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Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation
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It is well known that pulselike solutions of the cubic complex Ginzburg-Landau equation are unstable but
can be stabilized by the addition of quintic terms. In this paper we explore an alternative mechanism where the
role of the stabilizing agent is played by the parametric driver. Our analysis is based on the numerical
continuation of solutions in one of the parameters of the Ginzburg-Landau equiodiffusion coefficient
c), starting from the nonlinear Schiimger limit (for which c=0). The continuation generates, recursively, a
sequence of coexisting stable solutions with increasing number of humps. The sequence “converges” to a long
pulse which can be interpreted as a bound state of two fronts with opposite polarities.
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I. INTRODUCTION Here, as in Eqgs(1l) and (2), the positivec and y are the
homogeneous loss and diffusion coefficients, respectively.
A variety of nonequilibrium phenomena such as openThe term with an asteriskndicating the complex conjuga-
flows in hydrodynamics, thermal convection in pure fluidstion) represents the parametric drivéfhe driver's ampli-
and binary mixtures, and processes in lasers and nucleatiande h can be chosen positive without loss of generality.
during the first-order phase transitions, can be modeled byhen c=g=0, Eq. (3) gives the parametrically driven
the complex Ginzburg-Landau equatiorifor review and  damped nonlinear Schdinger equation. This special case
reference, see, e.g., Refd-5].) Of primary importance are has been studied extensively; in particular, stable solitary
pulselike solitary wave solutions, which represent localizedvaves[8] and their stable complexg®] were found, and
structures widely observed in nonequilibrium systems. It isheir bifurcations and supercritical dynamics analyz&d].
well known that in the cubic Ginzburg-Landau equation,  The objective of the present work is to advance beyond the
nonlinear Schrdinger limit. We will still keepg=0 but al-
iyt (L—ic) P+ (2—ig)|¢|?y=0, (1) low for a nonzero diffusion coefficient. As we will see,
even such a minimal generalization gives rise to a new phe-
solitary waves are unstable for all positivey, and real. In nomenology of localized solutions which includes the multi-

the g>0 case, however, they can be stabilized by the addi-St":lb_”ity of pul_ses and pulse-front trz_ansitions. S .
tion of quintic terms: Like the Ginzburg-Landau equations with intrinsic gain,

the parametrically driven equati@B) arises in a wide range
. . . . 5 . 4 of physical applications. These include nonlinear Faraday
iyt (1=ic) gt (2—ig)[9179=—(a +id)|[¢¥*¥,  resonance in vertically vibrated layers of wafgt—13 and
2 nonlinear latticeg14], commensurate-incommensurate tran-

. N ) ) sitions in convective systemd5], waves in nematic and
with positive g; [6,7]. This example suggests that solitary cholesteric liquid crystals in rotating magnetic fieldss],
pulses can be stable in a more general class of Ginzburgnagnetization waves in easy-plane ferromagnet exposed to
Landau equations where the zero solution undergoes a sulsicrowave fields[8], domain walls in the easy-axis ferro-
critical (rather than supercriticabifurcation to a flat nonzero magnet near the Curie temperat{it@] and in the easy-plane
solution[7]. In Eg. (2), the terms withy andc account for  magnet in the stationary magnetic figttB], nonlinear fiber
linear homogeneous and nonhomogeneous losses, resp@ges with phase-sensitive amplification and mean-field mod-
tively, while the terms withg andq; describe the cubic gain els of degenerate optical parametric oscillators under
and quintic dissipation. _ . continuous-wave pumpin@19], pulsed optical parametric

The present work deals with another equation of thepscillators with spectral filtering, and lasers with intracavity
Ginzburg-Landau type exhibiting the subcritical bifurcation, parametric amplificatiofi20]. In most cases the models con-
viz. the parametrically drivenGinzburg-Landau: sidered in literature are either purely diffusive={«) [15—

17,20 or purely dispersive ¢=0) [8,11-13,18,1p How-

i +iyg+ (1—ic) g+ (2—i9)|¥]?g=hy*e?“'. (3)  ever, there are situations where it is crucial thae finite but
nonzero. One physical phenomenon to which both diffusion
and dispersion make essential contributions, is Faraday reso-
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lators[22] and fiber-optic telecommunication links; in these where
contexts, the term-ic,, represents spectral filtering in the
spatial or temporal domain, respectively. In fact, the applica- A.=(1=h?— yz)l’z, 20 . =arccog$*+ \1— yzlhz).
bility of Eq. (3) with nonzeroc andg may happen to be even (6
wider; it is commonly held that this equation provides a phe-
nomenological description to a broad range of patternNote that these solutions do not dependcon
forming systemg23].
To study the solitary wave phenomenology introduced by A. Stability of spatially uniform solutions

taking the (~icyy,) term into account, we will use the 0 v check that th lution is stabl
diffusion-free limit (c=0) as a starting point, and perform ne can €asily check that the zero solution 1s stable as

the numerical continuation of analytical solutions available!0N9 ash=y1+y", irrespective of the value t=0. The

in that case, to nonzero The stability of solutions obtained 2nalysis of the flat nonzero solutions is somewhat more la-
in this way will also be studied numerically. We will show POrous. © .

