlonger be shifted to the left. Continue to the next step when
the next amino acid is added, the local rigidity state of theall three hydrogen bond distance constraints have been
end triplet is uniquely specified. The set of all accessibleplaced.
local rigidity states{|Irs)}, will serve as a basis set for a  (3) The first two degrees of freedom in the triplet are
rigidity state space. A complete basis set will be generatepermanently locked by distance constraints that are associ-
using the rigidity propagation rule. ated with the ranks; andr, in the template. The remaining
Each triplet has six dof, six torsional force distance con-four ranks in the template define the current local rigidity
straints, and when there is a spanning hydrogen bond threstate of the new triplet given d8;=r3, ry=r,, r;=rs,
additional hydrogen bond distance constraints. The pure e =r4). Repeat this procesgback to step(1)] until the
tropies of each type of distance constraint is rank ordere@ropagation through all triplets is finished.
from 1 to 10 because there are eight differen, and two Step(2) can be understood conceptually. Ranks within a
different 6, assuming no degeneracies. A torsional force distemplate act as a dof relative to a hbdc rank whenever they
tance constrainttfdc) and a hydrogen bond distance con- gre greater tham,,, otherwise they act as a constraint.
straint(hbd(j lock dihedral angles differently. A tfdc is con- Among the ranks acting as a dof, a lower rank acts as a
fined to lock a specific dihedral angle, whereas a hbdc spansonstraint relative to a greater rank. Therefore, the greatest
all six dof within a triplet. A hbdc can be used to lock any of rank should be rep|aced be However, it could happen in
these six dOf, and should lock the one which will minimiZEa future test(as the chain is propagated from left to r|ght
the total conformational entropy of the chain. In this sensethat the largest rank within the current template could be
hydrogen bond distance constraints are promiscuous. Consgeplaced by a different hbdc that spans a different triplet
quently, the dof that are best to lock cannot be determinedownstream. If this happens, it would be better to use the
solely on the local triplet conformation because network ri-current hbdc to lock the second highest rank. Replacing the
gidity is a long-range interaction. Therefore, an algorithm forhighest rank, or replacing the second highest rank, depends
propagating the local rigidity state must be established.  on the relative rank of a future hbdc, if any appear at all. This
Alocal rigidity state specifies theurrentrank assignment makes the transfer matrix approach different than the usual
of constraints used to lock the first four dof in a triplet. The case, because r|g|d|ty is nonlocal where the conformations
rank assignment corresponds only todependentcon-  down the chain will affect the optimal rank substitution at the
straints. The local rigidity state is represented as current triplet.
lItSy=r 1,7 500501 2) 17 _The first hbdc encou_ntered_ down the_ line that overlaps
2.0 3.4/ with part of the current triplet will be effective as a constraint
within the current tripletonly if its rank is lower than the
wherer, is the rank of the distance constraint that locks thegreatest rank () found in Eq.(17). The second effective
kth dihedral angle in a triplet. The ranks of the last twohbdc must have a rank lower than the second greatest rank
dihedral angles within a triplet will become important in de- r(?). If no effective hbdc is encountered, it is best to replace
termining the local rigidity state of the next triplet upon r® with ry,, in step(2) of the algorithm. If one effective
propagation. The explicit form fdirs) in Eq. (17) provides  hbdc is encountered, it is best to replat® with ry,,,. More
a bookkeeping device to calculate the preferential sum ofjenerally, if n effective hbdc are encountered, it is best to

061109-10



NETWORK RIGIDITY AT FINITE TEMPERATURE . . . PHYSICAL REVIEW E 68, 061109 (2003

s 3_3253523_3 3_3233325_5 Ss 5_5233323_3 R ant. Moreover, the final rank distribution is identical to that
= = = of a preferential selected set of independent constraints ob-
[5.5.3.3> LR Y 222 tained by placing the strongest distance constraints before

|3’ 3,555 weaker ones in otherwise arbitrary order.
Referring to Fig. 7, the entire process of propagating from
|2.3,3,3> left to right is shown. The first triplet has a local rigidity state
given by|5,5,3,3. This first triplet does not have a spanning
hydrogen bond, therefore, the next tripl@fter the first
propagation has a local rigidity state given b}3,3,5,5.
During the first propagation step, each tfdc within the first
amino acid is recorded as independent, locking ¢heand
¢, dihedral angles. The pure entropy associated with these
two distance constraints is recorded in terms of the two ranks
{5,5}. For the second propagation step, the spanning hydro-
gen bond across the second triplet changes the temporary
rank assignments as follows:

|2.2.3.3>
|3.3.5, 2> initial [Irs): 3, 3, 5, 5
IR 55222311122233442222223353 tfdc template: {3, 3, 5 5, 3, 3
R-L 55333222211122443322222255 plus first hbdc: 2,

1 .2 3 4 5 6 7 8 9 10 11 12 13 ) ]
intermediate 1: {2, 3, 3, 5, 3, 3
FIG. 7. The top schematic describes the backbone of a 13-mer

peptide chain in a conformation that has torsional constraints with plus second hbdc: 2,

pure entropy ranked either 3 or 5 and occasional hydrogen bond intermediate 2: {2, 2, 3, 3, 3, 3
constraintgpictorially represented as bars spanning three consecu- . .

tive pairs of dihedral angle dpfvith pure entropy ranked either 1, plus third hbdc: 2

