
PHYSICAL REVIEW E 68, 056302 ~2003!
Lattice-Boltzmann model based on field mediators for immiscible fluids

L. O. E. Santos,1,* P. C. Facin,2,† and P. C. Philippi1,‡

1Mechanical Engineering Department, Federal University of Santa Catarina, 88040-900 Floriano´polis, Santa Catarina, Brazil
2Physics Department, State University of Ponta Grossa, 84030-900 Ponta Grossa, Parana´, Brazil

~Received 19 December 2002; revised manuscript received 19 August 2003; published 7 November 2003!

In this paper, a lattice BGK~Bhatnagar-Gross-Krook! model is proposed for immiscible fluids. Collision
operator is decoupled considering mutual and cross collisions between lattice particles, with three independent
parameters related to the species diffusivity and to the viscosity of each fluid. Field mediator’s concept,
described by Santos and Philippi@Phys. Rev. E65, 046305~2002!#, is extended to the framework of the
lattice-Boltzmann equation and interference between mediators and particles is modeled by considering that
there is a deviation in particles velocity, proportional to the mediators’ distribution at the site. A Chapman-
Enskog analysis is performed leading to theoretical predictions of the macroscopic equations inside the tran-
sition layer and to the transition-layer thickness. Chapman-Enskog analysis is restricted to near-equilibrium
states and was unable to predict the correct second-order interfacial tension dependence on the modeled
long-range fields intensity. Interfacial tension was, only, correctly retrieved using a nonequilibrium solution.
Theoretical predictions are compared with simulation results and the model is tested considering its ability in
describing the dynamical behavior of the interface and Galilean invariance.
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I. INTRODUCTION

Flow of immiscible fluids is, classically, treated by co
sidering that the transition layer has a null thickness and
performing a momentum balance around this layer. At m
croscopic level, when two immiscible fluidsr and b are
mixed, the long-range attraction between the molecules
each fluid is the molecular mechanism promoting fluid s
regation. Intermolecular forces may be of many differe
types, including electrostatic forces between permanent
poles, induction forces between permanent dipoles and
duced dipoles, dispersion forces between nonpolar molec
and hydrogen bonds. In the transition region between the
fluids, a molecule is, predominantly, subjected to attract
fields from its own phase that acts as a potential barrier
gives rise to fluid-fluid interfacial tension. In addition, mo
ecules that are found in this transition layer are subject tor -b
collisions that try to mix the two fluids and are responsib
for r -b diffusion. The thickness of the transition layer i
consequently, controlled by the strength and length of lo
range potentials and by cross collisions,r -b.

Theoretical difficulty is strongly increased when the
two fluids interact with a solid surface. In fact, the interfac
energiesz rs and zbs between fluidsr andb and the surface
are the main macroscopic mechanisms governing inter
advancing or receding on a solid surface. When interf
advances or recedes along a solid surface, dynamic ef
will change the contact angleu rb/s with respect to its equi-
librium value.

Due to the complexity of intermolecular forces and co
sidering their important contribution in defining fluid-flui
and fluid-solid interaction, Boolean lattice gas and latt
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Boltzmann appear to be very suitable as downscale meth
that can improve the understanding of complex physical p
nomena that are very difficult to describe at the hydrod
namic scale.

In this paper, the field mediators concept, described
Ref. @1#, is extended for Boltzmann models of immiscib
fluids. Mediators are null-mass particles that are emit
from the lattice sites and whose only action is to invert t
momentum of lattice particles, simulating a long-range fie
When a siteX can be considered as an attractive center fok
particles,k5r , b, it will emit mediators of kindk that will be
propagated to neighbor sites in the propagation step. In
ference ofk mediators pull back to siteX, k particles moving
away fromX. In this way, following very simple emission
and interference rules, mediators try to simulate the effec
long-range forces in fluid separation. Particles of kindr in
r -b interface which are thrown by collisions toward theb
phase will be pulled back to ther phase when they foundr
mediators in the same site and in the same direction, a
propagation step.

Gunstensenet al. @2,3# are attributed to be the first wh
introduced immiscible fluids color based models in the fra
of the lattice-Boltzmann method. A more popular two-pha
flow model, based on a pseudopotential function, was
rived by Shan and Chen@4#. This method was later extende
to three dimensions@5#. A drawback in the above model i
that it become unstable when used to simulate fluids w
very different viscosities~say m1 /m2.7), as reported in
Ref. @6#.