that “switching on” the diffusion gives rise to a sequence of ~ Linéarizing Eq.(4) about ¢q=">", and assuming a
stable multihumped pulses occurring in the vicinity of a cer-Perturbationsys =exgi(wt—kX] yields the dispersion rela-
tain particular value of the diffusion coefficient;, ton

)

=cC;m(h,y). The closer thec is to ¢y, the greater is the o .

number of multihump solutions coexisting at tltisThe so- lw=—(ck+7)*i\Z, @)
lutions with more than five or six humps describe a flat “pla- where

teau” (where ¢ is equal to the stable flat nonzero soludion

sandwiched between two fronts of opposite polarity. Z—(1—2A2+k2)24 A2(A2—2)—hZ. )

The paper is organized as follows. Sec. Il deals mainly
with spatlal]y homogeneous solutions. In pamcular, W.e.ShOW(HereA stands forA, or A_, depending on which solution
that there is a stable flat nonzero solution for sufficiently . - S )

) . . e are linearizing about.The flat solution is stable iff
largec, and this uniform solution can serve as a backgroun . 2 5

X . el w)=<0, i.e.,, whenZ=—(ck“+ y)*, for all realk. The
for solitary waves. In Sec. Ill we use perturbation-type argu—la,[ter condition amounts to an inequalit
ments to demonstrate that bath. and_ solitons are con- q y
tinuable inc and in Sec. IV we construct the solutions with
nonzeroc in the adiabatic approximation. The actual con-
tinuation is carried out numerically in Sec. V where we also 2
wheres stands fork~.

examine the stability of the continued solutions. Some addi- ) ~ a0 o 2 . .
tional insight into the bifurcation of stationary pulses is Let, first, y="¥_". SinceA- <1, inequality(9) does not

gained in Sec. VI. Finally, Sec. VIl summarizes results ofn°ld fork=0; hence the “low” backgroundr ¥ is always
this work. unstable.

We close this introduction by mentioning a recent paper Let now =¥ the *high” background. The quadratic
[24] which was devoted to the study of the single-humpedeXpression in Eq(9) will be positive for alls=0 if either its
solution of Eq.(3), by means of an averaging technique andtwo rootss; ands, are both real negative or complgiote
direct numerical simulations. Neither the multistability of that we cannot have two real roots of opposite signs as the

pulses nor the pulse-front transitions were dealt with in Refguadratic’s constant termA#(A?—1) is always positive for
[24]. =¥ ] Whether the roots are real or complex is deter-

mined by the discriminant of the quadra{®, which can be
written as

(1+¢?)s?+2(1—2A%+ yc)s+4A%(A?—1)=0, (9)

II. EXISTENCE AND STABILITY INEQUALITIES

The transformationy(x,t) —e ™ “ty(x,t) casts Eq(3) in D=[y?*—4A% (A2 -1)](c—c,)(c—c_).
a “standard” autonomous form,
Here we have introduced

2A2 —1)y=2A (AT —1)(1+9?
where we seg=0 and rescaled so thatw=1. This is the c+=( by + V(AL ~ 1) Y)_

representation that we are going to work with in what fol- N y?—4A% (AT 1)
lows.

Equation(4) has three time-independent spatially uniform We need to consider two cases. Assume, first, that
solutions, or “flat backgrounds,” for shortWe do not dis- 4Ai(A2+—1)< ¥2. In this case the discriminant is negative
tinguish between solutions different only in the overall sign(and hence, the roots , are compley, providedc lies in the
here) One flat solution isfy,=0; it will be central for this  interval c_<c<c. . On the other hand, the roots , are
work where we are focusing on solutions decaying to zero ateal negative in this case® =0 and the coefficient in front
infinities. The other two flat solutions are given by of the middle term in Eq(9) is positive:

it (L=iC) gt 2YPy—y=hy* —iyy, (4

(10

Una= T O=(A. 1\2)e 1=, (5) c>Co=(2A2 —1)/y. (11)
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Since in the case at hand we havec® <cy<c,, the C. The threshold driving strength for pulses
union of the above two “stable” regions_<c<c. andc Our last result in this section concerns the range of driv-
>c., with the end points included, is simpb=c.. . ing strengths which can support localized solutions in the

1’2he second case is defined by inequali’4A% —1)  presence of dissipation. Multiplying E¢4) by * and sub-
>y~ Here we havec, <0<c_<c, and the quadrati¢9)  tracting the complex conjugate of the resulting equation

cannot have negative real roots as the rediti) does not  gjves what would be a local conservation law of the number
Overlap with the region wher®=0. However, it can have of partic|es ifc, h, andy were equa| to zero:

complex roots—provided>c_ .
Thus we arrive at a simple stability criterion for the flat 19 Y12+ (btp™ — P )y

nonzero solution?t”), valid for all h and y: 12 21 o 2, .
=h[(*)*= 1= 2i y| > +ic(Phth™ + Bixih).
c=c_(h,y), (12 (15

with c_ as in Eq.(10). Note that the stability threshold Assuming thaty and ¢, —0 as|x| - and integrating Eq.
c_(h,v) is always strictly positive. This implies, in particu- (15) over the real line, we get

lar, that the solution¥ ) is always unstable in the case '

=0. (This fact has already been mentioned in the literature d ) —_— 5

[25].) Therefore the “focusing,” or “attractive,” damped- aj K dx=2f ly]h Sln(zx)—ﬂdX—ZCf | %dx,
driven Schradinger equatior{Eq. (4) with c=0] does not (16)
have stable flat backgrounds except the trivial o#ie;0.

