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The correlation between overlap intensities and level velocities has been introduced as a sensitive measure
capable of revealing phase space localization. Previously applied to chaotic quantum systems, here we extend
the theory to near-integrable and mixed quantum systems. This measure is useful in the latter cases because it
has the ability to highlight certain phase space structures depending upon the perturbation used to parametri-
cally vary the Hamiltonian. A detailed semiclassical theory is presented relating the correlation coefficient to
the phase space weighted derivatives of the classical action. In the process, we confront the question of whether
the Hannay—Ozorio de Almeida sum rules are simply extendable to mixed phase space systems. In addition,
the# scalings of the correlation coefficient and relevant quantities are derived for nearly integrable systems.
Excellent agreement is found between the theory and the results for integrable billiards as well as for the
standard map.
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I. INTRODUCTION involves the respective integrable and chaotic Hannay—
Ozorio de Almeida sum rule expressiofk)] weighted by
System response to parametric variations or perturbatiorigie relative fractions of phase space volume. We find, in-

is of great importance. It is a powerful experimental practicestead, that the intermittent behavior of the unstable orbits
from which new information about a system can be ex-Prevents this simple picture from applying.
tracted, which is not generally available by other means, es- Tomsovic[11] introduced a measure that reveals phase
pecially for complex systems, i.e., disordered, interactingsPace localization of quantum eigenstates. Originally intro-
many-body, and/or simple chaotic systems. External paranfiucéd for chaotic systems, the measure correlates the

eters such as electromagnetic fields, temperatures, appli&}@nges in the eigenenergies due to a perturbdtmed
level velocities”) with the overlap intensities between the

stresses, etc., are controllable and often suitable for this pur-, L

pose. Some specific examples include conductance fluctu igenstates and a probe state, which 1S often usefully phosen
tions in quantum dotfl], and variations in eigenmodes due 0 be.a cpherent state. More rec'ently, |t.has been |Qen'§|f|ed as
to shape deformations of microwave cavitje$ and vibrat- contributing to _the sc_ale assoma_ted with the fidelity in the

) Lo C weak perturbative regimiel2]. For integrable systems phase
ing plates[3]. Intramolecular vibrational energy redistribu- space localization is the norm, not the exception. There and

tion [4] in molecules is another example wherein the techy, yhe hear-integrable regime, the localization is associated

nique of parametric variations can lead to useful insightSyity tori, resonance zones, and stable periodic orbits. The
regarding the key perturbations responsible for strong modggrelation measure has been shown to highlight different
mixings. Molecular spectroscopy in external fields is an aregeatyres of classical phase space depending upon the pertur-
of current interest and the response of a molecular system 9ation [13]. Several years ago Weissman and Jor{rief]
external fields can be usefully analyzed from the parametrigerformed a similar study involving the Husimi distributions
perspective$5]. and parametric changes in eigenenergy levels.

In the extreme chaotic or disordered limit, there exist uni-  This paper is organized as follows: we begin by develop-
versalities in system response to perturbatifis and the ing the semiclassical theory of the correlations for near-
eigenstates respect the ergodic hypothEgjsi.e., no phase integrable systems where we also remark on the more gen-
space localization; there is only a scale to extract. On theral theory for the level velocities in mixed systems. The
other hand, the response of integrable or near-integrable syserrelations have been previously studied in highly excited
tems is far richer being system dependent, and the Husimovibrational states in molecules where multiresonant Hamil-
distributions of the eigenstates are confined to classical totonians are applicablel3]. Section Il gives the semiclassi-
[8,9]. A perturbation is likely to give rise to subsets of cal theories of the level velocities, strength functions, and
eigenlevels/states that respond very similarly as a group, anaverlap intensity—level velocity correlation coefficients. The
the parametric quantities thereby carry far more informationsemiclassical theory is compared with various results from
For mixed systems both regular and chaotic trajectories fornmtegrable billiards and the standard map which has the entire
phase space structures and the most obvious, naive initishnge of dynamics from integrable to fully chaotic. We finish
starting point would be to attempt to analyze each structuravith a discussion of the similarities and distinctions between
separately. At this level of approximation, using the appro-near-integrable and chaotic systems and some comments
priate semiclassical theory for regular and chaotic regiongbout mixed systems.
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Il. PRELIMINARIES Ill. SEMICLASSICAL DYNAMICS

Consider a near-integrable quantum system governed by a We develop a theory based upon semiclassical dynamics
smoothly parameter-dependent Hamiltonka(h) with clas- ~ for the overlap correlation coefficient of regular states by
sical analogH (I, 6;\), where examining its individual components, the level velocities,
and intensities. The theory for the variance of the level ve-
locities involves the trace formula for near-integrable sys-
tems developed by Ullmo, Grinberg, and Tomsduvib]. The
near-integrable trace formula is used rather than the simpler
Without loss of generality, the phase space volume of théntegrable trace formula of Berry and Tabft6] since it
energy surfacey, is taken to be a constant as a function of correctly describes the contributions of short, unstable peri-
\. This ensures that the eigenvalues do not collectively drifedic orbits that occur after a system breaks integrability. The
in some direction in energy, but rather wander locally. Thelevel velocities are derivatives, and thus are far more sensi-
parametrized strength function is given by tive to the perturbation than the intensities. Hence, it is more

important to accurately describe the level velocities. The in-
tensity variances for near-integrable systems are given by the
S, (E\)= L - eiEt/ﬁ<a|efil:|()\)t/ﬁ|a>dt integrable result as long as the coherent state is not near a
“ 27h )~ resonance zone.
It turns out that a general result for the level velocity
:2 PN E—E (M), (2) variance in mixed systems cannot be .obtained si_mply by
n applying the appropriate Hannay—Ozorio de Almeida sum
rule for the effectively regular and chaotic trajectories sepa-
rately. The “effective” trajectories are not easily defined
since they do not merely correspond to the trajectories within

