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Exploring classical phase space structures of nearly integrable and mixed quantum systems
via parametric variation
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The correlation between overlap intensities and level velocities has been introduced as a sensitive measure
capable of revealing phase space localization. Previously applied to chaotic quantum systems, here we extend
the theory to near-integrable and mixed quantum systems. This measure is useful in the latter cases because it
has the ability to highlight certain phase space structures depending upon the perturbation used to parametri-
cally vary the Hamiltonian. A detailed semiclassical theory is presented relating the correlation coefficient to
the phase space weighted derivatives of the classical action. In the process, we confront the question of whether
the Hannay–Ozorio de Almeida sum rules are simply extendable to mixed phase space systems. In addition,
the \ scalings of the correlation coefficient and relevant quantities are derived for nearly integrable systems.
Excellent agreement is found between the theory and the results for integrable billiards as well as for the
standard map.
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I. INTRODUCTION

System response to parametric variations or perturbat
is of great importance. It is a powerful experimental pract
from which new information about a system can be e
tracted, which is not generally available by other means,
pecially for complex systems, i.e., disordered, interact
many-body, and/or simple chaotic systems. External par
eters such as electromagnetic fields, temperatures, ap
stresses, etc., are controllable and often suitable for this
pose. Some specific examples include conductance fluc
tions in quantum dots@1#, and variations in eigenmodes du
to shape deformations of microwave cavities@2# and vibrat-
ing plates@3#. Intramolecular vibrational energy redistribu
tion @4# in molecules is another example wherein the te
nique of parametric variations can lead to useful insig
regarding the key perturbations responsible for strong m
mixings. Molecular spectroscopy in external fields is an a
of current interest and the response of a molecular syste
external fields can be usefully analyzed from the parame
perspectives@5#.

In the extreme chaotic or disordered limit, there exist u
versalities in system response to perturbations@6#, and the
eigenstates respect the ergodic hypothesis@7#, i.e., no phase
space localization; there is only a scale to extract. On
other hand, the response of integrable or near-integrable
tems is far richer being system dependent, and the Hu
distributions of the eigenstates are confined to classical
@8,9#. A perturbation is likely to give rise to subsets
eigenlevels/states that respond very similarly as a group,
the parametric quantities thereby carry far more informati
For mixed systems both regular and chaotic trajectories f
phase space structures and the most obvious, naive in
starting point would be to attempt to analyze each struc
separately. At this level of approximation, using the app
priate semiclassical theory for regular and chaotic regi
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involves the respective integrable and chaotic Hanna
Ozorio de Almeida sum rule expressions@10# weighted by
the relative fractions of phase space volume. We find,
stead, that the intermittent behavior of the unstable or
prevents this simple picture from applying.

Tomsovic @11# introduced a measure that reveals pha
space localization of quantum eigenstates. Originally int
duced for chaotic systems, the measure correlates
changes in the eigenenergies due to a perturbation~termed
‘‘level velocities’’! with the overlap intensities between th
eigenstates and a probe state, which is often usefully cho
to be a coherent state. More recently, it has been identifie
contributing to the scale associated with the fidelity in t
weak perturbative regime@12#. For integrable systems phas
space localization is the norm, not the exception. There
in the near-integrable regime, the localization is associa
with tori, resonance zones, and stable periodic orbits. T
correlation measure has been shown to highlight differ
features of classical phase space depending upon the pe
bation @13#. Several years ago Weissman and Jortner@14#
performed a similar study involving the Husimi distribution
and parametric changes in eigenenergy levels.

This paper is organized as follows: we begin by develo
ing the semiclassical theory of the correlations for ne
integrable systems where we also remark on the more g
eral theory for the level velocities in mixed systems. T
correlations have been previously studied in highly exci
rovibrational states in molecules where multiresonant Ham
tonians are applicable@13#. Section III gives the semiclassi
cal theories of the level velocities, strength functions, a
overlap intensity–level velocity correlation coefficients. T
semiclassical theory is compared with various results fr
integrable billiards and the standard map which has the en
range of dynamics from integrable to fully chaotic. We fini
with a discussion of the similarities and distinctions betwe
near-integrable and chaotic systems and some comm
about mixed systems.
©2003 The American Physical Society05-1
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II. PRELIMINARIES

Consider a near-integrable quantum system governed
smoothly parameter-dependent HamiltonianĤ(l) with clas-
sical analogH(I ,u;l), where

H~ I ,u;l!5H0~ I !1lH1~ I ,u!. ~1!

Without loss of generality, the phase space volume of
energy surface,V, is taken to be a constant as a function
l. This ensures that the eigenvalues do not collectively d
in some direction in energy, but rather wander locally. T
parametrized strength function is given by

Sa~E,l!5
1

2p\E2`

`

eiEt/\^aue2 iĤ (l)t/\ua&dt

5(
n

pan~l!d@E2En~l!#, ~2!

wherepan(l)5u^auEn(l)&u2. Sa(E,l) is the Fourier trans-
form of the autocorrelation function of a normalized initi
stateua&. In the following S̄a(E,l) will denote the smooth
part resulting from the Fourier transform of just the e
tremely rapid initial decay due to the shortest time scale
the dynamics~zero-length trajectories!. We will take ua& to
be a Gaussian wave packet because of its ability to pr
‘‘quantum phase space,’’ but other choices may be us
depending on the circumstances. In one spectroscopic a
cation, we found it to be advantageous to takeua& as a mo-
mentum state@13#.

The overlap intensity–level velocity correlation coef
cient is defined as

Ca~l![

K pan

]En~l!