The analysis of localized solutions over flanzeroback-  where we have denoted the phase of the complex field
grounds becomes meaningful only within the full Ginzburg-through — x(x,t): ¢=|¢/e 'X. Let h<y (and remember

Landau equation, i.e., E¢4) with positivec. thatc>0). In this case it follows from Eq16) that the time
derivative off||?dx remains negative at all times. Hence as
B. The flat solutions as backgrounds to solitary waves t—oo, ¢(x,t)—0 for all x. No stationary, time-periodic, qua-

. . : . _siperiodic, or chaotic solutions, decaying to zero |ab
No less important is the question of when a flat solutlon_m can arise ifh<~v. We will make use of this simole
can serve as an asymptotic value to a localized . Y P

waveform—in other words, when is spatial decay to the flgCitenon in what follows.

solution possible. To find the corresponding criterion, we set
=0 in Eq. (7). This results in a quadratic equation I1l. CONTINUABILITY OF THE TWO NLS SOLITONS

2)a2 2 2/ 72 _ In the limit c=0, Egq. (4) becomes the parametricall
(1+¢9s7-2(2A = 1= ye)s+4AAT=1) =0, (139 driven damped nonlinea?r éé)}uﬁoger(NLS) equpation, whichy
wheres=k2. The spatial decay to a flat background is pos-has exact time-independent solitary wave soluti@$1] of
sible unless both roots of E¢L3), s, ands,, are positive.  the form
In the case of the?®) background, the discriminant of
Eqg. (13 is positive while the constant term is negative,

whences; >0 ands,<0. Consequently, Fhe degay m(—O) with AL and® .. as in Eqg.(6). The solutionys_ is unstable

may occur for all values df, , andc. (This factis of litle 5 51 ' and 4, while . is stable in a certain parameter

importance, however, since we have just shown that th'?egion[S].

background is alway(so)unstal_:)le. . The purpose of this section is to show that the solitary
In the case of th&> 7 solution, wemayhave two positive 1, jse solutionsy. of the NLS equation persist far0. We

roots—providedD>0 and c<.co, with ¢o as in Eq.(11).  regtrict ourselves to stationary solutiong, € 0). Writing i

Following the steps in the preceding section, one can readily $e719, with a constant phase to be chosen later, Eq.

show that this situation occurs only ikOc<c_, withc_ as (4) becomes an ordinary differential equation fr
in Eqg. (10). Thus thestable constant solutions, defined by

inequality (12), can always serve as backgrounds to fronts (1—ic) dyyt 2| d|2d— (1—iy)p=he* e?® (18
and pulses. We will come across localized solutions over
nonvanishing backgrounds in Sec. V below. To find out whether solutions available @0 can be con-
Finally, to examine the case of the zero background, weinued to nonzera, we expandg in power seriesp= ¢,
set bothA=0 andw=0 in Eq. (7). This yields +Cy+C2p,+ - - -, substitute into Eq(18), and match like
powers ofc. It is convenient to choos® to be® . in the
case of the solitony, , and® _ for ¢_ ; this choice makes
¢, real. Matching terms linear inand decomposing, into
its real and imaginary partspg=u-+iv), yields an equation

P.(x,t)=A.e '9+secliA.x), (17)

(1+c?)s?+2(yc+1)s+y?*—h?=0, (14)

where, as befores=k?. Since the middle term in Eq14)
has a positive coefficient, we hage+s,<0, which means
that the situation where bo#) ands, are positive can never u 0
occur in this case. Thus the decay to the zero background is |_+( ) :( ”> ,
possible for allh, y, andc. B — &g

(19

v
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where the primes stand for the derivativesxiand the operatork.. are defined by

—32+1-6¢3+hcog20.)
L+:
0

(The subscriptst and — indicate whether we are checking
the continuability ofyr, or ¢_ .)

According to Fredholm’s alternative, Eq(19) has
bounded solutions if and only if its right-hand side is or-
thogonal to the kernel of the adjoint operaﬂo?t. Trans-
forming to é&=A, x andé=A_x in the case of the/, and
¢ _ solutions, respectively, the equation for the zero mode
spanning ket becomes

L, 0 \/f .
2'}/ LO_Ei g _0' ( )
wheref=1(&), g=9(¢),
A% -1 Vh?—»?
eiEZ _2 =i2 ’
AZ 1+ Jh?— 92

and we have introduced the standaré&u-Teller operators
with familiar spectral properties:

Lo=—ds+1-2secRé, Ly=—d2+1-6 secRe.

