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Geometrical complexity of conformations of ring polymers under topological constraints
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One measure of geometrical complexity of a spatial curve is the average of the number of crossings
appearing in its planar projection. The mean number of crossings averaged over some directions have been
numerically evaluated forN-noded ring polymers with a fixed knot type. WhenN is large, the average crossing
number of ring polymers under the topological constraint is smaller than that of no topological constraint. The
decrease of the geometrical complexity is significant when the thickness of polymers is small. It is also
suggested from the simulation that the relation between the average crossing number and the average size of
ring polymers should depend on whether they are under a topological constraint or not.
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I. INTRODUCTION

Complexity of conformations of polymer chains shou
play an important role in the physics of polymers@1#. How-
ever, it is not trivial how one can investigate any aspect
the complexity of conformations of polymers direct
through computer simulation. In fact, it is not clear how
express the entanglement complexity numerically for mu
ally entangled polymers. Furthermore, it is not known h
the complexity of polymer conformations should depend
the property that polymer chains cannot cross each othe

In this paper, we discuss the geometrical complexity
conformations of a ring polymer under a topological co
straint. As a measure of geometrical complexity of a spa
curve, we consider the number of crossings in a planar p
jection of the curve, and take the average over some di
tions @2,3#. Through computer simulation, we evaluate t
average crossing number forN-noded ring polymers with
fixed knots, and discuss their behaviors as some function
N. We thus make it clear how the topological constraints c
modify the geometrical complexity. Here we note that t
condition that a ring polymer never crosses itself cor
sponds to a topological constraint on it, as far as its statist
properties are concerned. Furthermore, we discuss the
tion between the average crossing number and the m
squared gyration radius. Simulation results suggest tha
should depend on topological constraints and should be n
trivial.

Let us explain the average crossing number, more p
cisely. Thewrithe of a linear or ring polymer is defined b
the average of the number of signed crossings appearing
projection of the curve averaged over all directions. As
simplified version of the writhe, Janse van Rensburget al.
introducedthe number of crossings@2#. It is defined by the
number of unsigned crossings in a projection. Then,the av-
erage number of crossingsis defined by the number of cross
ings averaged over all possible projections. There are sev
numerical or theoretical studies on the average cros
number@4–7#.
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The average crossing number is also related to id
knots. For a knot, the ideal knot is given by its tightest ge
metric configuration@8–10#. Katritch et al. have obtained
the average crossing number for the ideal knots up to
essential crossing numbers. The average crossing num
should be useful for flexible DNA knots in thermal equilib
rium @8#. Furthermore, it should also be useful for statistic
or dynamical studies on knotted ring polymers@5,11,12#.

The paper is organized as follows. In Sec. II, we brie
explain some aspects of simulation methods. We cons
self-avoiding polygons consisting ofN cylindrical segments
in our simulation. In Sec. III, we show simulation results
the average crossing number of cylindrical self-avoidi
polygons with fixed knots. We discuss some finite-size
haviors as well as asymptotic behaviors. It seems t
asymptotic behaviors of the average crossing number
Self-avoiding polygons~SAPs! with fixed knots have not
been discussed yet. Furthermore, we plot the graphs of
mean-square radius of gyration versus the average cros
number, for the SAPs with fixed knots.

II. METHODS OF SIMULATION

We consider SAPs consisting ofN rigid impenetrable cyl-
inders of unit length and radiusr. There is no overlap al-
lowed between any pair of nonadjacent cylindrical segme
while neighboring cylinders may overlap each other. We c
them cylindrical SAPs, for short. A large number of cylindr
cal SAPs can be constructed by the cylindrical rin
dimerization method@13#. The method is based on the alg
rithm of ring dimerization@14#, and useful for generating
long SAPs systematically. In this paper, we have construc
M5104 samples ofN cylindrical segments with radiusr,
whereN is from 20 to 1000 andr is from 0.0 to 0.07. We
determine the numberMK of polygons with a knotK, enu-
merating such polygons that have the same set of value
the two invariants: the determinant of the knotDK(21) @15#
and the Vassiliev invariantv2(K) of the second degree@16#.
©2003 The American Physical Society08-1
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The values of the invariants for some typical knots are giv
in Table I.

