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The Euclidean Steiner tree problem i (ESTP is that of finding the shortest interconnecting network
spanningp given nodes in the Euclideaf", with the possible use of extra nodes. Combinatorial explosion
precludes the use of exact methods for large high-dimensional ESTP instances, but very few heuristic ap-
proaches have so far been proposed for them. Here we introduce a microcanonical optimization algorithm that
works over a topology-describing data structure associated to the ESTP solutions, and which is proven able to
find close-to-minimum Steiner trees in reasonable computational time, even for configurations opup to
=50 points inn=50 dimensions. Moreover, its performance is shown to increase nyithhich makes it
especially suited for high-dimensional clustering problems such as those of phylogenetic inference, an instance
of which is considered here.
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I. INTRODUCTION ing problems, including those of phylogenetic inference, an
instance of which is treated here.

The Euclidean Steiner tree problem®fi (ESTP can be
d_efined 'Fh_us: giverp poil_"nts in R", with Eucli_dean metric,_ Il ESTP—BASIC CONCEPTS
find a minimum tree which spans them, using or not using
extra points, callecteiner pointsThis is a problem with a The solutions to the ESTP, callegteiner minimal trees
long history in the annals of mathematics, details of whichpresent the following propertigd.6]. (1) Given p pointsx'
can be found in Ref1]. It is also a very hard computational €R", i=1,2, ... p, the maximum number of Steiner points
problem, its decision version having been proveniS P—2. (2) A Steiner point has degrégalence equal to 3.
N P-complete[2]. (3) The edges emanating from a Steiner point lie in a plane,

The ESTP solution trees ik? andR3 find several appli- and have mutual angles of 120°. N
cations in network desigfl,3], and approaches to protein Ifat_ree(mlnlmal or no} satisfies such conditions, we call
folding have also been based on thEw]. In higher dimen- it @ Steiner treeand call the graph that represents suqh atree
sions, the ESTP is associated with general clustering prolf Stéiner topologyThe total number of distindull Steiner
lems, including those of phylogenetic inference, such as delopologies—i.e., topologies withp—2 Steiner points—is
riving evolutionary trees: thenethod of minimum evolution (2P—5)!!, where the double exclamation mark stands for
[5] formulates the latter as a problem of finding minimum- double factorial. A Steiner tree of minimum length for a
length Steiner treegs,7). given topology is called aelatively minimal tre¢ and has

An exact enumerative scheme for solving the ESTP wa®€€n proven unique in a Euclidean space of any dimension
proposed by Smitfig], while Maculanet al. [9] formulated [16]. We may conS|der.a[lconnecteﬁjnonfull tree top_ologles_
the problem as a nonconvex mixed-integer program, intro@S full Steiner topologies where one or more Steiner points
ducing a Lagrangian dual, which also leads to an exacgoincide with given points. Thus, it suffices to focus our
branch-and-bound solution. A number of heuristic ap_attention on the relatively minimal trees for full topologies,
proaches ink? have also appearedee Ref[10] for a sur- when looking for heuristic solutions to the ESTP.
vey), while heuristics fon=3 are rarer, but can be found in

Refs.[6,3,11,12 - _ IIl. TOPOLOGY-DESCRIBING VECTORS
Here, we introduce a heuristic approach for the ESTP in . .
n=3, using a metaheuristic called theicrocanonical opti- The enumerative scheme by Smj8] is based on a one-

mization(MO) algorithm[13,14], which explores the paral- to-one correspondence between full Steiner topologies with
lel between statistical-physics systems and high-dimensiongl=3 given points, and{— 3)-vectorsa, whoseith entrya;
optimization problems, along similar lines as in the pioneeris an integer in the range<la;<2i+1. Each topology-
ing work by Kirkpatricket al.[15]. Our heuristic performs a describing f—3)-vector can be constructively obtained,
local search over the space of the topology-describing vecstarting from an initial null vector () related to a full Steiner
tors which result from Smith’s enumerative schef@g and  topology for three given points connected to a single Steiner
has consistently yielded good solutions, for instances of upoint, labeledp+ 1 (see Fig. 1

to 50 given points in 50 dimensions. Since the performance The introduction of a fourth point in the initial topology
of our algorithm is found to increase with we believe that of Fig. 1(a) is made through the Steiner poipt+ 2, that

it might provide a suitable tool for high-dimensional cluster- must be inserted in one of the three original edges, for in-
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FIG. 1. The initial null vector() corresponds to the topology presenteda)) connection of given points 4, through the edge 2k
and 5, through the edge 4 {a0), will give rise to new topologies, corresponding respectively to ved®rand (2,4).