In the present work, immiscible fluidsr and b are mod-
eled by splitting BGK ~Bhatnagar-Gross-Krook! collision
term, separately consideringr -r andr -b collisions. In fact, it
was shown earlier~see, e.g., Philippi and Brun@7#! that the
collision term in Boltzmann continuous equation for fluidr
can be split into a self,r -r , and a cross,r -b, collision terms.
In this way, in contrast with the previous models, viscos
coefficientsm r and mb and binary diffusivityDrb can be
©2003 The American Physical Society02-1
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SANTOS, FACIN, AND PHILIPPI PHYSICAL REVIEW E68, 056302 ~2003!
independently managed using three independent relaxa
times. This idea was, recently, applied to miscible fluids@8#.
For immiscible fluids flow, interfacial tension is retrieved b
modifying r -b collision term, introducing long-range force
in the transition layer through the use of field mediato
Mediators’ action is restricted to the transition layer and id
gas state equation is retrieved for each fluid, far from
interface. In this way, we limit ourselves to an atherm
model and no attempt to describe phase transitions and
related effects will be given here. The first tentative to
two-phase thermodynamically consistent model was p
formed by Swift et al. @9,10#. In spite of the fact that the
development of the free-energy model was inspired by Ca
Hillard model, it was pointed out that the model cannot le
to correct energy transport@11# and, moreover, it is not Gal
ilean invariant@12#. An invariant Galilean model based o
the free-energy model was presented in Ref.@13# to simulate
multiphase flows~not multicomponent! in two dimensions.
More recently, Galilean invariant models based on the fr
energy approach were presented in Refs.@14,15#. A detailed
comparison among these models has yet to be done.

II. MODEL

In the presently proposed model, considering two imm
cible fluids r and b, long-range attraction between the pa
ticles of the same species is simulated by producing fi
mediators on the lattice sites@1#, just before propagation
step. ConsideringRi(X,T) to be the particles distribution o
r particles in siteX at time T and, similarly, forBi(X,T),
mediators are created just before propagation step,
propagated, following

Mi
r~X1ci ,T11!

5aMi
r~X,T!1b

(
j

Rj~X,T!

(
j

Rj~X,T!1(
j

Bj~X,T!

,

~1!

wherea1b51.
Equation ~1! can be considered as an outgrown of E

~37! from the Boolean model proposed in Ref.@1#. The first
term on the right-hand side of the above equation is, in f
a recurrence relation, sinceMi

r(X,T) depends onMi
r(X

2ci ,T21) and on K j (X2ci ,T21), K5R,B, for all j
neighbor sites around siteX2ci , through second-orde
terms ina andb. In this way,Mi

r at siteX, will be depen-
dent on the next neighborr-particles concentration throug
first-order terms, on the second neighborr particles through
second-order terms, and so on. Whena50 ~or b51), me-
diators are created at siteX, with the solely information of
the concentration ofr particles on next neighbor sites: m
diators distribution related to the directioni will be given by
the mass fraction ofr particles on siteX2ci , at time T
05630
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21. In this case interaction length corresponds to 1 latt
unit. By increasinga with respect tob, interaction length
can be, arbitrarily, increased.

Mediators are created at each siteX and propagated with
the unitary lattice velocityci . Interference of field mediators
with lattice particles is described in the following.

Lattice-Boltzmann equation for kindK particles is written
as

Ki~X1ci ,T11!2Ki~X,T!

5V~R0 , . . . ,Rbm
,B0 , . . . ,Bbm

!, ~2!

for K5R,B. Collision operatorV i
k is required to satisfy

mass and momentum conservation

(
i 50

bm

V i
r50, ~3!

(
i 50

bm

V i
b50, ~4!

(
i 50

bm

ci~V i
r1V i

r !50. ~5!

A three-parameters BGK collision term that satisfies
above restrictions is proposed in the present work, written

V i
r5v r

Ri
eq~r r ,ur !2Ri

t r
1vb

Ri
eq~r r ,qb!2Ri

tm
, ~6!

where

rk5(
i 50

bm

Ki ~7!

and

uk5
1

rk (
i 51

bm

Kici ~8!

are, respectively, the macroscopic density and velocity
componentk, k5r ,b. The v ’s in Eq. ~6! are the mass frac
tions,vk5rk/r.

Equilibrium distributions are considered to be the w
known small velocity expansions ofO(u2), appropriated to
the description of athermal incompressible flow,

Ri
eq~r r ,u!5

r r

b
1

Dr r

bmc2
ciaua1

D~D12!r r

2bmc4
ciacibuaub

2
Dr r

2bmc2
~u!2, i 51, . . . ,bm , ~9!

