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Microcanonical optimization algorithm for the Euclidean Steiner problem in Rn with application
to phylogenetic inference
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The Euclidean Steiner tree problem inRn ~ESTP! is that of finding the shortest interconnecting network
spanningp given nodes in the EuclideanRn, with the possible use of extra nodes. Combinatorial explosion
precludes the use of exact methods for large high-dimensional ESTP instances, but very few heuristic ap-
proaches have so far been proposed for them. Here we introduce a microcanonical optimization algorithm that
works over a topology-describing data structure associated to the ESTP solutions, and which is proven able to
find close-to-minimum Steiner trees in reasonable computational time, even for configurations of up top
550 points inn550 dimensions. Moreover, its performance is shown to increase withn, which makes it
especially suited for high-dimensional clustering problems such as those of phylogenetic inference, an instance
of which is considered here.

DOI: 10.1103/PhysRevE.68.056702 PACS number~s!: 02.60.Pn, 02.70.2c, 05.20.2y, 89.75.Hc
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I. INTRODUCTION

The Euclidean Steiner tree problem inRn ~ESTP! can be
defined thus: givenp points in Rn, with Euclidean metric,
find a minimum tree which spans them, using or not us
extra points, calledSteiner points. This is a problem with a
long history in the annals of mathematics, details of wh
can be found in Ref.@1#. It is also a very hard computationa
problem, its decision version having been prov
NP-complete@2#.

The ESTP solution trees inR2 andR3 find several appli-
cations in network design@1,3#, and approaches to protei
folding have also been based on them@3,4#. In higher dimen-
sions, the ESTP is associated with general clustering p
lems, including those of phylogenetic inference, such as
riving evolutionary trees: themethod of minimum evolutio
@5# formulates the latter as a problem of finding minimum
length Steiner trees@6,7#.

An exact enumerative scheme for solving the ESTP w
proposed by Smith@8#, while Maculanet al. @9# formulated
the problem as a nonconvex mixed-integer program, in
ducing a Lagrangian dual, which also leads to an ex
branch-and-bound solution. A number of heuristic a
proaches inR2 have also appeared~see Ref.@10# for a sur-
vey!, while heuristics forn>3 are rarer, but can be found i
Refs.@6,3,11,12#.

Here, we introduce a heuristic approach for the ESTP
n>3, using a metaheuristic called themicrocanonical opti-
mization~MO! algorithm @13,14#, which explores the paral
lel between statistical-physics systems and high-dimensi
optimization problems, along similar lines as in the pione
ing work by Kirkpatricket al. @15#. Our heuristic performs a
local search over the space of the topology-describing v
tors which result from Smith’s enumerative scheme@8#, and
has consistently yielded good solutions, for instances of
to 50 given points in 50 dimensions. Since the performa
of our algorithm is found to increase withn, we believe that
it might provide a suitable tool for high-dimensional cluste
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ing problems, including those of phylogenetic inference,
instance of which is treated here.

II. ESTP—BASIC CONCEPTS

The solutions to the ESTP, calledSteiner minimal trees,
present the following properties@16#. ~1! Given p points xi

PRn, i 51,2, . . . ,p, the maximum number of Steiner poin
is p22. ~2! A Steiner point has degree~valence! equal to 3.
~3! The edges emanating from a Steiner point lie in a pla
and have mutual angles of 120°.

If a tree~minimal or not! satisfies such conditions, we ca
it a Steiner tree, and call the graph that represents such a t
a Steiner topology. The total number of distinctfull Steiner
topologies—i.e., topologies withp22 Steiner points—is
(2p25)!!, where the double exclamation mark stands
double factorial. A Steiner tree of minimum length for
given topology is called arelatively minimal tree, and has
been proven unique in a Euclidean space of any dimen
@16#. We may consider all~connected! nonfull tree topologies
as full Steiner topologies where one or more Steiner po
coincide with given points. Thus, it suffices to focus o
attention on the relatively minimal trees for full topologie
when looking for heuristic solutions to the ESTP.

III. TOPOLOGY-DESCRIBING VECTORS

The enumerative scheme by Smith@8# is based on a one
to-one correspondence between full Steiner topologies w
p>3 given points, and (p23)-vectorsa, whosei th entryai
is an integer in the range 1<ai<2i 11. Each topology-
describing (p23)-vector can be constructively obtaine
starting from an initial null vector () related to a full Steine
topology for three given points connected to a single Stei
point, labeledp11 ~see Fig. 1!.

