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Diffractive properties of volume phase gratings in photorefractive sillenite crystals of arbitrary cut
under the influence of an external electric field
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We study the influence of bias dc electric field on the optical properties of volume phase gratings formed in
optically active photorefractive sillenite crystals. By considering a general case where the external electric bias
direction, the grating vector orientation, the light propagation diredtioystal cuj, and state of polarization
are arbitrary, we deduce analytical expressions for the diffraction efficiency and the polarization state of the
diffracted beam. The influence of the inverse piezoelectric effect is taken into account both in the uniform and
the spatially varying part of the impermeability tensor, as well as into the calculation of the effective static
permittivity. A theoretical comparative study of the dynamic behavior of the diffraction efficiency as a function
of the physical parameters that affect the diffraction pro¢esstal cut, electric bias, input polarization, and
grating orientatiopalong with experimental verification is provided. The general analytical solution provides
means of exploitation of the capabilities of sillenite crystals in several applications.
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[. INTRODUCTION optimum operational conditions are not easy to find and a
general analytical solution for the diffraction phenomena
The photorefractive crystals of the sillenite class 23where the crystal configuration, the thickness, and state of
[Bi1,Si0, (BSO), Bi;;GeO,y (BGO), Bi,TiO,, (BTO)]  polarization are arbitrary is necessary in order to optimize
have been widely studie(see Refs[1,2] and references the parameter space. During the past years various papers
therein and have been extensively used in optical signahave been published approaching the most general case by
processing and interferometric applicatiofsee, for ex- incorporating more parameters into the calculations.
ample, Refs[3-8]). There are various characteristics and In mid 1980s the first approaches treating these phenom-
parameters that complicate the theoretical treatment of thena appeared. Analytical formulas for the intensity and the
diffraction from gratings recorded in sillenite crystals. The polarization properties of the diffracted beam for the usual

simultaneous appearance of the natural optical activitonfigurations on (1Q)-cut BSO crystals regarding optical
(which does not appear in other photorefractive materials activity have been provided by Shepelevif®], and also
the electro-optic effect, as well as the secondary electro-optifcluding induced birefringence due to applied electric field
effect (which is the combination of inverse piezoelectric andby Marrakchiet al.[10] (numerical solutiohand Mallick et
photoelastic effecisinfluences the propagation and the dif- 3], [11] (analytical solution Vachsset al. [12] and Pauliat
fraction of both the transmitted and the diffracted beamset al. [13] presented solutions also for the off-Bragg aniso-
Another important parameter is the crystal configurationgropic diffraction. Two-wave mixing was examined for the
which includes the orientation of the input and output facessame configurations by Mallickt al. [14] and by Pauliat
of the crystal(the crystal cut the grating vector orientation, et al.[15]. Later on, Khramoviclet al.[16,17] presented one
and the external bias orientation. The bisectrix of the recordof the first concise analytical solutions for light diffraction
ing beams is perpendicular to the input face and determingshenomena of transmission gratings arbitrarily oriented in
the direction of propagation; the grating orientation deterthe (110 crystallographic plane under the influence of an
mines the direction of the space charge field modulation anéxternal electric field. The effect of the birefringence induced
finally the external bias determines the bulk birefringence oby the external field was also considered on studies of the
the crystal. Consequently, diffraction is influenced by theevolution of the polarization of the diffracted bed8,19.
configuration since both the primary and the secondary Over those years, the importance of the piezoelectric ef-
electro-optic effects depend on the orientation of spacéect on the diffraction phenomena became gradually evident.
charge field and the external bias. Due to the theoreticadlzvanovet al.[20] calculated the influence of the secondary
complexity of light diffraction phenomena in optically ac- electro-optic effect on the photorefractivity of LiNgGnd
tive, photorefractive piezocrystals of the sillenite class, theheir theory was used by Stepanetval.[21] to calculate the
photoelastic contribution to the refractive index of a grating
recorded in(110)-cut sillenites. The dependence of the com-
*Electronic address: optlab@auth.gr ponents of the impermeability tensor on an inhomogeneous
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space charge electric field with an arbitrarily oriented gratingefficiency and diffracted light state of polarization are ana-
vector was presented by Shandamial.[22]. On the other Iytically and explicitly expressed by the material physical
hand, Guter and ZgoniK23] and Pauliaet al.[24] showed parameterse.g., electro-optic, piezoelectric, and photoelastic
the influence of the inhomogeneous space charge electrgarameters, optical activity the geometric termsgrating
field of an arbitrarily oriented grating on the static dielectric vVector orientation, bias electric field orientation, light propa-
constant of a cubic crystal. The above results were include@ation direction, the crystal thickness, and the state of po-
in the calculations of diffraction efficiencyDE) [25] and larization of the input beam. The calculations are performed
two-wave mixing(TWM) [26] of the (110-cut for arbitrary under the assumptions of undepleted input beam, paraxial
grating orientation. propagation direction, on-Bragg diffraction conditions, and
Recently, many studies regarding diffraction and twofor a constant prerecorded grating. The theoretical results are
beam Coup“ng in gratings recorded Gﬂ]lo) and (111)_Cut applled to the two dIStIﬂC(llO) and (111) cuts and eXperi-
sillenites have appeared including the optical activity and thénental verification is provided. Finally, the diffraction effi-
piezoelectric effect. The optimization over several param<iency for arbitrarily cut crystal is investigated when electric
eters (input polarization, grating vector orientation, crystal field is applied and the grating vector orientation is such that
thickness in the (110 cut was examined in Ref§27-31], DE is maximum or independent from the input polarization.
the recent(111)-cut was investigated in Ref§32—-37 and
TWM under dc and ac electric field bias was considered in
Refs.[38—41. Garca et al. [42] have presented results on Il. CALCULATION OF THE REFRACTIVE
optimization with respect to the off-Bragg angle and electric INDEX CHANGE
field but ignoring optical activity. A. Space charge field
The examined configurations in the above papers were

either the(110) cut or the(111) cut. However, there is inter- Before proceeding to the calculation of the diffraction

est in examining the general case of arbitrary cut Crystal;@r()peme.S of the gratmg Itis .e'ssent|al to calculate the space
charge field, the impermeability tensor changes under con-

\évgceacrgllct:ﬁ;){e%r?gggrv\lle'\ztg;igrgefnat?t;{:gg'rylii?I;tyg{'al[i‘?(;]f theStant and spatially modulated electric field, and the refractive

23m space aro onlv thev are opticallv inactive Monte-mdex changes that are induced by the electric field. The elec-

pace group, only they ptically 1 ve. tric field inside the crystal is derived from the modulation of
mezzani and Zgonik44] have also presented analytical re- o o

i ; - . : the space charge density in the form Bf=E;cosG:r)

sults on diffraction efficiency for arbitrary cut in general an- and the constant part results from the external? applied elec-
isotropic media including off-Bragg mismatches but theyt. field E P y app
also did not consider optical activity. Shepelev{elb] pre- r|cA|e th. th L infl the elect i f
sented the first analytical solution for the DE and the effec-f. . ptarth rom the :JSl:a.‘ mﬁuetnc? on 3.? ectrho—opt I(t:' coet-
tive gain of a transmission grating recorded in a cubic opti-'C'en , (N€ piezoelectric etiect also modilies the static per-

: : ; mittivity of grating due to the deformations taking place in-
cally active photorefractive crystal of an arbitrary crystal cut,Si de the crystal23,24,50. Introducing this influence to the

without taking into account the influence of an external bias’Foisson equation¥(- D= p) results in a modified formula
electric field. A generalized and compact analytical approac ) e .
9 P y bp or the calculation of the space charge fighd,31]

of the photorefractive wave coupling in cubic crystals which
took into account optical activity and birefringence induced Ap°

from external bias was presented by Sturnetral. [46]. Egcz—sc(fisjh'j+eijk|i|j7kiepij|p|i)7l, (1)
Those results were used by Kamerehal. [47] to examine 2m

two-wave mixing in the general cut and compare it with the

(111) cut indicating that th€110) cut is the most efficient for whereA is the period of the gratingiZ, is the amplitude of

two-wave mixing. Until presently, no.complete StUdY regard the space charge density, and the parentheses is the effective
ing the influence of the external bias on the arbitrary-cut_, . o o X o )

) . static permittivity €®" of the grating, consisting of the ordi-
diffraction problem has been presented.

