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Lattice-Boltzmann model based on field mediators for immiscible fluids
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In this paper, a lattice BGKBhatnagar-Gross-Krogkmodel is proposed for immiscible fluids. Collision
operator is decoupled considering mutual and cross collisions between lattice particles, with three independent
parameters related to the species diffusivity and to the viscosity of each fluid. Field mediator’s concept,
described by Santos and Philippf?hys. Rev. E65, 046305(2002], is extended to the framework of the
lattice-Boltzmann equation and interference between mediators and particles is modeled by considering that
there is a deviation in particles velocity, proportional to the mediators’ distribution at the site. A Chapman-
Enskog analysis is performed leading to theoretical predictions of the macroscopic equations inside the tran-
sition layer and to the transition-layer thickness. Chapman-Enskog analysis is restricted to near-equilibrium
states and was unable to predict the correct second-order interfacial tension dependence on the modeled
long-range fields intensity. Interfacial tension was, only, correctly retrieved using a nonequilibrium solution.
Theoretical predictions are compared with simulation results and the model is tested considering its ability in
describing the dynamical behavior of the interface and Galilean invariance.
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[. INTRODUCTION Boltzmann appear to be very suitable as downscale methods
that can improve the understanding of complex physical phe-
Flow of immiscible fluids is, classically, treated by con- nomena that are very difficult to describe at the hydrody-
sidering that the transition layer has a null thickness and byamic scale.
performing a momentum balance around this layer. At mi- In this paper, the field mediators concept, described in
croscopic level, when two immiscible fluids and b are  Ref. [1], is extended for Boltzmann models of immiscible
mixed, the long-range attraction between the molecules ofluids. Mediators are null-mass particles that are emitted
each fluid is the molecular mechanism promoting fluid segfrom the lattice sites and whose only action is to invert the
regation. Intermolecular forces may be of many differentmomentum of lattice particles, simulating a long-range field.
types, including electrostatic forces between permanent dWhen a siteX can be considered as an attractive centekfor
poles, induction forces between permanent dipoles and imparticlesk=r, b, it will emit mediators of kindk that will be
duced dipoles, dispersion forces between nonpolar moleculgsopagated to neighbor sites in the propagation step. Inter-
and hydrogen bonds. In the transition region between the twference ok mediators pull back to sit¥, k particles moving
fluids, a molecule is, predominantly, subjected to attractiveaway fromX. In this way, following very simple emission
fields from its own phase that acts as a potential barrier anend interference rules, mediators try to simulate the effect of
gives rise to fluid-fluid interfacial tension. In addition, mol- long-range forces in fluid separation. Particles of kinih
ecules that are found in this transition layer are subjectlio  r-b interface which are thrown by collisions toward the
collisions that try to mix the two fluids and are responsiblephase will be pulled back to thephase when they found
for r-b diffusion. The thickness of the transition layer is, mediators in the same site and in the same direction, after
consequently, controlled by the strength and length of longpropagation step.
range potentials and by cross collisions. Gunstenseret al. [2,3] are attributed to be the first who
Theoretical difficulty is strongly increased when theseintroduced immiscible fluids color based models in the frame
two fluids interact with a solid surface. In fact, the interfacial of the lattice-Boltzmann method. A more popular two-phase
energies;™ and /S between fluids andb and the surface flow model, based on a pseudopotential function, was de-
are the main macroscopic mechanisms governing interfacéved by Shan and Chdrd]. This method was later extended
advancing or receding on a solid surface. When interfacéo three dimensionf5]. A drawback in the above model is
advances or recedes along a solid surface, dynamic effectisat it become unstable when used to simulate fluids with
will change the contact anglé’®’s with respect to its equi- very different viscosities(say u;/u,>7), as reported in
librium value. Ref.[6].
Due to the complexity of intermolecular forces and con- In the present work, immiscible fluidsandb are mod-
sidering their important contribution in defining fluid-fluid eled by splitting BGK (Bhatnagar-Gross-Krogkcollision
and fluid-solid interaction, Boolean lattice gas and latticeterm, separately considerimgr andr-b collisions. In fact, it
was shown earliefsee, e.g., Philippi and BruY]) that the
collision term in Boltzmann continuous equation for fluid
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independently managed using three independent relaxationl. In this case interaction length corresponds to 1 lattice
times. This idea was, recently, applied to miscible flj8k  unit. By increasinga with respect toB, interaction length
For immiscible fluids flow, interfacial tension is retrieved by can be, arbitrarily, increased.