2, or 4. Each step in the propagation of the local rigidity state from intermediate 3: {2, 2, 2, 3, 3, 3

left to right is shown along the diagonal. The final ranks that remain final |Irs): |2, 3, 3, 3 (19

after propagating from left to right.(—R) is given on the third to
last row. The final ranks obtained by propagating from right to left
(R—L) are given on the second to last row. The last row labels thes, andy, are considered to be locked by two of the promis-
amino acids. Both propagation directions yield three rank-1, 1%,0us hydrogen bond distance constraints, and recorded by
rank-2, five ra_mk-B, two rank-4, and four rank-5 independent disthe two ranks{2,2}.
tance constraints. The rigidity propagation rule applied to a specified frame-

work F allows the total pure entropy(F) to be calculated
replacer("* 1) with r,, if possible. All these cases are prop- as the sum over pure entropies associated with the ranks of
erly handled by building the definition of a local rigidity the distance constraints used to permanently lockttend
state achain reactionthat automatically swaps higher ranks ¢ dof. For a given framework, the alternative calculation for
into lower rankswhen neededThe chain reaction is initial-  7(F) is to use the pebble game algoritti, 15, where the
ized in step(2) by the process of swapping ranks within a distance constraints with lowest ranks are placed in the net-
triplet from highest to lowest working in theppositedirec- ~ Work first. The propagation algorithm was explicitly tested
tion of propagation. The outcome of the above algorithm id33] against exact calculations using the pebble game. Al-
that both the long-range interaction of rigidity and the globalthough preferential constraint counting offers an exact calcu-
preferential selection criterion are properly described. lation method by incorporating the rigidity propagation rule

Figure 7 shows how the rigidity propagation rule is imple-into a transfer matrixy(7) no longer requiregxplicit cal-
mented on a short chain in a particular framework. The ini-Culation on each framework in the ensemble.
tial description of the chain includes the ranks of all torsion
and hydrogen bond constraints that are present. This frame- B. Transfer matrix and the partition function
work contains 18 redundant constraints since the chain in o .
The transfer matrix is constructed from a direct product

any conformationis always just rigid(isostati whenever . .
there are no hydrogen bonds along the backbone, and hepRace formed by a triplet conformational state denoted by
' IN,X,Y,z), where\ is one when a hydrogen bond spans the

there are 3X (six hydrogen bondsextra distance con- triolet therwi d ithera helix (a)
straints. The final description shows the ranks of only indeX:Y,Z MP'EL, ZE€ro oINerwise ankly,z are eithera nelix (a

pendent distance constraints that remain after being permg-r coil (). A triplet is completely specified as
nently assigned in stef8) of the propagation rule. The final

ordering of ranks generally depends on the direction of Stiplet= N X,Y,2)® 11,1 5,1 3,1 4), (19
propagation, but the final distribution of rankse., number
of independent constraints having rank 1,.2,) isinvari-  wherer, andr, are the ranks of the constraints on fhend
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¢ angle (backbone anglesf the x state, and ;3 andr, are  state (helix or coil) of each residue together completely
the corresponding ranks of the constraints onytistate. The specify a state.

four ranks on the first two amino acids, the presence or ab- Most elements of the transfer matrixwill be zero. The
sence of a spanning hydrogen bond, and the conformationalonzero matrix elements have the form given by

(N X' =Y,y =2,2' | @(r ], 15, T4, T A TIN XY, 2)® 1,15, 15,14y =62 Tre™ Ahép, (20

where after a propagation to the right the new first amino Z,={f|T"i). (21)
acid corresponds to the prior middle amino acid and the new ) .

middle amino acid corresponds to the prior right amino acid. 1he method for constructing the transfer maffiis ex-

In addition to this, the matrix element will only be nonzero if Plained by working through an example. Consider a chain of
the set of final ranks in the local rigidity state obey the rigid- 13 @mino acids where the framework given as

ity propagation rules. The nonzero matrix elementthencon- o 1 0 1 1 1 0 0 1 10 0 0

tributes a Boltzmann factor that accounts for both the energy
and pure entropy contributions of the constraints encoun-
tered. The variabled 7, and Ae,, respectively, represent 22)

the change in pure entropy and energy upon propagatiol one realization taken from an ensemble 8f2° frame-
along the chain. The contribution tor, at each propagation works describing all accessible chain conformati¢of a

step is given by the sum of pure entropies of the two conchain of length 18 The numbers of 1 or 0 on top of anor
straints that permanently lock the two dof within the first ¢ specify \ in a triplet, \[xyZ]. A number placed over an
amino acid of a triplet. Thua 7, is determined by the rigid- amino acid describes a hydrogen bond that spans it and the
ity state space in accordance to st8pof the rigidity propa-  next two amino acids to the right. In order for a chain of
gation rule. In contrast) €, is determined by the conforma- lengthn to be represented hy triplets, twos solvent states
tional state space where it is a function of ohlyxyz] and it  are explicitly shown as being augmented at the right end of
is found by summing the hydrogen bond energy given bythe chain. Effects of this state are discussed below under
Uy, Whenk=1 andU, whenA=0, with the torsional force boundary conditions. The first and last three zefnsbold)
constraint energy given by,. By construction, the zeros correspond to triplets for which an intramolecular hydrogen
and nonzeros of the transfer matrix account for the rigiditybond cannot form.

a €cC a a a €C CcC C a a € Cc s s

propagation rules, thereby correctly propagating rigidity. The dimension and form of the transfer matfixstrongly
Ignoring boundary conditions momentarily, tliaterna) depends on the rank ordering of pure entropies. For the pur-
partition function could be calculated as pose of illustration, consider the rank ordering
Ycaa Ycca

pure entropy: 0 < Yaaa < Yaca < 6a < Yeac < Oc < Yece

Yaac Yacc

rank: 0 1 2 3 4 5 6, (23)

where rank 0 is associated with the specalonformation  before arriving to the current triplef 6ac]. Using the rigid-
and rank 6 is associated with a hydrogen bond that spansity propagation rule, the first matrix multiplication by
local [ccc] geometry. In this casey... plays no role be- propagates the initial vector into vectft,a,c,a)|3,3,5,9,
cause it will always be redundant. In this example, intra-while the second matrix  multiplication gives
molecular hydrogen bonds that span the same number ¢0,c,a,a)|2,3,3,3. The shifts in the conformational states
coil states within a triplet are degenerate. Thys,s= vaca  are obvious, and the propagation of the local rigidity states is
= Yaac aNdU 3a=U 2= U,qc, €tc. calculated according to examp&9). In fact, the initial con-
The initial product vector that needs to be propagated idiguration of ranks shown in Fig. 7 precisely correspond to
given as|0.c,a,c)|5,5,3,3, where the symbol will be  the framework given in exampl@2). In the first propagation
dropped from now on. This vector is obtained below by con-step, the contribution of pure entropies from constraints that
sidering the process of propagating tripl¢s8c| to O[ sca] lock the ¢, and ¢, dihedral angles is given ast;=26;.
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TABLE Il. A short list of selected matrix elements that are generated from the framework given in
example(22). Refer to Fig. 7 to check the correspondence between the pure entropy contribation the
p th propagation step with the final ranks listed from left to right propagation.