stance, edge 2. This gives rise to new edges, numbered 4 apérform a minimization os’ (e.g., through Smith’s minimi-
5in Fig. 1(b). Since we have chosen edge 2 to insert Steinegation approachto obtainS’ andp’. If p’<p, then lets,
point p+2, the resulting topology will correspond to the —s/ (a move, S—S' and p—p’, and restart the search.
topology-describing vectof2). Now, among the five avail- E|se, try again with a differerg’. After a certain number of
able edges, we may choose, say, edge 4, to insert the Steingials without improvement of the current solution, stop the
point p+3 that will connect the fifth given point. The new search and outpus

topology [Fig. 1(c)] corresponds to the topology-describing  |mplementing this simple local search, we are able to use
vector (2,4), and two more edges, 6 and 7, arise. Proceedirgmith’s topology vectors with a wide variety of general pur-
thus, we obtain a complete topology-describingpose heuristicsmetaheuristics such as the microcanonical

(p—3)-vector. optimization algorithm{13,14, briefly described below.
It is possible to describe all full Steiner topologies by just
combining the possible—3 entries of the vectoa. Work- V. MICROCANONICAL OPTIMIZATION ALGORITHM

ing in the context of an exact branch-and-bound algorithm,

Smith employed a backtracking technique to obtain &he The MO algorithm is a statistical-physics based metaheu-
vectors, whose corresponding topologies he then minimizetistic that implements the simulation of a physical system
[8]. However, the time requirement of such process is vengvolving in equilibrium at fixed internal energy. The algo-
high, already making it unfeasible for configurations with rithm alternately applies two main procedures, calfetial-

~15 given points. As an alternative, we propose using localization andsampling

search heuristics for generating the topology vectors, keep- The initialization performs a local search, accepting only
ing only the minimization step of Smith’s approach. Thus,improving solutions, either by choosing the first one that
we can obtain good approximate solutions in reasonablirns up, as implemented here, or by selecting the best
time. To assess the quality of a solution, we use the so-calle@mong a given number of neighboring solutions. This phase
Steiner ratig defined asp=Lg7/Lyst, WhereLg is the ends when the golunon gets stuck in a Io.cal minimum valley.
length of the(exact or heuristicSteiner tree, antly st is the In the sampling phase, the MO algorithm tries to escape
length of theminimum spanning treavhich is the shortest from the local minimum, but keeping a solution cost close to
tree connecting all the given points without the use of extrdhe value attained in the initialization. This is achieved
pointsy which can be found in po|yn0mia| tm*[&?] We through Creutz’s microcanonical Slmulatlblﬂ], which gen-

therefore look for solutions with loy values. erates samples of fixed-energy states. Creutz’s technique in-
troduces an extra degree of freedom, called tlegnon
IV. LOCAL SEARCH OVER TOPOLOGY SPACE which holds a variablébut always positiveenergy loadEq

that may be exchanged with the solution in such a way that

In a previous worK 11], we used the topology-describing the total energy, ., =Es+ Eq is kept constant, wherg; is
vectors as the chromosomes of a genetic algorithm thathe solution cost. Local state changeslution movey are
yielded good results for small-sized ESTP instances ( attempted, and accepted whenever the demon, observing the
~10). The topology vectors are also suitable for local-searcleonstraintE4>0, is able to supply or to accept the ensuing
approaches, since it is easy to define neighborhood structuregiergy balance- AE,, so as to preserve total energy. An
based on them. Here we use the following: given a topologyipper boundE4<Eymax iS also imposed on the demon,
vector a, its neighbors will be the topology vectoss that  constraining the possible sampling solutions to evolve in a
can be obtained frona by changing just one of itp—3  narrow energy shell. The sampling phase thus iteratively

entries. generates solutions in this shell, stopping after a preset num-
A local search may then be developed thus: Given amer of iterations.
initial or current topology vectos, related to a(relatively The MO algorithm then proceeds from the new current

minimal) ESTP solutionS of cost p, randomly choose an solution, alternating between initialization and sampling, un-
indexi and a new valus; , to create a neighboring vectsr. til the stopping conditior(see below is achieved.
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VI. IMPLEMENTATION AND RESULTS

We have developed th€ code for a MO algorithm that
implements, as its initialization phase, the local search de
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scribed in Sec. IV. The sampling is likewise performed overyjaxinit = 50, MaxSamp= 25 and MaxCycles= 5.