modifying r-b collision term, introducing long-range forces  Mediators are created at each steand propagated with

in the transition layer through the use of field mediators.the unitary lattice velocity; . Interference of field mediators
Mediators’ action is restricted to the transition layer and idealwith lattice particles is described in the following.

gas state equation is retrieved for each fluid, far from the Lattice-Boltzmann equation for kind particles is written
interface. In this way, we limit ourselves to an athermalas

model and no attempt to describe phase transitions and their

related effects will be given here. The first tentative to a Ki(X+¢,T+1)=K;(X,T)

two-phase thermodynamically consistent model was per- —O(R R. B B, ) o)
formed by Swiftet al. [9,10]. In spite of the fact that the Or rr s 200 = v+ By s
development of the free-energy model was inspired by Cahn- - . . .
HiIIardF;nodeI, it was pointed%);t that the modgl cann)t.{)t Iea(rll1f0r K=R,B. Collision operatorQ!‘ is required to satisfy
to correct energy transpdril] and, moreover, it is not Gal- mass and momentum conservation

ilean invariant[12]. An invariant Galilean model based on b,

the free-energy model was presented in IRE3] to simulate 2 Qf=0, 3
multiphase flows(not multicomponentin two dimensions. =

More recently, Galilean invariant models based on the free-

energy approach were presented in REfd4,15. A detailed Om b
comparison among these models has yet to be done. 20 07=0, 4
bm
Il. MODEL igo C,(Q:"FQ:’):O (5)

In the presently proposed model, considering two immis-
cible fluidsr andb, long-range attraction between the par-

A three-parameters BGK collision term that satisfies the

. : . . ) dbove restrictions is proposed in the present work, written as
mediators on the lattice sitgd], just before propagation

step. .Consi.deri.n@{i(X,T.) to be the par_ticles distribution of REY(p", U ) — R, Rieq(pr,ﬂb)_ R,
r particles in siteX at time T and, similarly, forB;(X,T), Q=o' + P . (6)
mediators are created just before propagation step, and o "
propagated, following
where
MI(X+¢,T+1) b
' pi=2 Ki (7)
; Ri(X,T) .
=aM{(X,T)+ B , an
2 R(X T+ By(X,T) 1 0m
' J ut=— > Kig ®
(1) it
are, respectively, the macroscopic density and velocity of
wherea+ 8=1. componenk, k=r,b. Thew’s in Eq. (6) are the mass frac-
Equation (1) can be considered as an outgrown of Eq.t'Ons,aflf:_Pk/P- o _
(37) from the Boolean model proposed in RE[] The first Equ|l|br|um distributions are considered to be the well

term on the right-hand side of the above equation is, in factknown small velocity expansions @(UZ), appropriated to
a recurrence relation, since!(X,T) depends onM!(X the description of athermal incompressible flow,

—¢,T—1) and onK;(X—-¢,T—1), K=R,B, for all j , . .
neighbor sites around sit&X—c;, through second-order REY " u) = p Dp D(D+2)p

terms ina and B. In this way,M! at siteX, will be depen- b +bm02 Cialla™ ¢ CiaCiglallp
dent on the next neighbarparticles concentration through

first-order terms, on the second neighbgrarticles through Dp' 5

second-order terms, and so on. Wher 0 (or =1), me- "o Cz(u) o 1=l b, ©
diators are created at si¥¢, with the solely information of m

the concentration of particles on next neighbor sites: me- ; ;