]l L
E

sasE
, ~3!

wheresa
2 and sE

2 are the local variances of intensities a
level velocities, respectively. The brackets denote a local
ergy average in the neighborhood ofE. It weights most the
level velocities whose associated eigenstates possibly s
common localization characteristics and measures the
dency of these levels to move in a common direction. In t
expression, the phase space volume remains constant s
the level velocities are zero centered~otherwise the mean
must be subtracted!, andCa(l) is rescaled to a unitless quan
tity with unit variance making it a true correlation coeffi
cient. The set of states included in the local energy averag
can be left flexible except for a few constraints. Only en
gies whereS̄a(E,l) is roughly a constant can be used
some intensity unfolding must be applied. The energy ra
must be small so that the classical dynamics are essen
the same throughout the range, but it must also be br
enough to include enough eigenstates for statistical purpo
05620
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III. SEMICLASSICAL DYNAMICS

We develop a theory based upon semiclassical dynam
for the overlap correlation coefficient of regular states
examining its individual components, the level velocitie
and intensities. The theory for the variance of the level
locities involves the trace formula for near-integrable s
tems developed by Ullmo, Grinberg, and Tomsovic@15#. The
near-integrable trace formula is used rather than the sim
integrable trace formula of Berry and Tabor@16# since it
correctly describes the contributions of short, unstable p
odic orbits that occur after a system breaks integrability. T
level velocities are derivatives, and thus are far more se
tive to the perturbation than the intensities. Hence, it is m
important to accurately describe the level velocities. The
tensity variances for near-integrable systems are given by
integrable result as long as the coherent state is not ne
resonance zone.

It turns out that a general result for the level veloc
variance in mixed systems cannot be obtained simply
applying the appropriate Hannay–Ozorio de Almeida s
rule for the effectively regular and chaotic trajectories se
rately. The ‘‘effective’’ trajectories are not easily define
since they do not merely correspond to the trajectories wit
the regular islands, i.e., Kolmogorov-Arnold-Moser~KAM !
islands, and the chaotic sea, respectively. Although, it is
served that the near-integrable result for the level veloci
is in good agreement with the calculated results before
breakup of the last KAM torus.

A. Level velocities

By adapting a method employed by Berry and Keati
@17# for classical chaotic systems with the topology of a ri
threaded by quantum flux and later generalized for all c
tinuous time chaotic systems@18,19#, the variance of the
level velocities can be obtained. The details for ne
integrable systems are in Appendix A where the variance
the level velocities is found to be

sE
2'

2~2p!d11e

V\ ( 8
M

K AM
2 H S ]S̄M

]l
D 2

@J0
2~sl!1ã2J1

2~sl!#

1S ]DSM

]l D 2F ã2

4
@J0~sl!2J2~sl!#21J1

2~sl!G J
3expS 22eTM

\ D L
E

, ~4!

where thee→0 limit is understood, and the amplitude fact
is determined by the integrable system,H0(I ),

AM5
1

2puM u(d11)/2AuKMu
. ~5!

The prime on the sum excludes theM50 term.M labels the
rational tori and is ad-dimensional vector with positive in
teger components whose classical paths are those whic
time t have returned to the same point on their torus a
makingM1 circuits of coordinateu1 , M2 circuits of coordi-
5-2
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nateu2, etc. @16#. KM is the scalar curvature matrix of th
energy contour andTM is the period of the unperturbed orb
on the resonant torus.J0(z) and J1(z) are the standard
Bessel functions. By the Poincare´-Birkhoff theorem only two
periodic orbits survive the breakup of a rational torus. O
orbit is stable and the other is unstable with actionsSs andSu
and stability matricesMs and Mu , respectively. Hence, we
define

S̄M~l![
Su1Ss

2
and DSM~l![

Su2Ss

2
, ~6!

with sl5DSM(l)/\ and

ã~l![
k21

k11
, ~7!

where

k5S 2
det~Mu21!

det~Ms21! D
1/2

. ~8!

In the casek→1 then ã(l)→0 and the spectral staircas
reduces to Ozorio de Almeida’s result@20#.

The summation over rational tori can be accomplished
applying the Hannay–Ozorio de Almeida sum rule for in
grable systems@10#,

( 8
M

AM
2
•••→ V

~2p!d11E dT

T2 •••. ~9!

Thus,

sE
2'

2e

\ E 1

T2K H S ]S̄M

]l
D 2

@J0
2~sl!1ã2J1

2~sl!#

1S ]DSM

]l D 2F ã2

4
@J0~sl!2J2~sl!#21J1

2~sl!G J L
M

3expS 22eT

\ DdT. ~10!

For rational tori, the change of the classical action is prop
tional to the period of motion. We can think of this as
‘‘ballistic’’ action change in contrast to the diffusive actio
changes of chaotic trajectories. The variance is therefore
portional to the square of the period. According to the n
merical calculations discussed in the following, ballistic a
tion changes hold equally well for integrable and ne
integrable systems, but this is not true for mixed phase sp
systems. Thus, excluding mixed systems,
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K H S ]S̄M

]l
D 2

@J0
2~sl!1ã2J1

2~sl!#

1S ]DSM

]l D 2F ã2

4
@J0~sl!2J2~sl!#21J1

2~sl!G J L
M

5z~E,l;\!T2. ~11!

It was shown in Ref.@15# that the expression involving
Bessel functions collapsed to the usual Berry-Tabor exp
sion for most tori~with a minor adjustment for the sligh
distortion of the torus, i.e.,sl50,]DSM /]l50). Only very
slowly as \→0, did tori other than those possessing t
lowest orderM require the Bessel function weightings. F
these higher order tori, Eq.~11! is understood as being jus
the mean square of]S̄M /]l.

