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Two-soliton collisions in a near-integrable lattice system
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We examine collisions between identical solitons in a weakly perturbed Ablowitz-LAdik model, aug-
mented by either onsite cubic nonlinearftyhich corresponds to the Salerno model, and may be realized as an
array of strongly overlapping nonlinear optical wavegujdes a quintic perturbation, or both. Complex
dependences of the outcomes of the collisions on the initial phase difference between the solitons and location
of the collision point are observed. Large changes of amplitudes and velocities of the colliding solitons are
generated by weak perturbations, showing that the elasticity of soliton collisions in the AL model is (fi@gile
instance, the Salerno’s perturbation with the relative strength of 0.08 can give rise to a change of the solitons’
amplitudes by a factor exceeding 2). Exact and approximate conservation laws in the perturbed system are
examined, with a conclusion that the small perturbations very weakly affect the norm and energy conservation,
but completely destroy the conservation of the lattice momentum, which is explained by the absence of the
translational symmetry in generic nonintegrable lattice models. Data collected for a very large number of
collisions correlate with this conclusion. Asymmetry of the collisiowkich is explained by the dependence
on the location of the central point of the collision relative to the lattice, and on the phase difference between
the solitong is investigated too, showing that the nonintegrability-induced effects grow almost linearly with the
perturbation strength. Different perturbatiof@bic and quintic ongsproduce virtually identical collision-
induced effects, which makes it possible to compensate them, thus finding a special perturbed system with
almost elastic soliton collisions.
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I. INTRODUCTION ing, see, e.g., Ref8] and references therein.
The objective of the present work is to consider such ef-

Soliton collisions constitute one of the central topics offects in collisions of nontopological solitons in discrete
nonlinear-wave dynamics. In integrable systems, solitons argear-integrable system. As a matter of fact, the only inte-
well known to emerge unscathed from CO”lSlqﬁé How- grable system which can be used in this case as the zeroth-
ever, even small nonintegrable perturbations may render tHarder approximation is the Ablowitz-LaditAL) lattice [9].
phenomenology much richer, causing various inelastic eflts well-known nonintegrable extension is the Salerno model
fects, such as trapping and formation of bound statesSM) [10], which is produced by adding the integrability-
multiple-bounce interactionéwhere solitons separate after Preaking perturbation in the form of the onsite nonlinearity
multiple collision [2], fractality in the outcome of the col- O the integrable AL system with the intersite cubic nonlin-
lision [314], and others. Such Comp'ex features are usua”ﬁarity. In order to test if the results that will be obtained
attributed to the excitation of soliton internal mod@s4,5, below are generic, we will also consider an essentially dif-
but more recently it was realized that they also occur due tderent type of an integrability-breaking conservative pertur-
the possibility for radiationless energy excharigeen in the  bation, viz., the quintic onsite nonlineariits principal dif-
absence of internal modebetween the colliding solitons, ference from the cubic counterpart is that it breaks the
should the conservation laws a||0v\[&,7] The latter mecha- Integl’ablllty of both the AL lattice and of its continuum I|m|t,
nism was both confirmed by direct simulations of the corred-€-, the nonlinear Schdinger (NLS) equation.
sponding nonintegrable models, and might be expected to Thus, we introduce a general dynamical model based on
follow from the principle stating that any outcome compat-the following equation:
ible with the conservation laws may take place under appro- )
priate initial conditions. i 0+ (20%) "Xy 1= 2400+ 1) + Ol | 20