H(,8N)=Hg(l)+XH(1,6). (1)

wherepn(\) =|{a|En(\))|?. S,(E,\) is the Fourier trans-

form of the autocorrelf';\tlo_n functlon'of a normalized initial the regular islands, i.e., Kolmogorov-Arnold-Mosé&AM )
state|e). In the following S,(E,\) will denote the smooth jsjands, and the chaotic sea, respectively. Although, it is ob-
part resulting from the Fourier transform of just the ex-served that the near-integrable result for the level velocities

tremely rapid initial decay due to the shortest time scale ofs in good agreement with the calculated results before the
the dynamicgzero-length trajectoriesWe will take |@) to breakup of the last KAM torus.

be a Gaussian wave packet because of its ability to probe
“guantum phase space,” but other choices may be useful A. Level velocities
depending on the circumstances. In one spectroscopic appli-

cation, we found it to be advantageous to tékg as a mo- By adapting a method employed by Berry and Keating

mentum stat¢13] [17] for classical chaotic systems with the topology of a ring

The overlap intensity—level velocity correlation coeffi- t.hreaded.by quantL!m flux and later generall_zed for all con-
cient is defined as tinuous time chaotic systend4.8,19, the variance of the

level velocities can be obtained. The details for near-

integrable systems are in Appendix A where the variance of

< IEL(N) > the level velocities is found to be
an” _
E d+1 2
c(\)=—E 3 2(2m)* e o, = .
0.0 ol~ Vi % AZ P [J2(sy) +a%3%(s))]
where o2 and o are the local variances of intensities and dASy\?| a2
.. . _ 24 52
level velocities, respectively. The brackets denote a local en- o) |2 [3o(s0) = Ja(s))]7+J1(s))

ergy average in the neighborhood Bf It weights most the
level velocities whose associated eigenstates possibly share —2€Ty
common localization characteristics and measures the ten- xex;{ 7 ) :
dency of these levels to move in a common direction. In this E
expression, the phase space volume remains constant so thg{ere thee— 0 limit is understood, and the amplitude factor

the level velocities are zero centeréatherwise the mean s getermined by the integrable systeiy(1)
must be subtractedandC,(\) is rescaled to a unitless quan-

tity with unit variance making it a true correlation coeffi- 1
cient. The set of states included in the local energy averaging Av= 2 M@ D2 i 5
can be left flexible except for a few constraints. Only ener- m M

gies whereS,(E,\) is roughly a constant can be used or The prime on the sum excludes thke=0 term.M labels the
some intensity unfolding must be applied. The energy rangeational tori and is al-dimensional vector with positive in-
must be small so that the classical dynamics are essentialtgger components whose classical paths are those which at
the same throughout the range, but it must also be broatime t have returned to the same point on their torus after
enough to include enough eigenstates for statistical purposesiakingM , circuits of coordinated;, M, circuits of coordi-

4
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nate 6,, etc.[16]. Ky, is the scalar curvature matrix of the IS 2

energy contour andl, is the period of the unperturbed orbit {( N ) [J5(sy) +a2di(s,)]

on the resonant torusly(z) and J4(z) are the standard

Bessel functions. By the PoincaBirkhoff theorem only two dASy\? 22 -
periodic orbits survive the breakup of a rational torus. One ( ) 7 [do(s1) = J2(s) 7+ J1(s))
orbit is stable and the other is unstable with actiSpandS,

2N

I

and stability matricedg and M, respectively. Hence, we ={(EN:H)T2. (11)
define
It was shown in Ref[15] that the expression involving
. S,+S S,— S, B_essel functions _coll_apsed to the L!sual Berry-Tabor expres-
Sy(N)= > and ASM()\)ET, (6) sion for most tori(with a minor adjustment for the slight

distortion of the torus, i.es,=0,0AS,;/dN=0). Only very

slowly as#—0, did tori other than those possessing the

with s,=ASy(\)/% and lowest orderM require the Bessel function weightings. For
these higher order tori, Eq11) is understood as being just
the mean square a@fSy, /J\.

, 7 Performing the integral, the variance of the level veloci-

k+1 ties becomes simply

where O'E%é/(E,)\,ﬁ), (12)
which is only very weakly dependent dn for those low
order tori requiring the Bessel function weightings. Thus, in

(8) the integrable limiting case, th# dependence disappears
altogether.