In this paper we deduce analytical expressions for thdiary €’ and the piezoelectrie” parts. Heree is the static
diffraction efficiency of volume phase gratings recorded inPEMittivity tensore; is the piezoelectric tensog is the
nverse of the Christoffel tensdr;, = Cjjqlil;, Cijx is the

cubic photorefractive piezoelectric sillenite crystals under thé o= M
influence of external bias electric field. In contrast to the€!astic stifiness tensofly, 5,15} are the projections of the
majority of the literature where these diffraction problemsunit vector| to crystallographic axe¢see Fig. 1, and all
are addressed by deriving and solving the coupled wave difndices range from 1 to 3.

ferential equations, we use the simpler, yet accurate, method In order to calculate the products in Ed), we follow the

of summing up the amplitude of the diffracted beams comingeduction of indices for the 23 class after Ni&2]. The
from elementary gratings slices along the crystal depttsuffix notation of the 8l-element elastic stiffness tensor
[11,14,48,49,34,31 We consider a general case, where theCijq is reduced to 36-elememt,,, and of the 27-element
grating vector orientation, the external bias direction, thepiezoelectric tensag, to the 18-elemengy,,. The indepen-
light propagation direction, and state of the input polarizationdent nonzero elements for a 23 class BGO crystal
are arbitrary. First of all, the secondary electro-optic effectare €= €7,=€3,=51.5¢,, €=e,=€,5=e3s=0.98 C/nf,
contribution and the principal refractive indices are analyti-C;=Cq1=Cy,= C33=12.84X 1019 N/m?, C,=C12=C21=C»3
cally calculated for an arbitrary cut. Then, the diffraction =Cg,=C13=C3;=2.94x 10'° N/m?, and c3=Cy4=Cg5=Cgg
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FIG. 1. Crystallographic{Ox;,0x,,0x3} and laboratory
{Ox,0y,02z} coordinate axey is the direction of light propaga-
tion and the{Ox,0z plane defines the front face of the crystal.
Here,l,, |, andls are the projections of the unit vectbonto the
crystallographic axes.

=2.55x 10'° N/m? [53]. After these replacements, we calcu-

late the effective static permittivity tensor for arbitrary direc- . L ord . .
tion of the grating vector: FIG. 2. Spherical plot of th&P% €™ ratio for arbitrary grating
vector direction for a BGO crystal.
2

4e
M= et eP?= 5+ A—4(Al|§| S+AISIE+AIED), (2

B. Refractive index change

whereA;, A,, Az, andA, are The changes in the impermeability tensdrmB;;

=(1leo) € 11 are attributed to the electro-optic and to the

elasto-optic effect. For a homogenous electric field in an un-

4 (Cy—Co— 2C2)[(Cy+C)I 22— (Cot Ca) 2(1—12)], clumpeq crystgl there is .h.omogenogs deformation and the
(€1~ Com2¢a)l(Cat C)llic— (ot Ca) 11 -17)] change in the impermeability tensor is

Ai = C1C3_ C3(C1+ C3+ 2C2)||2

(3@
o _ ool
As=[(c1—Ca)(Cy+Cp) —2(Co+C3)2]IF1515(cy — Cp— 2C3) ABmn=Eof mndp EoPmnicpi; Cuijlp- @
+¢1C5+C3(CrtCo) (1315+1215+1313), (3b)

For a spatially modulated space charge field the amplitude of
where{i,j,k} in A; are cyclic permutations df1,2,3}. the impermeability tensor modulation is:

The plot of theeP” € ratio for arbitrary grating vector
direction is shown in Fig. 2. The depicted surface is exhibit-
ing the fourfold symmetry axes along the crystallographic
axes, threefold along th€l11l)y and equivalent directions,
and twofold along'110) and equivalent which are including
the expected symmetry elements of class 23. The inﬂuencvt\a/herer is the electro-optic tensor an, .y is the elasto-
of the piezoelectric effect is maximufi0.6% ofe°®) when - mnp ctro-op nkl
G is along the(110) directions, is zero whef is along the opt|.c t(_ensor. FOrAB,, in Eq. (4), I, I2,.and l3 are_the
principal crystallographic axes, and local minirt@7% of prOJec_nons ofE, /E, to the crystgllograpmc axes, yvhlle for
"% are appearing whe is parallel to(111) directions. ~ABqn in Eq. (5) they are the projections @/G, which are
ConsequentlyE?, is reduced down to 92.3% 110 and generally not parallel. The 27-element electro-optic tensor is
97.2% at(111) from its original value. contracted down to 18-element and the 81-element elasto-

For the gratings recorded in Sec. V we assume that theptic tensor down to the 36-elemepf. The independent
amplitude of the space charge fiel. is proportional to nonzero elements for a BGO crystal arer ,=rs,=Trg3
externally applied electric fiel&,. When the grating forms =3.14 pm/V \ =645 nm) [54], p;=pP;;=Po=P33=0.12,
an angleyg with the direction of the applied field, the com- p>=p1,=P31=Po3, P3=P13= P21= P32, P2+ P3=0.19, and
ponent of E, contributing to the space charge buildup is p,=p4s= Ppss= Pgs=0.01[55]. We carry out the multiplica-
proportional to cosfg), or E2=acosfg)E.e% e tionsin Eqs(4) and(5) and the on and off diagonal elements
[2,49,46, wherea is simply a scaling parameter indicating of the impermeability tensor for arbitrary direction Bf and
the efficiency of the space charge buildup. G become

ABY=Esd mnd p+ EsPmnkrviili€pijl ol » 5
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ABp,=0, ABJ(m#n)=E(r+ep/c3)l,, (6) B 0 Ee 0 +Eg
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FIG. 3. Various phases of the indicatrix section along a grating
rplgriod (not in scale. (a) When electric bias field is appliedg(
#0) the indicatrix has a mean orientati¢@x,,0z,} and elliptic-
ity. Under the influence of the space charge fidil.(is generally
not parallel toE,) the section is tilted and its ellipticity is modu-

Nated around the mean valu@) When €, is isotropic €,=0, or
1 1 ’ ! 1 1) (o) 1
by the length of the principal axg©x’,02'} of the ellipse for an elementary gratingthe indicatrix is influenced by

which is formed by the CrPSS_ section O_f the indicatri_x 5e?j°cos(3~r) alone, and the section has fixed orientation axes
Bijxjx;=1 with the plane which is perpendicular to the di- [O%, 0z

rection of propagation52]. After some simple calculations

we find that the changes of the refractive indices for an ar-

where{m,n,p} are cyclic permutations of1,2,3}, any re-
currence of an index in these equations does not denote su
mation over this index, ané, A,, Az, andA, are given
from Egs.(3).