The only discrete eigenvalue &f, is E;=0, while the
continuous spectrum occupies the semi&dsl. Therefore,
the operator I(,—€-) is invertible as long ag.<1 and
e.#0. Assuming that the zero background is stafle.,
assuming thah?<1+ +?), the quantitye, is indeed less
than one but greater than zero. On the other hand,s
negative.(An exception is the poinh= vy, where we have
e€.-=0.) Thus we conclude thatL;—€-) is invertible ex-
cept in the special cade= y. (However, even in this special
case the operatdr, is invertible onodd functions because
the eigenfunction seéhassociated with the zero eigenvalue
is even) Consequentlyf(£) cannot be equal to zero fdr
# y—otherwise, the bottom equation in E@.1) would im-
ply thatg(&) =0, too. Fortunately, the operatby does have
a zero eigenvalue, and therefdrg) can be a nonzero mul-
tiple of the corresponding eigenfunctioqwhich is
tanhé sechf.)

Thus in the casb# vy the kernel oﬂ_L is spanned by just
one zero mode, namely,

)

On the other hand, whelm= vy, the dimension of the kernel
space is 2. First, the zero mo@2?) persists fore.. =0 as the

fi
J1

tanh¢ seché
-2 y(Lg—e.) (tanhé sechg) )

(22

2y
—2+1-2¢2—hcog20.)/ (20)
|
R
g,/ |secht) (23

It is obvious that the vector functiof22), both of whose
components are odd functions gf is orthogonal to the
right-hand side of Eq(19—which is even. Hence Eq19)
¥ solvable forh# v. It is also easy to check that the mode
(23) is not orthogonal to the right-hand side of Ed.9), and
so the solvability condition isot satisfied forh= 1.

Thus, having started from the two nonlinear Sclinger
solitons, we constructed two one-pulse solutions of the
Ginzburg-Landau equation to within the first order in the
small parametec: =, +ce '®=(u+iv)+---. Conse-
quently, we expect to be able to continue the Sdhnger
solitonsy .. into the regionc+# 0 (provided thath# y.) This
expectation is born out by results displayed in Sec. V below,
which present an outcome of timeimericalcontinuation of
Y+ inc.

IV. ADIABATIC APPROXIMATION

Before attempting the full-scale numerical continuation, it
is instructive to construct approximate solutions. Our ap-
proximation will be valid for smallc and exploits the fact
that whenc=0, the stationary pulselike solutions of Ed)
have the form
i0

y=asecliax)e™'’, (24
wherea=A. and §=0 . are constants defined by E@®).
For ¢ small but nonzero, approximate solutions can be
sought by assuming thait retains the forn(24), buta and 6

become slowly varying functions af

To obtain an expression far (the overdot stands for the
derivative int), we substitute ansa{24) into Eq. (15). In-
tegrating ovex and using the boundary conditioflg— 0 as
|x|—oo produces an evolution equation for the pulse’s am-
plitude:

a=2a(hsin 26— y—ca?), (25)

wherec=c/3. An equation for the pulse’s phase arises by
multiplying Eq. (4) by ¢*, adding with its complex conju-
gate, substituting Eq24) for ¢, and integrating ovex:

f=hcos20+1—a2. (26)

Fixed points of the systent25) and (26) correspond to

operatorL, * is defined on odd functions. Second, there isstationary solutions of Eq4). These can be easily found

another zero mode given by

05660
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hsin(26)=ca?+y, hcog20)=a?—1, (27) the fixed poir_ﬂ is _stable. Simplifying Eq32), we get the
stability condition in the form

produces a quadratic equation

~ _ 1- *y?:
(1+¢?)a*+2(yc—1)a2+1+y2—h2=0 (28 a’= Tl
with roots ] ] ] )
Comparing this to the expressions far. in Eq. (29), we
, (1—70) = \/(h2—1)52—2y5+h2— 72 conclude that for al, h, and v, the points &, ,6+.) and
ai= = (29 (a_,0_) are a stable node and a saddle, respectively.
1+c The two fixed points come into being through a saddle-

The corresponding.. are defined by their sine and cosine in node bifurcation which occurs as the diffusion coefficient

Eq. (27). is decreased past= 3¢, for the fixedh and y or, alterna-

It is not difficult to determine when the roots EQ9) are  tVely, as the driving amplitudé is increased for the fixed
real and positive. We assume that the zero-background sol@iSsipation coefficients and y. One can easily find the bi-
tion of Eq.(4) is stable, i.e., the constant term in Egg) is  furcation value oh, at which two complex roots of the qua-
positive. Hence if the roots are real, they are of the sam&ratic equation28) converge on the positive real ax{siere
sign, and this sign is opposite to that of the middle term inwe are assuming that is smaller than 1y.) Writing the
Eq. (28). Therefore we have two positive roots, provided thediscriminant(30) as

discriminant

(c+7y)?