_ For mixed phase space systems, the question is whether a

In the casex—1 thena(\)—0 and the spectral staircase generalization of Eq99) and (11) is possible; for the fully

reduces to Ozorio de Almeida’s res{®0]. chaotic case, the expressions are modified by replaciny

The summation over rational tori can be accomplished byr and the coefficients change. Is it possible to have fraction-

applying the Hannay—-Ozorio de Almeida sum rule for inte-ally weighted parts of both expressions? First, instead of
grable system§10], summing over rational toM, the sum is considered over all

periodic orbits. Given the diffusive action change behavior

for fully chaotic systems and ballistic for regular systems,

Z, Af/r"—> \ fd_-zr (9) conceptually, the full set of action changes might decompose

M (2m)9t1) T into a linear and a quadratic component. Continuing with this
logic, Eq.(9) would apply for the periodic orbits with ballis-

tic action changes and be weighted by the appropriate frac-

Thus, tion of phase space volume. It is important to note a couple

of subtleties here. Both a stable and an unstable orbit com-

K=

( de(Mu—1)>1’2
- de(M¢—1)

<[([75M) bined to defing{Sy ,ASy}. Thus, the quadratic and linear
[JO(S)\)-FaZJl(S)\)] components cannot be as simple as treating the stable orbits
ballistically and the unstable orbits diffusively. Perhaps, at
Sy least as many orbits with positive Lyapunov exponent as
+(T> —[Jo(s)) = Ja(5y) 12+ J3(s)) ]> stable orbits should be treated ballistically. Second, the key
M ingredientS,, is the average of said stable and unstable orbit

7 (100  actions is equal to the square of the sum only if the action
changes are nearly equal. Excluding the lowest order tori,
this does turn out to be roughly true.
For rational tori, the change of the classical action is propor- Similarly, the remaining unstable orbits would be treated
tional to the period of motion. We can think of this as aWith the appropriatéchaotig versions of Eqs(9) and (11).
“pallistic” action change in contrast to the diffusive action With this separation, the proposition would be that the level
changes of chaotic trajectories. The variance is therefore proelocity variance is the sum of the near-integrable result and
portional to the square of the period. According to the nu-the previously derived chaotic resyit9],
merical calculations discussed in the following, ballistic ac- i1 i1
tion changes hold equally well for integrable and near- o2 {(E N+ 2(2m)" " "gK(E,M% (1-1)
integrable systems, but this is not true for mixed phase space "~ E Y Y, '
systems. Thus, excluding mixed systems, (13

—2¢T actions. Taking the mean square of the sum of two orbits’s
X exp{ ) daT
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wheref is the fraction of ballistically behaving orbits agds

a symmetry factor for the system. The quantitié&,\ ;%) H Tj

andK(E,\) would be determined by the ballistic and diffu- ol= oy (3d-1)/2, (18)
sive versions of Eq(11), respectively. The section on the / 5

kicked rotor will address this issue. vy X (wajl0y)

B. Overlap intensities C. Correlations

Next, the overlap intensities are investigated and a semi- Fjnaly, the semiclassical theories for the overlap intensi-

classical derivation of their variance is obtained. For an inyjes and the level velocities outlined above can now be used
tegrable system the overlap intensities are best expressed ) construct the correlation function. Beginning with the co-
action-angle coordinates; details are in Appendix B and th§ s iance. it can be shown that

result is
JER(N)
COVa(h)=<pan(>\) >
T T \ex 52 ’ (14 27hl% IN(E;\)
M = Sa(E;)\)—m\ . (19
E

where in the exponential argument of the wave packet, each
componentisfl);=o;j(1—1,);. The variance is a Gaussian The semiclassical expressions for the strength function and
weighted average of the action of the wave packet over théhe parametric derivative of the staircase function give
rational tori.

The Gaussian weighting can be evaluated by replacing the

. . . _62(d+3)/2H o w2 _
M averaging by an average of the action variables over the j , dl [ ¥Swm
energy surface, Cov,(N) = V3 % |Am|[Dg| N
—2(Al1)? ~ [ 0ASy,
N X[Jo(sy) —ia(n)da(s)]+i| —+
M
(2m) - ia(\)
~— fexp[—Z(AI) 112]8[E—Hg(1)]dl. x| Jal(s)+ —5—[do(s)) ~ Ja(s))]
(15) y p(_(Al)Z_ZETM)> 0
The Hamiltonian in the numerator is expanded ablut h? h E

giving
Again, the diagonal approximation has been made in the
Ho(D=Ho(lo) T o, (1=1,)+ -, (16)  above expression. Following arguments parallel to those in

deriving the variances leads to the expression
whereHgy(l,)=E and w,=dHy(1,)/dl. Only linear terms

are necessary in the semiclassical limit as long as each width

component is chosen such that/n—o asf—0; we take _ZH 9i rdT
o1 so that uncertainty i and @ shrink similarly ash Cov,(N)=—4> j 78_2”7“
shrinks. After performing the integration of the weighting ™ TH
over the energy shell, the result is ISy (A2
e ) e
< F{_z(AI)Z > (ﬂ,ﬁZ) (d-1)/2 < 2N hz "
exg —— ~|—
h? M 2 for integrable systems, where ,=7%/e is the Heisenberg
time.
1 In order to make further progress in understanding the
X ' correlation function, it is necessary to know the time depen-
vI] 7| > (wgjl0oy)? dence of theM -averaged expression. It is important to note

that the Gaussian weighting factor will not decouple from the
(170  parametric action derivative at long times and thus, the local
average of the derivatives of the action is not necessarily
which has ani scaling of #9712, Therefore, the leading zero. The weighted action derivatives can be approximated
order# scaling for the intensity variance for near-integrableby the same method as used in the calculation of the variance
systems is of the level velocities, so for integrable systems
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<<asM) p[—(m)Z > Tw=2m[MZaZ+M2(A/a)2]/E (28)
——|ex
2
g h M and the derivative of the action along the orbit is
f (9Sy 1IN exd — (A7 S(T—Ty)dM S _ [BmE MZa?—M3( Ala)? 29
=~ Jga a [Mia’+M3(Ala)?]"?
f S(T—Ty)dM