The introduction of a fourth point in the initial topolog
of Fig. 1~a! is made through the Steiner pointp12, that
must be inserted in one of the three original edges, for
©2003 The American Physical Society02-1
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FIG. 1. The initial null vector~! corresponds to the topology presented in~a!; connection of given points 4, through the edge 2 in~b!,
and 5, through the edge 4 in~c!, will give rise to new topologies, corresponding respectively to vectors~2! and ~2,4!.
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stance, edge 2. This gives rise to new edges, numbered 4
5 in Fig. 1~b!. Since we have chosen edge 2 to insert Stei
point p12, the resulting topology will correspond to th
topology-describing vector(2). Now, among the five avail-
able edges, we may choose, say, edge 4, to insert the St
point p13 that will connect the fifth given point. The new
topology @Fig. 1~c!# corresponds to the topology-describin
vector (2,4), and two more edges, 6 and 7, arise. Procee
thus, we obtain a complete topology-describi
(p23)-vector.

It is possible to describe all full Steiner topologies by ju
combining the possiblep23 entries of the vectora. Work-
ing in the context of an exact branch-and-bound algorith
Smith employed a backtracking technique to obtain thea
vectors, whose corresponding topologies he then minimi
@8#. However, the time requirement of such process is v
high, already making it unfeasible for configurations withp
'15 given points. As an alternative, we propose using loc
search heuristics for generating the topology vectors, ke
ing only the minimization step of Smith’s approach. Thu
we can obtain good approximate solutions in reasona
time. To assess the quality of a solution, we use the so-ca
Steiner ratio, defined asr5LST/LMST, where LST is the
length of the~exact or heuristic! Steiner tree, andLMST is the
length of theminimum spanning tree, which is the shortes
tree connecting all the given points without the use of ex
points, which can be found in polynomial time@17#. We
therefore look for solutions with lowr values.

IV. LOCAL SEARCH OVER TOPOLOGY SPACE

In a previous work@11#, we used the topology-describin
vectors as the chromosomes of a genetic algorithm
yielded good results for small-sized ESTP instancesp
'10). The topology vectors are also suitable for local-sea
approaches, since it is easy to define neighborhood struc
based on them. Here we use the following: given a topolo
vector a, its neighbors will be the topology vectorsa8 that
can be obtained froma by changing just one of itsp23
entries.

A local search may then be developed thus: Given
initial or current topology vectors, related to a~relatively
minimal! ESTP solutionS of cost r, randomly choose an
index i and a new valuesi , to create a neighboring vectors8.
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Perform a minimization ons8 ~e.g., through Smith’s minimi-
zation approach! to obtainS8 and r8. If r8,r, then letsi

←si8 ~a move!, S←S8 and r←r8, and restart the search
Else, try again with a differents8. After a certain number of
trials without improvement of the current solution, stop t
search and outputS.

Implementing this simple local search, we are able to
Smith’s topology vectors with a wide variety of general pu
pose heuristics~metaheuristics!, such as the microcanonica
optimization algorithm@13,14#, briefly described below.

V. MICROCANONICAL OPTIMIZATION ALGORITHM

The MO algorithm is a statistical-physics based metah
ristic that implements the simulation of a physical syste
evolving in equilibrium at fixed internal energy. The alg
rithm alternately applies two main procedures, calledinitial-
ization andsampling.

The initialization performs a local search, accepting on
improving solutions, either by choosing the first one th
turns up, as implemented here, or by selecting the b
among a given number of neighboring solutions. This ph
ends when the solution gets stuck in a local minimum vall

In the sampling phase, the MO algorithm tries to esca
from the local minimum, but keeping a solution cost close
the value attained in the initialization. This is achiev
through Creutz’s microcanonical simulation@18#, which gen-
erates samples of fixed-energy states. Creutz’s techniqu
troduces an extra degree of freedom, called thedemon,
which holds a variable~but always positive! energy loadEd
that may be exchanged with the solution in such a way t
the total energyEtotal[Es1Ed is kept constant, whereEs is
the solution cost. Local state changes~solution moves! are
attempted, and accepted whenever the demon, observin
constraintEd.0, is able to supply or to accept the ensui
energy balance2DEs , so as to preserve total energy. A
upper bound,Ed<Edmax, is also imposed on the demon
constraining the possible sampling solutions to evolve i
narrow energy shell. The sampling phase thus iterativ
generates solutions in this shell, stopping after a preset n
ber of iterations.

