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Control of dynamical localization
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Control over the quantum dynamics of chaotic kicked rotor systems is demonstrated. Specifically, control
over a number of quantum coherent phenomena is achieved by a simple modification of the kicking field.
These include the enhancement of the dynamical localization length, the introduction of classical anomalous
diffusion assisted control for systems far from the semiclassical regime, and the observation of a variety of
strongly nonexponential line shapes for dynamical localization. The results provide excellent examples of
controlled quantum dynamics in a system that is classically chaotic and offer opportunities to explore quantum
fluctuations and correlations in quantum chaos.
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[. INTRODUCTION tem in which the sign of the kicking potential is periodically
changed, or alternatively time delayed, after a certain number
The quantum kicked rotofKR) and its classical analog, of kicks. As shown below, such a slight modification of the
the standard map, have long served as a paradigm for quakR has profound effects on the dynamics: whereas periodi-
tum and classical chags]. Due to its atom optics realization cally changing the sign of the kicking potential does not
[2], the KR has recently attracted renewed interest. The KRlestroy DL, it dramatically changes the quantum diffusion
is also of considerable interest in a variety of other fieldsdynamics of the KR as well as the nature of DL, offering
such as condensed matter physidsd], molecular physics ©opportunities for controlling the dynamics, as well as under-
[5,6], and quantum information scienfe,s]. standing quantum fluctuations and correlations in quantum
One well-known quantum effect in a KR is “dynamical chaos in periodically kicked systems. For example, we dem-
localization” (DL) [1]. That is, although a classical kicked onstrate that, with the sign of the kicking potential of the KR
rotor displays unrestricted diffusive energy increase due t@eriodically changedj) the dynamical localization length is
classical chaos, only a finite number of rotational states argignificantly increased so that the energy absorption is
excited in the quantum dynamics, with the quantum excitastrongly enhancedji) classical anomalous diffusiofwhich
tion probability versus the rotational quantum number typi-can be slower than quantum anomalous diffusion under cer-
cally assuming a characteristic exponential line shape. DL i&in conditiong20]) can enhance control even when the ef-
a pure quantum coherence effect and is therefore very sendpective Planck constant is about an order of magnitude larger
tive to decoherence. For example, previous studies havéan the relevant classical phase space structuresfiand
demonstrated that noi§@—11], nonperiodicity in the kicking DL may display strong deviations from purely exponential

sequence$12,13, and quantum measuremeii® can de- line shapes.
stroy DL. This paper is organized as follows. In Sec. Il we introduce

As a coherence effect, DL is also indicative of the possi-the modified kicked-rotor model. We then present results in
bility of controlling the KR dynamics via quantum effects Sec. lll on the enhancement of dynamical localization
[14—16. Indeed, we recently showed that the quantumlength, with qualitative explanations based upon a known
phases describing the initial rotor quantum state can be maesult from the band random matrix thed1-23. In Sec.
nipulated to effectively control quantum fluctuations in quan-1V we show control of DL in a different regime, where the
tum chaos and thus enhance or suppress quantum Chaoﬂ}gfnamics can be tied to a different mechanism, i.e., the cre-
diffusion [17,18 in a KR. However, manipulating quantum ation of additional structures in classical phase space. Sec-
phases in initial states cannot change the unitary evolutioHon V contains the results on coherent manipulations of the
operator of the system. Hence, neither the average dynamickite shapes for DL. We conclude the paper with a brief dis-
localization length nor the characteristic line shape of dy-cussion in Sec. VI.
namical localization can be altered in this way.

Motivated by interest in controlled classically chaotic Il. A MODIFIED KICKED-ROTOR MODEL
quantum dynamic§17-19, and to gain more insights into
the nature of DL, we consider controlling DL and the asso-
ciated energy absorption via a modified kicked-ratdiKR)
system, in which the phase of the kicking field, or the timing HKR(L,0,t)=L2%21 +\ cog 0) >, S(t/T—n), (1)
of the kicking sequenceence the evolution operajoiis n
actively manipulated. In particular, we consider a MKR sys- .

wherelL is the angular momentum operat@rjs the conju-

gate anglel is the moment of inertiay is the strength of the

*Present address: Department of Chemistry and The Jamddcking field, andT is the time interval between kicks. The
Franck Institute, University of Chicago, Chicago, IL 60637. basis states of their Hilbert spaces are given|iy, with

The KR Hamiltonian is given by
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L|m)=m#|m). The quantum KR map operator for propagat-where fy(n) is real, [fy(n)[=1, and fy(n) changes