The refraction indices of the eigenpolarizations are give

bitrary cut sillenite crystal are is split into a constant bulk componegf and a spatially
modulated componerﬁe?jccos@ r) which are depending on
An=—3n3(Qu+QutQy), the external bias and the space charge field, respectively. The
simultaneous influence of the constant and the spatially
An,=— %ng(Qlﬁ Q20— Qy), (8) modulated parts of the permittivity tensor throughout the en-

tire crystal bulk leads to a nontrivial cross section pattern of
N _ the indicatrix[see Fig. 83)]. However, these two aspects can
tar(2¢//)=Q12 Qa1 cog2¢) = QH—Q” (9) be treated independently by splitting the tensorial Ed)

Q11— Q' Qo into two eigenvector equations and then by following the
analysis introduced by Mallickt al. [11].
where s is the angle between th@x axis and the principal We consider small elementary thin slices inside the crystal
axisOx’, Q;; andQ, are (Fig. 4) that are perpendicular to the general propagation
direction (paraxial approximationand that the electric field
Qij =ImilnjABmn, is perpendicular to the direction of propagatidal(Oy). If
the permittivity tensor is expressed in the laboratory coordi-
Qo= (Q1,— Q)%+ (Qp+ Q)% (10) nate syster{Ox,0y,0z}, then the eigenwave equations for

the bulk and the modulated permittivity tensor are

Here,{m,n}={1,2,3}, {i,j}={x,z}, andl; is the projection
of I, to i axis. The formulas for the calculation &, and

An, apply for both electric field&, andEg., the refractive
indices are Anx,zsc and Anxvzo, the principal axes are
{O0x%,,027,} and{Ox.,0z, and their orientations arg, ) L
and ., respectivel?,EFig. 5). Finally, the orientation of t?\e whereE} andElb are the two eigenpolarization vectors of the

principal axes depends only on the orientation of the electriSPatially modulated ¢ grating and the constanth( bulk)
field and not on its value. components of the reduced permittivity tensor as expressed

in the lab coordinate system ad#, and ¢/ are the eigen-
values, wherd,j,k,1={1,2} (in this particular case the re-
peated indice& and| at the eigenvalue product,E} and
S¢,Ef do not imply summing over the range of the indices

In the case of a birefringent and optically active crystalWe can generally express an arbitrary light electric field vec-
the process of diffraction from volume phase gratings in-tor E as a linear combination of any of the eigenstate pairs:
volves two phenomena, the propagation of light in the crystal
and diffraction itself, and they are described by the general
two-wave mixing equation in tensorial form

SeyER=06EY, € EP=¢E, (12)

Ill. DIFFRACTION THEORY: THE ELEMENTARY
SLICE APPROACH

L

-
-

elementary thin slice}
wy thin dicd

VZE-V(V-E)+w?ul € + Se;cogG-r)JE=0, (11) > b -
whereE is the optical electric fieldG is the grating vector, : @ L
and u is the magnetic permeability. The electric permittivity FIG. 4. Diffraction from an elementary thin slicH.
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E=gi(y)EZ=b|(y)EP, (13

where g, (y) and b;(y) are generally functions of crystal
depthy that contain phase shift information due to propaga-
tion. The bulk eigenstateE|b can also be expressed as a
linear combination of thé&} eigenstates

EP=d,EQ. (14)

By consecutively substituting Eq§l3), (12), and(14) into

Eqg. (11), assuming an isotropic Bragg diffraction, and as-
suming that the coefficientg (y) andb,(y) remain constant
for an elementary thin slice of the crystall so that
V29,El=gV2E} and V(V-gEP) =g, V(V-EP), the two-
wave mixing equation can be split into two scalar equations
corresponding to the two eigenstatgs:

V2EJ—V(V-ED) + w?ul e+ decog G- 1) ]EZ=0,
(15

whereeﬁbz €’b,d /(b,d)) are the scalar bulk permittivities. FIG. 5. Analysis of the inpuP into the two eigenpolarization
The value of each scalar bulk permittivigi® oscillates be- ~ States J P and JzP. {Ox,02}, {O%,0z}, {O%;,0%j}, and

tween the two bulk eigenvalue® of the permittivity tensor {Oxs.,0z4 are the external, the input, the bulk eigenstate and the
o . . . grating eigenstate, coordinate systems. The positive sense of rota-
€; and it depends on the polarization of the input beam.

It is clear that the problem of light propagation and dif- tion is indicated.

fr_acti(_)r_1 through an elementary periodic g_rating $"°e can IO%ence and optical activity. Although these phenomena are
S|mpl|f|gd to two eigenvector TWM eq“&%“"”_s with the use neglected while light is diffracted by the elementary grating,
of the eigenvectors of the gratirig . Considering that elec- yheoy should be taken into consideration both before and after
trogyration is negligible in sillenites, the eigenvectors of thei,o iffraction. This means that the light entering the crystal
grating are linearly polarizesee Sec. Il Band the problem 014 pe analyzed into the bulk eigenst&EBsvhich propa-
is simplified. The soluti_on of the scalar diﬁr_action probler_n is gate independently with different velocity until the grating.
}/;/:(I:Itggobv(\;r;nt?/isKogelnlk[56] and the amplitude of the dif- 3., they are analyzed into the grating eigenst&fgsthey
are diffracted, and the diffracted beams are analyzed again
L 7 An, L back toEF eigenstates which propagate independently in the
U= —isin————EJ=—isin———EJ, (16) same manner until the exit of the crystal. In this way the
2 €\ COS O A costg diffracted light beam which comes from the grating contains
. . the information of bulk polarization. Integrating over the
where A, and A are, respectively, the wavelengths in the cygtq depth results in the total electric field of the diffracted

medium and in vacuodg is the Bragg angle, antl is the  peam; the process of integration combines both diffraction
crystal thickness. Hereyn, are amplitudes of the refractive anq propagation phenomena.

index modulation of the&k={xq,zsJ eigenstates that were
calculated in Eq(8) and are illustrated in Fig.(B). For the
paraxial approximation, it is c@g=1 and the resulting dif-
fracted beam has the same polarization as the input eigenpo-
larization. If we assume that the diffraction efficiency is low  We shall follow the Jones calculus notation to describe the
so that the portion of diffracted light that diffracts back to the calculation of the diffracted beam amplitude. We consider
original direction is negligible, the amplitude of the light that the light entering the front face of the crystal is generally
electric field eigenvector that is diffracted from an elemen-elliptically polarized,P; is the vector of the electric field, and

IV. OUTLINE OF THE PROCEDURE FOLLOWED
TO CALCULATE THE DIFFRACTION PROPERTIES

tary sliced! of the grating is P2 is its intensity. Assuming a paraxial direction of propaga-
tion so that the light electric field does not have components
dU,=—i mAngdl E9. (17) on Oy axis, the polarized light expressed in matrix notation
A on theOx;,0z axes is
The total light electric field of the diffracted beam at the 1 1
exit of the crystal is the sum of the elementary electric fields P=—=-—P e—iwt(. ' (18
of the diffracted beams from each elementary slice and it can Vi+e? e/,

be calculated by integratinglU, over the entire crystal
depth. However, the polarization of light is changing whenwheree is its ellipticity defined as the ratio of the to thex;
propagating through crystal depth due to the bulk birefrin-axes of the ellipseg e i) (see Fig. 5. If e=0, the light is
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linearly polarized, and iE=0, the sense of rotation is anti- section of index ellipsoid of the periodic phase gratiatso
clockwise or clockwise, respectively, for an observer who isnamed diffracting axgswhich are lying at an anglé ¢ to
looking along the direction of the propagation of light—the Ox,. The elementary diffracted components are parallel to
convention that the anticlockwise rotation along the directiortheir diffracting axes and according to the approach de-
of propagation is positive is to be followed throughout thescribed in Sec. II[Eqg. (17)] the Jones matrix of the diffract-
paper. The small index at the lower right corner of the matrixing grating slice is

denotes the set of axes that the components of the vector

refer to, e.g.j indicates theDx; ,0z axes. The two compo- +di [ Ang 0
nents of the elliptically polarized ligh®; are projected to the Ang=—i— s (25)
eigenaxex,,0z, by multiplying with the rotation matrix A 0 AnzSC .