The MO algorithm then proceeds from the new curre
solution, alternating between initialization and sampling, u
til the stopping condition~see below! is achieved.
2-2
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VI. IMPLEMENTATION AND RESULTS

We have developed theC code for a MO algorithm tha
implements, as its initialization phase, the local search
scribed in Sec. IV. The sampling is likewise performed ov
the topology-vector space. Topology optimization is obtain
through Smith’s minimization procedure, as presented
Ref. @8#. Our initial solution is not arbitrary, but constructe
through an adequate insertion of Steiner points in the m
mum spanning tree topology, as prescribed in Ref.@19#. The
main parameters of the algorithm are MaxInit, the maxim
number of consecutive iterations without improvement of
initialization solution, which signals a local minimum an
initialization stop; MaxSamp, the number of iterations
each sampling phase; and MaxCycles, the number of ini
ization and sampling cycles without improvement of the b
solution so far, which signals program stop.

Following Ref.@14#, we have also kept an ordered list
the moves rejected in the initialization, choosing its fif
lowest entry as both the demon’s initial energy and its ma
mum capacity,Edmax, for the subsequent sampling.

Computational tests were carried out for point configu
tions in several dimensions. Our results were compare
those obtained through Smith’s exact algorithm@8# ~for prob-
lems withp<11), and through theSoap Filmheuristic@12#.
The latter is an extension, for dimensionsn>3, of a very
fast algorithm, developed in the plane, which relates
ESTP to the dynamical evolution of a fluid film under su
face tension forces@19#. All the results refer to implementa
tions in a Sun Ultra 1 workstation. CPU time is reported,
order to allow speed comparison with the exact and S
Film approaches, for which other metrics, such as numbe
generated cost functions, would not be meaningful.

In dimensionn53 ~Table I!, we considered four sets o
1000 different configurations ofp58 to p511 points, ran-
domly distributed in a unit cube. The MO solutions prov
consistently superior to those of the Soap Film heuris
their meanr values followed closer to those yielded b
Smith’s exact procedure, and the optima have actually b
reached a significant number of times, compared to none
the Soap Film heuristic. On the other hand, the relative s
gishness of our approach may be deemed reasonable,
compared to the explosive time requirement of the ex
branch-and-bound algorithm.

In higher dimensions~Table II!, we ran a series of test
with a fixed number of given points (p510, randomly dis-
tributed in hypercubes! for several values ofn. Table II high-
lights a feature of the ESTP—the progressive reduction
the meanr, as dimension increases, which has been
served in a series of previous experiments@12#, and which
seems in accordance with some conjectures about the ge
lower bounds of the Steiner ratio@20#. Both our exact and
heuristic results display such behavior, with the MO’s sho
ing a more rapid decrease than the Soap Film’s. Moreo
while, for the latter, the meanr remains roughly 0.5% abov
the exact value, irrespective of dimension, for MO algorith
it progresses from a difference of 0.18% in dimensionn
53, to just around 0.035% above the exact ratio, inn
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510. That is to say, the MO solutions actually improve w
growing dimension.

A clearer picture of this performance can be gleaned fr
Fig. 2, which refers to experiments with several instances
p550 points, randomly distributed in hypercubes of dime
sions 10, 20, 30, 40, and 50. Average time demands ran
from 25 min, in dimensionn510, to 90 min, in dimension
n550. For comparison, we also display the Soap Film
sults over the same problem set.

Once again, the general trend of reduction of the mear
values with growingn is evident, but more dramatic for th
MO algorithm. And the difference, relative to the Soap Fi

TABLE I. Mean r value (r̄), standard deviation (s), mean
CPU time in seconds (t), and number of optimal solutions~Hits!
found over a set of 1000 random three-dimensional distribution
p given points, wherep varies from 8 to 11. MO parameter setting
MaxInit 5 50, MaxSamp5 25 and MaxCycles5 5.

p
Algorithm 8 9 10 11

r̄ 0.946761 0.946397 0.946758 0.94683

Exact s 0.019507 0.017754 0.017531 0.01584
t 1.4 7.8 43 240

r̄ 0.950232 0.950600 0.951185 0.95137

Soap s 0.020169 0.018406 0.018003 0.01669
Film t 0.059 0.067 0.073 0.083

Hits 0 0 0 0

r̄ 0.947507 0.947494 0.948521 0.94872

MO s 0.019637 0.017884 0.017828 0.01643
t 22 28 34 37

Hits 908 845 773 725

TABLE II. Results over ten-point instances in several dime
sions. The number of different instances considered in each dim
sion appears in the last row. Notation and parameter settings a
Table I.