Similarly, the classical action of the box is

~TEN). 22
i 2 Sw=V8ME(MZ+M3)a2+M5(Va?)?]¥2, (30

Note that the above average is linear with the period. The o

scaling of £\) is the same as for the average Gaussiarihe period is

weighting in the preceding section, which7i&~1)/2,

The final result of the covariance is Tw=+v2m[Mia’+M%a’*+M5(Va?)?)/E, (31
and the derivative of the action is
—e]1 o
Cov,(\)~ ———— (23 ISy [BmE (Mi+M3a’—2M5(Via®)? @
" 92 a [(Mi+Mda’+M5(Via?)?|v?

Combining this with the results above for the variances gen- N . _ o
erates the semiclassical expression for the correlation fundJsing the above quantities and performing the integration in
tion, Eq. (11), the variances of the action derivatives are

2E?T?/a® and 1€2T?/5a2 for the rectangle and the box,
—&\) 24 ;eEsZp;ecz:tive(ij.lgtza/r;c% thﬁ- rhespectivehv?]lues g_()E,a) arfeh
, a‘ an a“, which approach the variances of the
gllz(E’)‘xqu_z(Al)2/ﬁ2]>1M/2 level velocities in the semiclassical limit. Figure 1 demon-
strates how wellf(E,a) approximates the level velocities
8specially agi—0. Note that the level velocities are virtu-
ally independent ofi as predicted.

The A scaling of the intensity variance is predicted to be
752 and #*, respectively, for the rectangular and box bil-
liards. Using Eq(17) with w, ;= ?l o] /mfj2 the semiclas-
sical theory and quantum intensity variances are compared in
A. Rectangular and box billiards Fig. 2. The agreement is quite good7as:0.

The last two quantities, the covariance and correlation, are
Cartesian coordinates and thus completely integrable. The gown n F|g§. 3 a_nd 4, respectively, along with the results
types of billiards have been used in the study of spectra rom the semiclassical theory. The valueségE, a) are ob-
rigidity [21]. In particular, we examine a rectangular billiard tained from Eq(22). For the rectangle

with sidesa,b and a box billiard with sides,a,b; the side ()2 2

lengtha is varied. The density of states is kept constant by £(E,a)= 2m (a_,l_ a2 ) (39

not changing the ared of the rectangle or the volumg of ' amo\2mE\ a2  (A/a)?)’

the box. The action/angle variables are proportional to the

Co(N)=

where the expectation value is evaluated in EL/). For
near-integrable systems in the semiclassical limit, the abov
result implies that Coy(\) <424~ 1”2 whereas the correla-
tion C,(\) <A@~V to leading order.

IV. RESULTS

First, we consider billiards that are totally separable in

momentum/position coordinates in each direction, and for the box
|J:€Jp1/7T and HJ:WqJ/€]’ (25) 772%2 Iil |[21'2 2'2,3
o L - HEQ)= S or—a| 5+ 5 5] (39
where(; is the side length of thgth side. The Hamiltonians a o\ a a (VIa%)
are given by
The agreement is excellent in both cases. Note that we have
w2 |J.2 used no fitting parameters in any of the figures in this sec-
HD=5- j 6_12 : (26)  tion.
The classical action of the rectangle for a closed orbit on B. Standard map
a given resonant torud is In this section we compare the semiclassical theories to
- 5 12 the numerical results for the standard map. The classical
Su= v8mE[Mia“+M3(Ala)?] (27)  standard map is defined by
the period is Qi+1=0i+pPir1 mod1l),
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_FIG. 1. Variance of the level velocities for rectangular and box  FiG_ 2. Variance of the intensities for the rectangular and box
billiards. The area and volume are taken to be unity, while the sidg)jjjiards. The area and volume are taken to be unity, while the side
lengtha=1.1. The width of the energy averaging is 200 centered|engtha:1.1; the energy is 600. As in Figl), the variance anti
about an energy of 600. Thus, far=1, an energy of 600 corre-  are in arbitrary units. The upper panel is for the rectangle and the
sponds to the 84th eigenenergy level in the rectangle billiard and thgyyer panel is for the box. The solid line represents the quantum

564th eigenenergy level in the box billiard. Thescaling and cor-  egyits while the dashed line is the semiclassical theory.
respondence between the quantum and semiclassical results are the

important features, not the numerical values. Hence, all quantities

are in arbitrary units, including. The upper panel is for the rect- The smoothed density of states for the eigenarigighis

angle and the lower panel is for the box. The solid line is for the N 1
quantum results while the dashed line is the semiclassical theory. . . n
= —+— —
di($)=5-+5, 2 exing)Tru’xg —ne),
pir1=pi—(k/2m)sin(2mg;) mod1), (35 (39)

where the “kicking strength’k is the varied parameter. The where the sum excludes=0 and the trace of the propagator
map displays the entire range of classical dynamics fronin the integrable regime is
integrable ak=0 to fully chaotic beyonk~5.