Step Transfer matrix element Boltzmann factor
1 (1a,c,al(3,3,5,5T|0c,a,c)|5,5,3,3 g2%g~A(VetUo)
2 (0c,a,a(2,3,3,3T|1,a,c,a)|3,3,5,5 g2Yacag™ A(VatVacd)
3 (1,a,a,a(3,3,3,3T|0,c,a,a)|2,3,3,3 gcaat dag™A(Vet Uo)
4 (1a,a,c/(1,3,3,3T|1,a,a,a)|3,3,3,3 g?Yaasg ™ AVa* Vaad
10 (0,a,c,c/(2,2,3,3T|1,a,a,c)[2,3,3,3 g?Ycasg™ AVatUaad
11 (0¢,c,s/(3,3,5,35/0,a,¢,¢)[2,2,3,3 g?Yaacg™ AVatUo)
12 (0¢,s,5/(5,5,0,0R|0¢,c,s)|3,3,5,5 e?%g™ AVet Vo)
13 (055,5,5/(0,0,0,0Q/0¢,5,5)(5,5,0,0 e2%g~AVetUo)

The energy contribution id e, =V .+ U, which reflects the state must be the same for any peptide, regardless of its
hydrogen bond energy between peptide and solvent. At eadength or composition. Therefore, the local rigidity state for
propagation step another product vector will be generatedhe ( ssg solvent triplet is defined as¢,rs,rs,rs), where
The second step takes the vedtbg,c,a)|3,3,5,5 into vec- ry=0 to represent the lowest rank associated with a mini-
tor |0,.c,a,a)|2,3,3,3. The energy contribution i\e,= mum pure entropy;s=0, which is the lowest physically
V,+ Uaca, Which reflects the intramolecular hydrogen bondrealizable value. Consequently, when propagating from one
energy that depends on local geomdtacal. The pure en-  solvent triplet to the nexA7,=0, and by setting\ ,=0,
tropy contribution is given byA 7,= 27y,.a, resulting from then the Boltzmann weight of 1 is ensured. With these
two rank 2 pure entropy values. All matrix elements are deboundary conditions no bulk properties of solvéthie reser-
termined by energy contributions from consecutive tripletvoir) are calculated, while peptide to solvent interactions are
conformation states described in exam(®8), and pure en- taken into account by fluctuating constraints acting on the
tropy contributions are determined by the final rank orderingpeptide(the system
(from left to righd listed in Fig. 7. Some matrix elements  Consider propagating from left to right. Then the left
generated by the framework given in exam(#@) are listed boundary condition is most conveniently represented as a
in Table I1. column vector in the direct product space, denotedips
The form of the initial vector is given by
1. Boundary conditions

In addition to constructing the transfer matrik the liy= >, e Plhcosst 8e0s)|0x,y,Z)® |1, Ty Ty T y).
boundary conditions on both the left and right ends of the XY,z
chain must be specified. The boundary conditions are of par- (24)

ticular importance for peptides that are experimentally stud- ) i i
ied because most often they are less than 20 amino acidd'® anksrx andr, are, respectively, associated with the

long. The approach taken here is to add auxiliary triplePur® entropy of a tfdc in conformation state ¢f the first
states before and after the chain to take into account solv&Min0 acid and { of the second amino adidNo entropic

tion effects. A requirement that the left and right boundarycOntributions arise in propagating from thgs89 triplet to
conditions must satisfy is: left to right propagation and rightthe dxyz] triplet because of the rigidity propagation rule
to left must yield identical results for all observable quanti-When no hydrogen bonds are present and the definition of the

ties. This basic requirement is satisfied by the approach usePecials conformation. However eqss, andA egsyy account
here. for solvation energy between the peptide and solvent. Here a

An infinite number of auxiliarys conformations are ap- triplet with no spanning hydrogen bond is taken to contribute
pended to the beginning and end of the chain to represeMo energy. Therefore, the initial state vector simplifies to
bulk solvent. A triplet of auxiliarys conformations is of the
formIO[ssﬂ, and it is uged as a r(_aference state. The Fransfer liy= 2 e‘52U0|0,x,y,z>®|rx,rx,ry ). (25)
matrix propagates the triplef 8sg into another fssg trip- X,y.2
let with a Boltzmann weight of by definition The auxiliary
s conformations play a passive role in the calculatias if The right-end boundary condition is implemented using
they are not presenexcept in triplets at the ends of the chain three special transfer matrices that involve theonforma-
where they mix witha or ¢ conformations within the chain. tion. Starting from the\[xyz|,,_5 triplet, transfer matrices,
Physical boundary conditions require the local rigidity stateR, and Q are defined to, respectively, propagate from
of the last Qssg solvent triplet just before the chain to be \[xyz],_5 to O[yzs] to O[zsg and finally to the Qss¢g
equal to the local rigidity state of the firs{ §isg solvent triplet. These three matrices in succession channel all pos-
triplet at the end of the chain. Furthermore, this local rigidity sible local rigidity states accessible at tripMtxyz],, 5 to
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TABLE Ill. Some examples of possible results that can be obtained after sorting the set of DCM pure
entropies from lowest to highest, and then assigned ranks of 1 and greater, respectively. Pure entropy values
listed on the leftmost column are rank ordered in the various columns. The letter R indicates that the
constraint is always redundant, and therefore is always ineffective in reducing conformational entropy. The
last row gives the dimensiof84] of the transfer matrixT for the particular rank ordering. Column h
corresponds to the rank ordering used in exani@®&. Column | is similar to column h except that degen-
eracy is lifted from all they,,, pure entropies.
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[rs,rs.rs,rs) when the Qssg solvent triplet is reached. interes} are unstructured around the peptide. In other work,
Therefore, the only nonzero component in the direct produchydration effects due to structured water around the peptide
space after matrixQ is applied is given by the vector is explicitly modeled 35] as an additional constraint type.
|05,5,5)®|rs,rs,rs,rs), Which is denoted a$f). By con-