R(6) = (2959sn% and the resulting light electric field at the

entrance facel0) is Finally, the light electric field of the beam which is diffracted
from thedl slice along thg Ox,,0z,} axes is
Po(0)=R(—=0)P;. (19
dUo()=R(—=A#)AnsR(A ) Py(1). (26)
P,(0) can be analyzed into the two elliptical eigenstates
of polarization by multiplying with the eigenstate matrices The diffracted portion is analyzed into the two eigenstates of

J. andJg given by the equations polarization which propagate independently till the back face
of the crystal and ap(L—1) phase difference is introduced
1 1 —ik 1 K2 ik to the “fast” eigenstate:
el K ) el ik 1)’

dUy(L)=e "?t"Dg dUy (1) + Iz dUy(l). (27
(20)
The output light electric field is calculated by integrating the

wherek is the ellipticity (k|<1) of the elliptic eigenpolar-  glementary portions from the thin slices throughout the crys-
izations. According to Nyg52] the ellipticity k of the eigen- depth:

states of polarization is
L
1 2 U (L)=f dU,(L)
k=tar{— arctarE—Q”, (21) ° =0 °
2 é
Le NI R(—Ap)AnR(AY) I

where é is the phase difference per unit length between the
two eigenpolarizations regarding the birefringence alone and i
o is the rotation of the polarization plane per unit length +I_(e—i¢L_1)J R(—A¢)AngR(A¢)J
regarding optical activity alone. The phase differentés ¢ - s R
calculated from the refraction indices along tB,,0z,

axes + jz<e—i¢L—1>JRR(—AwAnscR(Aw)JL
21
o=~ (Ang —Any ). (22 +LIRR(— A ) AnR(A ) Ir|Po(0). (28

The total phase difference between the two elliptic eigenpoThe above equation is actually the transfer function of Bragg
larizations is connected with the phase differedcand the  diffraction from the volume phase grating, and it consists of
rotatory powerg,, two intramodal diffraction component&iffraction to the
same eigenmodeand of two intermodal componentdlif-
$?=6%+(20)>. (23 fraction to the opposite eigenmaodeThe terms inside the
brackets constitute the>X22 Jones matrix of the diffraction
grating. We calculaté),(L) in analytical form by substitut-

Af ti t tal depth the “fast” ei tat
ter propagating to crystal depth the “fast” eigenstate ing Eqs.(18), (19), (20), and(25) into Eq. (29,

gains a phase differencg!| over the “slow” and light elec-
tric field turns out to be )
A+iB

—aiot
Uslb) =" cLip

: (29

Po(1)=e7"%13,Py(0) + Jg Po(0). (24)

o
In order to calculate the portion of the light that is dif- where{A,B,C,D} e R are defined in the Appendix, see Eq.

fracted from the elementary slicel, the components of (Al). The diffraction efficiencys is the ratio of the dif-
P,(I) must be rotated to th®x,.,0z, principal axes of the fracted to the input light intensity, that is,
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_ <%U0(L)'Uo(|-)*> _A2+ B2+ G2+ D2
- <%P0(0)'P0(0)*> a pg

(30

After a few calculations an analytical formula for diffraction

efficiency with the following format can be found:

7= ngct 77acl005(29) + 77ac23in(20) = NgcT NaL0420+€),

PHYSICAL REVIEW E 68, 056602 (2003

Nac= 77501"' 775“2 ) (31a
7ac, a if 7]acl< 0
&= —arctan—+ (31b

Nac, o |if 77acl>0.

where 74c, NMacs Tac, are presented in the Appendix:

(31) The azimuthy,,, the ellipticity ¢,, and the sense of ro-
tation s of the diffracted light can be determined from Eq.
where (28). After some simple calculations the derived formulas are
|
a2y 2(AC+BD) p (323
a = = _l
¥ A%+B?-C?-D?
, AZ+B2+C?+D?~ JA(AC+B D)+ (A*+B2-C?-D?)? 7Pi—\p’+q?
SO: = ’ (32b)
A%+ B?+C?+ D2+ J4(A C+B D)2+ (A2+B2-C2-D?? 7P2+\p’+q?
anticlockwise if AD—BC>0
s=1 linearly polarized ifAD—BC=0 (320
clockwise if AD—B C<O0.

When no electric field is applied=0) and for linearly
polarized inpute =0 [34], 7¢4c, 7ac, and ¢ in Eqs.(A2) are
reduced to

L2
= (AN~ A iné L)+ (An A, ),
(333
L2
Nac™ N (AnxSCZ_AnxSCZ)SianL)a (33b
E=oL—2 . (330

Hg-Xe white arc lamp, the wavelength of which is selected
by an interference filter, illuminates the grating. The image
of the grating is formed on the crystal with the use of two
lensesL; andL,, as shown in Fig. 6. By placing two aper-
tures in the Fourier plane between the lenses, transmission is
allowed only for the+ 1 diffracted orders, so that the filtered
image which is projected to the crystal has sinusoidal profile
with period A =25 pm (far drift region. The grating is re-
corded using 545 nm unpolarized light, the modulation is
m=1, and the total exposure is 0.4 mJfcrduring the re-
cording a static electric field is externally applied. For the
readout process 645 nm illumination is selected, éhg
aperture is blocked so that only one diffraction order is trans-
mitted to the crystal, and the diffracted light is gathered into

Additionally, the theoretical results are in agreement with the, photomultiplier(PM). For the measurement of the DE of

analysis on the (1) cut in Ref.[11] and also with the
results on DE versug, and thickness in Ref46].

V. EXPERIMENT AND COMPARISON WITH THEORY

A. Experimental procedure

In this section measurements of the intensdiffraction
efficiency) and the polarization statezimuth and ellipticity

the grating, a polarizer is placed before the crystal and divid-
ing the intensity of the diffracted to the transmitted beam
yields the DE. For each particular grating,. and 74 are
measured by rotating the polarizer and calculating the ampli-
tude and the mean value of the signal, respectively. For the
measurement of the polarization state of the diffracted beam
a rotating analyzer is placed behind the crystal.

In our experiments it was noticed that the effective values

of the beam that is diffracted from gratings recorded in BGOof the electric field that best fitted the experimental results
crystal are presented. In order to examine every aspect of theere about 40—-50% lower than the externally applied field
theory, the variable parameters of the experiments are thehich was calculated from the applied voltayéd. This
grating vector orientation, the input polarization, and thedeviation is attributed to an inverse static electric field that is
strength of the externally applied electric field during read-building up during recording, which is reducing the strength
out. of the originally applied electric field and which is probably

The experimental setup for two-wave mixing experimentsinhomogeneous. The buildup of this screening field was no-
is depicted in Fig. 6. A collimated beam, produced fromticed in various experimen{d2,18,57—-62and is attributed
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) 77 the external bias field along the grating is zero. It can be seen
that when external field is applied during readoyt is
(170), @ symmetric abouty=0 and it generally increases by about
1y P 50%, while for the(b) case the “right” 7, lobe aty>0 is
lower compared to thee<0 one. The optimum polarization
angle @),.=— &2+ ¢,) for which diffraction efficiency is
maximized is shown in Fig.(8). When the grating is parallel

to the [110] axis, 6, Undergoes am/2 phase jump and
1= 0 for both cases.