diators distribution related to the directiomvill be given by RS p"u) = o by (u)?2 (10
the mass fraction of particles on siteX—c;, at time T 0 b 22
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and similarly forBf%(p°,u), whereb,, is the number of lat- mentum preservation. In this way, far from the interface,
tice directions b, is a free integer parameter related to thepressureP* is directly related to density, k=r b, through
allowable number of rest particles in Boolean modédds, the square of sound speeﬁz(bmcz)/(bD) and macro-
=b,,+bg andD is the Euclidean lattice dimension scopic Navier-Stokes equations are retrieved for incompress-
The first term on the right hand side of E§) is related to  ible flow [16]. In this way, Chapman-Enskog analysis will
the relaxation ofr-particles distribution to an equilibrium be, here, restricted to the transition layer.
state given by the-component density and velocity, consid-  Consider that, at equilibrium, the specieandb are well
ering r-r collisions, only. The second term considerd mixed in their entire spatial domain. In this condition, long-
collisions and is related to the relaxationreparticles to an  range effects are null and =uP=u, whereu is the mixture
equilibrium state given by the densipy and by ab velocity  velocity u= »'u’ + w°uP. Equllibrium distributions are given
by Egs.(9) and(10). Consider, also, that the long-range field
SP=uP—AUM, (11)  strength, described by factdk in present model, is weak
enough to produce only small deviations fr&fi%(p",u) and
modified by the action of mediators present in the same B9 pP u). In this way, fluid segregation can be considered
site. ConstanfA is to be related to interfacial tension. For to be a first-order perturbation effect on the equilibrium state
ideal miscible fluids[8], A=0 and this collision term will  given by Eqs(9) and(10) and interfacial thickness can be
describe the relaxation efparticles distribution to an equi- regarded as large enough > when A—0) to enable
librium state given byp" andu®, as a consequence ofb  Chapman-Enskog analysis, by considering the length 1 cor-
cross collisions. In immiscible fluids, Eq11) means that responding to a lattice unit as much smaller than the interfa-
particles of kindr will be separated frorb particles by long-  cial thicknessL, in lattice units, i.e., by considering the
range attractive forces fromphase. Knudsen numbek,= 1/L—0. Obviously, this, also, implies
In the same way, to consider that the long-range strength fa&dras the same
R order of magnitude ofC,. A nonequilibrium distribution is
F=u"+Au". (12 proposed in Sec. VI, wheA is arbitrary and_ corresponds
to some few lattice units.
In Egs.(11) and (12), Distribution K;(X,T) is expanded in powers of a small
parameter that, in the present case, can, indifferently, be cho-

m sen asA or I,
N ——  when u™#0
um=q Ju"| (13 . . |
0 whenu™=0, Ki=Ki+KKi+---, K=R,B, i=01,...bp,
(19
where mediators velocity at sit€ is given by

and the time derivative has an induced decomposition

bm
um=2, (M{=MP)c, (14
=1 0= 0o+ Kndy+---. (16)
pointing to the same direction wherenediators were propa-
gated, i.e., to thé phase. The collision term given by Eq(6) can be expanded
In the present model, sind@™ ={0,1}, the long-range aroundRf%p",u), giving
effect on the cross-collision part 6] is to relaxr-particles
distribution to an equilibrium distribution with a® velocity,

modified, in all lattice sites inside lattice domains where P o b eq r o P . D
andb particles are simultaneously found, by a vector whose Q= ?""F [R™(p",u)—Ri]+ S p b. c2
modulus is constant and equal £ This is not the only m
choice for satisfying the restrictions docal mass and mo- (D+2)

mentum preservation, but the simplest one and, although this X|g—u+ o2 (Ci-u)g |- (u"—u)

could appear as a model’s restriction, theection of uMin a

given siteX will be dependent on the mediators distribution ww’ D (D+2) R

M andMib in that site and these distributions are dependent P Ab S| G—u+ —2(0i )G |-u™
onr andb particles distributions in the neighbor sites at the T mC ¢

previous time steps. +O((u'—u)?,AU—u), ...), (17)

IIl. CHAPMAN-ENSKOG ASYMPTOTIC ANALYSIS

- b
IN THE TRANSITION LAYER and, similarly, for¢); .

