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Geometrical complexity of conformations of ring polymers under topological constraints
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One measure of geometrical complexity of a spatial curve is the average of the number of crossings
appearing in its planar projection. The mean number of crossings averaged over some directions have been
numerically evaluated fdi-noded ring polymers with a fixed knot type. Whirnis large, the average crossing
number of ring polymers under the topological constraint is smaller than that of no topological constraint. The
decrease of the geometrical complexity is significant when the thickness of polymers is small. It is also
suggested from the simulation that the relation between the average crossing number and the average size of
ring polymers should depend on whether they are under a topological constraint or not.
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[. INTRODUCTION The average crossing number is also related to ideal
knots. For a knot, the ideal knot is given by its tightest geo-
Complexity of conformations of polymer chains should metric configuration[8—10]. Katritch et al. have obtained
play an important role in the physics of polymédd. How-  the average crossing number for the ideal knots up to 11
ever, it is not trivial how one can investigate any aspect ofessential crossing numbers. The average crossing number
the complexity of conformations of polymers directly should be useful for flexible DNA knots in thermal equilib-
through computer simulation. In fact, it is not clear how to rium [8]. Furthermore, it should also be useful for statistical
express the entanglement complexity numerically for mutuor dynamical studies on knotted ring polyméss11,17.
ally entangled polymers. Furthermore, it is not known how The paper is organized as follows. In Sec. Il, we briefly
the complexity of polymer conformations should depend orexplain some aspects of simulation methods. We consider
the property that polymer chains cannot cross each other. self-avoiding polygons consisting of cylindrical segments
In this paper, we discuss the geometrical complexity ofin our simulation. In Sec. Ill, we show simulation results of
conformations of a ring polymer under a topological con-the average crossing number of cylindrical self-avoiding
straint. As a measure of geometrical complexity of a spatiaholygons with fixed knots. We discuss some finite-size be-
curve, we consider the number of crossings in a planar prohaviors as well as asymptotic behaviors. It seems that
jection of the curve, and take the average over some direcasymptotic behaviors of the average crossing number for
tions [2,3]. Through computer simulation, we evaluate the Self-avoiding polygonsSAPY with fixed knots have not
average crossing number fdt-noded ring polymers with been discussed yet. Furthermore, we plot the graphs of the
fixed knots, and discuss their behaviors as some functions ghean-square radius of gyration versus the average crossing
N. We thus make it clear how the topological constraints carhumber, for the SAPs with fixed knots.
modify the geometrical complexity. Here we note that the
condition that a ring polymer never crosses itself corre-
sponds to a topological constraint on it, as far as its statistical Il. METHODS OF SIMULATION
properties are concerned. Furthermore, we discuss the rela-
tion between the average crossing number and the mean- We consider SAPs consisting bfrigid impenetrable cyl-
squared gyration radius. Simulation results suggest that inders of unit length and radius There is no overlap al-
should depend on topological constraints and should be nolewed between any pair of nonadjacent cylindrical segments,
trivial. while neighboring cylinders may overlap each other. We call
Let us explain the average crossing number, more prethem cylindrical SAPs, for short. A large number of cylindri-
cisely. Thewrithe of a linear or ring polymer is defined by cal SAPs can be constructed by the cylindrical ring-
the average of the number of signed crossings appearing indimerization method13]. The method is based on the algo-
projection of the curve averaged over all directions. As arithm of ring dimerization[14], and useful for generating
simplified version of the writhe, Janse van Rensbetgl. long SAPs systematically. In this paper, we have constructed
introducedthe number of crossing®]. It is defined by the M=10* samples ofN cylindrical segments with radius,
number of unsigned crossings in a projection. Thee,av- whereN is from 20 to 1000 and is from 0.0 to 0.07. We
erage number of crossings defined by the number of cross- determine the numbévi of polygons with a knoK, enu-
ings averaged over all possible projections. There are severaierating such polygons that have the same set of values of
numerical or theoretical studies on the average crossinthe two invariants: the determinant of the krg¢(—1) [15]
number{4-7]. and the Vassiliev invariant,(K) of the second degrdé6].
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TABLE I. The determinant of a knd and the Vassiliev invari- 1000 ¢ ————— —————rry
antv,(K). ; . triv 58
Knot K |Ag(—1)] vy 2 |0t -
Trivial 1 0 % 100 ] — ;
Trefoil 3 -12 § 8 gﬁﬁﬁ
Figure-eight 5 12 & g 24
g 10k B 4 _
o A
2
The values of the invariants for some typical knots are given <
in Table I.
The mean valué\ of the average crossing number for a 110 100 1000
set of SAPs is defined bx==M A, /M. Here,A; denotes N: Number of nodes