struction, the final vector does not change upon further 2. Generating the complete basis set
propagation from Pssg to all remaining (ssg solvent i L
triplets [34]. With Eg. (26) at hand, what remains is to generate the

complete basis set of vectors in the product space. This is
done during the process of constructing the transfer matrices.
The procedure for generating the transfer matrides§ R,
Z,=(f|QRST%i) Vn=3 (26) and Q begins by considering all eight possibilities for the
starting product space vector. Then propagation to all pos-
for homogeneous peptide chains witramino acids, and it sible next triplets is performed. Each distinct vector that is
involvesn matrix multiplications oven triplets. The form of  created defines another basis vector. For each basis vector
Eq. (26) is independent of the direction used to propagatehat was not previously generated, it is propagated to all
rigidity. By inspection the partition function for a tripeptide possible next triplets. Eventually the same vectors continue
(n=3) reduces to to be generated by recursively considering all vectors—
indicating a complete basis set is formed. It is worth men-
tioning that the product space is ergodic, in the sense that
starting from any vector representing a triplet state of the
peptide chain, any other vector can be reached by some num-
The expression foZz highlights two subtleties about the ber of transfer matrix multiplications. In some cases, this
simplifying assumptions invoked here that are worth mennumber can be quite long, depending on the size of the trans-
tioning. fer matrix. A priori, the number of distinct product space
(1) Unlike the intramolecular hydrogen bonds, the energyvectors is not known because the number of local rigidity
U, for hydrogen bonding between the peptide and solvent istates must be calculated using the rigidity propagation rule.
not considered to depend on the local peptide geometrin Table Il the dimensiorM of the product vector space is
(specified by[xyz].) listed for several choices of rank orderings. A large matrix
(2) No pure entropy parametégiven byvy,) is associated Size is an indication of the long-range nature of rigidity that
with the peptide-solvent hydrogen bonds because it has beénanifests itself as molecular cooperativity.
assumed to be larger than all other pure entropies that char-
acterize the four constraint types introduced above. As illus-
trated by the second toy model in Sec. lll, constraints having
a pure entropy greater than all others that are always redun- The transition from a rigide-helical state to a flexible coil
dant do not contribute entropically. Not allowing for entropic state is characterized by helix content, which serves as an
contributions from peptide-solvent hydrogen bonds impliesorder parameter. The helix content is defined as the average
the solvent moleculegaqueous solution being of primary fraction of amino acids in the chain havirgand ¢ dihedral

Including boundary conditions, thénterna) partition
function is calculated as

Zaze—ﬁsuoz @2(8xt 0y + 8) = B(Vy+Vy+Vy) (27
XY,z

C. DCM results compared to Monte Carlo simulation
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angles ofa-helix geometry. The conformational state of the
first and last amino acids is explicitly taken into account. g7 L
Helix content is given by the number of amino acids in the
a-helical conformation divided by the number of amino ac- .
ids in the chain. Applying standard transfer matrix methods, 2 05 L
helix content and specific heat are numerically calculated for8
any specified set of model parameters. Using simulated an.x
nealing methods, the DCM parameters were optimized to fit£
to Monte Carlo(MC) simulation datd36] for polyalanine of
length 10 in both gas phadeo solvent and model-water
solvent 1, as well as MC simulation daf&7] for chain
lengths of 10, 15, 20, and 30 in model-water solvent 2. oo 20 300 350 400 450

The DCM parameters describing the backbone dof for a Temperature (K)
homogeneous peptide in solvent inclide,, 5;, Ve, & }
Since the amino acids located at the N and C termini are
exposed to solvent differently, it is expected that the back-
bone parameters for the first and last amino acids should b
modified. To keep the number of model parameters to a mini-=:
mum, the set of parameters given By, , J;, V., 6.} are
used for both the N and C termini. Besides these eight pa-§,
rameters describing dihedral angle characteristics along thig
backbone, 17 parameters describe hydrogen bonding. To ot‘f—:
tain a more manageable number of model parameters, mans
hydrogen bond parameters are considered to be degeneral
where it is assumed thdfl) U..;=Ucac=Uace, (2) Ucaa
=Uaca=Vaac: (3 Ycca™ Yeac™ Yacer @) Ycaa™ Yaca
= y,ac- This simplification reduces the number of hydrogen
bond parameters to nine. Taking advantage of the arbitrari-
ness in absolute energies and entropies, the paramgters FIG. 8. The(a) helix content andb) specific heat from two
Uy, V4, and V] can be preset without affecting the helix Monte Carlo simulations are shown. The deviation between the two
content or the specific heat. Therefore, all backbone dof argimulation data for chains of length 10 creates an intrinsic error that
fully described by 138+9—4) DCM parameters. prevents us finding a “good” fit when both results are treated as a