Writing lattice-Boltzmann equation, E(R), in continuous
In pure phases the interference between field mediatorgariables using dimensionless variabl&s-t/t., wheret, is
and lattice particles has null effect, as a consequence of m@ macroscopic time,* =r/L, and using Eqs(15) and(16),
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’Cn (90* R|1+ }Cn (91* R?‘l’ Ciaaa* Rll
- 9ox R+ Ciladox RI+ Ky 12 . +--
" + = = 070*0* R|0+ _Ciaciﬁﬁa*ﬁ* R|o+ _Ciaao* (90[* Rlo
2\ Ky 2 Kn
1 WP A o o D (D+2)
— eqs .r _poy_ | o 1 . r . - |l
- Icn r + Tm [R| (P ,U) RI] ¢ + Tm> Ri +( Tr Tm P me2 CI u+ C2 (CI U)C| J
o'o® A D +(D+2)( o |.am wr+wb R24 o o . D
— — — | Cc—U+——(CG-u)C |-u"— P N h PR —
P ™ Kab,c?| c? I I N N, P bmc?
(D+2) o
X|c—u+ & (G-ug|-j" o+, (18
|
wheree= §/t. is the ratio between the tim@expended for a oo A D
particle to travel a single lattice unit and the macroscopic X—p—r i 5
time t., or, equivalently,e=1/t., whent, is considered in T n bmC
lattice units. Flux
(D+2) R
X|G—u+——=—(g-u)g|-u™ (24
. c
jks=> KSq, k=r,b, (19
' giving
is the sth order contribution to specidsdiffusive flux b ; ; b
w w Ri_ w D
J'=p (U —u) = o G R (20) A 7 ™/ byc?
In Eq. (18), the first term in the second member will be e — +(D+2)(0_ e |jr
dominant whene<X,<1, corresponding to the low Mach e UaT ™ 5 (Ciglp)Cial
number incompressible limit.
The solution of w'w® A D
r b P T Kn bm02
w w
X Cia_ua+—2(ciﬁuﬁ)cia ur;]
c
gives the zeroth-order solution &,
D
— =p®' dpxUy,— ——=p®'dyxUgCi ,Ci
RP=R™(p",u). (22) p P Jarta™ 2P CurUgCiaCis
Using the same reasoning for spedes n Bpuaﬁa* o' + chaa* o
BP=B%(p°,u). (23

In the first orderR! is the solution of

(90* R|O+ Ci aaa* RIO

Kn
wr b L r wb D
=—|—+—|R+|——— 5
7o 7 7/ byc
(D rl
X|c—u+ >—(G-u)G|-j"
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A similar expression can be obtained 8} .

IV. MACROSCOPIC EQUATIONS INSIDE
THE TRANSITION LAYER

At K, zeroth order mass conservation equation is ob-
tained by adding all the i-contributions given by Eg4),

&Opr+ﬁa(prua):0' (26)
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In the same way, Euler’s equation is retrieved at this or- 2 1 o WP
der, given by, = =— + : 4
9 y 701212 | o o o o (34)
Jo(PUg) + dg(P8op+ pUl) =0, (27) e 3w

whereP=pc?.

Equation(25) can be used to give the first-order contribu-
tion to the species-diffusive flux, Eq.(19). The time deriva-
tives d,(p") and 9,(pu) are obtained by considering the

Mixture viscosity appears as a function of the three colli-
sion parametersy’, 7°, 7™ and the mass fractions)", w".
Due to local momentum conservation, viscosity coefficient is
mass and velocity moments of the terms that appear in E 'dentigal _to the .viscosity coeff_icient that \:vas found for ide-
(18) multiplied by the Knudsen numbeg, . The final form  ally miscible fluids[8]. In addition, whenw'—1,
of the macroscopic equations are obtained by retrieving the )
time derivatives ofp" and pu from Eg. (16), and are pre- _ ¢ r E
sented below. T"D+2 2/

Mass conservation equation for thepecies is written as

(39

; ) . which is the correct expression for the kinematic viscosity of
9P’ +da(p'Ua) +dal]o) =0, (28 pure component.

As commented above, the second term on the right hand

where side of Eq.(32) is null for stable interfaces, wheji=jP
it (indif  (inyirf 29 =0. o
=an ah 29 PressureP 4 is given by
and
7 7_b
. b2 1 P.s=pC28, 5+ po w® -
(jr)dlf:_ t')“D (Tm_ E)prr, (30) B~ PCLsOap™ P PRI RN o P N A TN g

om am
is ther-species ordinary Fickean diffusive flux, promoted by X (UgUgFUgUL)A, (36)

concentration gradients and, ] ) o ] )
in this way pressuré ,; inside the interface follows ideal

