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A molecular-dynamicMD) code is used to calculate the temporal evolution of nonequilibrium electron
distribution functions in plasmas. To the authors’ knowledge, this is the first time that a molecular-dynamic
code has been used to treat this problem using a macroscopic number of particles. The code belongs to the
class ofP®M (particle-particle-particle-mesttodes. Since the equations solved by the MD code are funda-
mental, this approach avoids several assumptions that are inherent to alternative methods. For example, the
initial energy distribution can be arbitrary, and there is no need to assume a value for the Coulomb logarithm.
The advantages of the MD code are illustrated by comparing its results with those of Monte Carlo and
Fokker-Planck codes with a set of plasma parameters for which the Fokker-Planck calculation is shown to give
incorrect results. As an example, we calculate the relaxation of the electron energy distribution produced by
optical field ionization of a mixed plasma containing argon and hydrogen.
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[. INTRODUCTION rithm is an important parameter of the collision term, and
there exist a number of different definitions of this quantity,
The general question of how a given distribution of elec-depending on the plasma conditions, but it is essentially of
tron velocities in a plasma reaches equilibrium has been ahe form InA=In(b,,ax/Bmin) [5,6].
interest for some time; the first calculations being those un- The approximations inherent in the use of the Coulomb
dertaken by Spitz€l] and Dolinsky[2] more than 40 years logarithm may be illustrated as follows. For a plasma with
ago. The time taken for the electron energy distribution ton,=10" cm 2 and T=4 eV the Debye length is\pepye
reach equilibrium is often very short compared to time scales=4.7 nm. In this case the number of particles contained in
of interest, in which case it is appropriate to treat the electhe Debye spherBlpep,e= 5 7\ epydle~5. Since this is not
trons as being in local equilibrium with a well-defined tem- a large number, shielding of charge fluctuations on the scale
perature. However, following the development of short-pulsesf the Debye length will not be complete and hence the use
laser systems, knowledge of the formation and evolution othe Debye length as the long-range limit in the Coulomb
the electron energy distribution on picosecond and femtosegogarithm is likely to lead to errors. We note that the require-
ond time scales is important in a wide range of applicationsment for the Debye shielding picture to be corrddbepye
In the light of this Spitzer and Dolinsky’s results have beens-1, is equivalent td"=e?/(eo) pepyd) <1, whereT is the
incorporated in a number of modern numerical computelasma coupling parameter. Consequently the Spitzer formu-
codes[3,4]. Most codes solve the Fokker-Planck equation,|as are only valid for weakly coupled plasmas. In addition to
i.e., the Vlasov equation for the evolution of the velocity the general problem of the Coulomb logarithm, the Spitzer
distribution of charged particles with an additional collision calculations require a velocity distribution that is close to
term. In most cases, as in this paper, the particles are treateguilibrium to be valid. This means that a large proportion of
nonrelativistically. the particles have to be in a Maxwell-Boltzmann distribution
The reason one has to use the Fokker-Planck equatioBnd the speed of the “test” particles whose equilibration is
instead of using a two-body collision calculation, is the long-peing calculated must not be considerably larger than the
range effect of the Coulomb field. So, instead of makingthermal speed of the background plasma.
predominantly short-range, two-body collisions, the elec- The molecular-dynami¢MD) approach employed here
trons are constantly subject to weakly scattering, manyhas the advantage of being derived from a more fundamental
particle collisions. In the Fokker-Planck equation the colli- ggt of equations, with fewer assumptions. One does not need
sion term is derived from the two-particle scattering crosso define a Coulomb logarithm; instead all that is needed for
section. However, since the cross section diverges for largge nonrelativistic calculation are the electrostatic Maxwell
impact parameters, one normally introduces a long-rangequations and Newton’s equations of motion. Consequently,
cutoff by o for the impact parameter. This cutoff is generally MD calculations can be employed for plasma conditions un-
related to the Debye length of a plasmgepys= \/eoT/e2ne der which alternative approaches lead to significant errors, as
in which T is the electron temperature in Joules ands the  well as providing a reliable test for faster approximations.
electron density. Using this long-range cutoff and a furtherThe major disadvantage of this method is its speed. Since
cutoff b, for short-range, large angle collisions, which is every particle has to be treated individually, and a rather
related to the de Broglie wavelengtyegogiie=h/y3mT  large number of particles is needed to reach statistically
and the classical distance of closest approa@imyv?, one  meaningful results, MD codes are slow compared to other
can define the Coulomb logarithm M The Coulomb loga- approaches. It is therefore of particular importance to use
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algorithms where the number of steps is a low-order functiorsion. TheP*M method has recently been used by Donko
of the number of particles. et al.[12] for molecular-dynamic studies of strongly coupled