T &P .
5,9_92 exd —ik cog 0)], (2
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ing from time (N—07)T to time (N+1—07)T is given by  Sign after every kicks. That is, the only difference between
the KR and the MKR is that in the MKR the sign of the
IEKR: exf{ |
further understood in terms of the time-evolving wave
function, which can be expanded as a superposition of
dimensionless scaled rotational energy s (L) 72/242, =3, (~1)™C,(6|m), changing the sign of the kicking po-
where(-) represents the average over the quantum ensemblgyna| is seen to be equivalent to adding phase difference
(m “3 I )=ex;{ ing kicks. Due to the free evolution of the rotor any two
HTKRIT2 angular momentum eigenstaf@s) and|m+ 1) will acquire
order (m;—m,). such, the MKR can also be realized by introducing the time
The classical limit of the KR quantum map, i.e., the stan-delayty after everyM kicks.

kicking potential is changed after eveM kicks. The ef-
fect of changing the sign of the kicking potential can be
with dimensionless parameteks=AT/% and the effective | i . . -

- . m) states:=,,C(6|m), with the expansion coefficients
Planck constant=#T/I. For later use we also define the C,.. Since cosg+m=—cos@), and SCp(6+m|m)

In the|m) representatiorf; g takes the following forni23]:  between all neighboring basis states. Compare this now to
the effect of a time delayy=2=T/ 7 between two neighbor-

. . _ _ in time ty an additional relative quantum phase given by
whereJml_mz(k) is the Bessel function of the first kind of explitd (m+1)>—mP)(2T)}=exdi(2m+1)m]=exp(n). As
dard map, depends on only one parameterkr and is
given by

Cy=Tn_1+xsin(fy_1),

For times N—07)T to (N+M—07)T, the MKR quan-
tum propagator can be written as

(92

IWﬁ) |E|’\</|R DIE:\(AR, (6)

FukR= exp(
(4)

WhereEELT/ﬁ is the scalecc-number angu|ar momentum Where this equation deflnde as the free evolution operator

and [y, 6y) represents the phase space location of a classPver timety. Here F{y denotesM applications ofFyg.

cal trajectory at l+1—0")T. For later discussion we note From Eq.(6), one sees that the only difference in time propa-
that for particular values of the classical map Edq4) can  gation between the KR and the MKR for eveWy kicks is
generate accelerating trajectories whose momentum irtheD operator, whose matrix elemer{ml|f)|m2) are given
creasegor decreasgdinearly with time (at least on the av- by

erage. These trajectories are callé@dnsportingtrajectories

[24]. To see this, consider the initial conditions= 2,
0==*/2) for k=2l,, wherel, andl, are integers. Clearly,
these phase space points are shifted by a constant valu

(+=27l,) in L after each iteration, resulting in a quadratic T%US we have
increase of rotational energy. These transporting trajectories
are rather stable insofar as they may persist for values of
close to 271, (with their average momentum shift after each
iteration oscillating around the constant vath@l,), thus  Note also that the classical limit of the MKR quantum map
giving rise to transporting regular islanfi24], i.e., the ac- [Eq.(6)] is given by
celerator modes in the KR case. If classical trajectories are
launched from the accelerator modes, they simply jump to
other similar islands located in adjacent phase space cells.
For trajectories initially outside the accelerator modes, the
“stickiness” of the boundary between the accelerator modes
and the chaotic sea induces anomalous diffusion over the
energy space, i.e., energy increases in a nonlinear fashion, with respect to model systems in the literature, the MKR
but not quadratically. This is intrinsically different from the here can be regarded as a specific realization of the so-called
case of normal chaotic diffusion in which energy increasegjeneralized kicked-rotor model, which was first introduced
linearly with the number of kicks. in Ref.[25], in the context of quantum antiresonance. How-
We introduce here a slightly modified kicked-rotor systemever, it is very different from the amplitude-modulated
whose Hamiltonian is given by kicked rotor system$12,26] previously studied becaug®
the kicking field strength here remains constant, and there-
fore any interesting results arise from pure phase modula-
tions; and(ii) as shown below, the dynamical localization is
significantly altered, but not destroyed.

0N= eN*l+’I:N1

(Mg BImg) = (= 1)™ 8, m,. (7)

8

(My| Frukrlmy) = (—1)™(my |FRRIm,).