Fitting the DCM to MC simulation of polyalanine re- Single solvent type. Ignoring these deviations makes the meaning of
quires additional parameters to account for the flexibility ingoodness not sufficiently restrictive, which allows too many
the alanine side chain. The side chain of alanine consists of20d” parameter solutions. Instead, these data are treated as two
one dihedral angle between the,@nd C atoms as shown different solvents, where squares and circles represent model-water
. : . : : solvents 1 and 2, respectively.
in Fig. 6(b). An additional torsion constraint type was ap-
plied to this single side chain dihedral angle. The side chain
torsion constraint is partitioned into two geometrical bins.Furthermore, the number of parameters grow slowly when
Only differences in energy and pure entropy between the twditting to different solvents because no solvent dependence is
states are required, which are characterized Wy, (5;). assumed for(1) intramolecular hydrogen bond parameters,
Since no interactions are considered between an alanine sid2 backbone dihedral angle parameters not depending on
chain with the backbone or other side chains, the values afoil conformations(3) side chain dihedral angle parameters
(Vs, 65) have no affect on helix content, but do affect spe-and(4) the specific heat base line.
cific heat. Another fitting variable, (not a model parameter The cohort of MC data allows 12 curves to be fitted si-
is introduced to represent a constant base line for the specifinultaneously. Superscripts 1, and 2 are used to, respec-
heat. The variable, is required because the DCM is defined tively, refer to gas phase and model-water solvents 1 and 2.
at a coarse-grained level, and as such it cannot account f@&oth model-water solvent 1 and 2 refer to the MC data gen-
residual energy fluctuations. erated using the ECEPP/2 force fidl88]. Initially, it was

In total, 16 variables are to be determined by fitting toassumed that the model-water solvent of both simulations
helix content and specific heat data generated by MC simusould be treated identically, since both groups used the same
lation[36,37]. Although each DCM parameter has a physicalforce field. However, as shown in Fig. 8 there are sufficient
basis, 16 variables create the unfortunate problem that helidifferences between the chain length ten data to warrant
content and specific heat can be simultaneously fitted with &reating them aslifferent model-water solventBetween the
multitude of excellent best-fit solutions. This over parametri-two model-water solvents, 10 solvent independent param-
zation can be quickly avoided, however. An important aspeceters are in common an@+5) solvent dependent param-
of the DCM is that although many parameters have beerters are required. Including the gas phase data requires 5
initially generated when the set of constraint types were demore solvent dependent parameters. In total, 25 fitting pa-
fined for the helix-coil system; there is no size dependenceiameters to 12 distinct curves eliminates overfitting.
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TABLE IV. Listing nine solvent independent parameters. Units of energy is in kcal/mol, and pure entro-
pies are dimensionless. The numbers with three digits represent a typical best-fit solution, which were used
to generate Figs. 9—12 and 14. The numbers directly below these are the averages obtained over eight typical
simulated annealed fitting solutions, including standard deviations for statistical errors. In addition to these
DCM parameters, the specific heat base line was considered solvent independent and was given as:
0.001 33 kcal/(mol K) with average and standard deviation given as 0:00D001 kcal/(mol K).

aaa aca cac CCC
Usyz —4.637 -2.827 —2.339 0.00¢%
—4.95+0.39 ~3.11+0.32 —2.56-0.33 0.00¢%
Yoyz 2.000? 2.149 2.760 2.917
2.0002 2.19+0.07 2.81-0.04 2.99-0.12
V, Sa V. s A 55
0.000? 2.656 0.00¢} 2.000? 1.590 3.614
0.000? 2.56+0.24 0.00¢% 2.000? 1.57+0.13 3.38-0.15

@Arbitrarily fixed parameters.

Interestingly, it was foundfrom several good best fits tured the essential physics that the MC simulation does.
that some parameters are consistently in close proximity to
one another. A greater fitting error was exchanged for a V. DISCUSSION
maximum reduction of free parametd®9]. Specifically, it
was possible to obtain good fits when forcing different pa- The toy models in Sec. lll and the helix-coil transition in
rameters that were found in close proximity to be equal. ThisSec. IV demonstrate how generic rigidity calculations are
results in demandingl) 5&: 5§= 82, (2) Vg:vg, (3) Vél used to construct a partition function at finite temperatures.
:VéZ' (4) 5é1: 5&2 and (5) U(2)=U8—as suggested by the Each framework in the ensemble is weighted by a conforma-
unconstrained fits. With this reduction, 19 free parameterdional degeneracg’ that depends on the type of constraints
were used to fit 12 distinct curves simultaneously. present and their specific placement relative to one another.

The results of the simulated annealed best fits are given ikffectively, the conformational degeneracy represents the
Table IV for solvent independent DCM parameters, andfree volume available to a particular framework. It has long
Table V for solvent dependent DCM parameters. Figures ®een recognized40] that free volume plays an important
and 10 respectively, show the fit of helix content and specifigole in both phase change and relaxation in structural glasses.
heat for both gas phase and model-water solvent 1. Figurda the DCM, free volume is quantified by(F), which de-
11 and 12, respectively show the fit of helix content andpends on the strongesidependentonstraints that limit mo-
specific heat for all chain lengths in model-water solvent 2tion. A direct connection between free volume and the degree
Good fits to helix content were achieved for all six datasetspf mechanical flexibility is established through network
with the chain length of 30 in model-water solvent 2 show-rigidity—an inherently long-range cooperative interaction.
ing greatest deviations in the helical phase. Likewise, the fité\lthough the importance of rigidity in the conceptual under-
to specific heat were in remarkably good quantitative agreestanding of structural transitions is not new, the DCM allows
ment, considering that the DCM parameters are taken as terthe role of network rigidity at finite temperatures to be cal-
perature independent over a 400 K temperature range. Moreulated quantitatively.
over, employing temperature dependent parameters appearsin some respects the DCM is similar to a normal mode
unnecessary for removing systemic error, because it can kanalysis in thaentropies are additive over independent de-
attributed to the oversimplified model of representing thegrees of freedomlf the system of interest can be well ap-
peptide-solvent hydrogen bonding asiaglestate. Overall, proximated as a network of coupled harmonic oscillators,
the minimalist network rigidity model has successfully cap-then the normal modes define an appropriate set of indepen-

TABLE V. List of five solvent dependent DCM parameters per solvent type. The same units and notation are used as in Table IV.