Molecular-dynamic calculations of the temperature relax-charged particle bilayers. The problem considered was there-
ation of a strongly coupled two-temperature plasma werdore a two-dimensional(2D) one. In that work the short-
first performed by Hansen and McDondld] in 1983 and range collisions were calculated using a Coulomb correction
later by Reimann and Toepff¢B] in 1990. In these early term, not by employing the analytical trajectories.
papers the equations of motion for a small number of In our code the coordinate space is a 3D cube, represented
charged particles were integrated directly. Owing to theby a 64-point grid. The boundary conditions are chosen to
small number of particles uséii28 and 108, respectivelyit be periodic. The long-range effects are then treated by solv-
was not possible to investigate the behavior of an energing the Poisson equation on the mesh with a fast Fourier
distribution function. Instead, only statements on the meanransform (FFT) [13]. To ensure that collisions are not
energy of two particle groups with well-defined initial tem- treated twice, particles are treated as if they were positioned
peratures could be made. The calculated relaxation timeat the closest grid point since particles that are at the same
agreed surprisingly well with the Spitzer values even thouglgrid point do not feel each othgd4,15. Solution of the
coupling parameters of up 16=5 were being simulated. In a Poisson equation and the evolution of the electron velocity
somewhat different context, Murill®®] has employed a MD distribution in the associated electric field is achieved by a
code to investigate the possibility of forming a strongly set of difference equations in the usual wd,17. Note
coupled ion plasma from a cold atomic gas. Furthermorethat the ions are treated as a positive background, because
Zwicknagelet al. [10] used a MD code to calculate results the energy exchange between them and the electrons is very
concerning the stopping power of heavy ions by electrons. slow as a result of the large difference in mass.

In this paper we describe what is to our knowledge the The system of differential equations is
first molecular-dynamic code for calculation of the relaxation

of an arbitrary electron energy distribution in a plasma. In AD(R) = — @ (1)
Sec. Il we outline the operation of the code. In Sec. Il A we €

compare its results against several test cases for plasma con-

ditions under which alternative methods are valid. In Sec. E()?):—WD, )

[l B we discuss in detail a case for which the Fokker-Planck
method gives inaccurate results, and we compare the results

of those codes with those from Monte Carlo and MD codes. m— =qE(X), 3
In Sec. lll C we consider an example case which is of current dt

interest in the study of new types of short-wavelength laser,

and in Sec. IV we conclude. wherem is the electron massj is the electron chargeb is

The calculations were performed on a 2.4-GHz personathe electrostatic potentiak is the electric field, ang is the
computer and took 3 days on average for a calculation of theharge density.
evolution of the energy distribution of>210° particles over Introducing the distancr,, which defines the length of a
10 ps. single side of a cell, one can define dimensionless space,
time, density, and electric fields:

II. THE MOLECUAR-DYNAMIC CALCULATION

X
A. The P3M Method X'= X5 (4)
Solving the individual force equations for each of tRe

particles in a system would requité?/2 individual force ct
calculations to be undertaken every integration time step. In t'= I ()
addition, the time step would have to be small enough to 0
resolve even the hardest collisions. In total, this method 3
would end up taking several years for a simple calculation P Xo 6)
with 2x 10° particles, even if the conservation errors that P =P
inevitably accompany integration over many time steps were
neglected. A large reduction in the number of calculations Xo€o
required can be achieved by employing the particle-particle- P'= TCD, (7)
particle-mesh P3M) method first described by Hockney and
Eastwood11]. In this method the force on a particle is di- 5
vided into a collective, long-range term from the majority of E/= 60_X0|§ ®)
the particlegparticle-mes)y and a short-range, strong-force e

term by the particles close to the particle in question

(particle-particle. Using this general idea, we chose to cal- Defining the dimensionless parameter e?/e,c?xm,
culate the long-range effects by solving the Poisson equatioand dropping the primes, our set of equations becomes
on a mesh, and treating the short-range effects by using the

analytical two-body solution for an electron-electron colli- AD(X)=—p, 9
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E(X)=—-V, 10 =T +I1f)/2m=11%/2m. However, the ternp- I is impor-
tant since it can change the shape of the velocity distribution

dv - function. Since one does not know the sign of this product

a:aE(X)- D for any individual particle, statistical properties have to be

used. For a particle with displaced total momentyiy the

Equation (9) is then solved using two FFTEL3]. The  probability that its true momentum g4 —|I1;| is propor-
calculation time for a FFT is proportional tceinNeey,  tional to the value of the distribution function for this mo-
whereNg is the number of cells. Provided that the numbermentum. Similarly the probability for the particle to have a
qf cells is not much larger th{:m the number of partidleshe ;e momentum 0fﬁd|+|ﬁu| is proportional to the respec-
time to calculate the FFT is very much shorter than thatjye yalue of the distribution function. Therefore in each time

. 2 . A .
required to solve th&l*/2 force equations. step, and for each particle, a Monte Carlo procedure is used
o to determine whether the patrticle is moved to higher or lower
B. Energy renormalization momentum. In so doing the energy correctiodlf(

A known problem with solving the field equations on a +ﬁ-ﬁH)/2m has been accounted for. It only remains to sub-
mesh and then using a difference equation to accelerate pafact the termiI2/2m from the energy of each particle.
ticles is that energy is not conserved. While this effect is very
small, it leads to an overall increase in electron energy after
many time steps and, given that we are interested in deter- C. Analytical two-body collision
mining the evolution of the electron energy diStribUtion, this Collisions between partic]es inside the same cell are
effect must be canceled by regular renormalization. In ordefreated explicitly using the analytical two-body solution. For
for the renormalization to not change the physics one is tryeach time step and for each cell the program determines how
ing to observe, the renormalization has to have the samgany particles are in the cell. Whenever there is more than
velocity dependence as the erroneous energy gain. one particle in a cell it treats all collisions as two particle
Since the problem is treated nonrelativistically, the forcesgnalytical collisions in the respective center of mass frame.
and hence the momentum transfer, are independent of velogy general these frames will be weakly accelerated frames
ity. If a particle with momentunp is erroneously given an  due to the effect of the global electric field. The known ana-
additional, unphysical momentuid, the resulting error in lytical hyperbolic solutior18] is used to determine the exact

the energy of the particle is momentum transfer the two particles experience in passing
. through the whole cell. Since it can take slow particles as

e 3 1 112 many as 30 time steps to pass a single cell, the momentum

OB= 5 [(P+ID"=pT)=——+ 5. transfer is always done at the time step during which the

particles pass each other. If there are only two particles in the
For an isotropic momentum distribution the term cell, this yields the correct momentum transfer. We chose to

p-Ti/m will average to zero, and hence the average energgalculate the momentum transfer for a cell passage instead of
error per particle will beSE = [12/2m. Since the total energy or each time step, since the latter would result in a momen-