h2— —
c2+1

D=(h?-1)c?—2yc+h?— y?=(h?—1)(c—¢;) (¢, D=(c*+1)
(30)

is non-negative, and, at the same time, the inequafity "€ threshold driving strength is given by

<1 holds true. In Eq(30) we have introduced

E-i- Y
e Vi h, = (33
~ i h 1+ - h ad 3
C12= Y ’ , (31 Ve2+1

h?—1

5 5 where the subscript “ad” serves to remind that E8g) was

where the+ corresponds te; and — to c,. obtained in the adiabatic approximation. It is important to
It is straightforward to verify that for smah, h?<1, we  emphasize that this formula is valid only for smail

have ¢;<0<c,<1/y, while for largerh, h®>1, we have Equivalently, expressiof81) for the turning point, is valid
0<c,<1/y<c4. (Here we have made use of the inequality only for h close toy.
h>1y; as proved in Sec. Il C, no stationary localized solu-
tions exist forh<y.) Therefore, the region af values where V. NUMERICAL CONTINUATION AND STABILITY
the roots of Eq(28) are positive, is given by the inequality ANALYSIS
c<cy(h,y)—for all h. . . . . . .
Tﬁfjs 3v)e conclude that the adiabatic equations have two N this section we describe the bifurcation diagram ob-
. : ~ ~ tained by the numerical continuation of the solitopis in
stationary pomts'foc<_3c2(h,y)_, and none f9C>30.2' Wwe .. the parametec. The diagram is presented in Fig. 1 and dis-
compl_ete th_e adiabatic analysis by classifying their stab|I|typlays the Sobolev norm of the solution,
and bifurcation.
Linearizing Eq.(26) about the stationary points and as-
suming small perturbations of the forfa=C,e’* and 66 = \/J (| ]2+ | ]?)dx,
=C,e?M, yields a characteristic equation

A2+ (y+ca?)A+2ha?cog26) as a function ot.

—hsin(26)[hsin(26) — y—ca?]=0. A The method
Since the coefficient in front of the middle term in this equa- For stationary solutionsf= s(x), Eq. (4) reduces to an
tion is positive, either its two roots are complex with nega-ordinary differential equation

tive real parts, or we have two real roots, of which one is ] )

negative. The case where the second root is positwvel (1=iC) ghyxt 22— (1=iy) p=hy*. (34)
hence the fixed point is unstapleccurs if the constant term

is negative. Conversely, if the constant term is non-negative’,r the numerical continuation of solutions to Eg4) we
utilized theauTo97 software packagg26]. The infinite line

2ha? cog26)—hsin(26)[hsin(26)— y—ca?]=0, was approximated by a finite interval—(,L), with L
(32 =100, and the boundary conditiong =L)=0. The toler-
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6 T . . . . ton _ was found to persist both fac<<O andc>0. We
y=05 (c) were, in fact, able to continue it indefinitely without encoun-
5 _h =0.8 | tering any obstacles in both directions. As-o, the width

of the localized solution of Eq.34) grows and the solution

tends to qs%h(x/\/E), where ¢, ,(X) stands for a pulse-
4r T shaped solution of equation

i o —idxxt2lpl*p—(1-iy)p=he*. (36)

2 e . In a similar way, asc— —«, the solution tends to
"""""""" ¢* ,n(xIN—=c). When continued toc>0, the pulse re-
. . . , . , mained unstable for ad, with a single positive eigenvalue in
06 04 02 0 0.2 0.4 0.6 0.8 its spectrum(As for the negatives region, all solutions in

c that region are priori unstable against continuous spectrum

FIG. 1. The bifurcation diagram displaying the Sobolev norm perturbann; W't_h arbitrarily Iarge_ Re)
versus the diffusion coefficient, for the solitary pulse obtained by ~TN€ continuation of thej, soliton proved to be more
the continuation of the stable solitap, in c. The continuation rewarding from the stability viewpoint. The corresponding
starts from a point on thec&0) axis, marked by an open circle. bifurcation diagram is displayed in Flg 1. As with the soliton
The arrows indicate the directions of continuation and are only)s_, the ¢, persists both foc>0 andc<0—in agreement
added for reference purposes. Solutions at points marked by thgith Sec. Ill. Continuing into thec>0 region, we have
black dots(a), (b), and (c) are shown in Fig. 2. The solid lines found that the solution gradually changes its shape, with the
correspond to stable and dashed curves to unstable branches. hump in the imaginary part splitting into twisee Fig. 23)].