(' = — pa wPAG™, (31 9as IawP=pc§5aB, with an O(Au) velocity dependent,
deviation. Although momentum equation remains invariant
corresponds to the long-range action on component by a Galilean group of transformations, this deviatiomiis

In this way, Fickean diffusion that would promote mixing physicalsince it produces a velocity dependent interfacial
between speciesandb, enlarging the interface thickness is tension. SinceédA~ K, this error is expected to be meaning-
counterbalanced by long-range forces, which act in the opless, when interface velocity is small. In addition, this ef-
posed way, pulling back particles that are thrown out of fect has its magnitude decreased when relaxation parameters
their own phase by collisions with particles. In fact, dy- 7" and 7 are closeg(see Sec. VII.
namic equilibrium between Fickean diffusion and long-range In Sec. VII using a nonequilibrium solution, for the spe-
action giving a nullj" flux is a necessary condition for inter- cial case where interfacial velocity=0, it is shown that
face stability. The lacking of energy conservation in theinterfacial tension is related to @t term, which could only
present model restricts the analysis to the low-velocity, in-be retrieved in the presenear-equilibriumanalysis by per-
compressible limit. Choosing,,,/b=D/(D+2), Chapman- forming an O(Kn?) Chapman-Enskog analysis, which is
Enskog analysis leads to the following momentum equationoutside the scope of the present work.

In this manner when long-range factaris small enough
d(pUq)+3dg(Papgt puglpg) and neglecting th@©(Au) and O(A?) factors, we can con-
r r clude that, inside the interface;b mixture behaves as an
=1l p(d gt dgUs)]— g W) (] UpT]gUq)], ideal mixture, following Navier-Stokes momentum equations
(32)  for incompressible flows. With these approximations we are,
also, forced to conclude that interfacial tension is null. This

where is an unphysical result and reveals the weakness of present
) ) first-order Chapman-Enskog analysis for the interface region
w_'_w_'+ 1 o w_+ 1 between two immiscible fluids. Further considerations will
g m om o omoom be given in Sec. VII.
W(w,)= - T 5 — (33
w w w w
—+ — —+ — V. TRANSITION-LAYER THICKNESS
- +m 7_b M

Restricting the analysis to a plane interface and taking
The kinematic viscosity coefficieny , in lattice units, is coordinatey normal to the interface, the stability condition
given by may be expressed as
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bmC? 1\ d ed o yf eq o1 9by — R*
t:n_D(Tm_E)pd_y(wr):pwr(l_wr)A1 (37) (U_r+(0_m i*= rR| (pr,U)—i-wb R| (p!ib) RI
T T T T
sinceﬁy’“= —1 for all the sites inside the interface. + (R —RY;), (41
Above equation may be integrated along the interfacial
thickness, giving fori=0, ... b,. An explicit form for R¥ —R*; may be ob-
tained by calculatindR*; from Eq. (41) and by subtracting
, 1 the resulting equation from E¢41):
L CS< " 5) Jl do” 38 r
N s
o 7 bnC
As it was to be expected, transition-layer thickness is pro- S + omo 2)
portional to the ratior™/A, i.e., to the ratio between theb
cross-collision factor™, related to the Fickean diffusivitp o® D .
and the long-range intensit%. When A is increased with +2 Fﬁpr(ub—AUm)‘Ci : (42
m

respect taD, transition-layer thickness is decreased. The in-
tegral above, Eq(38), diverges wherw' is considered be-
tween the limits 0 and 1. This is consistent with the fact that
in the continuum limit, transition layer has an infinite thick-
ness. For practical purposes, the integral, 8®), can be
calculated between appropriate limitg, and | , giving fi-
nite values for the transition-layer thickness.