Such effects suggest that the integrability is essentiall
tantamount to the ggrictly elastic chargcter o); the collisionz +(U2) (1= O Ynl*(Yins a1+ Yrn-1) = el gl .
[1], and warrant the importance of further studies of strongly D
inelastic collision effects produced by small conservative
perturbations added to basic integrable models. This generélere ¢, is the complex dynamical variable at théh site of
issue is of interest not only in its own right, but also for the lattice, the overdot stands for the time derivatlves the
applications to nonlinear optical waveguides, as strondattice spacinge is a real constant controlling the quintic
changes in the character of the interaction induced by a smagflerturbation, and is a real parameter that accounts for the
perturbation may be naturally used in the context of switch-crossover between the AL6EO0,e=0) and discrete-NLS
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(6=1,=0) [11] limits. Equation(1) conserves two dynami- The AL model[Eg. (1) with §=0 ande=0] has exact

cal invariants, namely, the norm soliton solutions of the form
1 e 1 sinhu i "
N= 175 2 14071 8)| o] @ O F ospin oy SRKIN XU ] FTa®},
4
and the energyHamiltonian where the instantaneous coordinate and phase of the soliton
are
h2(1-68)+e
H=— ——————In[1+h?(1—8)| y|? t sinh
2[ W1 gp ML= NVl X(1) =X+ — (sink) S
h M
h2(1-68)+e¢ h?

- —|'/’n|2+ ?W’n_ '/’nfllz

(1-96)° sinhu

t
a(t)=ap+ F (cosk)coshu + k(sink)

eh?
+m| ¢n|4] - () ®)
Xo and aq are their initial values, whilex andk define the

While the discrete NLS equation, correspondingte1  Seliton’s amplitudeA and velocityV,
ande=0 in Eqg. (1), has numerous physical realizations, the
most important one being arrays of nonlinear optical A=h"2%sinfPu, V=(xh) Y(sinhu)sink. (6)
waveguideg12], the AL model does not directly apply to
many physical systems because of the specific character of The infinitely long AL system has an infinite series of
the nonlinear terms in it. However, a realization of the SMdynamical invariants, the lowest ones being the norm, lattice
may be an array oétrongly overlappingnonlinear optical momentum, and energy:
waveguides, especially the one following a zigzag pattern
(similar to an array introduced in Ref13]). Indeed, the
overlapping between adjacent cores will give rise, through N=2 In(1+h2|y,|?), (7)
the Kerr effect, to a nonlinear correction to the linear cou- 3
pling between the cores, in the form of the termél— ) in
Eq. (2). It should be noted that, in this case, extra perturba- .
tion terms are expected too, such &g.( 1|2+ |¢n41]2) ¥n P:|h2§n‘, ($nthn1= ¥ndne), ®
(cross-phase modulatiprHowever, the results presented be-
low clearly demonstrate that strong effects generated by
small conservative perturbations are essentially the same for Q
different perturbations, therefore we expect that taking into
account all the possible perturbation terms corresponding to
the optical waveguides with strong overlap between theNote that the norm of the general nonintegrable madg!
cores will not alter the results significantly. given by expressiof2), goes over into norn(7) in the limit

In some specific cases, soliton collisions in the SM haveS=¢=0, and Hamiltonian(3) of the nonintegrable model
already been examined. In particular, a collision between &ecomes, in the same limit, a linear combination of nérin
soliton and a reflecting wall, which is equivalent to a strictly and energy(9) of the AL integrable systemH(6=&e=0)
symmetric collision between the soliton and its mirror image,=— (N+ Q). It will be seen below that, as a matter of fact,
was studied numerically in Reff14]. One of our aims is to the difference between the exact norm and Hamiltonian of
explore the sensitivity of collisions to asymmetries in initial the full perturbed model with sma#f ande and those of the
phases and positions of the solitons in the actual two-solitoL model is negligible. However, all the other dynamical
collision. Very recently, collisions in théstrongly noninte- invariants of the AL modelincluding the lattice momentum
grable discrete NLS equation were examinédl5], and (8), have no counterparts in the nonintegrable case. This is
symmetry-breaking effects were found, along with sensitiv-explained by the fact that each elementary dynamical invari-
ity of the outcome to the location of the collision point. Here, ant is generated by a certain continuum invariance of the
we present results of collisions and their dependence on pamnderlying equation. In particular, the norm and energy con-
rameters in mode(1) with small § ande, i.e., close to the servation are accounted for by the invariance against phase
integrable AL limit. Together with the already available find- and time shifts, respectively, that remain valid in the nonin-
ings for the strongly nonintegrable cagks], they provide tegrable system, while a dynamical symmetry of the AL
a sufficiently comprehensive description of the collisionalmodel which is responsible for the conservation of the lattice
dynamics of nontopological solitons in fundamental latticemomentum is destroyed by the small perturbations. The mo-
systems. mentum remains a dynamical invariant in continuum