Performing the integral, the variance of the level velo
ties becomes simply

sE
2'z~E,l;\!, ~12!

which is only very weakly dependent on\ for those low
order tori requiring the Bessel function weightings. Thus,
the integrable limiting case, the\ dependence disappea
altogether.

For mixed phase space systems, the question is wheth
generalization of Eqs.~9! and ~11! is possible; for the fully
chaotic case, the expressions are modified by replacingT2 by
T and the coefficients change. Is it possible to have fracti
ally weighted parts of both expressions? First, instead
summing over rational toriM , the sum is considered over a
periodic orbits. Given the diffusive action change behav
for fully chaotic systems and ballistic for regular system
conceptually, the full set of action changes might decomp
into a linear and a quadratic component. Continuing with t
logic, Eq.~9! would apply for the periodic orbits with ballis
tic action changes and be weighted by the appropriate f
tion of phase space volume. It is important to note a cou
of subtleties here. Both a stable and an unstable orbit c
bined to define$S̄M ,DSM%. Thus, the quadratic and linea
components cannot be as simple as treating the stable o
ballistically and the unstable orbits diffusively. Perhaps,
least as many orbits with positive Lyapunov exponent
stable orbits should be treated ballistically. Second, the
ingredientS̄M is the average of said stable and unstable o
actions. Taking the mean square of the sum of two orbi
actions is equal to the square of the sum only if the act
changes are nearly equal. Excluding the lowest order t
this does turn out to be roughly true.

Similarly, the remaining unstable orbits would be treat
with the appropriate~chaotic! versions of Eqs.~9! and ~11!.
With this separation, the proposition would be that the le
velocity variance is the sum of the near-integrable result
the previously derived chaotic result@19#,

sE
2'z~E,l;\! f 1

2~2p!d21gK~E,l!\d21

V
~12 f !,

~13!
5-3
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wheref is the fraction of ballistically behaving orbits andg is
a symmetry factor for the system. The quantitiesz(E,l;\)
andK(E,l) would be determined by the ballistic and diffu
sive versions of Eq.~11!, respectively. The section on th
kicked rotor will address this issue.

B. Overlap intensities

Next, the overlap intensities are investigated and a se
classical derivation of their variance is obtained. For an
tegrable system the overlap intensities are best express
action-angle coordinates; details are in Appendix B and
result is

sa
2'

) s j
2

pd K expF22~DI !2

\2 G L
M

, ~14!

where in the exponential argument of the wave packet, e
component is (DI ) j[s j (I2Ia) j . The variance is a Gaussia
weighted average of the action of the wave packet over
rational tori.

The Gaussian weighting can be evaluated by replacing
M averaging by an average of the action variables over
energy surface,

K expF22~DI !2

\2 G L
M

'
~2p!d

V E exp@22~DI !2/\2#d@E2H0~ I !#dI .

~15!

The Hamiltonian in the numerator is expanded aboutIa ,
giving

H0~ I !5H0~ Ia!1va•~ I2Ia!1•••, ~16!

whereH0(Ia)5E and va5]H0(Ia)/]I . Only linear terms
are necessary in the semiclassical limit as long as each w
component is chosen such thats j /\→` as\→0; we take
s j}\1/2 so that uncertainty inI andu shrink similarly as\
shrinks. After performing the integration of the weightin
over the energy shell, the result is

K expF22~DI !2

\2 G L
M

'S p\2

2
D (d21)/2

3
1

V) s jA( ~va j /s j !
2

,

~17!

which has an\ scaling of\ (d21)/2. Therefore, the leading
order\ scaling for the intensity variance for near-integrab
systems is
05620
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) s j

VA( ~va j /s j !
2

}\ (3d21)/2. ~18!

C. Correlations

Finally, the semiclassical theories for the overlap inten
ties and the level velocities outlined above can now be u
to construct the correlation function. Beginning with the c
variance, it can be shown that

Cova~l!5 K pan~l!
]En~l!

]l L
n

5
2phde

V K Sa~E;l!
]N~E;l!

]l L
E

. ~19!

The semiclassical expressions for the strength function
the parametric derivative of the staircase function give

Cova~l!5

2e2(d13)/2) s jp
1/2

V\ K ( 8
M

uAMuuDsu1/2F S ]S̄M

]l
D

3@J0~sl!2 i ã~l!J1~sl!#1 i S ]DSM

]l D
3S J1~sl!1

i ã~l!

2
@J0~sl!2J2~sl!# D G

3expS 2
~DI !2

\2
2

2eTM

\ D L
E

. ~20!

Again, the diagonal approximation has been made in
above expression. Following arguments parallel to those
deriving the variances leads to the expression

Cova~l!5

22) s j

pd/2tH
E dT

T
e22T/tH

3K S ]SM

]l DexpF2~DI !2

\2 G L
M

~21!

for integrable systems, wheretH5\/e is the Heisenberg
time.

In order to make further progress in understanding
correlation function, it is necessary to know the time dep
dence of theM -averaged expression. It is important to no
that the Gaussian weighting factor will not decouple from t
parametric action derivative at long times and thus, the lo
average of the derivatives of the action is not necessa
zero. The weighted action derivatives can be approxima
by the same method as used in the calculation of the varia
of the level velocities, so for integrable systems
5-4
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K S ]SM

]l DexpF2~DI !2

\2 G L
M

'
E ~]SM /]l!exp@2~DI !2/\2#d~T2TM !dM

E d~T2TM !dM

'Tj~l!. ~22!