Above solution, Eq.(41), is, in fact, a nonequilibrium
'solution that depends on the relaxation times and on the
long-range strength factgk. When the interface is moving
with a constant velocity, the correct stability condition to be
used is

VI. NONEQUILIBRIUM SOLUTION > Ri*'ci—Z R*.ci=2p'u, (43

When long-range strength factérincreases, the interfa- ) » . . . )
cial thicknessL can have some few lattice units and Put this condition, used in conjunction with the mass and
Chapman-Enskog analysis is no longer possible. Distripumomentum conserzatlon conditions, does not lead to a
tions R, andB; cannot be considered as close to their equi_unlquesolutlon forR" and the problem remains, still, open.
librium counterparts given by Eq&) and(10) andnonequi-
librium solutions satisfying lattice-Boltzmann equations VII. INTERFACIAL TENSION
must be searched. This is a very difficult problem and was . h vsi | intert K
only solved, in the present paper, in the special case when the Restricting the analysis to a plane interface and taking
interface velocityu is null. coordinatey norma! to the interface, interfacial tensiony
ConsiderR* ,B* to be such nonegquilibrium solutions. &S calculated, using
When the interface is at re®®* ,B” are, alsostationary In .
this case, stability condition for the interface requires o= f, [TT5,(y) — TTE(y) 1dy, (44)

R =R, (39 where the momentum fluxes are given by

for avoiding diffusion of ther particles into theb phase. In
fact, in stationary conditions, particle distributions are inde- p* _ R* + B*)cco = c2p+ pA2a.a.-+ pAla.a
pendent of time: the flux of particles of kindthat are found v 2.: (RT+BI)CiyCy=Cop+pA @A+ PA B,
in directioni, after collision and which will be propagated to (45
the directioni of the siteX +¢; and found in this site at time
T+1, must be canceled by the flux of particles found in the

— _ A2
direction—i of site X that propagate from sit&+¢; at time H:X_Ei (RF+ B )cicin=Csp, (46)
T—1. A similar reasoning applies to thecomponent.
Stability condition, Eq(39), means that and
ReYp",u)—R¥  R®Y(p', ") —R* _ ' (o' —1)
* _ px ! ’ ! b_! ! ! a,= , (47)
RY =R +of o tw om ' (0" T+ 7 =" (27m-1)
R*, (40) o (0 —1)
. . ap= : (48
which enables to find (0" "+ 7" 0" %) (27" 1)
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— o' ™+ (02— ()27 + 20" T — 4" T T — 7+ A7 P — 47 (M)?
a, 1= ’
’ 27m—1

(49

— o' ™M+ (02— (02 + 40" P - 40()?

27m—1

ap1= (50)

VIlIl. COMPARISON BETWEEN THEORETICAL

A closed form expression for the interfacial tension is
PREDICTION AND SIMULATION RESULTS

obtained, in terms of lattice parameters and relaxation times
by changingy— o' variables, considering that at each point
X of the interface the diffusive flux of (or b) particles ) i
promoted by concentration gradients must be cancealed B'dA=1, using a D3Q19 lattice.
long-range forces, i.e., by using E@7). This results in,

All numerical simulations were performed settiag=0

A. Pressure distribution inside the transition layer
do'

o' (1— o)’
(52)

Equal volumes ofr and b fluids were distributed on a
three-layer chamber 1060100X 3, respectively, on the left
and right sides of the chamber. Periodic conditions were used
for the upper and down and front and back chamber surfaces.
Bounce-back conditions restrict fluid velocity to zero at the

wherep,, is the particles density outside the transition layer.left and right chamber surfaces. A=0 long-range forces
The changing variableg— »" were possible imposing are applied and simulation starts.
null mass flux through interface. Figure 1 shows the pressure distribution inside the transi-
When the interfacial velocity#0, we have used Eq. tion layer, calculated using Eq&l5) and(46), and measured
(36) from Sec. 1V, for estimating the deviation in the inter- after simulation has reached the equilibrium. Simulation pa-
facial tension produced by a finite interfacial velocity, usingrameters are'=1, =1, #"=2, A=0.5. Normal and tan-
the same above procedure. For a plane interface moving wit§ential pressures are found by measuring the momentum ex-
a speed it was concluded that changed between the lattice particles and a surface placed,
respectively, at verticalnormal toy) and horizontal posi-
tion, for each point along the median line crossing the inter-
face. Agreement between theoretical and simulated values is
excellent. In the transition layer, pressure deviates from ideal
gas law, i.e.,P=c§p, from a positive factor that is propor-
tional to the long-range intensity factér[see Eq(45)] and,
for eachy inside the transition layer, this factor is the differ-
In the above expression, the factor between parenthesis #nce between the full black and the trace lines shown in
the right member is always non-negative and is null wherFig. 1.
7= P, i.e., whenr andb fluids have the same viscosity.