fth system s known o be constan th ol enrgy e ST SO e 0 U2 (ke 11 Seh especel o
SE can be calculated easily. FdF particles this results in P : particies . yr
—Z way across the cell the first time they enter it. By calculating

an average error per partICliE=iEtot/N=H2/2m_ the momentum transfer for a cell passage we minimize errors
The average energy erréE =1I1°/2m may be written as  in the momentum transfer. Of course, this approach can lead
e — to small errors in the calculated positions of the two par-
M2 TE+I+I05 TIF+117 ticles. However, we are interested in the velocity distribution
om_ om T om and not in the exact positions of the particles.
Figure 1 illustrates how the two-particle scattering is

whereﬁf is the average energy gain due to unphysical molreated. The positions of the particles at the previous time
mentum displacements parallel to the velocity vector of theStep are illustrated by open circles. If during the next time
electron. andi? is the energy gain due to displacementssmp it is calculated that the particles would pass each other,
perpendicular to the velocity of the electron. Using Simplethe particles are given their initial momenta for half the time

. . Y : step and the final momenta of the analytic solution for the
3D symmetry relations for an isotropic distribution yields remaining half. In this way the full analytical cur¢dashed

=5 is approximated by straight sections.
ﬁi:gﬁﬁ:__ (12) The momentum transfer calculation is_ performed in the
3 center of mass frame, so that the two-particle problem can be
. . . . . converted into a one-particle problem. In this mathematical
For a smgl:e paztlclg with true momentmhe displaced frame, the other quantities needed to calculate the momen-
momentum ig5q=p+ 11 +1II, . This results in an erroneous tym transfer are the angular momenturthe relative veloc-

energy gairﬁEz(ﬁﬁJrﬁfnLZﬁ-ﬁ”)/Zm. Since the average ity v,, and the total energy of the relative motida

value ofﬁfIH is zero, from this last result we recovéE =3ur?+12/(2ur®)+a’'lr, where u is the reduced mass
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FIG. 1. Schematic diagram showing how scattering of two elec- § 200- ]
trons within a single cell is treated. 8
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and o’ =al/4. The total scattering angM’ (in the center of S 100; |
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. FIG. 2. Calculated evolution of Maxwell-Boltzmann speed dis-
where=0.5 has already been substituted _ ~ tributions for initial temperatures d) 4 eV, (b) 245 eV. For both
The parameter appearing in the numerator is the dis- cajculations the electron density was!46m2; the initial distri-

tance the two particles are apart at the beginning of the cabution is shown by the dotted curve, and the distribution after 10 ps
culation. Since the resolution of the discrete mesh is 1, wey the solid line.

setr=1. Clearly this is an approximation. However, we note

that setting equal to the particle separation at the beginningast and a slow particle of total energy 50 eV to result in a
of the time step is incorrect since the particles would hav&ignificant momentum transfer, i.e., one that would yield a
interacted from the moment they both entered the same celicattering angle oft’>0.5 rad, the impact parametér

It would also be incorrect to setequal to the distance be- \yoyid have to bdv<0.024[Eq. (13)]. This corresponds to a
tween the two points where the particle trajectories cross thg,qgg sectionr,= 7b?~0.0018. If this is multiplied by the

boundary of the cell, since in reality they would also haveyyerage distance that the fast particle covers in one time step,
interacted when they were outside the cell. Within the MDiis would result in a volume/ 1~1.8x107%. A three-

. . . . . . co " "
approach interaction between particles in different cells i,5qy collision with significant momentum transfer will occur

treated in an average way through the Poisson equaliofithere are two other particles within this volume. The prob-
which will tend to underestimate the force between partlclesab“ity for this to occur isPg~(V2,)~3X1078. If this

X . .. . coll
entering the same ce_II. Hence taking 1 for all collisions is probability is multiplied by the number of cells with three or
a sensible compromise.