1
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nonintegrable modelg.g., the NLS equation with the quin- as independent control parameters, therefore in what follows,
tic term), but in the discrete setting it is conserved solely inwe fix h=0.8. The parameters are varied in ranges
the integrable case—obviously, a generic lattice system igorresponding to the weak quintic perturbation,
not invariant against arbitrary spatial translations. Furthege[—0.01,0.01, and moderately weak Salerno’s perturba-
consideration of this issue can be found in a recent workjon, se[—0.08,0.08. Equation (1) was integrated by
[16]. “means of an implicit Crank-Nicholson scheme with the ac-
An issue related to the lack of conserved momentum igracy ofO((At)2) and with reflecting boundary conditions.
the (nonjexistence of exact traveling soliton solutions in NON-1p4 initial condition was taken as a superposition of two far
integrable lattice models. While the problem still waits for its separated soliton@) that would be exact solutions of the AL
full solution, several important theoretical results have beer?nodel, and the numerical integration was run until outgoing

_obtained_. The substitu_tion O.f an a_ppropriate .”a"e'"?g ansat%olitons were separated well enough. Their amplitudes and
in the discrete equation gives rise to a differential-delay '

equation whose steady states are the traveling wave solutioN§locities after the collision, A, Vy, andV,, were mea-

of the original differential-difference equatiofsee, e.g., sured, and then the corresponding parameters u»,, Ky,
Refs.[l?_,l@, as WeII_ as an earlier_work by Feddersen,_ Ref.and”k2 were found inverting Eq(6). We also checked to
[19]). It is also pertinent to mention that moving solitons ynat extent the dynamical invariants given by the unper-

clearly per§ist in simulations of perturbeq systems, \{vithougurbed expressiond0) and(11), as well as by the exact ones
any conspicuous loss, for long times, which is sufficient to(z) and(3), were conserved.

study their collisions in numerical experiments without am-
biguity (se.e, €.9. Refilﬂ and[20D. collisions: wu1=pu,=un, ki=—k,=k. While simulations
If the given system differs from the AL model by small X ) .
opere run for various values of the amplitudes and velocities,

terms, a natural question is how strong actual destruction e display results for a case that turned out to be a tvpical
the former dynamical invariants, and especially of the mo- play yP

mentum, which has a straightforward physical interpretatiorP"e: @dequately representing many others, with0.75, k
(and remains a virtually conserved quantity for free moving=0-1- This  implies A;=A,=A=1.057, V,=-V,=V
solitons, as explained aboveill be in collisions between = 0-137. The initial phase differendex, was controlled by
solitons. One of main objectives of the present work is toSettingag;=0 and choosingy,, from the interval(—,m).

address this issue. We will conclude that the momentum conthe initial positions of the solitons were taken ag)q

To present the results, we will focus on the symmetric

servation isstrongly violated by the collisions, even if the =—Xo+X; and (g),=Xo+X., with Xo=12; this provides
perturbation parameters are quite small. for the large initial separationxg= 24 between them, while
For two broadly separated AL solitons with paramejeys  x. was chosen from the intervgD,1) to control the location
andk;, expression7)—(9) take values of the collision point.
The presentation of results is structured as follows: we