1 1
2
a'rb:Cs< "= E) Apoutfo (arar;+apap;)

2 m m—7 7

5 1 .y +m 7_b 7
A(a-rb)uzzpou’[cs ™—=lu In— + bln—b .
r—m 7 7
(52

12
3.5
10
'6“0‘0-0\ Dﬁﬂﬂ,g,.é-- B0 //)
3.3 4 = o o -
o, rd ) 8 e
o c -
8, / 2 »
8 ] -~
e 314 by & P
] 2 6 »
] = e
] | 5 P
¢ % £ -
2 29 5 4 e
8 —— Normal (theoreical) = >~
Y y » Normal (simulated) ///
] 3 7 -+ Tangential (theoretical) » _ .
27 LA o Tangential (smuiated) 2 /// Theoretlcal
"o « * Simulated
25 T T T T T T T 0 T T T T T T T T
36 M1 46 51 56 61 66 Al 0 0.1 0.2 0.3 04 05 0.6 0.7 08 0.9

FIG. 1. Pressure distribution inside the transition la§yetattice
units). The parameters arp=10, 7 =1, °=1, 7"=2, andA

ki

=0.5.

y

Interaction factor, A

FIG. 2. Comparison between theoretical prediction and simu-
lated results forr,, (in lattice unit3. The density was set=10 and
the relaxation times'=1, 7°=3, and7™=1.5.
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ty FIG. 5. Dispersion relation of capillary waves, the dashed line is

the best fit. The parameters aré=7"=0.52, 7"=1.0, andA

FIG. 3. Dependence af,, on the velocity(in lattice units. The —04

density was sep=1 and the relaxation times =0.6, 7°=2, and
7=1.0. Black squares are the results usikg 0.4 and triangles

represent results using=0.2. results for the dependence of the interfacial tensignwith

the interfacial velocityu, , it is possible to see that the linear
dependence predicted by EG2) is only fairly true when

Fioure 2 gives a comparison between theoretical redicI_ong-range factorA is small (and second-order factors are
9 9 P P negligible. In general there is a® dependence ofr,,,. In

tlpn, Eq. (51), and simulated resullts for the |r}terfaC|aI ten- both simulations A=0.2 andA=0.4) the variation Ofop
sion. Simulated results were obtained by adding all the con- : ; L
o o . with u was not important, remaining lower than 0.5%.
tributions to normal pressure deviation across the interface.
When collision parameters are kept constant, simulation
shows a linear dependence of, with respect toA, also
predicted by theoretical analydigq. (51)]. The dependence The dispersion of capillary waves has been used in order
of the interfacial tension on the velocity can be seen in Figto test the surface-tension dynamics of the lattice Boltzmann
3, giving the results of ten numerical simulations. In eachmodels for multiphase flowssee Refs[2,17,9,18,6). Fol-
simulation, the velocityu, was imposed constant on the lowing these authors we simulate the decay of capillary
whole domain. Very different values of the relaxation timeswaves. The simulations were carried out in rectangular do-
were chosen in order to achieve large variations on the intermains(see Fig. 4, measuring. X 2L, with walls at the top
facial tension ¢ =0.6, °=2.0, and"=1.0). The graph
shows the variation of the interfacial tension with respect to
the interfacial tension that is predicted when the interfacial
velocity is zero A o= Ou=0~ o). Comparing the simulated

| ‘

B. Interfacial tension

C. Capillary waves

t= 10000 t= 30000

0.1L 2L

L

FIG. 6. Evolution of a droplet left in a moving tube. The param-
FIG. 4. Initial condition for the simulation of capillary waves. eters arer’=7°=0.6, 7"=1, andA=0.4.
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u,=0 u, =01 conclusion. Indeed, it was shown that spurious currents in-
side the transition layer are intensified under a constant ve-
L AP locity field. This can be observed in Fig. 7. Spurious currents
"" are due to the lattice discreteness and, apparently, cannot be
» avoided in lattice-Boltzmann simulation. Nevertheless, in the
present case, when the reference frame is moving with a
constant speed,=0.1 (Fig. 7, lefy, spurious currents are
b : intensified with respect to Fig. 7, right, when they are mea-
R sured in this moving reference frame. However, as it can be
seen in the same figure, this spurious currents enhancement
does not affect, significantly, the velocity field in the inner
FIG. 7. Measured velocity field in droplet flow, showing spuri- 3nd outer droplet regions, outside the interface and, appar-
ous currents in the transition layer. Right: droplet at rest in a staticenﬂy, good results can be achieved provided that the interfa-

frame of reference. Left: droplet moving with a constant velocitycial region is made small enough, using sufficiently large
observed in a reference frame with the same velocity. The paramy - oins

eters arer' = 7°=0.8, 7"=1, andA=0.4.