Ug V¢ O¢ V, S
Gas —0.399 —-0.321 3.603 —1.344 4.034
—0.67£0.34 —0.35£0.08 3.58-0.09 —1.18+0.22 3.62-0.25
Solvent 1 —1.154 —-0.321 3.603 —3.095 3.523
—1.40+£0.33 —0.35£0.08 3.58-0.09 —2.73£0.18 3.55-0.14
Solvent 2 —0.399 —0.857 3.603 —3.095 3.523
—0.67+0.34 —0.87+=0.09 3.58£0.09 —2.73+0.18 3.55:0.14
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FIG. 9. Best fit to helix content for gas and model-water solvent F|G. 11. Best fit to helix content for model-water solvent 2,
1, obtained by simultaneous fitting 19 parameters to the cohort ofbtained by simultaneous fitting 19 parameters to the cohort of MC
MC data. data. The large deviation seen in the chain of length 30 is at an
acceptable level when the trustworthiness of the MC data in the

dent coordinates. However, normal mode analysis appliefelical phase itself is factored in.
to the soft condensed phase is subject to difficulties because
of anharmonic potentialgt1] that limit the range of validity  constraints, allowing a global picture to emerge in under-
over the assumed harmonic motions. In the DCM, thestanding structural self-organization. From the three worked
“strength” of a constraint is inversely proportional to its examples presented, we observe the following.
free volume quantified by a pure entropy. An extremely (1) The effectiveness of a constraint in changing the free-
weak constraint having a large free volume will pose noenergy of the system depends on temperature and its location
effective restrictions on conformational freedom. Althoughin relation to all other constraints.
normal mode analysis is not intrinsically suited to deal with  (2) Molecular cooperativity derives from competition be-
bonds breaking and forming via thermal fluctuations, atween frameworks having different energetic and entropic
self-consistent phonon theof$2] has been used to account contributions. More generally, a change in thermodynamic
for breaking and forming of hydrogen bonds in protein conditions (temperature, pressur@H, etc) can lead to a
structure. Both the DCM and normal mode analysis offerglobal rearrangement of optimally well placed constraints.
approximation schemes, but from opposite directions. For (3) The most probable microstates will often correspond
example, soft anharmonitor flat) potentials are easier to to a characteristic pattern of constraints, manifesting itself as
deal with in the DCM because they require less geometricadtructural self-organization. For example, in the helix-coil
partitioning.

The DCM explicitly accounts for fluctuating topological 0.04
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O 1 1
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Temperature (K) FIG. 12. Best fit to specific heat for model-water solvent 2,

obtained by simultaneous fitting 19 parameters to the cohort of MC
FIG. 10. Best fit to specific heat for gas and model-water solventiata. A systematic fitting error can be seen, where the D@M
1, obtained by simultaneous fitting 19 parameters to the cohort opresented hejepredicts too fast an increase in the maximum peak
MC data. as a function of chain length.
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transition, mechanical frameworks switch character as some 1 ' . '
constraint types tend to breake{helical torsion constraints
and backbone hydrogen bond constrginthile others tend

to form (coil torsion constrainjs This type of structural self-
organization has been produced in athermal network rigidity
models[43] applied to covalent glass networks, where re-
dundant constraints were suppressed to avoid strain energ
In other work to be published elsewhdi#5], hydration ef-
fects are included in the DCM. Structured water around a;:% 0.4
hydration site is considered to impose another type of con-
straint on the peptide, where it is enthalpically favorable and
entropically unfavorable. Under certain thermodynamic con- 92
ditions, cold denaturation occurs as the character of con-
straint type and pattern changes.

ontent
o
[+2]
T

x C

1 L 1
200 300 400 500 600
Temperature (K)

A. The helix-coil transition o
FIG. 13. The solid lines through the MC data for model-water

The helix-coil transition has been studied for nearly 50sglvent 2 show the best five parameter fit for each size chain sepa-
years[44,45. For a simple statistical mechanical approachrately using the standard LR model. The dashed line on(léfe
the Zimm and BraggZB) [29] and Lifson and RoigLR) right) corresponds to the LR prediction of helix content for a chain
[30] models are commonly used. The ZB and LR modelsof lengths 30 and 10 using the best-fit parameters obtained from
share two types of parameters—referred to as nucleation aruthain lengths 10 and 30.
propagation parameters. Only two- and three-dimensional
transfer matrices are required for the ZB and LR modelsparameters, requiring a total of 20 parameters. Figure 13
respectivel\{46]. Without a doubt, the application of the LR shows the simulation data for chain lengths 10 and 30, as
model to explain experimental data has been very fruitfulwell as the best fit for each size. In addition, the prediction
over the years. The question then arises, why use the mofer helix content for chain lengths 30 and 10 using the fitted
complicated DCM when the traditional LR model will do? parameters from chain lengths 10 and 30, respectively, are

The DCM clearly makes a distinction between a cooperashown. The LR model in its three parameter form does a
tive process governing a structural transition to that of a nonvery good job in fitting to each helix content curve. How-
cooperative process that happens to have a sharp transitiogver, as Fig. 13 clearly shows, the fitted parameters obtained
A true signature for the degree of cooperativity is in how thefor one size cannot be used to predict helix content of a
transition temperature depends on chain length. The Mdifferent sizeThe LR parameters are inherently nontransfer-
simulation data from Y. Penet al.[37] shows a large degree able because they depend on the size of the syaiémugh
of cooperativity, as the transition temperature dramaticallythe sharpness of the helix content curve is accounted for in
increases by 130 K when increasing chain length from 10 tahe so called nucleation parameter, the mechanism creating
30. The DCM is able to capture this degree of cooperativitythe cooperativity is completely missed in this simplest three-
without requiring temperature or size dependent model paparameter form. To be fair, a simultaneous fit to all four helix
rameters. content curves was attempted using 12 parameffensr