In order to examine the validity of the calculations for the
polarization of the diffracted beam, a grating is recorded at a
fixed angle y=+15° from the [110] axis with E,
=8 kV/icm. During readout bias fields of(a) E,
=—28 kV/cm and(b) E,=0kV/cm are applied alon§110]
as well. They=+15° angle is chosen in order to examine
the most general case whe®& and consequentli,., are
. ) not parallel toE, [see Fig. 83)], while, on the other hand, to
to the resistance of the contacts and to the inhomogeneoygaintain high diffraction efficiency. The experimental and
illumination of the crystal. In order to verify this hypothesis {heoretical results for azimutl,, and squared elipticityﬁ

we measured the polarization state of a beam that is directlys he giffracted beam versus input polarization direction are
transmitted(not diffracted through the grating and taking presented in Fig. 9.

under consideration the effects of optical activity and in-" 1he more recent (111) cut exhibits generally an 120°

QUced bi_refringen.ce. The _results showed.the existence of thﬁeriodicity becausé111] axis possesses threefold rotation
inverse field and its effective value explained the “loss” that ;s However. in our experiments this property is defeated
was noticed in the first place. The existence of the screeningy, he influence of the externally applied electric field for
field can be an advantage in DE and polarization measurgzording. All the same, the external field which is applied

ments. In order to achieve higher electric fields inside th%uring recording i€, = +8 kV/cm, and during readout it is

crystal we switch the polarity of the applied voltage duringE ——8 KkV/em andOE -0 kV/cm, The results for the DE

readout so that the screening field that has been build uQr(;d 6" are shown inOFig 10. It i.s noticed that is sym-
max " " C

during recording is now added rather than subtracted. metric aroundy=0 and is increased almost 20%, while the

_ “left” ( y<0) lobe of5,.is slightly decreased for no-applied
B. Results for the (110) and (111) cuts field and is dramatically decreased whep=—8kV/cm is

The two distinct cuts on photorefractive sillenite crystalsapplied. When the grating is parallel to th&10], [101],

are along the (110) and equivalent planes, which is als@nd[011] directions, /2 phase jumps are occurring #j,,
known as the Huigniard configuration, and along (111) andyng . is zero again. The results for the azimuth and the
eqilvalent planes. In our experiments a 55 mm th'Cksquared ellipticity versug’ for a grating recorded ay
(110)-cut positive ¢>0) BGO and a 5 mm X11)-cut  _15° 1o[110] are shown in Fig. 11. There is a good quali-
negative £<0) BGO are used according to the configura-tative and quantitative agreement between theoretical and ex-
tion shown in Fig. 7. - perimental results for both cuts and small mismatch is attrib-
First we examine the DE of the (D)-cut BGO when the uted to low diffraction efficiency values, which result in
external bias field is applied alorjd10]. A grating is re- small signal to noise ratio and to a probable nonuniformity of
corded using arE,= +8 kV/cm external bias and during the electric field. For both crystal cuts that were examined
readout(a) an opposite biasE,=—8 kV/cm) and(b) no  we can conclude that the application of external electric field
bias E,=0 kV/cm) are applied. The experimental and theincreases the dc part of the de and decreases the ac part
theoretical results of DE versus grating vector orientation arasymmetrically.
depicted in Figs. &) and 8b). DE consists of the mean part  In order to establish the previous conclusion an experi-
74c @and the oscillating part whose amplitudess; [see Eq. ment measuring the DE versus the applied field during read-
(31)] and has two lobes. DE is zeroed when the grating iout is arranged for both crystal cuts. The grating vector is
recorded along001] (y= +90°) because the component of recorded along the directiop= v, for which DE is maxi-

[001],2
a)

FIG. 7. Crystal configuratiorta) the (110) cut and(b) (111)
cut. Here,#' and yg are measured from th®x axis.

Grating P

FIG. 6. Schematic diagram of the experimen-
tal setup. IF(interference filtey L,, L,, Lj
(lenseg;, D and D’ (Fourier planes a, 1, a_1,
anda’ (aperturep P (polarizer—not used during
the recording procegs A (analyzey, and PM
(photomultipliep

,_
Q
3
h=]
—1
T
Juil
—H———

IF L D L,
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FIG. 8. Diffraction efficiency vs grating vector orientation for a 5.5 mm thic?Q).—]:ut positive BGO folE,= —8 kV/cm and 0 kV/cm

external applied field@) 7qc, (b) 7.c, and(c) optimum input polarization anglé;,... The theoretical curves are plotted fer 0.6 and for
E,=—12 kV/cm and—4 kV/cm, respectively.

mized. DE is symmetrid n,d )= nad —7v) and ngdy) to the maxima on either side>0 andy<<0 of 74.. In Fig.

= 174 — ¥)] When no bias is applied and the optimum value 12 . and ,. versusE, are presented for two grating vector
is y=*+43° for the 5.5mm (1@)-cut andy= +=30° for the orientations. The two different ac parts belong to the two
(111)-cut BGO crystdl31]. The + values are corresponding different lobes of they,. shown in Figs. &) and &b). The

) L L) T 1 10 M v ) L] T T L]

0.9 b) ]

] s -8 kV/cm ]

. " @ 0 kVicm ]

A § 0.7 -12 kV/icm 850 o

o ] ) > 1 --- -3 kVicm 1
Z S
< 04 s -8 kVicm E =1
= 1 @ 0 kVicm 1 =
£ 0] -12 kV/em ] 2
g 1] --- -3 kVicm ] %
N =]
< 60 ] &

_|i'|'.v-A:LI:I|:||:||:||:||:||:||:||:||:||:||:||:||:||:||:||:||:||:||:||:||;,|:,|:”:'|:IE”:“:“:M:| -1
o4 0 TTTmeeee . -7 = nonafpo
v ——r——7——— — — Sael
-90 -60 -30 0 30 60 90 -30 0 30 60 90
Input polarization orientation 6'(deg) Input polarization orientation 6' (deg)

FIG. 9. Polarization state of the beam which is diffracted from a grating recorded-at15° from the[110] for a 5.5 mm thick

(1?0)-cut positive BGO folE,= —8kV/cm and 0 kV/cm external applied fiel(a) Azimuth angley,, and (b) squared elipticitysﬁ. The
theoretical curves are plotted and 5= —12 kV/cm and—3 kV/cm, respectively.
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FIG. 10. Diffraction efficiency vs grating vector orientatiom 805 mmthick (111)-cut negative BGO fdE,= —8 kV/cm and 0 kV/cm
external applied field@ 7qc, (b) 74c, and(c) optimum input polarization anglé;,,,. The theoretical curves are plotted fer0.33 and
for E,=—12 kV/cm and— 3.5 kV/cm, respectively.

dc part is gradually increasing but the two lobes are decreadeam. This is important especially in experiments where al-
ing asymmetrically up to 8 kV/cm and then increasing, but itternating electric fields are applied. The formulas describing
is always 7,d —43°)> n,{ +43°). The experimental data DE and the auxiliary parametefs ¢, ands in Egs. (A3)
are shifted along the horizontal axis B\8 kV/cm in order to depend on the space charge fi#lg. and on the externally
compensate for the screening field. The same phenomenonagplied fieldE,. Analysis shows that all the above formulas
observed at thél11)-cut BGO(see Fig. 18 In this case the are even functions of the space charge fiElg. Conse-
experimental data are shifted by4kV/cm. The 4. is in-  quently, there is no change in the diffracted beam for any
creasing but the twoy,. lobes decrease and increase asymerystal cut and configuration wheBg, switches polarity.
metrically. But this time, contrary to the (D) cut, it is  That is only to be expected since changing the sigkgfis
7ad —30°)< 7,{ +30°). This difference between the two equivalent to an 180° grating displacement. In DE experi-
cuts is attributed to the opposite sense of the rotatory powenents any grating displacement is of no importance because
¢ of the two BGO samples. If we change the sigrpothen  only one beam is used for readout, in contrast to TWM
the inequalities are reversed. The experimental results fowhere such a displacement with respect to the interference
both cases are in agreement with the theoretical and with thgattern of the two beams is significant.
results obtained in the previous experiments of DE versus The situation is a bit different when the polarity of the
externally applied electric field is changed. When the input is
linearly polarized £€=0) DE is even functiony(—E,)
=75(E,), butp, g, ands are odd functions. Consequently, for
any crystal cut and configuration, D, azimuthy,,, and