At ¢=0.7 the branch turns badkig. 1). Note that the turn-
ance of the computatiofthe grid norm of the difference dkig. 1

between the right- and left-hand sides of was set to ing point oceurs forq much_ smaller. than &=1.04, t_he .
be 107 g Er) ] saddle-node bifurcation point predicted by the adiabatic
The solid and broken curves in Fig. 1 represent stable angnalysis. What is more important, tihle. solution turns not
unstable branches, respectively. The stability was examine@t© the y_ (as t_he ad|§1bat|c approach predigtéit into .
by linearizing Eq.(4) about the corresponding stationary so- S°M€ other solution wh|ch has two w_ell-separate.d.humps In
lution. Choosing the small perturbation in the form the imaginary part. The discrepancy is not surprising as the

Su(x,H)=[u(x)+iv(x)]e", with realu andv, we arrive at adiabatic approximation is valid only for small where the
an ei1genvalue problem ’ ’ shape of the solution is still well reproduced by the single-

hump constant-phase trial functié®4). In the entire stretch
(u) (u) betweenc=0 and the turning point, the solution remains
H| =N |,

(35  stable.
Continuing this branch further, additional humps are
where added as the solution passes a sequence of turning points.
Each pass of a turning point results in the creation of a new
( —2+1+h—6R2%—27% —cd’+y—4RI hump in the middle of the solitary wave. As we move along
= 2 2 the branch, the distance between successive turning points
Cdy—y—4RI —d+1-h—2R*~61° (the difference between the corresponding values)obe-
and comes smaller and the new humps come with smaller ampli-
tudes. As a result, a long plateau is formed which keeps on
0 -1 expanding as we continue the branétig. 2(c)]. The broad-
1 0 ) ening plateau accounts for the vertical segment of the curve
in Fig. 1. If the bifurcation parameteris seen as a function

The R andZ are the real and imaginary parts of the solution: °f the Sobolev nornfjy | (that is, if we turn Fig. 1 by 90°),

y=R+iT. We solved the eigenvalue problem by expandingt"® curvec(||¢)) has the form of a decaying oscillation.
u and v over 500 Fourier modes in the interval  1he stability of the solution alternates at each successive

(—100,100). turning point. These changes are due to a single real eigen-
value which moves back and forth through the origin on the
real line. (At the turning points the eigenvalue is right at the
origin, of course. The lengths of the incursions this eigen-
The continuation irc was performed for fixed values bf  value makes into the positive and negative real lines decrease
andy. We selectedy=0.5 andh=0.8; for theseh andy the  with each new turning point until the eigenvalue becomes
nonlinear Schrdinger solitony . is stable[8]. Before pro- indistinguishable from zero. Therefore the branch becomes
ceeding to they, soliton, however, we briefly deal with the (neutrally stable sufficiently “high up”in||| in Fig. 1(i.e.,
¢_ case. In agreement with predictions of Sec. lll, the soli-for sufficiently long plateays

v v

J=

B. Continuation and stability

056605-6



MULTISTABLE PULSELIKE SOLUTIONS INA.. .. PHYSICAL REVIEW E68, 056605 (2003

1.2 ; ; ; ; ; indeed dg. The resulting branch is also shown in Fig. 1. As
@ we move into the regiorc<0, the ¢, solution gradually
develops into a three-humped state and when the curve re-
0.8 - turns toc=0, we have a complex of thg_, _ type, with

a large separation between the individual solito(iEhis
complex of three solitons of the parametrically driven non-
04 - linear Schrdinger equation was previously found in Ref.
[9].) Crossing into the>0 region, the central, soliton in
the complex transforms as if it did not have tite solitons
0 attached to its flanks. As a result, the-0 portion of the
correspondingd (c)|| curve has virtually the same shape as
— the curve resulting from the continuation éf to the region
04 L 4 c>0; the only difference is that the curve emanating out of
¥+ is shifted upwards relative to the curve emanating
out of ¢, . Similar to the continuation ofs, , the continu-
ation of s, _y goes via a series of turning points, with each
pass of the turning point resulting in the creation of another
hump in the middle of the central region which becomes a
(b) long plateau. The laterat_ solitons are not affected by this
process. The linearized spectrum is the union of the spectrum
of the long pulse described in the previous paragraph and
spectra of twoy_ solitons. In particular, it includes two
positive real eigenvalues contributed by the’s and so the
entire branch resulting from the continuation of_, _, is
unstable. We disregard it in what follows.

The plateau arising in the final stage of continuation of the
two branches shown in Fig. 1, is nothing but an interval on
the x axis whereys equals‘If(f), the flat nonzero solution
given by Eq.(5). The corresponding value @f cj,,=0.54,
falls within the regionc=c_ where the backgroun®? is

stable. Herec_(vy,h) is given by Eq.(10); in particular,
! ! ! ! ! c_(0.5,0.8=0.224. In the language of phase transitions, the
30 20 -10 0 10 20 30 long pulse shown in Fig.(2) can be seen as a “bubble” of
X one stable phase in another one.

-30 -20 -10 0 10 20 30

1.2 T T T T T

0.8 —

04 —

1.2 T T T T T

C. The bound state interpretation

The long pulse can also be interpreted as a bound state of
two fronts interpolating between different stable back-
grounds,y=0 andy=¥) . This intuitively appealing idea
can be put on the quantitative footing by considering the
spatial decay of perturbations to the flat backgrourﬁa).