The mean valueA of the average crossing number for
set of SAPs is defined byA5( i 51

M Ai /M . Here,Ai denotes
the average crossing number of thei th polygon. The mean
value of the average crossing number for a set of the S
with a knot K is given byAK5( i 51

MK AK,i /MK , whereAK,i

denotes the average crossing number of thei th SAP having
the knotK. Thus,A is nothing but the average ofAK ’s over
all knots.

In the simulation, we have obtained the average cross
numberA and AK’s for the trivial, trefoil, and figure-eight
knots in the range ofN from 20 to 1000. Here, we evaluat
the average crossing number by taking the average ove
x, y, andz directions. Furthermore, we note that the numb
of MK depends not only on the knot type, but also on the s
numberN @13,17#. When the knot typeK is complicated,MK
can be very small. By taking into account the fact, we e
press statistical errors of data points explicitly by error b
which correspond to standard deviations.

The mean-square radius of gyrationR2 for SAPs withN

nodes is given byR25(n,m51
N ^(RW n2RW m)2&/2N2. HereRW n is

the position vector of thenth node, and the symbol^•& de-
notes the average overM polygons generated. For a knotK,
we define the mean-square radius of gyrationRK

2 for SAPs of
the knotK by RK

2 5( i 51
MK RK,i

2 /MK @18,19#. Here,RK,i
2 denotes

the mean-square radius of gyration for thei th SAP in the
MK polygons of the knotK. In terms ofRK

2 ’s, R2 is given by
the average over all knots:R25(KMKRK

2 /M .

III. SIMULATION RESULTS OF THE AVERAGE
CROSSING NUMBER UNDER A TOPOLOGICAL

CONSTRAINT

A. Finite-size behaviors of the average crossing numberAK

We now discuss theN dependence of the average cross
numberAK under the topological constraint of a knotK. The
double-logarithmic graph ofAK versusN is given in Fig. 1
for the cylindrical SAPs of cylinder radiusr 50.003, where
K is given by the trivial, trefoil, and figure-eight knots. Th
graph can be approximated by a power ofN such asAK

}Nneff
K

, whenN is large enough. Here the symbolneff
K denotes

the effective exponent for the knot typeK. Applying the
power law approximation to the data ofN>100, we obtain
the following estimates of the effective exponents:neff

tr i v

51.13460.004,neff
tre51.07060.005,neff

f ig51.05760.013.
Let us consider the ratio ofAK to A for the trivial and

trefoil knots. The ratioAK /A versusN is plotted in Fig. 2

TABLE I. The determinant of a knotK and the Vassiliev invari-
ant v2(K).

Knot K uDK(21)u v2

Trivial 1 0
Trefoil 3 212
Figure-eight 5 12
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with a double-logarithmic scale for the two knots. For t
trivial knot, the graph has a concave curve: the ratioAtri v /A
is almost constant with respect toN for small N and then
decreases with a larger gradient for largeN. The ratio
Atri v /A is smaller than 1.0 in the whole range ofN. It fol-
lows that in terms of the average crossing number,
N-noded ring polymers with the trivial knot are less compl
than those of no topological constraint, for anyN. For the
trefoil knot, the graph ofAtre /A versusN can be roughly
approximated by a negative power ofN for some finite val-
ues ofN. The ratioAtre /A is larger than 1.0 forN,200, and
smaller than 1.0 forN.300. Thus, the SAPs of the trefo
knot are more complex for smallN and less complex for
largeN than those of no topological constraint.

It is remarkable in Fig. 2 that both of the ratiosAK /A’s
for the two knots become less than 1.0 whenN is large. The
AK’s are less than the average crossing numberA that is
averaged over all knots, whenN is large. Here we recall tha
A corresponds to the average crossing number of the S
under no topological constraint, whileAK denotes the aver
age crossing number of the SAPs with the fixed knot typeK.
Thus, it is suggested from Fig. 2 that topological constrai
should make the conformations of ring polymers simp

FIG. 1. The average number of crossings with a knot typeK AK

vs N for r 50.003. Numerical estimates ofAK for K5trivial, tre-
foil, and figure-eight knots are shown by closed triangles, op
squares, and circles, respectively.