. . more particles, it gives an estimate as to how often a signifi-
There are a number of problems with this approach th b g g

: o 8Lant three-body-collision occurs. This is roughly eve
should be acknowledged. With a finite time step, two par—:(104P3)_1%3>600 time steps. Considering tr?e I{;lrge r%m

ticles on the border of adjacent cells might swap cells withy, o ¢ co)jisions every time step, this small proportion can
out feeling the hard analytical repulsion. This problem Cansafely be neglected '

always be reduced by a smaller time step, but never elimi-
nated. There is therefore a small percentage of hard encoun-
ters not taken into account. For the parameters used in the . RESULTS
calculations presented in this paper, approximately 1% of
hard two-body encounters are lost.

A second problem arises when there are three patrticles in We have tested the code described above against several
a cell since they are treated as three two-body collisions inealculations by earlier authors. Before describing these, we
stead of one three-body collision. In most cases this will nonote that if the initial electron energy distribution is a Max-
make a significant difference. Even though the number ofvellian distribution over velocities, the calculated distribu-
cells used is larger then the particle number, there is still dion should not change shape apart from the statistical fluc-
certain fraction of cells that hold three or more particles. Fortuations that are always present when working with a finite
64° cells and 2 10° particles there are of the order of“l0 number of particles. Figure 2 shows the calculated evolution
cells, i.e.,~4%, that contain three or more particles. How- of Maxwell-Boltzmann speed distributions for initial tem-
ever, the cross section for three-particle collisions is usuallyeratures ofa) 4 eV and(b) 245 eV. For both calculations
rather small. For example, for a typical collision between athe initial distribution is compared with that calculated after

A. Tests
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FIG. 3. Calculated evolution of a two-temperature electron en- FIG. 4. Comparison of the results of the MD calculati@olid
ergy distribution withT;=4 eV andT=54.4 eV. The initial distri-  line) with the results of Dolinskydashed ling for relaxation of a
bution is shown by a dotted line and the calculated distribution afteMaxwell-Boltzmann distribution with a high-energy Gaussian peak
10 ps by a solid line. after 0.19pep,{vo)=1.09 ps. The initial distribution is given by

the dotted line. The electron density was taken to e

10 ps. The calculations employeckd0° electrons at a den- =10 cm 2 and the initial distribution to comprise a Maxwellian
sity of ng=10' cm™ . It is clear that the MD code maintains background with a temperature of 3.34 eV together with a Gaussian
the Maxwell-Boltzmann distribution, as it should. peak at 33.5 eV.

It is interesting to test the code against the well-known
results obtained by Spitzgt] under conditions in which his Dolinsky [2] has considered the relaxation of a Maxwell-
approach is valid. The Spitzer equilibration formula for theian electron energy distribution coexisting with a Gaussian
rate of equilibration of a two-temperature electron distribu-distribution of hot electrons. To describe the temperature and

tion is density of the plasma Dolinsky we defined the parameter
dr_Te=T (14) ko [4meoT| ™ 1
dt leq ko | e 47n’
with
and chosek,/kp =100 for his simulations. The formula for
_ 11247 312 the equilibration time Dolinsky uses is
teg=——— (T+T)%
e nidn A f

where the two groups of particles are denoted “test” and o(vg) =
“field,” with temperatures in eV ofT andT;, respectively, pLoo

2 3
andny is the density of the field particles in cri. 8mneln A[§ eri{ \[5

(47760)2m208
Voo 3]
—\/—exg ——

Figure 3 shows how an initial speed distribution for a 37 2
group of hot electrons with temperature and densityTof
=54.4 eV andn=2.0x 10" cm™3, respectively, is cooled wherev, is the root-mean-square velocity of the distribution.
by field electrons with a temperature and density Tof If we consider a plasma with an electron density rof
=4 eV andn;=1.0x 10'® cm 3. The figure shows the ini- =10 cm 3, the conditionk,/kp=100 corresponds to a
tial distribution and that calculated aftat =198 ps, corre- temperature for the Maxwellian component of 3.34 eV, and
sponding to 13% of.,. The Coulomb logarithm was taken the peak of the high-energy Gaussian is at a temperature of
to be InA=5. Cooling of the hot electrons, and correspond-33.5 eV. The value of the Coulomb logarithm used by Do-
ing heating of the cold electrons, is clearly observed in thdinsky is not stated, but it is reasonable to assumg=5 for