For comparison, the LR model was also fitted to model-model parameters and eight base line parametéhe extra
water solvent 2 MC datg87]. LR relates the so called nucle- LR-model parameter was introduced by letting

ation parametes and the propagation parameteto partial  =e?%ve~#Vv. Not surprising, no good simultaneous fit solu-
configurational integrals defined by coarse-grain sections dions were possible.
dihedral angle spadgelical or coil conformationsalong the Bierzynski and PawlowskiBP) [48] show that the nucle-

backbone. These dimensionless parameters are expectedation parameter is required to be a function of chain length
be functions of temperature, wherekTInv and —kTlnw  due to the long-range character of helix formation. It seems
represent microscopic component free energies, and aresporting to us to predict a helix with parameters that vary
treated phenomenologicall¢7]. The LR parameters can be with chain length. Furthermore, BP demonstrate that a com-
written in a form similar to the DCM, where=e?% and  mon implementation of the LR model predicts thermody-
w=e?%we~AVw, Here the parametelss,, 4,,, andV,} are  namic state functions that are erroneously path dependent:
taken as temperature independent, and fitted to the four heligiving slightly different results depending on which end of
content curves. Note that theparameter is assumed here to the peptide the computation begins at, and wrong predictions
be temperature independent, following common practicewhen prenucleated peptides are considered. Fundamentally,
Since the LR model as commonly invoked does not explicthe so called nucleation parameter is ill defined for use in
itly account for end effects, two additional parametérst  calculating a partition functiof48], and its widespread use
model parameteysare required to account for helix content has created misconceptiof#9]. The DCM avoids these is-
base lines. sues. The DCM has long-range character through network

Helix content for chain lengths 10, 15, 20, and 30 wererigidity, thus recourse to length dependent parameters is un-
individually fitted with the LR-model, each with five fitting necessary.
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The DCM is actually very similar to the LR model. Both 600 T
models are based on parameters that can be derived fror L e
local microscopic free energies. The difference is that the g4, el
DCM attempts to include nonlocal cooperative interactions e ]
explicitly by using generic rigidity calculations to account £ | i
for the nonadditivity of entropy. Yet it is possible to construct £ 49 [/

——= gas
a DCM where there is very little entropic competition be- +’ ——- aan
tween constraint types, such as given in column a in Table 3g¢ [/ wat 2 i
[ll. In this case, the DCM for a helix-coil transition iden- @) |
tical to thegeneral formof the LR model. It is worth noting » o o
that the two commonly used LR parametf43] (v,w) are 200 10 100 1000
only a subset of 16 parameters that must be defined for eac Chain length
possible type of propagatiofi.e., aac — aca, and 15
more. Lifson and Roig simplified the model considerably to 60 A oo
solve it analytically. Unfortunately, the advantages of simpli- — 3;? ; P
fying the mathematical form of the model has lead to non- — wat2 7

transferability of parameters that have created many incon:
sistencies in the literatud0]. With modern computers it is
no longer necessary to invoke the two-parameter form of the
LR model. The disadvantage of retaining the two-parametet
form is that the parameters become strongly dependent func
tions of temperatur€36,37,5] and chain lengtt36,37,48.

B. Solvent effects on the helix-coil transition ”10 - '1'(I)0 - I1‘000

The DCM parameters naturally divide into two categories Chain length

that are expected to be either weakly or strongly dependent ¢ 14 The(a) transition temperature ari) maximum value
on solvent conditions. Moreover, the results obtained Dy fitof the specific heat as a function of chain length for gas phase and
ting the DCM to MC simulation data indicate the essentialmogel-water solvents 1 and 2. The parameters used in generating
physics of the helix-coil transition for polyalanine is well these curves are given in Tables IV and V.
described by the ten solvent independent parameters in Table
IV and 5 solvent dependent parameters given in Table V. For L , .
these DCM parameters Fig. 14 shows the affect of solvent o+ | N€refore, itis easy to interpolate between the two differ-
the helix-coil transition. Comparing gas phase and model€nt MC results within a two-dimensional parameter space.
water solvents 1 and 2 with each other, we see that the trad-€ interpolation was done by fitting only to model-water
sition temperature and the sharpness of the transition can i§@lvent 2 data. Lettind), range between-1.4 and—0.4
substantially modified. Not surprising, the gas phase transikcal/mol, a one-parameter fit to obtain the optinval was
tion temperature is elevated with respect to model-water solperformed, while holdingJ, and all other 17 parameters
vent, because alternate hydrogen bonds from backbone @iven in Tables IV and V fixed. It was found that the DCM
solvent cannot replace intrahydrogen bonds as they breakiodel predictions smoothly change as a functiorgf. In
The greater energy cost to unravel the rigid helical structuré=ig. 15, the helix content is shown for model-water solvent,
requires a higher transition temperature where gains in corbut now the uncertainties in the parametekg and V. en-
formational entropy can begin to compensate. It is also seegompass both MC simulation results for the chain length of
that the transition temperature as a function of chain lengthg. Chain lengths of 10, 15, and 30 are shown in Fig. 15,
for model-water solvents 1 and 2 are very similar, as ongyhich gives some indication of the true uncertainties in helix
might expect if the differences shown in Fig. 8 are viewed agontent for model-water solverttising the ECEPP/2 force
systematic uncertainties, rather than two different solvents.ﬁem).

The sharpness of the transition, as characterized by the |, \he pCM presented here, solvent effects on the helix-
maximum in specific heat, is found to depend on the particuz,;; yansition were described well using just five parameters.

lar combination of solvent dependent parameters. With re poiter description is possible by including more states rep-

spect to the gas pha;e, from Fig. 14 it is seen that the tra'?'esenting the peptide to solvent interactions. In other work
sition sharpens considerably for model-water solvent 1, bu(Em

: . 35] hydration constraints are included, for example. Further-
;grsr:jt'gsc\é'rr:ggll;’ trr:;)r?)%rﬂfef(;;]?ggg;‘r’:’lzttiegnssot\)’f?;:‘aETﬁgr%ore, inverted transitions from coil to helix as temperature
that generated the original MC simulation d§&6,37. Of mereases from low to high can be described.
course, model-water solvents 1 and 2 are actually the same,
albeit systematic uncertainties shown in Fig. 8. This uncer-
tainty and the differences seen in Fig. 14 are the result of Admittedly, the DCM requires more effort than the LR
differences found in parameterd { andV,), listed in Table model to describe the helix-coil transition. The benefit of this