R0
eq~r r ,u!5

r r

b
b02

r r

c2
~u!2, ~10!
2-2
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LATTICE-BOLTZMANN MODEL BASED ON FIELD . . . PHYSICAL REVIEW E68, 056302 ~2003!
and similarly forBi
eq(rb,u), wherebm is the number of lat-

tice directions,b0 is a free integer parameter related to t
allowable number of rest particles in Boolean modelsb
5bm1b0 andD is the Euclidean lattice dimension

The first term on the right hand side of Eq.~6! is related to
the relaxation ofr-particles distribution to an equilibrium
state given by ther-component density and velocity, consi
ering r -r collisions, only. The second term considersr -b
collisions and is related to the relaxation ofr-particles to an
equilibrium state given by the densityr r and by ab velocity

qb5ub2Aûm, ~11!

modified by the action ofr mediators present in the sam
site. ConstantA is to be related to interfacial tension. Fo
ideal miscible fluids@8#, A50 and this collision term will
describe the relaxation ofr-particles distribution to an equi
librium state given byr r and ub, as a consequence ofr -b
cross collisions. In immiscible fluids, Eq.~11! means that
particles of kindr will be separated fromb particles by long-
range attractive forces fromr phase.

In the same way,

q r5ur1Aûm. ~12!

In Eqs.~11! and ~12!,

ûm5H um

uumu
when umÞ0

0 when um50,

~13!

where mediators velocity at siteX is given by

um5(
i 51

bm

~Mi
r2Mi

b!ci , ~14!

pointing to the same direction wherer mediators were propa
gated, i.e., to theb phase.

In the present model, sinceuûmu5$0,1%, the long-range
effect on the cross-collision part ofV i

r is to relaxr-particles
distribution to an equilibrium distribution with aub velocity,
modified, in all lattice sites inside lattice domains wherer
andb particles are simultaneously found, by a vector who
modulus is constant and equal toA. This is not the only
choice for satisfying the restrictions onlocal mass and mo-
mentum preservation, but the simplest one and, although
could appear as a model’s restriction, thedirectionof ûm in a
given siteX will be dependent on the mediators distributio
Mi

r andMi
b in that site and these distributions are depend

on r andb particles distributions in the neighbor sites at t
previous time steps.

III. CHAPMAN-ENSKOG ASYMPTOTIC ANALYSIS
IN THE TRANSITION LAYER

In pure phases the interference between field media
and lattice particles has null effect, as a consequence of
05630
e
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mentum preservation. In this way, far from the interfac
pressurePk is directly related to densityrk, k5r ,b, through
the square of sound speedcs

25(bmc2)/(bD) and macro-
scopic Navier-Stokes equations are retrieved for incompr
ible flow @16#. In this way, Chapman-Enskog analysis w
be, here, restricted to the transition layer.

Consider that, at equilibrium, the speciesr andb are well
mixed in their entire spatial domain. In this condition, lon
range effects are null andur5ub5u, whereu is the mixture
velocity u5v rur1vbub. Equllibrium distributions are given
by Eqs.~9! and~10!. Consider, also, that the long-range fie
strength, described by factorA in present model, is weak
enough to produce only small deviations fromRi

eq(r r ,u) and
Bi

eq(rb,u). In this way, fluid segregation can be consider
to be a first-order perturbation effect on the equilibrium st
given by Eqs.~9! and~10! and interfacial thicknessL can be
regarded as large enough (L→` when A→0) to enable
Chapman-Enskog analysis, by considering the length 1
responding to a lattice unit as much smaller than the inte
cial thicknessL, in lattice units, i.e., by considering th
Knudsen numberKn51/L→0. Obviously, this, also, implies
to consider that the long-range strength factorA has the same
order of magnitude ofKn . A nonequilibrium distribution is
proposed in Sec. VI, whenA is arbitrary andL corresponds
to some few lattice units.

Distribution Ki(X,T) is expanded in powers of a sma
parameter that, in the present case, can, indifferently, be
sen asA or Kn ,

Ki5Ki
01KnKi

11•••, K5R,B, i 50,1, . . . ,bm,
~15!

and the time derivative has an induced decomposition

] t5]o1Kn]11•••. ~16!