simulation. these conditions, giving a relaxation time @fenydvo)
The Spitzer formula yields a temperature change for the=5.73 ps. Figure 4 shows the initial electron velocity distri-
hot electrons of bution and the distribution calculated o= 0.197pep,d{v ()
by Dolinsky and our code. It is clear that our code agrees
AT:AtTf_T  6.65 eV very well with Dolinsky’s result. We note that since the time
teq : : interval of interest is very short, we could afford to use con-

siderably more particles and more cells for this calculation
Since the high-temperature peak is very spread out and notthan for the other calculations in this paper: 1592 896 par-
Maxwellian afterAt=198 ps it is only a possible estimate of ticles in 128 cells were used to minimize fluctuations in the
the temperature of the test electrons. By equating the mod#bw-density velocity regime for these calculations. This does
energy of the electrons in the high-energy peaTq.,, we  not alter the dynamics of the program, since all the param-
find T,ew=(48.0£1.0) eV. Hence the temperature change iseters are unchanged as well as the number of particles per
found to beAT=—(6.4+1.0) eV, in good agreement with cell. It does, however, reduce statistical noise and increase
the Spitzer result. the calculation time.
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150 e T ferent from the Spitzer value. As such, 9.6 ps corresponds to

AT ~13% of the equilibration time, and so we would expect the
distribution to still be approaching equilibration, which is
more consistent with the results of the MD and the Monte
Carlo calculations.

The Fokker-Planck calculation employs an average value
for the Coulomb logarithm. Figure 5 also shows the results
of a Monte Carlo calculation in which the inner cutoff for the
Coulomb logarithm has been averaged, rather than being cal-

[VAVems culated explicitly for each collisiofil9]. It is seen that the
modified Monte Carlo code then agrees very well with the

FIG. 5. Comparison of the relaxation of a nonequilibrium dis- £kker-Planck calculation which shows clearly how for cer-
tribution of electron energies produced by optical field ionization,,[ain plasma conditions the use of an averaged Coulomb loga-

as calculated by the Fokker-Plan@quaresand Monte Carlddia- . L . i
monds codes of Refs[3,4], and by the MD codésolid) described rithm can give incorrect results. We emphasize that Fokker
Planck codes always assume an average value for the

in the present paper. Also showerossegis the distribution calcu- .
lated by a modified Monte Carlo code in which an averaged CouC0ulomb logarithm.

lomb logarithm was used. For all calculations the electron energy

distribution is shown 9.6 ps after the passage of the ionizing laser C. Application to recombination x-ray lasers
pulse.

S(vD

As an example of a calculation that is presently of great
interest, but which lies outside the ranges of validity of al-
ternative methods, we consider the relaxation of the electron
energy distribution of a mixed plasma formed by the combi-

We now compare the results of our MD code with recentyation of an electrical discharge and optical field ionization.
Fokker-Planck and Monte Carlo calculations by P8ttora  The conditions considered are relevant for a recently pro-

far from equilibrium plasma produced by optical field ion- posed scheme for driving soft x-ray lasers in plasma
ization (OFI). Plasmas of this type are of great interest a%/vaveguides[ZO].

potential gain media for new types of short-wavelength laser.