Note that the above average is linear with the period. Th\
scaling of j(l) is the same as for the average Gauss
weighting in the preceding section, which is\ (d21)/2.

The final result of the covariance is

Cova~l!'

2j~l!) s j

pd/2
. ~23!

Combining this with the results above for the variances g
erates the semiclassical expression for the correlation fu
tion,

Ca~l!'
2j~l!

z1/2~E,l!^exp@22~DI !2/\2#&M
1/2

, ~24!

where the expectation value is evaluated in Eq.~17!. For
near-integrable systems in the semiclassical limit, the ab
result implies that Cova(l)}\ (2d21)/2, whereas the correla
tion Ca(l)}\ (d21)/4 to leading order.

IV. RESULTS

A. Rectangular and box billiards

First, we consider billiards that are totally separable
Cartesian coordinates and thus completely integrable. Th
types of billiards have been used in the study of spec
rigidity @21#. In particular, we examine a rectangular billia
with sidesa,b and a box billiard with sidesa,a,b; the side
lengtha is varied. The density of states is kept constant
not changing the areaA of the rectangle or the volumeV of
the box. The action/angle variables are proportional to
momentum/position coordinates in each direction,

I j5, j pj /p and u j5pqj /, j , ~25!

where, j is the side length of thej th side. The Hamiltonians
are given by

H~ I !5
p2

2m (
j

S I j
2

, j
2D . ~26!

The classical action of the rectangle for a closed orbit
a given resonant torusM is

SM5A8mE@M1
2a21M2

2~A/a!2#1/2 ~27!

the period is
05620
n
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TM5A2m@M1
2a21M2

2~A/a!2#/E ~28!

and the derivative of the action along the orbit is

]SM

]a
5A8mE

a

M1
2a22M2

2~A/a!2

@M1
2a21M2

2~A/a!2#1/2
~29!

Similarly, the classical action of the box is

SM5A8mE@~M1
21M2

2!a21M3
2~V/a2!2#1/2, ~30!

the period is

TM5A2m@M1
2a21M2

2a21M3
2~V/a2!2#/E, ~31!

and the derivative of the action is

]SM

]a
5A8mE

a

~M1
21M2

2!a222M3
2~V/a2!2

@~M1
21M2

2!a21M3
2~V/a2!2#1/2

. ~32!

Using the above quantities and performing the integration
Eq. ~11!, the variances of the action derivatives a
2E2T2/a2 and 16E2T2/5a2 for the rectangle and the box
respectively. Hence, the respective values ofz(E,a) are
2E2/a2 and 16E2/5a2, which approach the variances of th
level velocities in the semiclassical limit. Figure 1 demo
strates how wellz(E,a) approximates the level velocitie
especially as\→0. Note that the level velocities are virtu
ally independent of\ as predicted.

The \ scaling of the intensity variance is predicted to
\5/2 and \4, respectively, f‘or the rectangular and box b
liards. Using Eq.~17! with va, j5p2I a, j /m, j

2 the semiclas-
sical theory and quantum intensity variances are compare
Fig. 2. The agreement is quite good as\→0.

The last two quantities, the covariance and correlation,
shown in Figs. 3 and 4, respectively, along with the resu
from the semiclassical theory. The values ofj(E,a) are ob-
tained from Eq.~22!. For the rectangle

j~E,a!5
2p3/2\

amsA2mE
S I a,1

2

a2
2

I a,2
2

~A/a!2D , ~33!

and for the box

j~E,a!5
p2\2

am2Es2S I a,1
2

a2
1

I a,2
2

a2
2

2I a,3
2

~V/a2!2D . ~34!

The agreement is excellent in both cases. Note that we h
used no fitting parameters in any of the figures in this s
tion.

B. Standard map

In this section we compare the semiclassical theories
the numerical results for the standard map. The class
standard map is defined by

qi 115qi1pi 11 mod~1!,
5-5
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pi 115pi2~k/2p!sin~2pqi ! mod~1!, ~35!

where the ‘‘kicking strength’’k is the varied parameter. Th
map displays the entire range of classical dynamics fr
integrable atk50 to fully chaotic beyondk'5.

Instead of the velocities of the eigenvalues of the Ham
tonian, it is the velocities of the eigenangles for the stand
map which are of interest. The matrix elements of the qu
tum map withN discrete levels can be written@22# as

^nuUun8&5
1

AiN
exp@ ip~n2n8!2/N#

3expS i
kN

2p
cos@2p~n1a!/N# D ~36!

wheren,n850, . . . ,N21; a is a phase term which we se
equal to zero. The effective Planck constant is given
h51/N. The eigenvalues of the propagator areUuc j&
5exp(2ifj)ucj& with real eigenanglesf j . The ‘‘level veloci-
ties’’ are given by the Hellmann-Feynman theorem

df j

dk
5

N

2p
^c j ucos~2pq!uc j&. ~37!
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h

FIG. 1. Variance of the level velocities for rectangular and b
billiards. The area and volume are taken to be unity, while the s
length a51.1. The width of the energy averaging is 200 cente
about an energy of 600. Thus, for\51, an energy of 600 corre
sponds to the 84th eigenenergy level in the rectangle billiard and
564th eigenenergy level in the box billiard. The\ scaling and cor-
respondence between the quantum and semiclassical results a
important features, not the numerical values. Hence, all quant
are in arbitrary units, includingh. The upper panel is for the rect
angle and the lower panel is for the box. The solid line is for
quantum results while the dashed line is the semiclassical theo
05620
-
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The smoothed density of states for the eigenangles@23# is

de~f!5
N

2p
1

1

2p (
n52`

`

exp~ inf!Tr Unexp~2ne!,

~38!

where the sum excludesn50 and the trace of the propagato
in the integrable regime is

Tr Un5(
M
AN

in
exp~2p iNSM !. ~39!