The collision term given by Eq.~6! can be expanded
aroundRi

eq(r r ,u), giving

V i
r5S v r

t r
1

vb

tmD @Ri
eq~r r ,u!2Ri #1S v r

t r
2

vb

tmD r r
D

bmc2

3Fci2u1
~D12!

c2
~ci•u!ci G•~ur2u!

2r
v rvb

tm
A

D

bmc2 Fci2u1
~D12!

c2
~ci•u!ci G•ûm

1O„~ur2u!2,A~ur2u!, . . . …, ~17!

and, similarly, forV i
b .

Writing lattice-Boltzmann equation, Eq.~2!, in continuous
variables using dimensionless variablest* 5t/tc , wheretc is
a macroscopic time,r* 5r /L, and using Eqs.~15! and ~16!,
2-3



SANTOS, FACIN, AND PHILIPPI PHYSICAL REVIEW E68, 056302 ~2003!
e

Kn
]o* Ri

01cia]a* Ri
o1KnF e

Kn
]o* Ri

11
e

Kn
]1* Ri

o1cia]a* Ri
1

1
1

2 S e

Kn
D 2

]o* o* Ri
o1

1

2
ciacib]a* b* Ri

o1
e

Kn
cia]o* ]a* Ri

o
G1•••

5
1

Kn
S v r

t r
1

vb

tmD @Ri
eq~r r ,u!2Ri

o#2S v r

t r
1

vb

tmD Ri
11S v r

t r
2

vb

tmD r r
D

bmc2 Fci2u1
~D12!

c2
~ci•u!ci G• j r ,1

2r
v rvb

tm

A

Kn

D

bmc2 Fci2u1
~D12!

c2
~ci•u!ci G•ûm2KnS v r

t r
1

vb

tmD Ri
21KnS v r

t r
2

vb

tmD r r
D

bmc2

3Fci2u1
~D12!

c2
~ci•u!ci G• j r ,21•••, ~18!
pi

e
h

ob-
wheree5d/tc is the ratio between the timed expended for a
particle to travel a single lattice unit and the macrosco
time tc , or, equivalently,e51/tc , when tc is considered in
lattice units. Flux

j k,s5(
i

Ki
sci , k5r ,b, ~19!

is thesth order contribution to speciesk diffusive flux

j r5r r~ur2u!5Knj r ,11K n
2j r ,21••• . ~20!

In Eq. ~18!, the first term in the second member will b
dominant whene!Kn!1, corresponding to the low Mac
number incompressible limit.

The solution of

S v r

t r
1

vb

tmD @Ri
eq~r r ,u!2Ri #50, ~21!

gives the zeroth-order solution toRi ,

Ri
o5Ri

eq~r r ,u!. ~22!

Using the same reasoning for speciesb,

Bi
o5Bi

eq~rb,u!. ~23!

In the first order,Ri
1 is the solution of

e

Kn
]o* Ri

o1cia]a* Ri
o

52S v r

t r
1

vb

tmD Ri
11S v r

t r
2

vb

tmD D

bmc2

3Fci2u1
~D12!

c2
~ci•u!ci G• j r ,1
05630
c 32r
v rvb

tm

A

Kn

D

bmc2

3Fci2u1
~D12!

c2
~ci•u!ci G•ûm, ~24!

giving

S vb

tm
1

v r

t r D Ri
15S v r

t r
2

vb

tmD D

bmc2

3Fcia2ua1
~D12!

c2
~cibub!ciaG j a

r ,1

2r
v rvb

tm

A

Kn

D

bmc2

3Fcia2ua1
~D12!

c2
~cibub!ciaG ûa

m

2
1

b
rv r]a* ua2

D

bmc2
rv r]a* ubciacib

1
1

b
rua]a* v r1

1

b
cia]a* v r

1
D

bmc2
ciacibrub]a* v r . ~25!

A similar expression can be obtained forBi
1 .

IV. MACROSCOPIC EQUATIONS INSIDE
THE TRANSITION LAYER

At Kn zeroth order mass conservation equation is
tained by adding all the i-contributions given by Eq.~24!,

]or r1]a~r rua!50. ~26!
2-4
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In the same way, Euler’s equation is retrieved at this
der, given by,

]o~rua!1]b~Pdab1ruaub!50, ~27!

whereP5rcs
2 .

Equation~25! can be used to give the first-order contrib
tion to the species-r diffusive flux, Eq.~19!. The time deriva-
tives ]1(r r) and ]1(ru) are obtained by considering th
mass and velocity moments of the terms that appear in
~18! multiplied by the Knudsen numberKn . The final form
of the macroscopic equations are obtained by retrieving
time derivatives ofr r and ru from Eq. ~16!, and are pre-
sented below.