Indeed, consider the turning point separating the second
stable branch from the first unstable branch in FigThis is
a point with coordinates=0.37 and||¢||=2.48. Note that
we are only considering branches obtained by the continua-
tion of the solitony, to positivec. Branches that start by
continuing, to negativec first are disregarded hejdt is
L L L L L at this point that the modulus squared #{x) becomes
-0 20 -10 0 10 20 30 double humped; before that, that is on the branch that leads

x to this point(the first unstable branghthe function|(x)|?
remained single humped despite the double-humped imagi-
nary part. Lettinh=0.8, y=0.5, andc=0.37 we check that
4A% (A% —1)>+? and hence, according to Sec. Il A, the

Despite the fact that negative values of the diffusivity quadratic Egs(9) and (13) have two complex rootg®=s;
are not physically meaningful, we did continuede:0—in  +is; and k?)*. Therefore the wave numbkiis complex as
the hope that the resulting branch would reach a turningvell: k=k;+ik;. Solving Eq.(13) for s we obtain, subse-
point and then return to the positigesemiaxis(which it did  quently,

0.4 Vi R ]

FIG. 2. (a)—(c) Solutions at the corresponding points in Fig. 1.
Solid line: real part; dashed line: imaginary part.
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1 ' 5 T T T T T
ke =——=(s;+ JS2+s9)2=1.36, k; =% =0.19. (37) y=0.5
V2 ' c =0.668

(We have chosen positive values fgrandk; here) |
For ¢ near the turning point in question, the plateau has | \

not yet formed between the two humps and so they can bef /

crudely thought of as two overlapping NLS-like solitons Wil

with oscillations on their adjacerite., partner-facingtails. 2t UJ/ .

The bound state arises when one solitary wave is trapped in ]

the potential well formed by the oscillatory tail of its partner. | e b W

Making use of the potential of interaction of two attractive o T i
NLS solitons[27], Uzxexp(—kzcosk 2) (wherez stands h h ™ (@)
for the distance between the two humpand taking into 0 e L2 . i
account thak; /k,<1, we obtain a rough estimate for the 06 07 08 09 1 11 12

separationz= w/k, . Substitutingk, from Eq. (37), the ap-
proximate formula givesz=2.31. This is in qualitative
agreement with the numerically found valme 2.77.

Moving further along thé€second stablebranch, the pla-
teau appears and the two humps can no longer be approxi-
mated by the NLS-like solitons. This makes the above esti-
mate invalid. The solution can still be regarded as a bound
state of two fronts but this time, in order to calculate the 09
characteristic width of the pulse one would need to know the h
full profile of the front. 0.8

We conjecture that for givem and y, a free-standing
stationary front exists just for a single value @f namely, 0.7
C=Cjmn . (We are planning to verify this conjecture in future
publications) On the other hand, stable and unstable bound 06
states of fronts exist in a finite interval ofvalues containing
C=C;y as an internal point. It is fitting to note here that
similar pulse-to-front transformations occur also in the other
system featuring the subcritical bifurcation, viz. the cubic-
quintic Ginzburg-Landau equation with internal g&#8]. FIG. 3. (a) The Sobolev norm of the solitary wave solution as a

function of the driving strength. The solid and dashed lines indi-
cate stable and unstable branches, respectit@lyThe pulse exis-
VI. THE h VERSUS ¢ DIAGRAM tence region on thec(h) plane. Two pulse solutiong;, andy_ ,

As we mentioned in the preceding section, there is a cerd® born ah exceeqs the valu_bcr(c) depicted by the lower solid
tain discrepancy between the adiabatic analysis and numetie- The upper solid curve gives the upper boundary of #he
cal continuation. Numerically, thes_ soliton was found to  PUIS€’s existence domailh,(c). Also shown is the adiabatic ap-
be continuable all the way to= -+ whereas the adiabatic proximation to the saddle-node bifurcation curve, BB8) (dashed

approach predicted the existence of a turning point at line).