Integrating over the angle, the smoothed spectral stairca

Ne~f!5
Nf

2p
2

1

2p (
n52`

`

(
M

1

n
AiN

n

3exp~ inf!exp~2p iNSM !exp~2ne!. ~40!

The resonant toriM including repetitions for the standar
map are given by a constant momentum equal to the ratio
fraction m/n, wherem50, . . . ,n21 andn is the period of
the torus. The derivative of the action with respect to t
kicking strength is

]SM

]k
5

1

~2p!2 (
i 51

n

cos~2pqi !. ~41!
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FIG. 2. Variance of the intensities for the rectangular and b
billiards. The area and volume are taken to be unity, while the s
lengtha51.1; the energy is 600. As in Fig.~1!, the variance andh
are in arbitrary units. The upper panel is for the rectangle and
lower panel is for the box. The solid line represents the quan
results while the dashed line is the semiclassical theory.
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For the integrable case (k50), the periodic points areqi
5q01m• i /n mod(1) and hence,]SM /]k50 for all reso-
nant tori. Thus, by Eqs.~11! and ~12! the variance of the
level velocities is zero.

In the near-integrable regime, the variance of the
genangles is approximately given by the result

sf
2 '4p2zN2. ~42!

Note that the eigenangles are divided by an effective\ mak-
ing the variance of the eigenangles quadratic inN. We do not
have an analytic formula forz, but it can be obtained nu
merically from the quadratic period dependence of the v
ance of the action derivatives averaged over the tori. Fok
50, it is straightforward to calculate analytically the pos
tions of the stable and unstable periodic orbits that arise
soon as integrability is broken. Curiously, using these po
as initial conditions for the periodic orbits throughout t
near-integrable regime, roughlykP@0,2#, gives results
within a few percent of that found by locating the true pe
odic orbits. In order to make long time calculations, th
compromise is indispensable and does not harm the app
mation noticeably. In Fig. 5, the near-integrable theory
shown to give excellent agreement with the quantum
genangle velocity variance even though there exists a sig
cant proportion of unstable orbits for the larger values ok
shown that are being treated as though they were stable

In the mixed regime, the corresponding proposition of E
~13! is
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FIG. 3. Covariance for the rectangular and box billiards. T
area and volume are taken to be unity, while the side lengta
51.1; the energy is 600. As in Fig. 1, the covariance andh are in
arbitrary units. The upper panel is for the rectangle and the lo
panel is for the box. The solid line is for the quantum results wh
the dashed line is for the semiclassical theory.
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sf
2 '4p2z~k! f N21g

D~k!

4p2 ~12 f !N, ~43!

whereg54 andD(k) is the classical action diffusion con
stant. It was shown previously@24# that a direct method
based on classical orbits gave a good correspondence
tween the theory and quantum values for

r
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FIG. 4. Correlation for the rectangular and box billiards. T
area and volume are taken to be unity, while the side lengta
51.1; the energy is 600. As in Fig. 1,h is in arbitrary units, while
the correlation is dimensionless. The upper panel is for the recta
and the lower panel is for the box. The solid line is for the quant
results while the dashed line is for the semiclassical theory.
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FIG. 5. The variance of the level velocities for the standard m
(N5500). The variance andk are dimensionless. The solid lin
represents the quantum results while the dashed line is the sem
sical theory using the near-integrable results of Eq.~42!.
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sf
2 '

N2

4p2E
0

1E
0

1

V~q0!^V@q(n)~q0 ,p0!#&ndp0dq0

'c1~k!N1c2~k!N2, ~44!

whereV(q)5cos(2pq), but no understanding was given o
the two coefficients. Equation~43! gives one plausible, bu
naive, interpretation.

In order to test numerically the separation of diffusive a
ballistic contributions in the mixed regime, it is impossible
work with the periodic orbits. They proliferate exponentia
and must be found numerically. The time over which this c
be done by brute force calculation is too short for our p
poses. Instead, a Monte Carlo technique is needed. We
devised a method that begins with a uniform sampling
initial conditions in the phase space, and relies on the pr
erties of finite time Lyapunov exponents@25#. Although, a
stable periodic orbit has a vanishing Lyapunov exponent,
partial period of its motion, the traceQ of its stability matrix
can grow as a power of the propagation time. This can g
a stable orbit the appearance of being unstable dependin
circumstances. For example, constructing a surface of
tion based on whetheruQu,2 fails miserably. If, instead, one
seeks the least squares deviation of the time developme
Q from the form

Q̄5aTg expmT, ~45!

then the estimate of the Lyapunov exponent can be use
judge whether an orbit is in the stable or unstable part of
phase space; i.e., the construction of the correct surfac
section is recovered in this way.

Figure 6 gives a histogram of the finite time Lyapun
exponentsm, calculated using Eq.~45! for the orbits in this
regime. The orbits are separated into three rough catego
depending upon their stabilities as mentioned in the prec
ing section. The broadenedd-function feature near zero rep

0
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8

10

0 0.5 1

P
(µ

)

µ

FIG. 6. Histogram of finite time Lyapunov exponents in t
standard map in the mixed regime. The parameters arek52.7 and
n5500, wheren51 is the time interval between successive kick
The Lyapunov exponents are in units of 1/n. The values ofm were
obtained by a least squares fit of the natural logarithm of Eq.~45!.
05620
n
-
ve
f
p-

a

e
on
c-

of

to
e
of

ies
d-

resents the stable orbits that have action derivatives wi
quadratic dependence upon time. The set of most highly
stable or chaotic trajectories give an approximate log-nor
distribution @25#. In between these two features lie th
weakly unstable orbits. It turns out that the coefficientz(k)
converges well if averaged over the stable orbits and up
similar number of the weakly unstable orbits. However,
also turns out that when compared to the coefficientc2(k) of
Eq. ~44!, the fractionf deduced by their comparison is incon
sistent with the relative fraction used to derivez(k) for k
values in the range@1.5,4.0#; see Appendix C.