Instead of the velocities of the eigenvalues of the Hamil- N
tonian, it is the velocities of the eigenangles for the standard Tru"= E \/% exp2miNSy). (39
map which are of interest. The matrix elements of the quan- M

tum map withN discrete levels can be writtd22] as . , )
Integrating over the angle, the smoothed spectral staircase is

(n|U|n’>=\/%exp[iw(n—n’)le] N(([))_%—i % E1\/@
el n

27T 2T n2e W n

kN
><exp<iz cog2m(n+a)/N] (36) Xexping)exp2mwiNSy)exp—ne). (40
wheren,n’=0,... N—1: ais a phase term which we set The resonant torM including repetitions for the standard

equal to zero. The effective Planck constant is given b);nap are given by a constant momentum equal to the rational

; fraction m/n, wherem=0, ... n—1 andn is the period of
h=1/N. The eigenvalues of the propagator alH ;) ' T ’ : :
=exp(—i¢j)|z/fj>with real eigenangles; . The “level veloci- the torus. The derivative of the action with respect to the

ties” are given by the Hellmann-Feynman theorem kicking strength is

dé, N 3S i
d—k'zﬂ<¢j|cos(2wq)|¢j>. (37) &_kM:(ZT)zzl cog2mq;). (41
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FIG. 3. Covariance for the rectangular and box billiards. The FIG. 4. Correlation for the rectangular and box billiards. The
area and volume are taken to be unity, while the side lergth area and volume are taken to be unity, while the side lergth
=1.1; the energy is 600. As in Fig. 1, the covariance hrate in =1.1; the energy is 600. As in Fig. h,is in arbitrary units, while
arbitrary units. The upper panel is for the rectangle and the lowethe correlation is dimensionless. The upper panel is for the rectangle
panel is for the box. The solid line is for the quantum results whileand the lower panel is for the box. The solid line is for the quantum

the dashed line is for the semiclassical theory. results while the dashed line is for the semiclassical theory.
For the integrable case€0), the periodic points are; D(k)
=qog+m-i/n mod(1) and hence)S, /dk=0 for all reso- oh~4m{(K)IN?+g 12 (1=HN, (43)

nant tori. Thus, by Eqgs(11) and (12) the variance of the
level velocities is zero.

In the near-integrable regime, the variance of the eiwhereg=4 andD(Kk) is the classical action diffusion con-

genangles is approximately given by the result stant. It was shown previously24] that a direct method
based on classical orbits gave a good correspondence be-
of~4m? N2 (42)  tween the theory and quantum values for
Note that the eigenangles are divided by an effeckivaak- 1000

ing the variance of the eigenangles quadratiblivwe do not
have an analytic formula fof, but it can be obtained nu-
merically from the quadratic period dependence of the vari-
ance of the action derivatives averaged over the tori. Kor
=0, it is straightforward to calculate analytically the posi-
tions of the stable and unstable periodic orbits that arise asvs 54 |
soon as integrability is broken. Curiously, using these points
as initial conditions for the periodic orbits throughout the
near-integrable regime, roughlke[0,2], gives results
within a few percent of that found by locating the true peri-
odic orbits. In order to make long time calculations, this
compromise is indispensable and does not harm the approxi- .
mation noticeably. In Fig. 5, the near-integrable theory is 0 05 1
shown to give excellent agreement with the quantum ei- Kk
genangle velocity variance even though there exists a signifi-
cant proportion of unstable orbits for the larger valuekof  F|G. 5. The variance of the level velocities for the standard map
shown that are being treated as though they were stable. (N=500). The variance an#l are dimensionless. The solid line

In the mixed regime, the corresponding proposition of Eq.represents the quantum results while the dashed line is the semiclas-
(13) is sical theory using the near-integrable results of @g).
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FIG. 6. Histogram of finite time Lyapunov exponents in the  FIG. 7. The variance of the level velocities for the standard map
standard map in the mixed regime. The parameterka2.7 and  (N=500). The variance ankiare dimensionless. The solid line is
n=500, wheren=1 is the time interval between successive kicks. for the quantum results while the dashed line is for the classical

The Lyapunov exponents are in units ohl/The values ofu were phase space average of H¢4). The timen is taken to beN/g

obtained by a least squares fit of the natural logarithm of(ES). =125.
N2 (11 . . . .
2 __ (n) resents the stable orbits that have action derivatives with a
~ Y Y, , dpyd . . .
T 4w2fo fo (Qo){VLA™(do, Po)1)ndPod quadratic dependence upon time. The set of most highly un-