Mass conservation equation for ther species is written as

] tr
r1]a~r rua!1]a~ j a

r !50, ~28!

where

j r5~ j r !di f1~ j r ! lr f ~29!

and

~ j r !di f52
bmc2

bD S tm2
1

2D r“v r , ~30!

is ther-species ordinary Fickean diffusive flux, promoted
concentration gradients and,

~ j r ! lr f 52rv rvbAûm, ~31!

corresponds to the long-range action on componentr.
In this way, Fickean diffusion that would promote mixin

between speciesr andb, enlarging the interface thickness
counterbalanced by long-range forces, which act in the
posed way, pulling backr particles that are thrown out o
their own phase by collisions withb particles. In fact, dy-
namic equilibrium between Fickean diffusion and long-ran
action giving a nullj r flux is a necessary condition for inte
face stability. The lacking of energy conservation in t
present model restricts the analysis to the low-velocity,
compressible limit. Choosingbm /b5D/(D12), Chapman-
Enskog analysis leads to the following momentum equat

] t~rua!1]b~Pab1ruaub!

5h]b@r~]aub1]bua!#2]b@W~v r !~ j a
r ub1 j b

r ua!#,

~32!

where

W~v r !5

v r

t r
2

v r

tm
1

1

2tm

v r

t r
1

vb

tm

2

vb

t r
2

vb

tm
1

1

2tm

vb

tb
1

v r

tm

. ~33!

The kinematic viscosity coefficienth , in lattice units, is
given by
05630
-

q.

e

p-

e

-

:

h5
c2

D12F 1

2
2S v r

v r

t r
1

vb

tm

1
vb

vb

tb
1

v r

tm
D G . ~34!

Mixture viscosity appears as a function of the three co
sion parameters,t r , tb, tm and the mass fractions,v r ,vb.
Due to local momentum conservation, viscosity coefficien
identical to the viscosity coefficient that was found for id
ally miscible fluids@8#. In addition, whenv r→1,

h5
c2

D12 S t r2
1

2D , ~35!

which is the correct expression for the kinematic viscosity
pure componentr.

As commented above, the second term on the right h
side of Eq. ~32! is null for stable interfaces, whenj r5 jb

50.
PressurePab is given by

Pab5rcs
2dab1rv rvbS t r

v rtm1vbt r
2

tb

vbtm1v rtbD
3~ ûa

mub1ûb
mua!A, ~36!

in this way pressurePab inside the interface follows idea
gas law P5rcs

2dab , with an O(Au) velocity dependent,
deviation. Although momentum equation remains invaria
by a Galilean group of transformations, this deviation isun-
physical since it produces a velocity dependent interfac
tension. SinceA;Kn , this error is expected to be meanin
less, when interface velocityu is small. In addition, this ef-
fect has its magnitude decreased when relaxation param
t r andtb are close~see Sec. VII!.

In Sec. VII using a nonequilibrium solution, for the sp
cial case where interfacial velocityu50, it is shown that
interfacial tension is related to anA2 term, which could only
be retrieved in the presentnear-equilibriumanalysis by per-
forming an O(Kn2) Chapman-Enskog analysis, which
outside the scope of the present work.

In this manner when long-range factorA is small enough
and neglecting theO(Au) and O(A2) factors, we can con-
clude that, inside the interface,r -b mixture behaves as a
ideal mixture, following Navier-Stokes momentum equatio
for incompressible flows. With these approximations we a
also, forced to conclude that interfacial tension is null. T
is an unphysical result and reveals the weakness of pre
first-order Chapman-Enskog analysis for the interface reg
between two immiscible fluids. Further considerations w
be given in Sec. VII.

V. TRANSITION-LAYER THICKNESS

Restricting the analysis to a plane interface and tak
coordinatey normal to the interface, the stability conditio
may be expressed as
2-5
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bmc2

bD S tm2
1

2D r
d

dy
~v r !5rv r~12v r !A, ~37!

sinceûy
m521 for all the sites inside the interface.

Above equation may be integrated along the interfac
thickness, giving

L5

cs
2S tm2

1

2D
A E

0

1 dv r

v r~12v r !
. ~38!