A second inconsistency with the simplistic separati
problem is that the remaining strongly unstable orbits do
show a purely diffusive behavior. They show both a qu
dratic and linear dependence in their action derivative v
ances; i.e., the numerical evaluation ofD(k) is suspect. It
could also be evaluated according to its asymptotic exp
sion @24#, but again requires a large value off to be consis-
tent with the coefficientc1(k) unlessk exceeds roughly 5 or
so. At that pointf '0 and the system is basically in the full
chaotic regime. We attempted several schemes of separ
out orbits according to ballistic or diffusive behaviors, no
of which worked and are outlined in Appendix C.

In spite of the lack of apparent separability, the simplis
expression, Eq.~44!, works quite well. We recalculate th
results of Ref.@24# taking into account the Heisenberg tim
associated with the mean eigenangle spacing in Fig. 7. A
function of kicking strengthk the agreement between th
semiclassical theory and the variance of the eigenangle
locities is quite good throughout the entire transition fro
integrability to full chaos.

Next we turn to the overlap intensities. Since the energ
not conserved for maps, Eq.~17! does not apply. The vari-
ance is obtained directly from Eq.~14! where the average is
over all resonant tori; it becomes just the Gaussian norm
ization factor. The width of the Gaussian wave packet
Cartesian coordinates is taken to be proportional to

.
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1000

0 2 4 6

σ2 φ

k

FIG. 7. The variance of the level velocities for the standard m
(N5500). The variance andk are dimensionless. The solid line i
for the quantum results while the dashed line is for the class
phase space average of Eq.~44!. The timen is taken to beN/g
5125.
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square root of\, s5bA\5b/A2pN. Thus, fork50 the
variance of the intensities is

sa
2'A b

N3 ~46!

This expression does not take into account the reflect
(q,p)→(12q,12p) and time reversal symmetries of th
kicked rotor@26#. Thus, we symmetrize the wave packet a
cordingly.

Figure 8 shows the good agreement between the semi
sical theory and the intensity variance for the integrable
gime atk50.01. The only exceptional cases are the tori
p50 andp50.5, which happen to be self-symmetric and
the lowest order resonances. Whereas fork50, they would
lead to double the intensity variance and be accurately
counted for once the symmetry was fully incorporated, ak
50.01 they are strongly affected by their location on lo
order resonances. As we do not have the generalizations
essary for those cases, we avoid the resonance zones in

Finally, we turn to the correlations. The covariance b
tween the intensities and level velocities is given by Eq.~23!
divided by\51/2pN since the level velocities in the stan
dard map are actually eigenangle velocities. After symm
trizing the wave packet, Fig. 9 compares the semiclass
prediction with the quantum results. Also, the correlation
compared in Fig. 10. In both cases the agreement betw
the semiclassical theory and the quantum results is good

In the near-integrable regime, the covariance and corr
tion is strongest for resonance zones; see Fig. 11 and
@13#. The quantizing tori are deforming at a greater rate
side the resonance while the tori outside the resonance
only slightly perturbed. Thus, the associated level veloci
are larger for this area of phase space. Also, note that the
a dip in the correlation near the stable periodic orbit at
center of the resonance zone. The dip is only present in

0

0.0005

0.001

0 0.25 0.5 0.75 1

σ2 α

pα

FIG. 8. Variance of the intensities of the standard map fo
section of phase space atqa50.25. qa andpa are the locations in
Cartesian coordinates of the center of the Gaussian wave pa
The other parameters areN5500 andk50.01. The variance andpa

are dimensionless. The solid line is for the quantum results w
the dashed line is for the semiclassical theory.
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correlation and not in the covariance. The correlation is
vided by the variance of the intensities, which is large n
the center of the resonance. The intensity variance is divi
by the winding numbers, Eq.~17!, which are small near the
center of the resonance making the intensity variance la

V. DISCUSSION

We have derived semiclassical expressions of the corr
tion of level velocities and overlap intensities in nea
integrable systems. Their\ scaling is very different than
previously derived in the chaotic limit@19# where the level
velocity variance is

a

et.
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FIG. 9. Covariance of the standard map for a section of ph
space atqa50.25. qa and pa are the locations in Cartesian coo
dinates of the center of the Gaussian wave packet. The other pa
eters areN5500 andk50.01. The covariance andpa are dimen-
sionless. The solid line is for the quantum results while the das
line is for the semiclassical theory.

-0.2

0

0.2

0.4

0.6

0.8

0 0.25 0.5 0.75 1

C
α(

k)

pα

FIG. 10. Correlation of the standard map for a section of ph
space atqa50.25. qa and pa are the locations in Cartesian coo
dinates of the center of the Gaussian wave packet. The other pa
eters areN5500 andk50.01. The correlation andpa are dimen-
sionless. The solid line is for the quantum results while the das
line is for the semiclassical theory.
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sE
2}\d21 ~47!

and the intensity variance@27# is

sa
2}\2d21. ~48!