stable or chaotic trajectories give an approximate log-normal
~cy(KIN+ca(K)N?, (44)  distribution [25]. In between these two features lie the
weakly unstable orbits. It turns out that the coefficié(it)
whereV(q) = cos(2rq), but no understanding was given of converges well if averaged over the stable orbits and up to a
the two coefficients. Equatio3) gives one plausible, but similar number of the weakly unstable orbits. However, it
naive, interpretation. also turns out that when compared to the coefficeafk) of
In order to test numerica”y the Separation of diffusive anqu_ (44), the fractionf deduced by their Comparison is incon-
ballistic contributions in the mixed regime, it is impossible to sjstent with the relative fraction used to deriggk) for k
work with the periodic orbits. They proliferate exponentially ygjues in the ranggl.5,4.0; see Appendix C.
and must be found numerically. '_I'he.time over which thiscan A second inconsistency with the simplistic separation
be done by brute force calculation is too short for our pur-proplem is that the remaining strongly unstable orbits do not
poses. Instead, a Monte Carlo technique is needed. We ha¥@ow a purely diffusive behavior. They show both a qua-
devised a method that begins with a uniform sampling ofgratic and linear dependence in their action derivative vari-
initial conditions in the phase space, and relies on the propances; i.e., the numerical evaluation D{k) is suspect. It
erties of finite time Lyapunov exponent&5]. Although, a  ¢oyld also be evaluated according to its asymptotic expres-
stable periodic orbit has a vanishing Lyapunov exponent, at gjg, [24], but again requires a large value fofo be consis-
partial period of its motion, the trad@ o_f its _stability_matrix ~ tent with the coefficient, (k) unlessk exceeds roughly 5 or
can grow as a power of the propagation time. This can giveg_ At that pointf~0 and the system is basically in the fully
a stable orbit the appearance of being unstable depending @paotic regime. We attempted several schemes of separating
circumstances. For example, constructing a surface of segyt orhits according to ballistic or diffusive behaviors, none
tion based on whethéQ| <2 fails miserably. If, instead, one ¢ which worked and are outlined in Appendix C.
seeks the least squares deviation of the time development of |, spite of the lack of apparent separability, the simplistic
Q from the form expression, Eq(44), works quite well. We recalculate the
_ results of Ref[24] taking into account the Heisenberg time
Q=aT”expuT, (45  associated with the mean eigenangle spacing in Fig. 7. As a
function of kicking strengthk the agreement between the
then the estimate of the Lyapunov exponent can be used &emiclassical theory and the variance of the eigenangle ve-
judge whether an orbit is in the stable or unstable part of théocities is quite good throughout the entire transition from
phase space; i.e., the construction of the correct surface dftegrability to full chaos.
section is recovered in this way. Next we turn to the overlap intensities. Since the energy is
Figure 6 gives a histogram of the finite time Lyapunov not conserved for maps, E¢L7) does not apply. The vari-
exponentsu, calculated using Eq45) for the orbits in this  ance is obtained directly from E¢L4) where the average is
regime. The orbits are separated into three rough categoriewver all resonant tori; it becomes just the Gaussian normal-
depending upon their stabilities as mentioned in the precedzation factor. The width of the Gaussian wave packet in
ing section. The broadene#function feature near zero rep- Cartesian coordinates is taken to be proportional to the
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FIG. 8. Variance of the intensities of the standard map for a FIG. 9. Covariance of the standard map for a section of phase
section of phase space @i=0.25.q, andp,, are the locations in ~SPace ag,=0.25.q, andp, are the locations in Cartesian coor-
Cartesian coordinates of the center of the Gaussian wave packélinates of the center of the Gaussian wave packet. The other param-
The other parameters ake=500 anck=0.01. The variance arl, ~ ©ters areN=>500 andk=0.01. The covariance anu, are dimen-
are dimensionless. The solid line is for the quantum results whilgionless. The solid line is for the quantum results while the dashed
the dashed line is for the semiclassical theory. line is for the semiclassical theory.

square root ofi, o=8\h=pB/\27N. Thus, fork=0 the correlation and not in the covariance. The correlation is di-

variance of the intensities is vided by the variance of the intensities, which is large near
the center of the resonance. The intensity variance is divided
5 B by the winding numbers, Eq17), which are small near the
7~ NN\ E@ (46)  center of the resonance making the intensity variance large.
This expression does not take into account the reflection, V. DISCUSSION

(q,p)—(1—q,1—p) and time reversal symmetries of the ] . . )
kicked rotor[26]. Thus, we symmetrize the wave packet ac- We have denved_gemmlassmal expre'ssmn's.of the correla-
cordingly. f[lon of level velocities and o_verlgp |ntens_|t|es in near-
Figure 8 shows the good agreement between the semiclalitegrable systems. Thef scaling is very different than
sical theory and the intensity variance for the integrable rePreviously derived in the chaotic limftL9] where the level
gime atk=0.01. The only exceptional cases are the tori atvelocity variance is
p=0 andp=0.5, which happen to be self-symmetric and on
the lowest order resonances. WhereaskfeiO, they would
lead to double the intensity variance and be accurately ac-
counted for once the symmetry was fully incorporatedk at
=0.01 they are strongly affected by their location on low
order resonances. As we do not have the generalizations nec-
essary for those cases, we avoid the resonance zones instea_e.
Finally, we turn to the correlations. The covariance be- <
tween the intensities and level velocities is given by 28) @)
divided by% =1/27N since the level velocities in the stan-
dard map are actually eigenangle velocities. After symme-
trizing the wave packet, Fig. 9 compares the semiclassical
prediction with the quantum results. Also, the correlation is
compared in Fig. 10. In both cases the agreement between . . .
the semiclassical theory and the quantum results is good. 0.25 05 0.75 1
In the near-integrable regime, the covariance and correla- Py
tion is strongest for resonance zones; see Fig. 11 and Ref.
[13]. The quantizing tori are deforming at a greater rate in-  FG. 10. Correlation of the standard map for a section of phase
side the resonance while the tori outside the resonance aggace ag,=0.25.q, andp, are the locations in Cartesian coor-
only slightly perturbed. Thus, the associated level velocitiegfinates of the center of the Gaussian wave packet. The other param-
are larger for this area of phase space. Also, note that there égers areN=500 andk=0.01. The correlation and,, are dimen-
a dip in the correlation near the stable periodic orbit at thesionless. The solid line is for the quantum results while the dashed
center of the resonance zone. The dip is only present in thiéne is for the semiclassical theory.
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APPENDIX A: LEVEL VELOCITIES