the topology-vector space. Topology optimization is obtained

TABLE I. Mean p value (p), standard deviation«), mean
CPU time in secondsq, and number of optimal solution#lits)
found over a set of 1000 random three-dimensional distributions of
p given points, wher@ varies from 8 to 11. MO parameter settings:

through Smith’s minimization procedure, as presented in p

Ref.[8]. Our initial solution is not arbitrary, but constructed Algorithm 8 9 10 11
through an adequate insertion of Steiner points in the mini- —

mum spanning tree topology, as prescribed in [REJ]. The p 0946761 0946397 0.946758 0.946831
main parameters of the algorithm are MaxInit, the maximumExact o 0.019507 0.017754 0.017531 0.015840
number of consecutive iterations without improvement of the T 1.4 7.8 43 240
?n?t?al?zat?on solution, which signals a local mi_nimum and , 0950232 0950600 0.951185 0.951379
|n|t|aI|zat|on. stop; MaxSamp, the number of |terat|orlls. gt 0ap o 0020169 0018406 0.018003 0.016693
each sampling phase; and MaxCycles, the number of |n|t|all-:iIm ., 0.059 0.067 0.073 0.083
ization and sampling cycles without improvement of the best Hits 0 0 0 0
solution so far, which signals program stop.

Following Ref.[14], we have also kept an ordered list of p 0947507 0.947494 0.948521 0.948724
the moves rejected in the initialization, choosing its fifth mo o 0.019637 0.017884 0.017828 0.016434
lowest entry as both the demon’s initial energy and its maxi- T 22 28 34 37
mum capacityEymax, for the subsequent sampling. Hits 908 845 773 725

Computational tests were carried out for point configura

tions in several dimensions. Our results were compared to
those obtained through Smith’s exact algoritf@h(for prob-
lems withp<11), and through th&oap Filmheuristic[12].
The latter is an extension, for dimensions 3, of a very

=10. That is to say, the MO solutions actually improve with
growing dimension.
A clearer picture of this performance can be gleaned from

fast algorithm, developed in the plane, which relates thd™19- 2, which refers to experi_ments _With several instan.ces of
ESTP to the dynamical evolution of a fluid film under sur- P=50 points, randomly distributed in hypercubes of dimen-

face tension forcegl9]. All the results refer to implement
tions in a Sun Ultra 1 workstation. CPU time is reported, in
order to allow speed comparison with the exact and Soa
Film approaches, for which other metrics, such as number o
generated cost functions, would not be meaningful.

In dimensionn=3 (Table l), we considered four sets of
1000 different configurations gf=8 to p=11 points, ran-

domly distributed in a unit cube. The MO solutions proved 1| E 1.

consistently superior to those of the Soap Film heuristicsions. The number of different instances considered in each dimen-
their meanp values followed closer to those yielded by sjon appears in the last row. Notation and parameter settings as in

Smith’s exact procedure, and the optima have actually beemable 1.

4. sions 10, 20, 30, 40, and 50. Average time demands ranged
from 25 min, in dimensiom=10, to 90 min, in dimension
=50. For comparison, we also display the Soap Film re-
ults over the same problem set.

Once again, the general trend of reduction of the mgan
values with growingn is evident, but more dramatic for the
MO algorithm. And the difference, relative to the Soap Film

Results over ten-point instances in several dimen-

reached a significant number of times, compared to none, by

the Soap Film heuristic. On the other hand, the relative slug-
gishness of our approach may be deemed reasonable, whalyorithm

compared to the explosive time requirement of the exact
branch-and-bound algorithm.

In higher dimensiongTable 1), we ran a series of tests Exact
with a fixed number of given pointp& 10, randomly dis-

tributed in hypercubgdgor several values af. Table Il high-
lights a feature of the ESTP—the progressive reduction of

the meanp, as dimension increases, which has been obS°2P
served in a series of previous experimefit&], and which
seems in accordance with some conjectures about the general

lower bounds of the Steiner rat{@0]. Both our exact and
heuristic results display such behavior, with the MO’s show-
ing a more rapid decrease than the Soap Film’s. Moreover,
while, for the latter, the meam remains roughly 0.5% above

the exact value, irrespective of dimension, for MO algorithm

it progresses from a difference of 0.18% in dimension

4 5 9 10
; 0.927784 0.911631 0.865916 0.860919
o 0.018336 0.018687 0.020622 0.018949
T 120 250 1200 1500
; 0.932482 0.916838 0.870540 0.865272
o 0.018823 0.019386 0.020738 0.019068
Film T 0.087 0.098 0.14 0.16
Hits 42 143 17 18
; 0.929333 0.912812 0.866361 0.861223
o 0.018756 0.018930 0.020871 0.018936
T 39 41 54 62
Hits 757 761 82 86
Instances 1000 1000 100 100