In addition, for chaotic systems the action derivatives w
eventually decouple from the weightings in the correlation
that in the semiclassical limit the random matrix theory p
diction is recovered stating that no correlations exist@11,19#.
On the other hand, for finite\ with the average computed u
to the Heisenberg time, there is a possibility of short orb
that do not decouple in chaotic systems, so correlations
exist. For near-integrable systems there is no decoup
even in the long time limit.

Combining the previously derived results in chaotic s
tems with the newly derived results for near-integrable s
tems, for mixed phase space systems we attempted to s
rate the orbits for applying the Hannay–Ozorio de Alme
sum rule to the different regions of phase space. Sev
criteria were chosen as a basis for the separation. All of th
led to inconsistencies in the interpretation. It seems that a
the unstable orbits spend some part of their evolution m
icking stable motion and do not give standard diffusion co
tributions to action derivatives. Nevertheless, a differ
semiclassical procedure@24#, not going through the Hannay
Ozorio sum rule derivation, gives a theoretical predicti
that matches well with the level velocity variances indep
dent of the dynamical regime of the system.

Finally, the correlation between the level velocities a
the intensities has been shown to highlight resonance z
in near-integrable systems. The resonance zones ex
greater localization since the motion is bounded within
separatrix. Investigating the correlation and covariance se
rably may yield more information about the system. An e
ample is the dip in the correlation that occurs near the ce
of the resonance zone due to the stable periodic orbit; the
is not present in the covariance.
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regime.qa andpa are the locations in Cartesian coordinates of
center of the Gaussian wave packet, which are dimensionless.
other parameters areN5500 andk50.5.
05620
l
o
-

s
ay
g

-
-
pa-

al
m
of
-
-
t

-

es
bit
e
a-
-
er
ip

h

APPENDIX A: LEVEL VELOCITIES

The method@17# to obtain the variance of the level ve
locities begins with the smoothed spectral staircase

Ne~E,l!5(
n

u@E2En~l!#. ~A1!

Taking the derivative with respect to the parameter, we
tain

]Ne~E,l!

]l
5(

n
d@E2En~l!#

]En~l!

]l
. ~A2!

The quantitye is an energy smoothing term which will b
taken smaller than the mean level spacing. Upon energy
eraging,

K ]Ne~E,l!

]l L
E

5d̄~E,l!K ]En~l!

]l L
n

, ~A3!

whered̄(E,l) is the mean level density which is the reci
rocal of the mean level spacing and proportional to\2d. The
mean level spacing is related to the phase space volum
V5d̄hd. Thus, in order to obtain information about the lev
velocities, we will evaluate the spectral staircase.

The semiclassical construction of the spectral staircas
broken into an average and an oscillating part,

Ne~E,l!5N̄~E,l!1Nosc~E,l!. ~A4!

The average staircaseN̄(E,l) is the Weyl term and to lead
ing order in\ is given by

N̄~E,l!5
1

hdE u@E2H~ I ,u;l!#dIdu ~A5!

The oscillating part of the spectral staircase is a sum o
rational tori with topologyM of the unperturbed Hamil-
tonianH0(I ) @15#,

Nosc~E,l!5
2

\ (d21)/2 ( 8
M

AMReH expS iS̄M~l!

\

2
ihMp

2
1

ibMp

4
D $J0@DSM~l!/\#

2 i ã~l!J1@DSM~l!/\#% expS 2eTM

\ D J .

~A6!

The phasehM5M•h, whereh are the Maslov indices and
bM is equal to the sign of the determinant of the curvatu
matrix.
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The variance of the level velocities is obtained by taki
the mean square of the counting function derivatives,

K S ]Ne~E,l!

]l D 2L
E

5K (
n

(
m

]En~l!

]l

]Em~l!

]l

3de@E2En~l!#de@E2Em~l!#L
E

.

~A7!

For a nondegenerate spectrum, the summation is non
only if n5m because of the product of the twod functions.
Since Lorentzian smoothing is applied, then

de
2~x!5

1

2pe
de/2~x! ~A8!

for e!d̄21. Thus we have

K S ]Ne~E,l!

]l D 2L
E

5
d̄

2pe K S ]En~l!

]l D 2L
n

. ~A9!

The summation over the rational tori is most sensitive
the changing actions and periods because of the assoc
rapidly oscillating phases, i.e., the division by\ in the expo-
nential. Since the energy smoothing terme is taken smaller
than a mean level spacing, it scales at least by\d and the
derivatives of the period vanish as\→0. Thus, only the
derivatives of the actions are considered, and the oscilla
part of the staircase yields

]Nosc~E!

]l
'

2

\ (d11)/2 ( 8
M

AMImH 2expS iS̄M~l!

\

2
ihMp

2
1

ibMp

4
D F S ]S̄M

]l
D

3@J0~sl!2 i ã~l!J1~sl!#1 i S ]DSM

]l D
3S J1~sl!1

i ã~l!

2
@J0~sl!2J2~sl!# D G

3expS 2eTM

\ D J . ~A10!

After making the diagonal approximation and energy av
aging, the variance of the level velocities for a ne
integrable system is
05620
ro

o
ted

g

r-
-

sE
2'

2~2p!d11e

V\ ( 8
M

K AM
2 H S ]S̄M

]l
D 2

@J0
2~sl!1ã2J1

2~sl!#

12S ]S̄M

]l
D S ]DSM

]l D F ã

2
J0~sl!@J0~sl!2J2~sl!#

1ãJ1
2~sl!G1S ]DSM

]l D 2F ã2

4
@J0~sl!2J2~sl!#2

1J1
2~sl!G J expS 22eTM

\ D L
E

. ~A11!