FIG. 2. Double-logarithmic plots of the ratioAK /A vs N for
cylindrical SAPs withr 50.003.Atri v /A andAtre /A are shown by
closed triangles and squares, respectively.
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with respect to the geometric complexity, whenN is large
enough. The reduction of conformational complexity may
related to entropic repulsion arising from the topologic
constraints.

The ratioAK /A versusN is plotted in a linear scale for th
three knots in Fig. 3. Here we find some finite-size behav
clearly. The average crossing number of the trivial kn
Atri v , is smaller than that of the trefoil or figure-eight kno
Atre , and Af ig , through the whole range of the plot,N
<1000. It is thus suggested that the more complicated k
should have the larger value of the average crossing num
for the case of finiteN. The tendency is also seen in the da
for the different values of cylinder radiusr. As N increases,
however, the average crossing numbersAK’s of the three
knots gradually become close to each other. WhenN is very
large, they become almost constant with respect toN, as
shown in Fig. 3. The flatness of the graph ofAK /A versusN
for largeN suggests that the ratioAK /A should be indepen
dent ofN whenN is asymptotically large.

The average crossing numberAK of a knotK have some
similar finite-size behaviors in common with the mea
squared gyration radiusRK

2 of SAPs with the knotK. In some
previous work@18,19#, it is shown that for random polygon
and cylindrical SAPs, the double-logarithmic graph of t
ratio RK

2 /R2 versusN is given by a downward convex curve
and the ratio is larger than 1.0 for the trivial knot, while f
the trefoil knot the graph is given by a straight line and t
ratio RK

2 /R2 is smaller than 1.0 for smallN and larger than
1.0 for large N. To be precise, the ratiosAK /A and
(RK

2 /R2)21 have the same decreasing behaviors asN in-
creases, particularly at aroundN5300, for the trivial and
trefoil knots.

B. Asymptotic behaviors of the average crossing numberAK

We now discuss possible asymptotic behaviors of the
erage crossing number. Let us review some known result
the largeN behavior ofN-step SAWs. The average crossin
number can also be defined for SAWs, and we denote i
ASAW. In Ref. @7#, it is discussed that for asymptoticall
largeN, the mean valueASAW of the average crossing num

FIG. 3. Graph of the ratioAK /A vs N for cylindrical SAPs with
r 50.003 in linear scale.Atri v /A, Atre /A, andAf ig /A are shown by
closed triangles, open squares, and circles, respectively.
06110
e
l

s
,

ot
er,

-

v-
on

y

ber of SAWs is given byASAW/N5a2bN122n with some
constantsa and b. Here n is given by the exponent of the
average size of SAWs. We also note that in Ref.@3#, the large
N behavior of ASAW is approximated by a power ofN,
ASAW;NmSAW, with the effective exponent:mSAW51.122
60.005.

In order to illustrate somer dependent properties ofAK ,
let us introduce an asymptotic expansion for the ratioAK /A
versusN. Based on the asymptotic expansion ofASAW in Ref.
@7#, we assume the asymptotic expansion with respect toN as
follows: AK /N5aK2bK N122nK for any knot K. Here aK
and bK are fitting parameters. Taking the analogy with t
simulation results onRK

2 /R2 @18,19#, we may assume tha
nK5n also for the average crossing numberAK . We thus
have the formula of the ratioAK /A in the following: AK /A
5aK (12bK N122n). Here, aK and bK are fitting param-
eters corresponding toaK /a andbK /aK2b/a, respectively.
We apply it to the data ofAK /A of theN-noded SAPs withN
larger than some cut off and for the different values ofr.

Let us discuss the best estimates ofaK /a plotted against
cylinder radiusr in Fig. 4. Whenr is small, the ratioaK /a
becomes smaller than 1.0 both for the trivial and tref
knots. This is consistent with the observation of Figs. 2 an
that the ratioAK /A for r 50.003 decreases againstN and is
smaller than 1.0 for largeN. In Fig. 4, the ratioaK /a in-
creases monotonically with respect to cylindrical radiusr,
and it becomes close to the value 1.0 at some large valu
r. If the ratio AK /A becomes 1.0, then there is no obvio
topological effect on the average crossing number. On
other hand, ifAK /A is less than 1.0, then it may be a cons
quence of the topological constraint. The fact that the ra
aK /a is smaller than 1.0 whenr is small shows that the
effect of topological constraints on ring polymers is large
small r. From the fact thatr increases up to 1.0 whenr is
large, it follows that the topological effect decreases wh
radiusr is large.