In order to read into the diffraction properties of the grat-ellipticity ¢, remain the same, and only the sense of rotation
ing we should examine the influence of the inversion of elecof the polarization state changes under switching the polarity
tric field on the DE and the polarization of the diffracted of E,. When the input is elliptically polarizedeg0) the

VI. DISCUSSION ON THE ARBITRARY CUT

A. Diffraction properties under inversion of the electric field
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10 FIG. 12. DE vs electric field applied alorid10] for a 5.5 mm
o b L (110)-cut positive BGO crystal. The grating is recorded Wi
0.9 ) N =+8 kv/cm. (1) 74, wheny=+43°,(2) y,.wheny=+43°, and
0.8 = -8 kviem - (3) 7mg. When y=—43°. Experimental data are shifted by
o | o 0 kV/icm ) +3 KV/
§ 0.7 A3kviem . om.
>’06. --- -3 kVicm 'n 1
= .04 o N . . . .
%. 05, & ; in Figs. 8c) and 1@c) and it happens on two occasions:
3 ;s j whenoL=0,7,2, ..., andwhen the grating vector is par-
B 0-4-_ !k ) allel to particular directions regardless of crystal thickrless
S 0.3 _,.-u'-\."---.._ J The former can be observed both in gain and diffraction
@ 0.2 efficiency investigations and is due to the fact that the light
e passes through all possible polarization states while propa-
01 . 0oo8g8,022d] gating along crystal deptf27]. The latter is found only in
0.04— — e DE experiments when the grating vectBy,, satisfies the

9 60 30 0 30 60 90
Input polarization orientation ¢’ (deg)

condition|An§sc| = |An§sc| which is derived from EqgA2b)
and(A2c). This means that diffraction efficiency is the same
FIG. 11. Polarization state of the beam which is diffracted from@l0ng either of the principal diffracting axes of the modu-
a grating recorded ay=+15° from the[TlO] for a 5 mmthick lated l'nd'lcatrlx(l.e.,.OXSC gndOzSCz s.ee. Fig. % Therefore,
(111)-cut negative BGO foE,= —8 kV/cm and 0 kV/cm external  the élliptically polarized light that is incident on the elemen-
applied field.(a) Azimuth angley,, and (b) squared elipticitys?. tary grating splits into the two diffracting ax€¥x;. andOz.

The theoretical curves are plotted and t65=—13 kV/cm and
—3 kV/cm, respectively. —_— T

situation is somewhat more complicated. Each of the formu-
las for », p, g, andsis decomposed into three parts; the first
is constant and the second and third depend on éps(ad
sin(20). Whene #0, an extra term appears on the constant
term of each of the formulas above, which depends on the
polarity of the external field and is proportional £0 Con-
sequentlyzny. has an extra term which is added/substracted

Diffraction Efficiency (%)

; erm which IS ad : £30°
when the polarity of the applied field is positive/negative. On ° o™, : ----Zﬁi E+3o°;
the other handy,,, &,, ands get complicated. The above 0.2 o 0 s Nac (-30°) 7
results are in agreement with those reported in H&£5,38. 1 ° 0.0 1

0.0 +——a-+--"-"er—
B. Diffraction efficiency independent of the orientation 0 5 10 15 20 25 30
of the polarization at the input Applied Electric Field (kv/cm)

There are several cases in the literature where the output £ 13, DE vs electric field applied alorjg10] for a 5 mm

from a grating recorded in a sillenite crystal does not depengi11)-cut negative BGO crystal. The grating is recorded vah
on the orientation¢ of the polarized light at the input =48 kv/em. (1) 4. wheny=+30°, (2) 7..wheny=+30°, and
[27,29,31,34,36,37,47,63,B4 his phenomenon is accompa- (3) 74, when y=-—30°. Experimental data are shifted by
nied by the exhibition ofr/2 phase jumps on th&' ., plots  +4 kvicm.
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FIG. 15. DE for arbitrary direction of light propagation when
G=G,, and output is independent af for a 5 mmthick BGO
crystal.(a@) E,=0 and(b) E,=8 kV/cm andE||G,.

FIG. 14. Spherical grating vector orientation plot when DE is
independent fromd. The diagram is restricted to the first quarter for
simplicity. In regions(i), (ii), and (iii) there are unique solutions
which are roughly perpendicular {®01], [100], and[010] axes,
respectively. There are three solutions over regioh

Maxima of DE are located alond 10 directions, and a kind
of saddle points occur along tRd11) directions with DE
being 66% compared to the maximum(atl0). The appli-
cation of external electric field alonG,, results in a DE

and the two components are equally diffracted. The diffrac_surface with essentially the same shape, but the lobes are a

tion process does not introduce an extra amplitude or phaégt_n:orte i)rlonounc:(_ad. The (Ta)l()'m"’; <ilolo(/)> an(cji tzr;/saddle
difference between two diffracted components of the beanPO!Nt @ (113 are increased abou o an 0, respec-

and consequently they combine and the diffracted amplitudgvely'

is independent from initial light polarizatiof 7,d Gmin) ) . o . _
=07 [31]. C. Diffraction efficiency at optimum grating vector

An§_and An; are neither functions of the externally orientation Grax

applied electric field&E,, nor of the crystal thickness, and In this section we examine the diffraction efficiency at
the specificG,,, vectors are characteristic of each crystalOptimum grating orientatiors,, with and without applied
cut. In F|g 14 thOSGmin vectors are depicted ina Spherica| electric field. The Spherical vector orientation plOt for maxi-
vector plot for arbitrary cut for a BiGeOy, crystal. For each mum DE for arbitrary cutri a 5 mm BGGrystal is shown in
cut (i.e., for each light direction of propagatipra small line ~ Fig. 16. The top part of the quarter shown can be divided into
representing the vector is drawn onto the surface of a sphefree areas and a threefold rotation axis exists along the
which is parallel toG,,, and perpendicular to the radial di- [111] direction. In each area only unique solutions exist for
rection of propagation. Each small line corresponds to twdVhich DE is optimized and they are roughly perpendicular to
opposite equivalent orientations since an 180° rotation prothe (110 directions. Double solutions appear along the
duces the same grating. The diagram is restricted to the firoundary lines of the areas, triple solutions on the cross
quarter; the other quarters can be reproduced by applying tHeoints along the111) directions.
symmetry elements of the class. The top part of the quarter [N Fig. 17 the surfaces of the amplitudg{Gma,) and the
shown in Fig. 14 which is restricted by the three principalconstant partys(Gmad for arbitrary cut and when no elec-
axes can be divided in four regions. In the central regioriric field is applied externally are depicted. The surfaces ex-
there are three vector orientations for whigh=0, while in  hibit the twofold and threefold rotation axes as expected and
the three peripheral regions only unique solutions exist. It
can be observed that the vector orientation on each periph-
eral region is roughly perpendicular to a principal crystallo-
graphic axis and that the central region is a mix of the adja-
cent peripheral ones altogether. On the boundaries between
the regions, two out of the three solutions coincide and the
number of vectors degenerates down to two. Finally the dia-
gram exhibits the elements of symmettwofold and three-
fold axeg that are typical of the sillenite family.