the average crossing number of tith polygon. The mean . )
value of the average crossing number for a set of the SAPs FIG. 1. The average number of crossings with a knot #p
with a knotK is given byAKZE.MKA M whereA. - vs_ N for r_=0.003_. Numerical estimates &f; for K=tr_|V|aI, tre-
! i=1" KK Ki foil, and figure-eight knots are shown by closed triangles, open

denotes the average crossing number ofitheSAP having  gquares, and circles, respectively.
the knotK. Thus,A is nothing but the average & s over
all knots. with a double-logarithmic scale for the two knots. For the

In the simulation, we have obtained the average crossingfivial knot, the graph has a concave curve: the réatig, /A
numberA and A,’s for the trivial, trefoil, and figure-eight IS almost constant with respect t for small N and then
knots in the range ol from 20 to 1000. Here, we evaluate decreases with a larger gradient for larye The ratio
the average crossing number by taking the average over thari, /A is smaller than 1.0 in the whole range Nf It fol-
X, ¥, andz directions. Furthermore, we note that the numbedows that in terms of the average crossing number, the
of M K depends not 0n|y on the knot type’ but also on the Steﬁ\l-nOded ring polymers with the trivial knot are less Complex
numberN [13,17. When the knot typ& is complicatedM ¢ than those of no topological constraint, for aNy For the
can be very small. By taking into account the fact, we ex-trefoil knot, the graph ofA;./A versusN can be roughly

press statistical errors of data points explicitly by error bars2pproximated by a negative power Nffor some finite val-
which correspond to standard deviations. ues ofN. The ratioA,./A is larger than 1.0 foN<200, and

The mean-square radius of gyratiBd for SAPs withN ~ smaller than 1.0 foN>300. Thus, the SAPs of the trefoil
nodes is given bR2=3N  ((B.—B.)2)/2N2. HereR. is  Knot are more complex for smaN and less complex for
g R nm=1{(Rn=Rm)") " large N than those of no topological constraint.
It is remarkable in Fig. 2 that both of the ratidg /A’s

! : for the two knots become less than 1.0 witis large. The
Wi fine the mean- re radi f gyr ﬁ(ﬁnf r SAPs of . .
e define the mean-square radius of gyrafyfor SAPs o Ag’s are less than the average crossing numbehat is

2 _ <Mk p2 2
the knotK by Ry == Ry i/M [18,19. Here Ry ; denotes  zyaraged over all knots, whevis large. Here we recall that

the mean-square radius of gyration fozr, ljhthz SAP in the A corresponds to the average crossing number of the SAPs
My polygons of the knoK. In terms ofRi’s, R%is given by ynder no topological constraint, whis denotes the aver-

the position vector of thath node, and the symbd} ) de-
notes the average ov&f polygons generated. For a knigt

the average over all knotR?= 3 MyRg/M. age crossing number of the SAPs with the fixed knot tpe
Thus, it is suggested from Fig. 2 that topological constraints
1. SIMULATION RESULTS OF THE AVERAGE should make the conformations of ring polymers simpler
CROSSING NUMBER UNDER A TOPOLOGICAL — 7 . ——————y
CONSTRAINT 121 + % 4 tri/ave
A. Finite-size behaviors of the average crossing numbek + m tre/ave
We now discuss thil dependence of the average crossing : ++§
numberAg under the topological constraint of a kriot The °
double-logarithmic graph o\ versusN is given in Fig. 1 E ]
for the cylindrical SAPs of cylinder radius=0.003, where e E
K is given by the trivial, trefoil, and figure-eight knots. The 41 114 e
graph can be approximated by a powerNfsuch asAg ; g ' IR
K ;
«N"ef, whenN is large enough. Here the symbd}; denotes 08 r tig ig;
the effective exponent for the knot tyge. Applying the ; ! .
power law approximation to the data bE=100, we obtain 100 1000
the following estimates of the effective exponenig’ N: Number of nodes
=1.134+0.004, ng?: 1.070+0.005, erlfg: 1.057+0.013. FIG. 2. Double-logarithmic plots of the ratidx /A vs N for