n
Algorithm 4 5 9 10

r̄ 0.927784 0.911631 0.865916 0.86091

Exact s 0.018336 0.018687 0.020622 0.01894
t 120 250 1200 1500

r̄ 0.932482 0.916838 0.870540 0.86527

Soap s 0.018823 0.019386 0.020738 0.01906
Film t 0.087 0.098 0.14 0.16

Hits 42 143 17 18

r̄ 0.929333 0.912812 0.866361 0.86122

MO s 0.018756 0.018930 0.020871 0.01893
t 39 41 54 62

Hits 757 761 82 86

Instances 1000 1000 100 100
2-3
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heuristic, may not be slight: if we assume that the lat
keeps on yielding good solutions—with Steiner ratios arou
1% of the exact value—asn increases, then the MO result
at dimensions 30 and over, must indeed be very close to
optima, since their Steiner ratios are themselves about
lower than those of the Soap Film heuristic.

VII. APPLICATION TO PHYLOGENETIC INFERENCE

Other configurations and parameter settings have
been tested which corroborated the above general pic
leading us to consider the MO algorithm as a suitable
proach for multidimensional clustering problems based
the Euclidean metric, such as those of phylogenetic in
ence.

As a real world example of this application, we took t
classification problem in Ref.@21# ~also treated in Ref.@7#!,
which deals with a set of 19 species of colonial marine
vertebrates, calledgorgonians, to be differentiated based o
a set of 28 attributes. The attributes refer to the presence~1!
or absence~0!, in each of the species, of certain chemic
compounds, the input data thus being organized as a
328 binary matrix.

In Ref. @21#, the evolutionary tree depicted in Fig. 3 wa
generated from such data through a method due to F
et al. @22#, and proved to be in accordance with previo
classifications of the gorgonians. Its internal nodes repre
hypothetical ancestors in the evolutionary paths of the g
gonian species shown as leaves. The tree was rooted b
plicitly introducing, as a common ancestor to all, the 2
dimensional zero vector.

In our approach to the same problem, the goal is to obt
according to themethod of minimum evolution@5#, a minimal
Euclidean Steiner tree connecting the 19 given points i
28-dimensional space. The putative ancestors will then
pear as the resulting Steiner points. With the MO algorith
it took us 415 seconds to find a Steiner tree of ratior
50.852 818.

In order to compare it to that of Ref.@21#, we converted

FIG. 2. Mean Steiner ratios evaluated over a set of ten 50-p
instances, in dimensions 10, 20, 30, 40, and 50. The polygonal
connect the results yielded by the MO algorithm~solid line! and by
the Soap Film heuristic~dashed line!. MO parameters: MaxInit
5 100, MaxSamp5 50, and MaxCycles5 5.
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the Euclidean Steiner points to 0-1 coordinates, by round
off to 1 the coordinate values larger than or equal to 0.5,
to 0 those smaller than 0.5. This yieldedexactly the same
tree as in Fig. 3, with the common ancestor also arising fr
the output data, as one of the Steiner points.

VIII. CONCLUDING REMARKS

We have introduced an effective statistical-mechan
based heuristic for the high-dimensional ESTP, applying
crocanonical optimization to a local search in the space
Smith’s topology-describing vectors. The efficiency of o
approach was illustrated with random problem sets of up
50 points in 50 dimensions, and with a real-world example
phylogenetic tree derivation.

With our work, we believe that we have establish
Smith’s topology vectors as a suitable data structure
which to base general optimization approaches to the ES
at the same time confirming the MO algorithm as an eff
tive metaheuristic for yet one more application. Incidenta
we should emphasize that very few algorithms seem to h
been developed for high-dimensional (n.3) ESTP applica-
tions. We know of only one more, due to Lundy@6#, which
has been reported in the literature, also in the contex
phylogenetic inference. Unfortunately, its results refer to t
problem instances—one withp520 andn519, and another
with p550 andn549—whose data were not disclosed. As
means of indirect—and certainly inconclusive—comparis
we remark that, in similar dimensions, the MO algorith
usually provides Steiner trees that are, respectively, 1.8
0.6 standard deviations shorter than what was reported
Lundy for hisp520 andp550 solutions. We hope our work
will spur the development of other heuristics that can then
compared to ours.

nt
es FIG. 3. Evolutionary tree for a set of 19 gorgonian species,
generated in Ref.@21#. Branch lengths represent the number of
tributes not shared by the nodes at each branch end. The MO
proach to the ESTP version of this problem yields exactly the sa
solution ~Parameter settings: MaxInit5 90, MaxSamp5 20, and
MaxCycles5 5!.
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