C. Molecular cooperativity
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The primary motivation for introducing the DCM is to
study flexibility and stability in proteing53]. The concept of
a rigidity correlation length applies to any topology of con-
straints, such as found in globular proteins. The DCM can be
R - used to directly study the affect of hydrogen bonds on pro-

V (keal/mol)

0.8

Sost G kGaima] tein stability, which has been difficult to ascertain experi-
§ mentally and theoretically. Not only does the answer depend
S o4l on the specific thermodynamic conditions, but also on the
* particular hydrogen bond in question. Stability questions are
particularly difficult to answer when there is a high degree of
02

cooperativity in a molecular system. Proteins are particularly
2YTyTo interesting, where it has been suggested that the folding path-
0 , , way is encoded in the hydrogen bond netw¢tk,1§. In
200 300 400 500 600 addition, mechanical stability probed by single-molecule
Temperature (k) force spectroscopy appears to depend on the kinetic stability
of the hydrogen bond netwofl62]—also a cooperative pro-
FIG. 15. Large graph: The dashed and solid curves show pregess that can be addressed within a DCM. More generally,
dictions for chain Iengths 10, 15, and _30 that are obtained in 3he DCM describes protein folding as a manifestation of a
one-parameter best fit fov, when settingUo=—0.4 andUo gy ctyral self-organization caused by the topological optimi-
= —1.4 respectively. The circles and squares show the results ofiq of constraint placement. Indeed, all model calculations
MC simulation from. Pengpt al. [37] and OI.(amom[%]’ respec- presented here suggest that the most probable frameworks
tively. Inset: The solid line shows the best-fit value\gfalong the correspond to well defined structural unigaich as second-

ordinate as a function o), along the abscissa. The circle and ary structure, protein domains, etchat change character
square indicates the. andU, values used to generate the dashed y . » P L o 9
under different thermodynamic conditions.

and solid lines in the large graph. Due to the intrinsic uncertainty in
the MC data, perhaps the best DCM parameter estimatet) gre

=—0.900 kcal/mol and/,= —0.485 kcal/mol, which split the dif- VI. CONCLUSION
ferences roughly in to half.

The DCM generalizes th&=0 generic rigidity calcula-
tion to finite temperatures by quantifying constraints with
additional labor is that the final parametrization for under-energetic and entropic characteristics. The effectiveness of a
standing the nature of competing microscopic interactiongonstraint strongly depends on its type and where it is placed
becomes considerably less complicated in the end. In pain the network in relation to all other constraints. Generic
ticular, the DCM offers the potential of having transferability rigidity is then used as an underlying long-range mechanical
of parameters. Parameter transferability is intimately tied tdnteraction between constraints, providing the mechanism for
the proper summation of component entropies, which ighe nonadditive property of component entropies. The DCM
quantified in the DCM via the long-range underlying me-accounts for fluctuating topological patterns of constraint
chanical interaction between constraints. From the fittePlacements. From a computational point of view, the network
model parameterggiven in Tables IV and Yit is seen from rigidity calculations are easy to implement by invoking fast

column i in Table Il that a 244244 transfer matrix was 9raph algorithms that are available in two dimensions
necessary to describe the MC simulation results. The |argE12,é4%fordg_eneral netl\</vorks and in three dimensipné] for
size of the transfer matrix is an indication of a high degree o or|1n -th(iasn plgge?egwgrcf/i applied to the helix-coil transition
Eg?lzeratlwty among the hydrogen bonding along the baCkWas considered in detail and compared to the Lifson-Roig
' . model. Thermodynamic state functions are calculated ex-
In exchange for the nontransferable nucleation parametea

h e the d f ity it is ch .__gctly, without recourse in using a nucleation parameter. The
to characterize the degree of cooperativity, it Is characterizefly iy il ransition in peptides is special only in that it can

by a rigidity correlation lengthin the DCM. The rigidity e exactly solved as a one-dimensional system using a trans-
correlation length gives an indication of how far away from tar matrix method. Our use of the DCM has been to coarse
a point of interest that perturbations in constraints will leadgrain into the smallest number of states necessary to describe
to little affect at the point of interest. It can be roughly esti- the physics at hand. For examptehelix and coil backbone
mated at the helix-coil transition by locating the crossoverstates are used in modeling the helix-coil transition. In this
point where the shift in transition temperature becomes smallork, 12 different thermodynamic response functions were
as chain length increases. From Fig. 14, the rigidity correladescribed well by the DCM using 20 parameters that are
tion length is estimated to be40 amino acids for both gas independent of temperature and chain length. The entropic
and model-water solvents, also corresponding to the infleggarameters indicate that the degree of cooperativity extends
tion point on the curves for maximum specific heat. Theover ~40 amino acids.

correlation length is quite long considering that in one- As a practical application, the DCM may be able to pre-
dimension thermal fluctuations severely reduce the effectivedict helix formation in proteins with parameters derived from
ness of the long-range nature of network rigidity. helix-coil transition studies. The DCM is readily scalable to
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include more types of interactions, where far more backbonés applicability goes beyond biopolymers, offering a new
states could have been introduced such as 3-10 hglix, paradigm not previously available.

sheet, B turn, hydrated or not hydrated, buried or surface
exposed. If the DCM parameters are found to be transferable
(as we expegtflexibility and stability studies on proteins  The authors are grateful for financial support from Cali-
will be far more feasible, because the DCM gets more physfornia State University, Northridge, the Research Corpora-
ics out with fewer parameters. The DCM has the potential tdion (Grant No. CC514) and to the NIH (Grant No.

gain a better understanding of these issues from a mechanica@M48680-0952 We thank Dennis Livesay for many useful
point of view. More generally, the DCM gives a description discussions. We also thank Professor Hansmann for sharing
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