Let us consider the ratio oAx to A for the trivial and  cylindrical SAPs withr =0.003.A,,;, /A and A /A are shown by
trefoil knots. The ratioAx /A versusN is plotted in Fig. 2  closed triangles and squares, respectively.
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FIG. 3: G_raph of the ratid /A vs N for cylindrical SAPs with FIG. 4. The raticay /a vs cylinder radius for cylindrical SAPs.
r :0-003."‘ linear scaled;, /A, Aye /A’.andAfig A are shown by The values ofy,, /a anda,. /a are shown by closed triangles and
closed triangles, open squares, and circles, respectively. squares, respectively.

with respect to the geometric complexity, whahis large

. . A 1-2v .
enough. The reduction of conformational complexity may beP€r Of SAWS is given byAsay/N=a t;]N with sofm?]
related to entropic repulsion arising from the topologicalConstantsa andb. Here » is given by the exponent of the
constraints. average size of SAWSs. We also note that in R8Y, the large

The ratioA, /A versusN is plotted in a linear scale for the N Pehavior of Asxy is approximated by a power dK,
three knots in Fig. 3. Here we find some finite-size behavior$'saw ™~ N“sA% with the effective exponentisay=1.122
clearly. The average crossing number of the trivial knot,i0'005' . )

Agis » is smaller than that of the trefoil o figure-eight knots, !N order to illustrate some dependent properties &,
Age, and Agq, through the whole range of the ploly let us introduce an asymptotic expansion for the ratd A

<1000. It is thus suggested that the more complicated knofersusN. Based on the asymptotic expansiorfafyy in Ref.
should have the larger value of the average crossing numbey/;» W assume the asqutg“c expansion with respefitae
for the case of finiteN. The tendency is also seen in the data/0llows: Ax/N=ax—b N*"“* for any knotK. Here ax

for the different values of cylinder radius As N increases, and bk are fitting parazmetzers. Taking the analogy with the
however, the average crossing numbaigs of the three ~Simulation results orRy/R” [18,19, we may assume that
knots gradually become close to each other. WNda very ~ vk=v also for the average crossing numig. We thus
|arge, they become almost constant with respecNImS have the formula of the ratiAK /A in the fOIIOWing:AK /A

shown in Fig. 3. The flatness of the graph/gf/A versusN = ax (1~ Bk N*~2"). Here, a and B are fitting param-
for large N suggests that the ratiéy /A should be indepen- €ters corresponding tay /a andby /ax —b/a, respectively.
dent of N whenN is asymptotica”y |arge_ We apply it to the data OAK /A of theN-noded SAPs withN

The average crossing numb&g of a knotK have some larger than some cut off and for the different values .of
similar finite-size behaviors in common with the mean- Let us discuss the best estimatesapf/a plotted against
squared gyration raditR2 of SAPs with the knoK. In some  cylinder radiusr in Fig. 4. Whenr is small, the raticax/a
previous work[18,19, it is shown that for random polygons Pecomes smaller than 1.0 both for the trivial and trefoil
and cylindrical SAPs, the double-logarithmic graph of theknots. Th|s_|s consistent with the observation of.Flgs. Zgnd 3
ratio RZ/R? versusN is given by a downward convex curve, that the ratioAc /A for r=0.003 decreases agairétand is
and the ratio is larger than 1.0 for the trivial knot, while for Smaller than 1.0 for largé\. In Fig. 4, the ratioay/a in-

the trefoil knot the graph is given by a straight line and theCr€ases monotonically with respect to cylindrical radius
ratio Rﬁ/Rz is smaller than 1.0 for smal and larger than and it becomes close to the value 1.0 at some large value of

1.0 for large N. To be precise, the ratio®\¢/A and : I Ithe_ rziltiof,?\K{(A bet(r:]omes 1.0, then there is nbo Ob(\)/imiﬁ
(Rﬁ/Rz)‘l have the same decreasing behaviorsNag- opological effect on [he average crossing numoer. ©n the