As it was to be expected, transition-layer thickness is p
portional to the ratiotm/A, i.e., to the ratio between ther -b
cross-collision factortm, related to the Fickean diffusivityD
and the long-range intensityA. When A is increased with
respect toD, transition-layer thickness is decreased. The
tegral above, Eq.~38!, diverges whenv r is considered be-
tween the limits 0 and 1. This is consistent with the fact th
in the continuum limit, transition layer has an infinite thic
ness. For practical purposes, the integral, Eq.~38!, can be
calculated between appropriate limitsv0

r andvL
r , giving fi-

nite values for the transition-layer thickness.

VI. NONEQUILIBRIUM SOLUTION

When long-range strength factorA increases, the interfa
cial thickness L can have some few lattice units an
Chapman-Enskog analysis is no longer possible. Distri
tions Ri andBi cannot be considered as close to their eq
librium counterparts given by Eqs.~9! and~10! andnonequi-
librium solutions satisfying lattice-Boltzmann equatio
must be searched. This is a very difficult problem and w
only solved, in the present paper, in the special case when
interface velocityu is null.

Consider Ri* ,Bi* to be such nonequilibrium solutions
When the interface is at rest,Ri* ,Bi* are, also,stationary. In
this case, stability condition for the interface requires

Ri*
85R2 i* , ~39!

for avoiding diffusion of ther particles into theb phase. In
fact, in stationary conditions, particle distributions are ind
pendent of time: the flux of particles of kindr that are found
in directioni, after collision and which will be propagated t
the directioni of the siteX1ci and found in this site at time
T11, must be canceled by the flux of particles found in t
direction2 i of siteX that propagate from siteX1ci at time
T21. A similar reasoning applies to theb component.

Stability condition, Eq.~39!, means that

Ri*
85Ri* 1v r

Ri
eq~r r ,ur !2Ri*

t r
1vb

Ri
eq~r r ,qb!2Ri*

tm

5R2 i* , ~40!

which enables to find
05630
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S v r

t r
1

vb

tmD Ri* 5v r
Ri

eq~r r ,ur !

t r
1vb

Ri
eq~r r ,qb!2Ri*

tm

1~Ri* 2R2 i* !, ~41!

for i 50, . . . ,bm . An explicit form for Ri* 2R2 i* may be ob-
tained by calculatingR2 i* from Eq. ~41! and by subtracting
the resulting equation from Eq.~41!:

Ri* 2R2 i* 5
1

S v r

t r
1

vb

tm
22D F2

v r

t r

D

bmc2
r rur

•ci

12
vb

tm

D

bmc2
r r~ub2Aûm!•ci G . ~42!

Above solution, Eq.~41!, is, in fact, a nonequilibrium
solution that depends on the relaxation times and on
long-range strength factorA. When the interface is moving
with a constant velocity, the correct stability condition to
used is

( Ri*
8ci2( R2 i* ci52r ru, ~43!

but this condition, used in conjunction with the mass a
momentum conservation conditions, does not lead to
uniquesolution forRi* and the problem remains, still, open

VII. INTERFACIAL TENSION

Restricting the analysis to a plane interface and tak
coordinatey normal to the interface, interfacial tensions rb
was calculated, using

s rb5E
2`

`

@Pyy* ~y!2Pxx* ~y!#dy, ~44!

where the momentum fluxes are given by

Pyy* 5(
i

~Ri* 1Bi* !ciyciy5cs
2r1rA2arar11rA2abab1 ,

~45!

Pxx* 5(
i

~Ri* 1Bi* !cixcix5cs
2r, ~46!

and

ar5
v r~v r21!

~v rtm1t r2v rt r !~2tm21!
, ~47!

ab5
v r~v r21!

~v rtm1tm2v rtb!~2tm21!
, ~48!
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ar15
2v rtm1~v r !2tm2~v r !2t r12v rt r24v rt rtm2t r14t rtm24t r~tm!2

2tm21
, ~49!

ab15
2v rtm1~v r !2tm2~v r !2tb14v rtbtm24tb~tm!2

2tm21
. ~50!
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A closed form expression for the interfacial tension
obtained, in terms of lattice parameters and relaxation tim
by changingy→v r variables, considering that at each po
X of the interface the diffusive flux ofr ~or b) particles
promoted by concentration gradients must be canceale
long-range forces, i.e., by using Eq.~37!. This results in,

s rb5cs
2S tm2

1

2DAroutE
0

1

~arar11abab1!
dv r

v r~12v r !
,

~51!

whererout is the particles density outside the transition lay
The changing variablesy→v r were possible imposing

null mass flux through interface.
When the interfacial velocityuÞ0, we have used Eq

~36! from Sec. IV, for estimating the deviation in the inte
facial tension produced by a finite interfacial velocity, usi
the same above procedure. For a plane interface moving
a speedu it was concluded that

D~s rb!u52routcs
2S tm2

1

2DuS t r

t r2tm
ln

tm

t r
1

tb

tm2tb
ln

tm

tb D .