=3C,, where they_ should have merged with the,
branch. As for thay, solution, we found that it turns into a Solutions whereas fon<h,,, there is none; see Fig(a.]
pulse with the double-humped imaginary péhd not into  The entires_ branch is unstable; the single positive real
the »_ branch as suggested by the adiabatic approximationeigenvalue moves to the negative semiaxis as the branch is
In order to shed some light on the possible source of theontinued past the turning point. Continuing the arisifg
discrepancy we performed the numerical continuation of théranch to largerh, we reach another turning point &t
pulseys_ in h, for several fixed values af. Here, by they_ =h,, where they, solution transforms into a pulse with the
we mean the pulse solution which results from the continudouble-humped imaginary part. The values and h, are
ation of the Schrdinger ¢_ soliton to positivec, for some  shown in Fig. 8b) as functions ofc (for the fixed y=0.5).
fixed large value oh (in our case forh=0.8.) Having ob- As c—, the differenceh,—h. decreases but remains non-
tained this starting-point solution for several valuexoive  zero. We verified this by computing., andh, for Eq. (36)
then continued it irh, from h= 0.8 to smalleth. The stability =~ which pertains toc=«. In the same plot we display the
of the arising solutions was examined by computing eigenfunction (33) which gives the adiabatic approximation to the
values of the operatdi35) at sample values df. curve h(c). (Note that for small, there is a good agree-
In each case considered, tile branch was found to turn ment between numerical and approximate values but as
into the ¢, solution ash reached the threshold valug,  grows, the two curves diverge.
=hg(y,c). [That is, forh>h, there are two branches of  Continuing they . branch past the second turning point,
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the solution adds another hump in the middle of the pulsequence of pulselike solutions, separated by turning points,
“turns back” again, adds another one, and so [@ee Fig. with increasing number of humps. The stability of these so-
3(a).] Along plateau develops in the middle of the pulse, justlutions changes at each turning point, so that stable multi-
like when it was continued inc. Similar to the hump solutions coexist with unstable ones. It is fitting to note
c-continuation, the turning points on threaxis separate re- here that the multistability of multipulse solutionsriet ob-
gions of stability from regions of instability, with the insta- served in the Schrdinger limit where only the two-soliton
bility being caused by a single positive real eigenvaluecomplex was found to be stabl®]. As c—cy,, where
(which moves through =0 at the turning poinjs Cim= Ciim(h, 7), the solution takes the form of a long plateau
From Fig. 3b) it is clear why the saddle-node bifurcation (an interval of the stable backgrounk®)) sandwiched be-
point, where tha), and_ solutions would merge, did not tween two fronts.
appear in Fig. 1. The reason is that Fig. 1 was plotted for a We also performed the continuation I for the fixedc.
relatively large value oh (h=0.8) whereas according to For eachc>0, two localized solutions are born in a saddle-
Fig. 3(b), a horizontal lineh=const withh>0.660 can have node bifurcation a$ exceeds a threshold valu@Ne ob-
no intersections with the saddle-node cuhygc). (Here all  tained an analytic formula for the threshold in the adiabatic
the numbers are foy=0.5.) The same Fig. @) explains  approximation; it is in agreement with the numerical results
what seemed to be a discrepancy between the adiabatior small c.) The subsequent continuation gives rise to a
analysis and the numerical continuation of the soligonin ~ sequence of coexisting stable multihump solutions culminat-
c. The numerical result that seemed to contradict the adiabaing in a bound state of two widely separated fronts.
ics was that forh=0.8, ¢ could be continued without Solitary pulses in the form of long shelvgsateaus can
bounds. It is now obvious from Fig(l that the unbounded allow easy experimental observation in physical systems de-
continuation is only possible fdr greater than 0.660. Con- scribed by our model. In particular, they may be employed as
tinuing the_ soliton to positivec for h smallerthan 0.660, a natural basis for the non-return-to-zgfdRZ) format of
the branch turns baclalready as thes, pulse after hitting  the data transmission in optical telecommunications. In the
the lower solid curve in Fig. ®). Therefore, the pattern NRZ format, the 1 and O bits are coded, respectively, by
arising forh close toy actuallyis in qualitative agreement sending or withholding the signal within a standard time slot.
with the adiabatic analysis, which was expected to be valid A string of several 1's looks as a long uniform pulse of an
precisely for smalk or, equivalently, for smalh— v differ-  essentially arbitrary length. The stability of such pulses is
ences. crucial to maintain the fixed shape of the long array of 1's,
and to prevent thntersymbol interferenga.e., the blurring
VIl. CONCLUDING REMARKS of empty intervals between such strings, which represent
(strings of O's. (See, e.g., Ref.29] and references therejn.
In this paper we studied a cubic complex Ginzburg-|n the case of lasers, which can also be described by the
Landau equation in which linear losses and diffusion argyresent modgl20], the possibility of the generation of stable

compensated by the linear parametric drive. The nonlineang pulses of arbitrary duration, i.e., an effectiumability
term in the equation was taken to be purely conservative. of the output, is an essential advantage too.

There are three stationary homogeneous solutions to Eq.
(4), and we have shown that the=0 solution is stable if
h<\1++7?, as long ax=0. This stability condition coin-
cides with the corresponding condition for the nonlinear \We thank Nora Alexeeva for her advice on numerics. The
Schralinger casef(i.e., for c=0). On the other hand, the first author’s(l.B.'s) work was supported by the NRF of
stability properties of theonzerchomogeneous solutions are South Africa under Grant No. 2053723, by the Johnson Be-
not the same as in the=0 case. Indeed, unlike far=0,  quest Fund, and the URC of the University of Cape Town.
there is a stable flat nonzero solutigr- \If(f) for sufficiently  The second authdS.C) was supported by the NRF and the
large diffusion coefficientsg=c_(h,vy). Harry Crossley Foundation. B.A.M. appreciates the hospital-

Having established the persistence of the NLS solitonsty of the Department of Physics at the Universiilangen-
¢, and _ for small nonzeroc, we continued them it Nurnberg, and partial support from the European Science
numerically. The continuation of the solitaf, yields a se- Foundation through thet-shift” programme.
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