. - o other hand, ifA /A is less than 1.0, then it may be a conse-
creases, particularly at arourd= 300, for the trivial and ; : .
trefoil Knots. quence of the topological constraint. The fact that the ratio

agx/a is smaller than 1.0 when is small shows that the
effect of topological constraints on ring polymers is large for
small r. From the fact that increases up to 1.0 whenis

We now discuss possible asymptotic behaviors of the avlarge, it follows that the topological effect decreases when
erage crossing number. Let us review some known results oradiusr is large.
the largeN behavior ofN-step SAWs. The average crossing Let us consider again the dependence ofy that the
number can also be defined for SAWs, and we denote it bgraph ofay /a versusr increases up to 1.0 for the two knots,
Asaw- In Ref. [7], it is discussed that for asymptotically as shown in Fig. 4. A very similar behavior has also been
large N, the mean valuégy,, of the average crossing num- observed for the case of the raﬁ&ﬁ/R2 of the mean-squared

B. Asymptotic behaviors of the average crossing numbeA
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T R haviors are concerned. Here we note that in FigR%is

mers larger with respect to the average crossing numbers
when their value is large. We also observe tRat, is larger
: thanR?, among theR2’s in Fig. 5. Thus, the more compli-
T cated knot should have the smaller radius of gyration, as far
10 100 1000 as some finite values &fx’s are concerned.
When the average crossing number is very large, the
mean-squared gyration radil (or Rﬁ) can be approxi-
FIG. 5. The mean-square radius of gyratief vs the average mated by some power & (or Ay): R>~A for the case of
number of crossingéy of cylindrical SAPs forr =0.003. Numeri-  the average over all knotRﬁ~A%K for the trivial and trefoil
cal estimates foK =trivial knot, 3; are shown by open squares and |nots. Furthermore, we observe in Fig. 5 that the effective
circles, respectively. Data d?? versusA are shown by closed tri- exponentyy should be independent of the knot type. The
anglesN are given by 51, 151, and 1p@1 for j=1,...,10. graphs of Fig. 5 for the trivial and trefoil knots become close
to each other a8 is getting large. Applying the power law
gyration radii of the cylindrical SAPs with radiusIn Refs.  approximation to the data =100, we obtain the follow-
[18,19, it has been shown for the cylindrical SAPs that aing estimates:y=0.860+0.001, v, =0.952+0.004, and
topological constraint on a ring polymer gives effective ex-v,,.=1.06%-0.006. Finally, we note that similar results are
pansion to it, i.e., the ratiB%/R? becomes larger than 1.0 for obtained also for the SAPs with the different values of cyl-
large N. Furthermore, the effective expansion is significantinder radiusr.
when the cylinder radius is small, the largeN limit of
RZ/R? decreases to 1.0 asincreases.

_§ 100L [ 4 ave @@;"k - plotted agains®, and Rﬁ is againstAx for each of the two

T E | D triv = knots.

E‘ o tre 5 With the same value of the average crossing numbers
2 N = given, R2, andRZ, are larger tharR?> when the value is

3 i large, as shown in Fig. 5. Thus, we may suggest that a topo-
o 10| 1 logical constraint should make the average size of ring poly-
[ -

g
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3

=

Average Crossing Number

IV. CONCLUSIONS

Through numerical simulations we have discussed the av-
C. The mean-squared gyration radius erage crossing number of self-avoiding polygons under some
and the geometric complexity topological constraints. WheN is large, the average cross-

, ) . ing number of ring polymers under a topological constraint is
Let us discuss the relation between the average crossingnaler than that of no topological constraint. From the

number and the average size of ring polymers. We shall showimylation result we may conclude that a topological con-
that it should be nontrivial. In Flg 5 the mean-square radii Ofstraint should make the conformation of ring p0|ymers sim-
gyrationR? andR%’s are plotted against the average crossingpler with respect to the geometric complexity expressed in
numbersA and A¢’s in a double logarithmic scale for the terms of the average crossing number. We may also conclude
cylindrical SAPs ofr =0.003. HereK is given by the trivial  that the effect of topological constraints should be significant
or trefoil knots. We find in Fig. 5 that the estimatesRsfand ~ When the ring polymer is thin, both for the average crossing
RZ’s for the two knots are different for any given value of numberA and the mean-square radius of gyratRf.

the average crossing numbers. It thus follows that the mean-

squared gyration radius and the average crossing number are ACKNOWLEDGMENTS
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