Let us consider again ther dependence ofAK that the
graph ofaK /a versusr increases up to 1.0 for the two knot
as shown in Fig. 4. A very similar behavior has also be
observed for the case of the ratioRK

2 /R2 of the mean-squared

FIG. 4. The ratioaK /a vs cylinder radiusr for cylindrical SAPs.
The values ofatri v /a andatre /a are shown by closed triangles an
squares, respectively.
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gyration radii of the cylindrical SAPs with radiusr. In Refs.
@18,19#, it has been shown for the cylindrical SAPs that
topological constraint on a ring polymer gives effective e
pansion to it, i.e., the ratioRK

2 /R2 becomes larger than 1.0 fo
large N. Furthermore, the effective expansion is significa
when the cylinder radiusr is small, the largeN limit of
RK

2 /R2 decreases to 1.0 asr increases.

C. The mean-squared gyration radius
and the geometric complexity

Let us discuss the relation between the average cros
number and the average size of ring polymers. We shall s
that it should be nontrivial. In Fig. 5 the mean-square radi
gyrationR2 andRK

2 ’s are plotted against the average cross
numbersA and AK’s in a double logarithmic scale for th
cylindrical SAPs ofr 50.003. HereK is given by the trivial
or trefoil knots. We find in Fig. 5 that the estimates ofR2 and
RK

2 ’s for the two knots are different for any given value
the average crossing numbers. It thus follows that the me
squared gyration radius and the average crossing numbe
independent quantities describing some geometric prope
of conformations of ring polymers, as far as finite-size b

FIG. 5. The mean-square radius of gyrationRK
2 vs the average

number of crossingsAK of cylindrical SAPs forr 50.003. Numeri-
cal estimates forK5trivial knot, 31 are shown by open squares an
circles, respectively. Data ofR2 versusA are shown by closed tri-
angles.N are given by 51, 151, and 100j 11 for j 51, . . .,10.
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haviors are concerned. Here we note that in Fig. 5R2 is
plotted againstA, andRK

2 is againstAK for each of the two
knots.

With the same value of the average crossing numb
given, Rtri v

2 and Rtre
2 are larger thanR2 when the value is

large, as shown in Fig. 5. Thus, we may suggest that a to
logical constraint should make the average size of ring po
mers larger with respect to the average crossing num
when their value is large. We also observe thatRtri v

2 is larger
thanRtre

2 among theRK
2 ’s in Fig. 5. Thus, the more compli

cated knot should have the smaller radius of gyration, as
as some finite values ofAK’s are concerned.

When the average crossing number is very large,
mean-squared gyration radiusR2 ~or RK

2 ) can be approxi-
mated by some power ofA ~or AK): R2;Ag for the case of
the average over all knots;RK

2 ;AK
gK for the trivial and trefoil

knots. Furthermore, we observe in Fig. 5 that the effect
exponentgK should be independent of the knot type. T
graphs of Fig. 5 for the trivial and trefoil knots become clo
to each other asAK is getting large. Applying the power law
approximation to the data ofN>100, we obtain the follow-
ing estimates:g50.86060.001, g tr i v50.95260.004, and
g tre51.06960.006. Finally, we note that similar results a
obtained also for the SAPs with the different values of c
inder radiusr.

IV. CONCLUSIONS

Through numerical simulations we have discussed the
erage crossing number of self-avoiding polygons under so
topological constraints. WhenN is large, the average cross
ing number of ring polymers under a topological constrain
smaller than that of no topological constraint. From t
simulation result we may conclude that a topological co
straint should make the conformation of ring polymers si
pler with respect to the geometric complexity expressed
terms of the average crossing number. We may also conc
that the effect of topological constraints should be signific
when the ring polymer is thin, both for the average cross
numberAK and the mean-square radius of gyrationRK

2 .
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