It is interesting to study the diffraction efficiency when
the 7,d Gmin) =0 condition holds. In Fig. 15 the(G,,,) for
a 5 mm BGO crystal of arbitrary cut is shown for linearly
polarized input light £=0). Among the triplets ofG,,, in
the central region of Fig. 14 the ones that produce the highest
DE were used for the calculation. The two cases presented FIG. 16. Spherical grating vector orientation diagram for maxi-
are for 0 kV and 8 kV applied electric field along grating mum DE independent from input polarizationrfa 5 mm BGO
vector orientation. The DE surface consists of 12 lobes andrystal. In regiong(), (i), and iii) the solutions are roughly per-
exhibits the twofold and threefold symmetry rotations. pendicular tof 011], [101], and[110], respectively.
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a) T3 b) " nite crystals. The theory is based on the analysis of the vol-
~o = ,-A\i"" i””,//"’ . . . L .
W il g\\\\\\\\“l Y ume grating into elementary slices inside the crystal which
EN\N iz AN vz
.i%\\\“‘\wll////és ) %‘@\\\\\MW/%%*@%\ diffract the light. The calculations are performed for arbitrary
Sl 7 e 2 e Co . o ;
[ ] 0l (LB S crystal cut taking into account optical activity and the in-
Wy N\ el L . .
\ I duced birefringence coming from the externally applied elec-

tric field, as well as the influence of the piezoelectric effect.
We assume an undepleted pump beam that propagates at
small angle to the normal of the input fagegaraxial beam
approximation. Emphasis is given so that the resulting for-
mulas for diffraction efficiency and the polarization state of
the diffracted beam are expressed on the original parameters
of the problem(i.e., input polarization ellipticitye and azi-

FIG. 17. DE for arbitrary direction of light propagation for a 5 Muth 6, eigenpolarization ellipticity, and refractive index
mm thick BGO crystal wherG= Gy, andE,=0. () 7.{Gma) ~ ChangeAn,, ). The experimental results are in good agree-

and (b) 74 Gma - ment with the predictions from theory. It should be noted that

they have essentially the same shape. The absolute maxirf4ing the recording of a grating an inverse electric field
appear along the(110) directions local minima exist builds up_whlc_h decreases the effec_tlve value of the exter-
along the(111) directions, being 41% and 43% of the nally applied field. Here we summarize some of the results
maxima for 7,{Gma) and 7¢(Gmay. respectively. The deduced from the analysis of the theory:

74 Gma! 7ad Gmay) ratio ranges between 1 and 1.19 and its (1) The piezoelectric effect influences both the electro-
values for the(110) and(111) directions are 1.07 and 1.10, optic coefficient and the effective static dielectric permittiv-
respectively. The above surfaces are similar to the one calty. In the latter, the piezoelectric effect increases the static
culated by Kamenoet al. for TWM gain whenE,=0 and  dielectric permittivity, which results in the reduction of the
eL=m [47]. original value of the space charge field. The reduction de-

he ori i f th [ i
above but for an 8 kV/cm electric field applied along theﬁéoe;ds on the orientation of the grating and it can be up to

optimum grating directiorG,,,.. The shape of the surfaces

remain the same as before but there is an obvious shrinkin (2) In_ general, DE conS|sts_ of a mean valu@d(o _and a
of the AC term and an expansion of the dc surface. Th art which depends on the orientation of polarization of the

74 Gmax)! 7ad Gma) ratio ranges between 1 and 2.1 and it is readout beam+#,J. The external application of the electric
1.87 and 2.1 for thé110) and(111) directions, respectively. field bias up to 8 kV/cm along the optimum grating vector
The maximum DE7(Gpa) = 74 Gmax + 7ad Gmay) When  direction increases,., and decreases,.
E,=8 kV/cm is applied turns out to be a bit lower compared (3) For each crystal cut there are one to three grating
to the case when no electric field is applied for every crystalector directions for which the diffraction efficiency is inde-
cut. The worst case is tHa11} cuts where DE is 86% of the pendent of the linear polarization of the input.
original. (4) When the space charge field switches polarity, the dif-
fraction efficiency of the grating and the polarization of the
VII. CONCLUSIONS diffracted beam remain the same. When the polarity of the
. ) external field is switched and the read out beam is linearly
In this paper we have presented a comprehensive analytso|arized, the DE, the azimuth, and elipticity of the dif-
cal model on the diffraction from gratings recorded in sille- fr3cted beam remain the same, and only its sense of rotation
switches.

\|

N
él( Ll ‘
i Wiiti B iy~

z3 . . . . . .
sk Finally, the analytical solution of the diffraction properties
) b) /é\\\ik\\\““ ’7;///%‘ N of thick phase gratings recorded in sillenite crystals makes it
%‘3}50\}\\\\\“ possible to investigate in depth the influence of various pa-

rameters on the phenomenon and to optimize their perfor-
mance in several applications.
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APPENDIX
FIG. 18. DE for arbitrary direction of light propagation for a 5
mm thick BGO crystal whenG=G,,, and E,=8 kV/cm and The light electric fieldUy(L) of the diffracted beam is
EolGrmax- (@ 7ad Gma and(0) 74 Gmay - given in Eq.(29), whereA, B, C, andD are
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7Py )
A= NN, (Anxsc—Anzsc)cos(ZAw)(sm6[¢L(k2—1)(k—k28)+¢L(k2—l)(k+s)cos¢L

—2k(k?+ 2ke —1)sin gL ]+ cosé{2k[ 2k + (k*—1)e](cospL — 1)+ L (k?—1)(ke + 1)sin¢L})

. L oL Pl
+2(k*+1)%(An,_—An,_)sin 2A 4 sin—-| & Cos6 oS- —sin O sin—- +¢L(K*+1)(An,_+An, )
><{[k—kzs—(k+s)cos¢L]sin6—(ks+1)cosasin¢L}}, (Ala)

— 7P,
5= 2N (K2+1)2s2+ 1
+2k—g)singL} +sin [ 2k(k?+ 2ke — 1) (cospL — 1)+ (k2= 1)L(k+e) psinpL])+ (k?+1)?

(An,_—An, )cog2A ) (cosb{pL(1- k?)[ ke —k?+ (ke + 1)cos¢L ]+ 2k(k?e

L
X (An,_—An, )sin 2A<//( 2¢ cosé sir? % +sin#singL

+pL(K2+1)(An, +An, )

x {cosf[ k?—ke + (ke + 1)cosgL ]— (k+&)sin g sin ¢L}}, (Alb)

P, .
CcC= N 1)2m[(Anxsc— An,_)cog2A)(cosb{pL(1- k?)[k—e+ (k+k?e)cosplL ]+ 2k(k?— 2ke —1)sin L}

+sin6[ 2k(k? — 2k— &) (cospL — 1) + pLK(k*— 1) (k+&)sinpL])— (k*+ 1)*(An, —An, )sin2Ay

X[cosé(1—cos¢L)+esindsingL]+ oL (k>+ 1)(Anxsc+ Anzsc){cosa[s —k+ (k+k?%e)cosel ]

—(k?+ke)sin@singL}], (Alc)
D= —Po

2N (K2 +1)2e?+ 1

+cosd[ 2k(k?—2ke —1)(1—cospL) — pLk(k?>— 1) (ke + 1)sinpL])+ 2(k?+1)?