The method 17] to obtain the variance of the level ve-
locities begins with the smoothed spectral staircase

Ne(EN) =2 6[E-Eq(N)]. (A1)
Taking the derivative with respect to the parameter, we ob-
tain
FIG. 11. Correlation of the standard map in the near-integrable (7N5(E1?\)_2 SE—E.(0) IEn(N) A2)
regime.q, andp, are the locations in Cartesian coordinates of the I\ < [ n(M)] ON

center of the Gaussian wave packet, which are dimensionless. The

other parameters af¢=500 andk=0.5. The quantitye is an energy smoothing term which will be
taken smaller than the mean level spacing. Upon energy av-

ogehd (47 eraging,
and the intensity variande7] is
IN(E,\ _ FE (N
T (48) <;—)\)> =d(E,)\)< (;‘)(\ )> : (A3)
E n

In addition, for chaotic systems the action derivatives will .
eventually decouple from the weightings in the correlation soyvhered(E,\) is the mean level density which is the recip-
that in the semiclassical limit the random matrix theory pre-rocal of the mean level spacing and proportionat td'. The
diction is recovered stating that no correlations eXi4t19.  mean level spacing is related to the phase space volume by
On the other hand, for finité with the average computed up \/—gnd. Thus, in order to obtain information about the level
to the Heisenberg time, therg is a possibility of sho_rt Orb'tsvelocities, we will evaluate the spectral staircase.

that do not decouple in chaotic systems, so correlations may The semiclassical construction of the spectral staircase is
exist. . For near—lntegre}blg systems there is no decoupling,oken into an average and an oscillating part,

even in the long time limit.

Combining the previously derived results in chaotic sys-
tems with the newly derived results for near-integrable sys-
tems, for mixed phase space systems we attempted to sepa- .
rate the orbits for applying the Hannay—Ozorio de AlmeidaThe average staircasé(E,\) is the Weyl term and to lead-
sum rule to the different regions of phase space. Severahg order in# is given by
criteria were chosen as a basis for the separation. All of them
led to inconsistencies in the interpretation. It seems that all of
the unstable orbits spend some part of their evolution mim-
icking stable motion and do not give standard diffusion con-
tributions to action derivatives. Nevertheless, a different o ] .
semiclassical proceduf@4], not going through the Hannay- The oscillating part of the spectral staircase is a sum over
Ozorio sum rule derivation, gives a theoretical predictionrational tori with topologyM of the unperturbed Hamil-
that matches well with the level velocity variances indepentonianHo(1) [15],
dent of the dynamical regime of the system.

Finally, the correlation between the level velocities and

N.(E,\)=N(E,\)+Nyed E,N). (A4)

N(E,x):h—ldf O[E—H(1,6;\)]dIde (A5)

the intensities has been shown to highlight resonance zones N, (E \)= L 2’ Ay Re{ exp( 1Sm(M)
in near-integrable systems. The resonance zones exhibit a2 %G h
greater localization since the motion is bounded within the ) _

separatrix. Investigating the correlation and covariance sepa- _um n | B (3 ASy(\)/A]
rably may yield more information about the system. An ex- 2 4 0 M

ample is the dip in the correlation that occurs near the center
of the resonance zone due to the stable periodic orbit; the dip
is not present in the covariance.
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The variance of the level velocities is obtained by taking d+1 < \2

. . L 2 2(2m) € ’ 2 ISy 2 =212
the mean square of the counting function derivatives, e~ %} Ay Y [Jo(sy) ta“di(sy)]
IN(E,N)\? IEA(N) JEm(N) IS | [ PASu||a B
<(T) >E=<; % N N +2 N N 2J0(5>\)[Jo(3>\) Ja(sy)]
- JASy\? a? )
XEE[E—En()\)]ée[E—Em()\)]> . +adi(s) || 55| | 7 [Jo(sn) = d2(s))]
E

(A7)

+J%(s))

—2€Ty
}ex;{ 7 )>E (A1l1)

For a nondegenerate spectrum, the summation is nonzefthe middle term vanishes sincéSy /d\) and (A Sy /J\)
only if n=m because of the product of the twbfunctions.  gre uncorrelated and both average to zero.