2 2 first examine the effect of variation of the initial phase dif-
Neo=22, #j, Qso=22, (sinhuj)cosk;, (10) ferenceAa, and collision pointx, on the outcome of the
=1 =1 collision. Then, we analyze how the approximate conserva-
tion of expression$10) and(11) correlates with the results.
) , Finally, we examine the effect of combining the perturbation
Psol= 21-21 (sinhy;)sink; . (1) parameters and &, in order to demonstrate that the two
perturbations may almost exactly cancel each other, thus
The fact that only two exact and, plausibly, one approximatenaking the collisions virtually elastic. We stress that results
conserved quantitiehe latter one is the momentyraon-  gbtained at other values of parameters are completely tanta-

strain possible outcomes of the soliton-soliton collisions,mount to those displayed below, provided tlsagnd & re-
which are characterized by two amplitudes, two velocitiesmain small.

and, in addition, may depend on the initial relative phase
Aag=agy— agy and positions Xg), and (xg); of the soli-
tons, suggests that the above-mentioned radiationless energy
exchange between the two solitons is quite feasible. Further- In Fig. 1, values of the soliton parameters after the colli-
more, for slow solitongsmallk;) the conservation of be- sion are presented as functions of the initial phase difference
comes an amplitude constraifgee Eq.(6)], and if ampli- A« for the case of the SM perturbation. In the part of the
tudes are small toow(;—0), Q reduces td\, see Eq(10), so interval (—ar,7) which is not included, the collision is al-
that there actually remains the single constraint in this limitmost completely elastic. It is obvious that, in the interval
case. |A ag|=0.5, the small perturbation is, in fact, a singular one,
resulting in very strong effectén other words, the elasticity
Il. NUMERICAL RESULTS of soliton collisions in the AL lattice is a very fragile fea-
ture). Note that, in the case of a weakly perturlmhtinuum
NLS equation considered in R€f6], noteworthy inelastic
To perform simulations of the collisions, we notice that effects in the collision of two solitons also took place at
can actually be scaled out from E@), leaving s ande/h?  relatively small values ofA ay.

2

B. Sensitivity to the phase and position of the collision

A. Setting up the problem
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FIG. 1. Velocities and amplitudes of the solitons after the colli- 2hd momentum for the two solitons, defined as per Ef@. and
sion vs the phase differenceag, in the cases=0.04, e=0 (the (12), vs A« for different values of. in the Salerno moddkecall
Salerno model without quintic termsThis and all the other cases that the tilde refers to the postcollision values of the corresponding
are shown foru=0.75 andk=0.1, see Eq(6). Four different guantitieg. The quantities displayed in this figure are obtained by
curves correspond to different positions of the collision poigt, @dding up their values for the two solitoisather than by direct

=0, 0.25, 0.5, and 0.75. The collisions are strongly inelastic in theralculation for the whole systemif the norm and energy are de-
vicinity of Aag=0. fined by the exact expressiof®) and (3), rather than the approxi-

mate oneg10), they are completely conserved.

C. Dynamical invariants . . o .
largek implies the collision between fast solitons, when non-

In the present case, the initial values of expressid® trivial effects will be very weak.
and(11) areN=3, Q=3.273, andP=0 (the absolute values  The comparison between the actual results of the collision
of the initial momenta ar¢P,|=|P,|=0.1642). Using the (dots and predictions based on the approximate conservation
exact expression@) and (3), we have checked that the net laws for the value®N andP of the two solitons in the form of
values of the norm and energy for the initial solitons andEqgs.(10) (dashed linesis displayed in Fig. 3. As is seen, the
those observed after the collision are equal, in the case of tremplitude relation indeed follows from the norm conserva-
ordinary numerical accuracy employed, up to 4@in rela-  tion in a very accurate form, while the conservation of the
tive unit9; running simulations with higher accuracy momentum may be traced in a very crude form only.
(smallerAt), it was possible to check the norm and energy Another salient feature of Fig. 3 is strong deviation of the
conservation with the accuracy of up to 70 Norm and  dots from the diagonal point (1.054,1.054) corresponding to
energy loss due to radiation loss remained completely neglithe values of the parameters before the collision. Such a
gible in all the cases considered. As concerns the differencieature was impossible in the case of the collision of a soli-
between the unperturbed expressions used in(Eg.and ton with its mirror image in the SM, examined in Rg14].
the exact one$2) and(3), Fig. 2 demonstrates that the larg- A typical example of an inelastic collisiofinducing this
est relative difference between them, which reflects a direceffect is shown in Fig. 4. The major cause of the effect is the
effect of the small perturbations, SN/N~10 2 for the location of the collision central point, relative to the un-
norm andAQ/Q~3x10 2 for the energy. However, the derlying lattice.