(An,_—An, )cog2A ¢ )(sin 0{ L (k*—1)[1—ke —k(k+e)cospL ]+ 2k(k*s —2k—g)sin ¢L }

. oL L oL
x(AnXSC—AnZSC)sm 2Awsm7 cosecos7—ssmasm7 +¢L(k2+1)(AnXSC+AnZSC)

X {[1—ke+k(k+g)cospL]sin 0+ (k+k?e)cos sin ¢>L}}. (Ald)

The dc and ac parts of the diffraction efficiengyin Eq. (31) are

71_2

T 8ANA(1+ K22 (s24 1)

7dc

(e2+1){2(k*+6Kk*+1)(An,_—An, )?+ ¢?L7[(3k*+2k*+3)(An, *+An, ?)
+2(k*+6K>+ 1)An, An, J}+(An, — Anzsc)z(ser 1)[(k?—1)?cos A ¢( p°L>+2cosplL — 2)

—2(k*+6k?+1)cos¢L]+16e pL(k>— 1)(An, 2 Anzscz) (k*+1)sin Mwsinz% +kcos2A y (sin gL — ¢L)H ,

C

(A2a)

WZL(AHXSCZ—AFIZSCz)(l—SZ)

Nac = 4(k3+k)sin 2A</fsin2ﬁ+cosm¢/[¢L(k2—1)2+4kzsin¢>L]] (A2b)
A 2eNA(14+K?)2(e2+1) 2 ’
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m?L(An, 2—An, ?)(s2—1) PLERP
- > < 4k cos A ¢ si ——— (K*+1)sin 2A ¢rsin L |. A2c
Nac, 2(1))\2(1+k2)(82+1) Y 2 ( ) Psing ( )

Similarly to Eq.(31), thep, g, ands parameters that describe the polarization of the diffracted beam consist of constant and
6 modulated parts:

pP=Pp+ PcCOS 20+ pgSin 26,
g=0p+ g.CoS 20+ gsSin 20, (A3)
S=S,+S.C0S 20+ S.Sin 26,
wherepy,, Pes Pss dbs des Gss Sps Sec, andsg are
m?P2sin($L/2)
AR+ 1)3(e7 4 NP
+(AnXSC—AnZSC)[—squ(kZ—1)3(AnXSC—AnZsc)cos4A¢+2(k2+1)3(AnXSC+AnZSC)(82+ 1)sin 2A — 4ek(k*—1)

oL
Pp 2¢LC037{8¢L(k2— D[(k*+6k*+1)(An, >+An, ?)+(6k*+4k*+6)An, An, ]

L
X (Any —An, )sin4Ay]}+8k(An, —An, )cos 2A<//sin¢7{¢L(k2+ 1)*(An,_+An, )(s?+1)+4s(k*—1)
X (An,_—An, )[(K*+1)sin2A ¢ —k¢Lcos2A y]} |,

- m2P2(e2—1)sin($L/2)
4(K*+1)3(e%+ 1)N\?¢?

L
Pc= (Sk(AnXSC— An,_)?cos 2Ay[ (k*—1)*pLcos 2A ¢+ 4k(k?+1)sin 2A¢]sin¢7

¢L 4 2 2 2 4 2 _ 2 2 — 2
+2¢Lcos {KLL(k*+BK2+1)(An, 2+An, 2)+ (6K +4k2+6)An, An, ]+ (k—1)2(k+1)*(An, ~An, )

X[(k?+1)sin4A p— kL cos4A¢,//]}),

m2P3(2—1)

(K24 1)2(e2+ 1)\22

Ps= coSA Y siPAy{¢?L°[(k*+1)(An, >+An, ?)+4k*An, An, ]Jcospl
2 2 2ai 1 2] 2/1,2 2
+(k“+1) (AnXSC—AnZSC) sirfgL)} + Zd) Le(k AnXSC+AnZSC)(AnXSC+k Anzsc)(3+cos4A¢)cos¢>L

(k?+1)%sirf2A sinz% — 4K2CoS2A

L
+(AnxSC—Anzsc)zsin2¢7

2p2
TP

T2k DA (2 4+ DN

ay [—4¢Lk(k2+ 1)3(e%+ 1)(An, —An, )(An,_+An, )sin 2Azpsinz%+28¢L(k2— 1)

L
X (K*+1)%An, —An, )?sin 4Az/;sin2¢7+ SL(K*+1)%(An, —An, )(An, +An, )(e*+1)cos Ay pL(K*—1)?

SL

L
+4k?sin L] - ek(k*—1)(An,_—An, )*cos 4A¢[2¢2L2(k2— 1)2cos¢72— 32<2sin27 —2¢L(k*—6k?+1)singL

+ek((k>— 1){16k2(AnXSC— Anzsc)z— d?L2[(3k*+2k2+ 3)(Anxsj+ Anzsf) +2(k*+6Kk%+ 1)An, An, ]}

+2¢L(K°=TK*+7k?—1)(An,_—An, )*singL+(k*—1){¢°L?[ (k*+6k*+1)(An,_?+An, ?)

+(6k*+4k*+6)An, An, ]—16k*(An,_ - AnZSC)Z}COS(bL)} ,
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szg(sz—l)
8(K2+ 1)4(s2+ 1)\ 22

de (K®—1)%{2(1+10k>+ k*)(An,_— Anzsc)z— H2LI[(3Kk*+2k2+ 3)(Anxsj+ Anzsj)

+2(k*+6k*+1)An, An, J}—2{(k?—1)%(k*+10k*+ 1)(An, _—An, )?+2k?¢L2[(k*+6k*+1)(An, *+An, ?)
+2(3k*+2k?+3)An,_An, JicoseL +(An, —An, )%cos A y{—2(k®+30k*+1) — $*L*(k*—1)*
+2[K3+30k*+ 1+ 2¢°L2(k*—k)?Jcos¢L — 164L (k—k®)?sin L} — 16¢L (k—k%)*(An, —An, )?singl),

m2P2(s2—1)sin(¢L/2)
4(K*+1)%(e*+1)\?¢?

L
o= { — 2K gL (K*+ 6Kk2+1)(An,_2+An, ?)+2(3K4+ 2k2+ 3)AnXSCAnZSC]cos¢7

+2(An,_— Anzsc)z( oL (k>— 1)2005(%[k¢L cos 4A i+ (k?+ 1)sin 4A ] — 4k cos 2A Y[ pL(k?>— 1)cos 2A yp— 4k
X (k2+1)sin 2A /]sin %) }

772P§

"B+ DA (e2+ N2

Sp (s((kz—1)2(AnXSC—AnZsc)Zcos4A1,b{2[k4+ 1+2k%(5+ ¢?L?)]—[2(k*+ 10>+ 1) + ¢°L?

X (k?—1)?]cosgL}+{2(k®+30k*+ 1) (An, —An, )?+ ¢?L?(k*—1)*[(k*+6k*+1)(An, *+An, ?)

+2(3k*+2k?+3)An,_An, Jicospl —2(k®+30k*+1)(An,_—An, )*+4k*$?L7[(3Kk*+2k*+3)(An,_*An, ?)

L
+2(k*+6k*+1)An, An, ])—4¢L(K*—1)(k*+1)%(An, ?—An, ?)(s*+1)sin 2A¢sin2¢7—328¢L(k3—k)2

C

X (An,_—An, )?cos 4 *sin L +4kpL(k*—1)(k*+1)%(e*+1)(An,_?—An, ?)cos A4 [ — L +singL],

~ m?P2(k2—1)(e2— 1)
8(K2+1)4(82+ 1)A2¢2

Se [— k{—16k*(An, —An, )?+ ¢?L?[(k*+6k*+1)(An, *+An, ?)
+2(3k*+2k?+3)An,_An, Jjcosél +ke?L?[(3k*+2k?+3)(An, >+ An, ?)+2(k*+6k*+1)An, An, ]

+2¢L(An,_—An, )?

(k?+1)3sin 4A zpsinz% —(k>—6k3+k)singL

+2(An,_—An, )%cos Ay

Ss

L L
x| p2L2Kk(k2— 1)2cos¢72— 16k33in2¢7 — L (K5~ 6K3+K)sin <;/>L> ~16k3(An,_—An, )?|,
2p2( .2 ;
T Pg(e“—1)sin(¢L/2) PL ) 4 5 2 2 4 2
= 8+ 1) (e2t DN oL c057{¢L(k — D[ (k*+6k-+ 1)(AnxsC +Anz‘SC )+2(3k*+ 2k +3)AnxscAnZSC]
+(An, — Anzsgz[ — pL(k?—1)3cos A ¢ + 4k(k*—1)sin 4A ¢} — 16k(k?— 1)(An,_— Anzsc)zcos Ay
L gL
X[ Lk cos A ¢ +(k +1)SIH2A¢]SII‘17 .
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