Th : ted h h di h Briefly, the proposed scheme operates as follows. It has
1e comparison presented here shows a discrepancy thglo jemonstrated that discharges through hydrogen-filled
might be explained by a breakdown in the assumptions in-

herent in the use of a Coulomb logarithm. capillaries form a parabolic plasma channel able to guide

The initial distribution over electron velocities consideredfergtosecopzd laser pulses with peak _intensities — of
by Pert[3,4] is a plasma created by optical field ionization of 10" Wem over Iengths of up to 50, mrﬁzl'zg' very
helium by a 0.3 ps pulse of circularly polarized light with a "ecently a capillary discharge waveguide of this type was
peak intensity of 18 Wcem 2 and a wavelength of 616.4 _used to drive a colhspnally exqte_d Ia_ser at 41.8 nm if Xe
nm. The optical field ionization formed a plasma with a totalions produced by optical field ionization of Xe atoms doped
electron density oh=10'8 cm 3, a mean ion charge of 1.2, into the capillary discharge. It has been propo$2d| to
and an electron energy distribution that Comprised two peakgxtend this idea to recombination lasers in which the rela-
with velocities 5.2 10° ms™! and 1.06<10’ ms™ !, the tively cold electrons formed by the discharge rapidly recom-
lower energy peak containing80% of the electrons. bine with ions formed by optical field ionization of atoms

Figure 5 compares the results of our MD calculation withdoped into the plasma channel. Since the rate of three-body
those of Pert at 9.6 ps after the end of the laser p4ldt  electron-ion recombination scales with electron temperature
can be seen that the Fokker-Planck calculation predicts thasT~%?[23], it is crucial for the success of this scheme that
the energy distribution is essentially equilibrated, whereashe cold discharge electrons are not heated too rapidly by the
the MD and Monte Carlo codes predict that the distributionelectrons produced by optical field ionization of the dopant
is still far from equilibrium. The latter two calculations are ion. The energy of the electrons produced by OFI may be
generally in good agreement with the MD code predictingcontrolled by the polarization of the ionizing radiation: linear
that the energy distribution is slightly closer to equilibrium polarization generates relatively cold electrons; circular po-
than the Monte Carlo calculation. It is interesting to comparéarization produces hot electrons. For the proposed laser
these results with the Spitzer equilibration time, Et4).  scheme the primary role of the driving laser is to produce the
Taking the field particles to be the electrons in the lower-initial ions which will then recombine with the discharge
energy peak and the higher-energy electrons to be test pagtectrons. The polarization of the driving radiation should
ticles, we have initial temperatures df;=52.4 eV and then be chosen to reduce the rate of heating of the discharge
T=209.5 eV, and a Coulomb logarithm of approximately electrons. The best polarization to use is not obvious. Lin-
In A=10. These parameters yield a Spitzer equilibration timesarly polarized radiation will produce colder OFI electrons
of teq=73 ps. Of course, for the case considered here theut, using Eq(14) as a guide, we would expect these to heat
field particles do not have a Maxwellian distribution, and thethe discharge electrons more rapidly than the much hotter
proportion of test particles is rather high. However, weelectrons generated by circularly polarized radiation. We are
would not expect the true equilibration time to be very dif- presently investigating this problem in detail. Here, we sim-

B. Comparison with Monte Carlo and Fokker-Planck
calculations in moderately coupled plasmas

056401-6



MOLECULAR-DYNAMIC CALCULATION OF THE. .. PHYSICAL REVIEW E 68, 056401 (2003

peaks. Of key importance to the proposed recombination la-
ser scheme is the heating of the discharge electrons at 4.3 eV
by the hot OFI electrons. Figure 6 also shows a Maxwellian
distribution at 10.5 eV which fits the bulk of the low-energy
part of the energy distribution very well. We conclude, there-
fore, that the presence of the electrons generated by OFI of
Ar heats the cold discharge electrons &% eV in 10 ps.
Whether this heating is sufficiently slow to allow rapid re-
S E combination with the A" ions will be the subject of future
002 004 006 008 work. In the meantime we emphasize that the conditions
vi/c considered here fall outside the range of validity of the as-
) _ ... sumptions made by Spitzer: a plasma which is far from equi-
FIG. 6. Calculated relaxation of the electron energy dlstrlbutlon“brium; a relatively high proportion of test particles; and a
produced by optical field ionization of Af ions in a mixed argon- small number of particles in the Debye sphem§pg,
hydrogen plasma with a temperature of 4.3 eV. The total electror 10). For this last reason, any approach that incorpo?gtes a