bottom panel in Fig. 2 shows that the momentumascon- Besides that, the phase difference between the colliding
served in any approximation, in accordance with the fact thasolitons may produce a similar symmetry-breaking effect.
the perturbed system has no translational symmetry. Indeed, if the AL solitons, described by Eg€) and (5),

The conservation ol suggests that a simple relation be- moving to the right and to the lefiwith k>0 and k<0,
tween the soliton amplitudes after the collision may be ex-accordingly are given phase shifts A¢ and — A ¢, this is
pected: according to EqéL0), u;+ w, must keep the origi- equivalent to the shift of the coordinate but solelyin the
nal value with the accuracy-10"3. On the contrary, the expressions for the solitons’ phases, by = ¢,/k, which
momentum nonconservation promises a much worse accirasequalsigns for both solitons. This means that the phase
racy in the prediction of a relation between the velocities.pattern of the two-soliton configuration gets shifted by
The conservation of) does not provide for an essential ad- relative to the shapes of the colliding solitons, which is an
ditional information for small values d€ (see abovg while  obvious cause for the symmetry breaking. The fact that the
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FIG. 4. An example of a strongly inelastic collision between
0.25 solitons in the AL system with a small onsite quintic perturbation,
A 6=0 ande=—0.01. In this caseA a;=0 andx.=0.2.
020 parameter. For instance, the valde +0.08 of the relative
perturbation parameter in the SM model gives rise to
0.15¢ collision-induced changes of the soliton’s amplitude by a
factor of =2, and of the absolute value of the velocity by a
factor of =3.
0.10° Another noteworthy feature is the asymmetry of the plots
% in Fig. 5. The asymmetry is due to the fact that internal
| . 7 4 .
modes in the colliding solitons can be excited only whn

FIG. 3. Relations between the solitons’ amplitudesand ve- 0 (for 6=0) or whens<0 (for 6=0) [21]. Hence, in
locities (b) after the collision in the Salerno model. The dashed linestN€Se cases, we observe a combined effect of the radiation-
show the relations predicted by the norm, energy, and momenturteSS energy exchange and the internal-mode excitation, while
conservation for integrable AL chain, Eq40) and (11). Dots are  for 6<0, e=0 and 6=0, >0, only the former occurs.
numerical results for 2500 collisions, with values of the initial Naturally, the net nonintegrability-induced effects are stron-
phase differencé a, taken from the interval —1.25,1.23 with a  ger in the cases where the internal mode can be excited.
step of 0.01, and the collision-point’s coordinatg taken from
[0,1) with a step of 0.1. Note that the norm was taken in the ap- E. Compensation of perturbation effects
proximate form of Eq.(10), which pertains to the unperturbed . . . .
Ablowitz-Ladik lattice. The relative nonconservation of this norm N Ref. [6], it was found that, in continuum models, in-
after the collision is~10~2 (see the te3t while the exact norm of ~ €lastic effects in soliton collisions can be strongly suppressed
the perturbed model, as given by E@), is conserved exactly, if contributions from different perturbations cancel each

within the numerical accuracy. other. We have observed a similar feature in the present
above-mentioned position and phase factors do not affect the 28 (@ .o 04 (o) e=0
collision symmetry in the integrable AL model is another 20
specific manifestation of its integrability. Wi !°-3
~ TN
1.5