=3, to just around 0.035% above the exact ratio,nin
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FIG. 2. Mean Steiner ratios evaluated over a set of ten 50-point
instances, in dimensions 10, 20, 30, 40, and 50. The polygonal lines g|g. 3. Evolutionary tree for a set of 19 gorgonian species, as
connect the results yielded by the MO algoritiisolid line) and by generated in Ref21]. Branch lengths represent the number of at-
the Soap Film heuristi¢dashed ling MO parameters: Maxinit  gipytes not shared by the nodes at each branch end. The MO ap-
= 100, MaxSamp= 50, and MaxCycles- S. proach to the ESTP version of this problem yields exactly the same

solution (Parameter settings: MaxIni¢ 90, MaxSamp= 20, and

o i ) MaxCycles= 5).
heuristic, may not be slight: if we assume that the latter

keeps on yielding good solutions—with Steiner ratios around
1% of the exact value—asincreases, then the MO results,
at dimensions 30 and over, must indeed be very close to t
optima, since their Steiner ratios are themselves about 198

e Euclidean Steiner points to 0-1 coordinates, by rounding
ff to 1 the coordinate values larger than or equal to 0.5, and

lower than those of the Soap Film heuristic. to O those smaller than 0.5. This yieldedactlythe same
tree as in Fig. 3, with the common ancestor also arising from
V. APPLICATION TO PHYLOGENETIC INFERENCE the output data, as one of the Steiner points.

Other configurations and parameter settings have also
been tested which corroborated the above general picture, VIIl. CONCLUDING REMARKS
leading us to consider the MO algorithm as a suitable ap-
proach for multidimensional clustering problems based on We have introduced an effective statistical-mechanics
the Euclidean metric, such as those of phylogenetic inferbased heuristic for the high-dimensional ESTP, applying mi-
ence. crocanonical optimization to a local search in the space of
As a real world example of this application, we took the Smith’s topology-describing vectors. The efficiency of our
classification problem in Ref21] (also treated in Ref.7]),  approach was illustrated with random problem sets of up to
which deals with a set of 19 species of colonial marine in-50 points in 50 dimensions, and with a real-world example of
vertebrates, calledorgonians to be differentiated based on phylogenetic tree derivation.
a set of 28 attributes. The attributes refer to the presé€hce With our work, we believe that we have established
or absencg0), in each of the species, of certain chemical smith's topology vectors as a suitable data structure on
compounds, the input data thus being organized as a 1@nich to base general optimization approaches to the ESTP,
X28 binary matrix. _ , o at the same time confirming the MO algorithm as an effec-
In Ref. [21], the evolutionary tree depicted in Fig. 3 Was yiye metaheuristic for yet one more application. Incidentally,
generated from such data thr.ough a method Fiue to Fa”\ﬁ/e should emphasize that very few algorithms seem to have
et al. [22], and proved to be in accordance with previous, ., developed for high-dimensional>3) ESTP applica-
classifications of the gorgonians. Its internal nodes represerﬁtons We know of only one more, due to Lunf§], which

hypothetical ancestors in the evolutionary paths of the gorﬁgs been reported in the literature, also in the context of

gonian species shown as leaves. The tree was rooted by exh | tic inf Unfortunatelv. it lts refer to t
plicitly introducing, as a common ancestor to all, the 28-P"Y'09€nelic Interence. niortunately, s Tesulls reter to two

dimensional zero vector. problem instances—one wigh=20 andn=19, and another

In our approach to the same problem, the goal is to obtainVith P="50 andn=49—whose data were not disclosed. As a
according to thenethod of minimum evolutids], a minimal ~ Means of |nd|rect.—ar?d 'certa!nly mgoncluswe—compar'lson,
Euclidean Steiner tree connecting the 19 given points in € remark that, in similar dimensions, the MO algorithm
28-dimensional space. The putative ancestors will then apisually provides Steiner trees that are, respectively, 1.8 and
pear as the resulting Steiner points. With the MO algorithm0.6 standard deviations shorter than what was reported by
it took us 415 seconds to find a Steiner tree of raiio Lundy for hisp=20 andp= 50 solutions. We hope our work
=0.852818. will spur the development of other heuristics that can then be

In order to compare it to that of Ref21], we converted compared to ours.
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