~52!

In the above expression, the factor between parenthes
the right member is always non-negative and is null wh
t r5 tb, i.e., whenr andb fluids have the same viscosity.

FIG. 1. Pressure distribution inside the transition layer~in lattice
units!. The parameters arer510, t r51, tb51, tm52, and A
50.5.
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VIII. COMPARISON BETWEEN THEORETICAL
PREDICTION AND SIMULATION RESULTS

All numerical simulations were performed settinga50
andb51, using a D3Q19 lattice.

A. Pressure distribution inside the transition layer

Equal volumes ofr and b fluids were distributed on a
three-layer chamber 100310033, respectively, on the lef
and right sides of the chamber. Periodic conditions were u
for the upper and down and front and back chamber surfa
Bounce-back conditions restrict fluid velocity to zero at t
left and right chamber surfaces. Att50 long-range forces
are applied and simulation starts.

Figure 1 shows the pressure distribution inside the tra
tion layer, calculated using Eqs.~45! and~46!, and measured
after simulation has reached the equilibrium. Simulation
rameters aret r51, tb51, tm52, A50.5. Normal and tan-
gential pressures are found by measuring the momentum
changed between the lattice particles and a surface pla
respectively, at vertical~normal to y) and horizontal posi-
tion, for each point along the median line crossing the int
face. Agreement between theoretical and simulated value
excellent. In the transition layer, pressure deviates from id
gas law, i.e.,P5cs

2r, from a positive factor that is propor
tional to the long-range intensity factorA @see Eq.~45!# and,
for eachy inside the transition layer, this factor is the diffe
ence between the full black and the trace lines shown
Fig. 1.

FIG. 2. Comparison between theoretical prediction and sim
lated results fors rb ~in lattice units!. The density was setr510 and
the relaxation timest r51, tb53, andtm51.5.
2-7
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B. Interfacial tension

Figure 2 gives a comparison between theoretical pre
tion, Eq. ~51!, and simulated results for the interfacial te
sion. Simulated results were obtained by adding all the c
tributions to normal pressure deviation across the interfa
When collision parameterst are kept constant, simulatio
shows a linear dependence ofs rb with respect toA, also
predicted by theoretical analysis@Eq. ~51!#. The dependence
of the interfacial tension on the velocity can be seen in F
3, giving the results of ten numerical simulations. In ea
simulation, the velocityuy was imposed constant on th
whole domain. Very different values of the relaxation tim
were chosen in order to achieve large variations on the in
facial tension (t r50.6, tb52.0, andtm51.0). The graph
shows the variation of the interfacial tension with respec
the interfacial tension that is predicted when the interfac
velocity is zero (Ds5suy502s). Comparing the simulated

FIG. 3. Dependence ofs rb on the velocity~in lattice units!. The
density was setr51 and the relaxation timest r50.6, tb52, and
tm51.0. Black squares are the results usingA50.4 and triangles
represent results usingA50.2.

FIG. 4. Initial condition for the simulation of capillary waves
05630
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n-
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.
h
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l

results for the dependence of the interfacial tensions rb with
the interfacial velocityuy , it is possible to see that the linea
dependence predicted by Eq.~52! is only fairly true when
long-range factorA is small ~and second-order factors ar
negligible!. In general there is au2 dependence ofs rb . In
both simulations (A50.2 andA50.4) the variation ofs rb
with u was not important, remaining lower than 0.5%.

C. Capillary waves

The dispersion of capillary waves has been used in or
to test the surface-tension dynamics of the lattice Boltzm
models for multiphase flows~see Refs.@2,17,9,18,6#!. Fol-
lowing these authors we simulate the decay of capill
waves. The simulations were carried out in rectangular
mains~see Fig. 4!, measuringL32L, with walls at the top

FIG. 5. Dispersion relation of capillary waves, the dashed line
the best fit. The parameters aret r5tb50.52, tm51.0, and A
50.4.