02

D. The role of the perturbation strength
-'3.08 0.04 0.30 004 008 0-3.08 <0.04 0.30 004 008

In Fig. 3 one can observe that, fér=0.04 ands =0, the
maximum possible soliton amplitude after the collision is 25 © @

. . . =0 04 =0
Anac 1.64, and the maximum possible postcollision veloc- 20
ity is V.= 0.263. These valuefand, in particular, their . g
deviation from initial ones, &,V)=(1.054,0.137)] may be 15 o2
regarded as a measure of the departure of the perturbed " o
model from the integrability. In Fig. 5, we ugg, andV <0010 -0.005 000 0005 0010  -0.010 -0.005 0.000 0.005 0.010

to gauge the deviation from the integrable case with the in-

crease of the perturbation strengthe cases of both the SM FIG. 5. The maximum possible amplitude,,, (filled circles
and quintic perturbations are showit is concluded that the  and velocityV ., (empty circles of the soliton after the collision vs
weak perturbations generate quite large inelastic effects, the perturbation strength$ande: (a,b) =0 (the Salerno modg|
inelasticity increasing almost linearly with the perturbation (c,d) §=0 (the quintic model
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2.0} and momentum exchange between colliding solitons, are
1‘,—1-5 generated by weak perturbatiofisr instance, a perturbation
o5\ with the relative strengtt®=0.08 gives rise to a change of

°'§. the solitons’ amplitudes by a factor exceeding 2). The effects

2. produced by different conservative perturbations are quite

z‘r:'g similar, suggesting that the results reported in this paper are

05 generic. The exact and approximate conservation laws of the

0. perturbed system were examined, with a conclusion that the

2.0f small perturbations very weakly affect the norm and energy

151 conservation, but strongly destroy the conservation of the

1.0 lattice momentum, which is explained by the absence of the

O-go 5 T . translational symmetry in nonintegrable lattice models. Sta-

) T Aa ’ tistical data collected for a very large number of collisions

0 validate this conclusion. Symmetry-breaking effects in the

FIG. 6. The amplitude of the first soliton after the collisidn, collisions (which are silmply explained by the dependenpg of
vs Ay for x,=0, 0.2, 0.4, 0.6, and 0.8, curves 15, respectively.the r'esult on the chatlon of the central p0|r_1t of the collision
The perturbations havi) 6=0.08, s=0: (b) =0, £=0.01; (c)  'elative to the lattice, and by the phase difference between
5=0.08, £=0.01. the colliding solitongwere highlighted, and their magnitude

was used to gauge the deviation of the perturbed model from
model. In particular, in Fig. 6 we show the postcollision am-integrability. It was also shown that, properly combining two
different perturbations, it is possible to almost exactly cancel

plitude A, versusA a, for three different perturbations. It is - o : .
; . X their integrability-destroying effects, thus constructing a per-
clear that the cancellation takes place in ca$emaking the ; . - . .
turbed system in which collisions are practically elastic.

norm and momentum exchange an order of magnitude

smaller than in the other cases. Similar compensation effects In this paper, we were dealing with collisions between
were observed fob=0.08 andz=0.01 in a wide range of solitons with relatively large initial velocities. It would natu-

soliton parameters, including nonsymmetric collisicibe- rally be of interest to see how the picture presented is modi-

tween nonidentical solitofisIn fact, the possibility of the fied for smaller collision velocities, and, in particular, to ex-
. ' P yort amine whether a fractal structure, similar to that observed in
mutual compensation between the Salerno and quintic pe

turbation is a strong proof to the assertion that different con?ef' 7], can be found in the present model. This issue wil

servative perturbations produce virtually identical ef'fects,be considered elsewhere.
hence essentially the same results are expected from other
perturbations. ACKNOWLEDGMENTS
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