(y=2L) and bottom y=0) of the box and periodic bound- IX. CONCLUSION

ary conditions in the other direction. The reglytPL was In the present paper, a lattice-Boltzmann model is pro-
filled with r fluid andy<L with b fluid. A sinusoidal wave posed for immiscible fluids. Collision term was split, taking
with amplitudea, a<L was imposed as initial condition t0 mutual and cross collisions into account. Relaxation times
the interface. An analytical treatment, ConSidering ideal ﬂU'\Nere made concentration dependent, Considering the very
ids, is known[19] and gives the relation large concentration gradients in the transition layer of immis-
3 cible fluids. Long-range forces were simulated by using field
:U_, (53) mediators. Although macroscopic equations were correctly
2p retrieved inside the transition layer, Knudsen first-order,
Chapman-Enskog analysis was unable to predictafa?)
dependence of the interfacial tensionwith the long-range
factor A. In this way, a nonequilibrium solution was neces-
sary, restricted in the present paper to the case when the
0/interfacial velocityu=0. Simulation results and theoretical
‘bredictions foro compare well for all long-range intensity
factor values that were used, wher 0. A weak linear de-
) S pendence ofo with the interfacial velocity was predicted
D. Galilean invariance from Chapman-Enskog analysis. Numerical simulations
In Sec. IV it was seen that present Chapman-Enskoghowed that the interfacial tension has, indeed,Cxni%)
analysis was unable to predict th& dependence of the in- dependence. Nevertheless, even in the worst case, when re-
terfacial tensions,, . In addition, the nonequilibrium analy- laxation factors are very different arklandu values are in
sis given in Sec. VI was restricted to the case wheln the upper simulation limits, this dependence remained
interface is at rest. In this way, Galilean invariance of thesmaller than 0.5%. Dynamical behavior of the present model
macroscopic equations, inside the transition layer, could not@s tested considering the dispersion of capillary waves.
be assured by theoretical means. In order to test the Galileapimulation results compare well with classical, theoretical,
invariance of the model, the flow of a droplet in a moving predictions for the dispersion relation. Finally, Galilean in-
tube was simulated. A circular droplet with diameBer 40 variance of the present model was verified, considering the
is put in the center of a domain with 188.35 sites. The behavior of a two-dimensional droplet under a uniform ve-
droplet is brought to equilibrium at rest. A constant velocity oCity field. No appreciable shift from the initial droplet cir-
u,=0.1 is, then, imposed at the top and bottom sides, an@gular shape was observed_, when steady-state condltlc_)ns were
periodic boundary conditions are used in thirection. The ~reached. Nevertheless, discreteness produced spurious cur-
evolution is shown in Fig. 6: when stationary conditions are'€nts in the transition layer were intensified.
reached the droplet retrieves its circular shape and the same
velocity _of the walls. Similar results are _presented in Refs. ACKNOWLEDGMENTS
[13,14], in these papers also results using the model pro-
posed by Swiftet al. [9,10] where the droplet acquires an  This work was supported by CNR@&razilian Council of
eliptic shape are shown. Although, at first sight, present reScientifical and Technological DevelopmgmNP (Brazil-
sults seem to indicate Galilean invariance, a more detailegin National Agency of Petroleumand Finep(Funda@o
look at the velocity field shows that this is not a correctNacional de Estudos e Pesquisas

w2

wherek is a wave number.

Figure 5 shows the results of nine simulations with
varying from 100 to 500. The relaxation times were set
=7°=0.52 and7™=1.0, and the interaction fact@x=0.4.
The best fit line has gradient equal to 1.485, an error of 1
with respect the prediction of E@53).
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