FIG. 6. Evolution of a droplet left in a moving tube. The param
eters aret r5tb50.6, tm51, andA50.4.
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LATTICE-BOLTZMANN MODEL BASED ON FIELD . . . PHYSICAL REVIEW E68, 056302 ~2003!
(y52L) and bottom (y50) of the box and periodic bound
ary conditions in the other direction. The regiony.L was
filled with r fluid andy,L with b fluid. A sinusoidal wave
with amplitudea, a!L was imposed as initial condition t
the interface. An analytical treatment, considering ideal
ids, is known@19# and gives the relation

v25
sk3

2r
, ~53!

wherek is a wave number.
Figure 5 shows the results of nine simulations withL

varying from 100 to 500. The relaxation times were sett r

5tb50.52 andtm51.0, and the interaction factorA50.4.
The best fit line has gradient equal to 1.485, an error of
with respect the prediction of Eq.~53!.

D. Galilean invariance

In Sec. IV it was seen that present Chapman-Ens
analysis was unable to predict theA2 dependence of the in
terfacial tensions rb . In addition, the nonequilibrium analy
sis given in Sec. VI was restricted to the case whenr -b
interface is at rest. In this way, Galilean invariance of t
macroscopic equations, inside the transition layer, could
be assured by theoretical means. In order to test the Gali
invariance of the model, the flow of a droplet in a movin
tube was simulated. A circular droplet with diameterD540
is put in the center of a domain with 1353135 sites. The
droplet is brought to equilibrium at rest. A constant veloc
ux50.1 is, then, imposed at the top and bottom sides,
periodic boundary conditions are used in thex direction. The
evolution is shown in Fig. 6: when stationary conditions a
reached the droplet retrieves its circular shape and the s
velocity of the walls. Similar results are presented in Re
@13,14#, in these papers also results using the model p
posed by Swiftet al. @9,10# where the droplet acquires a
eliptic shape are shown. Although, at first sight, present
sults seem to indicate Galilean invariance, a more deta
look at the velocity field shows that this is not a corre

FIG. 7. Measured velocity field in droplet flow, showing spu
ous currents in the transition layer. Right: droplet at rest in a st
frame of reference. Left: droplet moving with a constant veloc
observed in a reference frame with the same velocity. The par
eters aret r5tb50.8, tm51, andA50.4.
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conclusion. Indeed, it was shown that spurious currents
side the transition layer are intensified under a constant
locity field. This can be observed in Fig. 7. Spurious curre
are due to the lattice discreteness and, apparently, cann
avoided in lattice-Boltzmann simulation. Nevertheless, in
present case, when the reference frame is moving wit
constant speedux50.1 ~Fig. 7, left!, spurious currents are
intensified with respect to Fig. 7, right, when they are me
sured in this moving reference frame. However, as it can
seen in the same figure, this spurious currents enhance
does not affect, significantly, the velocity field in the inn
and outer droplet regions, outside the interface and, ap
ently, good results can be achieved provided that the inte
cial region is made small enough, using sufficiently lar
domains.

IX. CONCLUSION

In the present paper, a lattice-Boltzmann model is p
posed for immiscible fluids. Collision term was split, takin
mutual and cross collisions into account. Relaxation tim
were made concentration dependent, considering the
large concentration gradients in the transition layer of imm
cible fluids. Long-range forces were simulated by using fi
mediators. Although macroscopic equations were corre
retrieved inside the transition layer, Knudsen first-ord
Chapman-Enskog analysis was unable to predict theO(A2)
dependence of the interfacial tensions with the long-range
factor A. In this way, a nonequilibrium solution was nece
sary, restricted in the present paper to the case when
interfacial velocityu50. Simulation results and theoretica
predictions fors compare well for all long-range intensit
factor values that were used, whenu50. A weak linear de-
pendence ofs with the interfacial velocity was predicte
from Chapman-Enskog analysis. Numerical simulatio
showed that the interfacial tension has, indeed, anO(u2)
dependence. Nevertheless, even in the worst case, whe
laxation factors are very different andA andu values are in
the upper simulation limits, this dependence remain
smaller than 0.5%. Dynamical behavior of the present mo
was tested considering the dispersion of capillary wav
Simulation results compare well with classical, theoretic
predictions for the dispersion relation. Finally, Galilean i
variance of the present model was verified, considering
behavior of a two-dimensional droplet under a uniform v
locity field. No appreciable shift from the initial droplet cir
cular shape was observed, when steady-state conditions
reached. Nevertheless, discreteness produced spurious
rents in the transition layer were intensified.
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