density is 1.06(_1019 cr_n‘3. The ionizing laser pulse is taken to be -~ ,jomp logarithm is likely to produce inaccurate results.
circularly polarized with a peak intensity of X0 Wem 2, a

pulse duration of 30 fs, and a wavelength of 566 nm. The initial
distribution formed by the discharge and OFl is shown by the dotted
curve, and the calculated distribution after 10 ps by the solid line.  |n summary, we have described a molecular-dynamic
Also shown is a Maxwellian distribution at 10.5 edashed code for calculating the relaxation of an arbitrary electron
energy distribution in a plasma. To our knowledge, this is the

ply provide a sample calculation to illustrate the flexibility of firSt time that the MD approach has been used to treat this
the MD code. problem. o

Figure 6 shows the result of a calculation relevant to one _ !N S€c. lll Awe showed that the MD code is in agreement
example of this scheme: thesd,-3p, transition at 23.2 nm with earlier work, in their ranges of validity. The MD ap-
in Ar’*. The capillary discharge is taken to form a p|asmaproach treats the problem at a more fundamental level, and
with a Maxwellian electron distribution of temperature 4.3 therefore can be expected to have a wider range of validity
eV and a total electron density of fcm™3. The initial Ar than alternative approaches. As such it is an extremely flex-
density is taken to be 16cm~3. Under these conditions, the ible technique for investigating the relaxation of the electron
argon is ionized by the discharge to?Ar The precursor to energy d'St”bUt'Qn In P'ﬁsmas’ as well as providing a fe."a?b'e
the lasant ion At is produced by optical field ionization benchmark against which to test faster, more specialized

with a circularly polarized pulse of radiation of wavelength codes.

566 nm and a peak intensity of X0 W cm2, thereby In order to illustrate the flexibility of the MD code we
! gave considered two examples lying outside the range of

enerating six classes of hot electrons with energies ranging™.. ~. .
?rom 100%\/ to 1800 eV. Figure 6 shows the cal%:ulated ?e— alidity of alternative methods. In Sec. lll B we showed that

laxation of the initial electron energy distribution formed by ];)Ir a Elasrlnalptr_oduced b_y lgp_tlcal f|el(: |on|za|'f[|on adF(_)kkSer-
the discharge and optical field ionization. Note that the ab- anck caiculation can yield inaccurate results, and in Sec.

scissa has a logarithmic scale in order to show the OFI pean 1CO WeU cgnsidergq a moderatelly CQUD"?O' pllasm%e(byf hi
more clearly. It is seen that within 10 ps after the formation~ +0): Understanding energy relaxation in plasmas of this

of the optical field ionization the four lowest-energy OFI YP€ iS important for understanding the operation of new
peaks have merged into the tail of the distribution of dis-f[ypgs of short-wavelength lasers based upon optical field ion-
charge electrons. In contrast, the highest two OFI classegation.
remain as distinct peaks and show only a slight cooling on

this time scale. If one were to use the Spitzer equilibration

times [Eq. (14)] for these peaks, keeping in mind that this The authors would like to acknowledge helpful discus-
formula is not strictly valid for these parameters, the lowestsions on this problem with Professor S. J. Rose and Professor
energy peak would have an equilibration tilgg~2 ps and  G. J. Pert, and would like to thank Professor Pert for sending
for the highest-energy peak.,~130 ps, which at least the results of his modified Monte Carlo code. S.M.H. is
qualitatively agrees with the observed relaxation of thegrateful to the Royal Society and N.D. to the Rhodes Trust.
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