The middle term vanishes since (]S̄M /]l) and (]DSM /]l)
are uncorrelated and both average to zero.

APPENDIX B: OVERLAP INTENSITIES

The variance of the intensities is derived by examini
the oscillating part of the strength function

Sa,osc~E,l!5
21

p
ImE ^auu&G~u,u8;E!^u8ua&dudu8,

~B1!

where

G~u,u8;E!5
1

i\~2p i\!(d21)/2

3(
j

uDsu1/2exp@ iSj~u,u8;E!/\2 in j8p/2#

~B2!

is the semiclassical energy Green’s function. The above s
is over all paths that connectu to u8 on a given energy
surfaceE. Ds is a determinant involving second derivative
of the actions,

Ds5U ]2S

]u]u8

]2S

]u]E

]2S

]E]u8

]2S

]E2
U . ~B3!

We assume that the Gaussian wave packet in Cartesian c
dinates can be define locally as a Gaussian in action-a
variables using the Wigner function

TABLE I. Fixed Lyapunov exponent cutoff.f 1 is the fraction of
orbits that have a Lyapunov exponent less thanm50.5.

k z(k) f f 1

1.5 9.6231025 0.982 1.000
2.0 1.1131024 0.856 0.798
2.5 1.7631024 0.358 0.336
3.0 3.6631024 0.161 0.142
3.5 3.5831024 0.166 0.146
4.0 3.6731024 0.118 0.107
5-11



in

lie
ris

ck

bo
n

th
a

um
of
s is
hen
o

de-

the

ov
ave
e.

ble
in

its

a-

o- ifi-

CERRUTI, KESHAVAMURTHY, AND TOMSOVIC PHYSICAL REVIEW E68, 056205 ~2003!
AW~ I ,u!52dexp$2~DI !2/\22~Du!2%, ~B4!

where (DI ) j[s j (I2Ia) j and (Du) j[(u2ua) j /s j . The in-
verse transform is evaluated by stationary phase to obta

^auu&^u8ua&5
1

pd/2) s j

expF2~Du!2

2
2

~Du8!2

2

1
i ~ I2Ia!•~u2u8!

\ G . ~B5!

The Gaussian localization in action-angle space imp
that the dominant contributions to the strength function a
from tori whose trajectories are closed, i.e., rational toriI M .
An expansion about the center of the Gaussian wave pa
yields

Sj~u,u8;E!5SM~ua ,ua ;E!1I j•~u2u8!, ~B6!

where quadratic terms have been neglected. Using the a
expansion of the action, the integrals over the angles ca
performed by stationary phase, giving

Sa,osc~E,l!'

2(d11)/2) s j

p1/2\ (d11)/2 ( 8
M

uDsu1/2

3cosS SM

\
2

hMp

2
1

bMp

4 D
3expF2~DI !2

\2 G . ~B7!

The above result for the oscillatory part of the streng
function can be used to obtain the variance of intensities

sa
25

2pe

d̄
^Sa,osc

2 ~E,l!&E

'

e2d11~2p!d) s j
2

V\

3K ( 8
M

uDsuexpF22~DI !2

\2 GexpS 22eTM

\ D L
E

,

~B8!

TABLE II. Twice the regular orbits.f 2 is twice the fraction of
regular orbits andm2 is the cutoff of the Lyapunov exponent ass
ciated with f 2.

k z(k) f f 2 m2

1.5 1.1731024 0.812 0.687 0.318
2.0 1.4931024 0.638 0.526 0.443
2.5 2.1931024 0.288 0.256 0.420
3.0 2.1931024 0.269 0.241 0.590
3.5 2.2131024 0.268 0.246 0.702
4.0 2.2931024 0.189 0.179 0.713
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where we have used the diagonal approximation for the s
overM . Since the trace of Green’s function is the density
states given by Berry and Tabor, and the density of state
the energy derivative of the spectral staircase function, t
uDsu5TM

2 AM
2 /(2p)d21. Hence, given the Hannay-Ozori

sum rule for(MAM
2 , Eq. ~9!, then

( 8
M

uDsu•••→
V

~2p!2dE dT••• . ~B9!

Since the Gaussian weighting of the action variables is in
pendent of the period, it follows that

sa
2'

) s j
2

pd K expF22~DI !2

\2 G L
M

. ~B10!

APPENDIX C: BALLISTIC VERSUS DIFFUSIVE
BEHAVIOR

We tried three different methods for separating out
ballistic and diffusive orbits. The fraction of ballistic orbitsf
was deduced by

f 5
c2~k!

4p2z~k!
, ~C1!

wherec2(k) was determined by Eq.~44!. The first method
was to divide the orbits by a fixed value of the Lyapun
exponent. It turned out that a Lyapunov exponent of 0.5 g
fairly good result, but there is no explanation of this valu
Table I summarizes these results.

The next method was to take twice the fraction of sta
orbits as the number of ballistic orbits. This is summarized
Table II.

For the final method we took the greatest number of orb
up to some Lyapunov exponent that did not changez(k)
significantly as the number of ballistic orbits and is summ
rized in Table III.

TABLE III. Stable quadratic.f 3 is the number of orbits included
in the ballistic term which does not change its coefficient sign
cantly.m3 is the corresponding Lyapunov exponent.

k z(k) f f 3 m3

1.5 1.8431024 0.516 0.412 0.2
2.0 2.5831024 0.368 0.302 0.3
2.5 3.3031024 0.191 0.165 0.2
3.0 4.2631024 0.139 0.124 0.4
3.5 4.0131024 0.148 0.137 0.4
4.0 4.3131024 0.105 0.100 0.4
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