Since Lorentzian smoothing is applied, then
APPENDIX B: OVERLAP INTENSITIES

1 The variance of the intensities is derived by examining
S2x)= 2—77655/2(X) (A8)  the oscillating part of the strength function
-1
sa,OSC(E,x)=7|mf (a|0)G(6,0;E)(0|a)dode,
for e<d L. Thus we have (B1)
where

((gNe(E,)\)>2 B E (&En()\))z AQ L
= T e s

1/2, H ;. i
The summation over the rational tori is most sensitive to X; D eX[:[ISj(ﬂ,ﬂ B 1 /2]

the changing actions and periods because of the associated

rapidly oscillating phases, i.e., the division fyin the expo- (B2)
nential. Since the energy smoothing teents taken smaller s the semiclassical energy Green’s function. The above sum
than a mean level spacing, it scales at leastiByand the s over all paths that conned to @ on a given energy
derivatives of the period vanish d@—0. Thus, only the surfaceE. Dy is a determinant involving second derivatives
derivatives of the actions are considered, and the oscillatingf the actions,

part of the staircase yields

#S &S
_ 9000 JIOIE
INosd E) 2 ) iSm(N) -
(Z?S)\ - f(d+1)/2 % A'\"Im{ B ex;{ h s 7S s | (59
B JE90  JE?
B i gy N i By @
2 4 2N We assume that the Gaussian wave packet in Cartesian coor-
IAS, dinates can be define locally as a Gaussian in action-angle
« i 4 variables using the Wigner function
[Jo(sy) —ia(N)Ja(s))] '( N )

TABLE I. Fixed Lyapunov exponent cutoff, is the fraction of
i~(7\ ) } orbits that have a Lyapunov exponent less tpan0.5.

a(n)
Ji(sy)+ T[Jo(s)\)_Jz(Sx)]

X
(k) f fa
—€Ty 1.5 9.6210°° 0.982 1.000
XeXp( B ” (A10) 2.0 1111074 0.856 0.798
25 1.76<10°4 0.358 0.336
3.0 3.66<10 4 0.161 0.142
After making the diagonal approximation and energy aver- 3.5 3.58<10°* 0.166 0.146
aging, the variance of the level velocities for a near- 40 3.67x 1074 0.118 0.107

integrable system is
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TABLE Il. Twice the regular orbitsf, is twice the fraction of TABLE Ill. Stable quadraticf; is the number of orbits included
regular orbits angl, is the cutoff of the Lyapunov exponent asso- in the ballistic term which does not change its coefficient signifi-
ciated withf,. cantly. u5 is the corresponding Lyapunov exponent.

k {(k) f fa 2 k (k) f fs M3

15 1.17x 1074 0.812 0.687 0.318 15 1.84x10°4 0.516 0.412 0.2

2.0 1.49%<10* 0.638 0.526 0.443 2.0 2.58<10°4 0.368 0.302 0.3

25 219104 0.288 0.256 0.420 25 3.30x10°*4 0.191 0.165 0.2

3.0 2.19%10°4 0.269 0.241 0.590 3.0 4.26<10°4 0.139 0.124 0.4

35 2.21x1074 0.268 0.246 0.702 35 4.01x10°4 0.148 0.137 0.4

4.0 2291074 0.189 0.179 0.713 4.0 4.31x10°4 0.105 0.100 0.4

An(1,0) =2%xp[— (A1)?/h%2— (A )%}, (B4)

where we have used the diagonal approximation for the sum
where QAl)j=0o(1-1,); and A6);=(6—6,);/co;. The in- overM. Since the trace of Green’s function is the density of
verse transform is evaluated by stationary phase to obtain states given by Berry and Tabor, and the density of states is

r{_(Aa)z (A2 the energy derivative of the spectral staircase function, then
ex -

(a0} 0'|a)= 5 5 |Dg=T4A%/(2m)% 1. Hence, given the Hannay-Ozorio

di2 sum rule fors,,AZ , Eq.(9), then

a HO'J

i(1=1,)-(6-0)
|

(B5) ) \
% |DS|..._>—(2W)2J dT--- . (B9)

The Gaussian localization in action-angle space implies
that the dominant contributions to the strength function arise
from tori whose trajectories are closed, i.e., rational kgri Since the Gaussian weighting of the action variables is inde-
An expansion about the center of the Gaussian wave packpendent of the period, it follows that
yields

S/(0,6/;E)=Sy(0,,60,;E)+1,-(6-0),  (B6)

IT of | =21
where quadratic terms have been neglected. Using the above o2~ ——( ex (B10)
expansion of the action, the integrals over the angles can be “ ™ \ h? M
performed by stationary phase, giving
d+1)/2
20 H gj , " APPENDIX C: BALLISTIC VERSUS DIFFUSIVE
Sa0sd E.N) = @z EM: Dy BEHAVIOR

We tried three different methods for separating out the
><cos<ﬂ _vT ﬁMTr) ballistic and diffusive orbits. The fraction of ballistic orbits

h 2 4 was deduced by
— (AI)Z
X ex 2 (B7) Gk
T 47%(k)’ (€D

The above result for the oscillatory part of the strength
function can be used to obtain the variance of intensities as
2re wherec,(k) was determined by Ed44). The first method
02=——=(S? s dE.N))e was to divide the orbits by a fixed value of the Lyapunov
d ' exponent. It turned out that a Lyapunov exponent of 0.5 gave
fairly good result, but there is no explanation of this value.

62d+1(2ﬂ_)dH U}z Table | summarizes these results. _ _
- The next method was to take twice the fraction of stable
Vh orbits as the number of ballistic orbits. This is summarized in
Table 1.
<[> D —2(A1)? —2€Ty For the final method we took the greatest number of orbits
[Dslex PP i ’ up to some Lyapunov exponent that did not chaigk)
E

significantly as the number of ballistic orbits and is summa-
(B8) rized in Table Il
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