Ly =Lyt fp(N)sin(y),

0N= 0N+EN+1'

(©)

HMKR(L, 0,t)=L2/21 + X cog ) >, fy(n)S(t/T—n),
(5
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wide range of parameteksand 7.

As is well known, the DL of the KR can be traced back to
the localization properties of the eigenstates of the quantum
map operatofEq. (2)]. Note first that, due to the rapid decay
of Jin, ~m,(K) with increasingim;—m,| and the pseudoran-
dom nature of the function exptré/2) in m;, the quantum
map operatof in general assumes a band structure and
behaves in a pseudorandom manner in [thg representa-

tion. Hence, below we qualitatively consider the MKR re-
sults in terms of a well-known feature from band random

-8000 -4000

0 4000 8000 matrix theory[21—-23, namely, that the larger the bandwidth
m of the quantum map operator the larger the dynamical local-
80000 ' ization length.
(b) Note first that the matrixm|Fg/m’) is pseudorandom.
60000 1 However, we do not expe¢m|FNz/m’) to be a pseudoran-
dom matrix of the same type since multiplyikg by itself
'y 40000 F . M times is expected to establish correlations between the
matrix elementgm;|FM-|m,). Nevertheless, we do assume
20000 - 4 that the matrix(m|l5MKR|Am’> is banded and pseudorandom
since the eigenstates &f,,xg have no simple connection
0 ! with those of Fxr. Consider now an arbitrary matrix ele-
0 10000 20000 ment(m, |F}s/m,). Due to the quantum diffusive dynamics
time (units of T) within the M kicks, the (my|FNz|m,) with [m;—m,|>1

FIG. 1. Phase control of dynamical localization achieved byShould be much greater tham,|Fyglmy) (nevertheless,
changing the sign of the kicking potential after every 50 kicks.P0th of them can be very sm}illAcAcordlng to Eq.(8), this
«k=4.0,7=2.0, and the initial state i§). (a) A comparison between implies that the matrix elemetim;|Fyxr|/Mm,) is also much
the KR (the narrow line Shape, solid I|iﬂand the MKR(the broad greater thar{ ml|IEKR|m2> In thls sense, we expect that the

line shape, dashed linen terms of the probability?(m) of finding - , : . :
the system in the staten) after 4x 10° kicks. (b) The time depen- (m|F wrlm") matrix should display a wider band than does

~ - ’
dence of the dimensionless scaled rotational en&rgy each case <m|FKR|m ) ] . R .
of the KR (solid line) and the MKR (dashed ling Note that the ~ The bandwidth of the matrim|Fyg|m’) can be defined
solid line lies very close to thE=0 axis. by choosing a cutoff value for its matrix elements. One tra-
ditional choice igm; —m,| ~k. In this case{m;|F¢g|m,) at
lll. ENHANCED DYNAMICAL LOCALIZATION LENGTH the boundary of the band is on the orderJpfk), a number

which is sufficiently small. However, this cutoff value, if

M =50, whose classical limit for both the KR and the MKR applied to th? matr|A>(m|FMKR|m 2 wogld 'y|eld almost thg
is fully chaotic and displays normal chaotic diffusion. We Same bandwidth abyg. Hence, quantitatively characteriz-
demonstrate below that the dynamical localization and théng the band structure of the matrfm|Fykg|lm’) is subtle,

related energy absorption associated itfir are dramati- ~ since the very small matrix elementsny|Fyglm,) must
cally enhanced over that associated vﬁt{ﬂR play an important role in enhancing the dynamical localiza-

Figure Xa) displays the angular momentum distribution tion Ieng_th of the_ MKR. . .
P(m) after 4x 10° kicks, starting with the initial stat®), for To gain more insight we cpmputatlo_nall_y examined ke
both the KR and the MKR witi = 50. The exponential line dependence of the dynamical localization Iength of the
shape ofP(m) shown in Fig. 1a) indicates that DL occurs in MKR. Specifically, we numerically diagonalize& kg,
both cases. By fittingP(m) with exponentials P(m) where each matrix is generated using Basis states and_ls
~exf —|m/lxg] and P(m) ~exy —|ml/lykg] for the KR and  then truncated at dimensiahchosen below. We characterize
MKR, respectively, one obtains that the dynamical localizathe average dynamical localization length by the Shannon
tion length | yxr~140.0 is significantly larger thamcg  €NrOPYSwkr [27] (note that the Shannon entropy is simply
~7.0. This clear difference in dynamical localization length Proportional to the dynamical localization lend@v]) aver-
is also reflected in the energy absorption shown in Fig).1 aged over all approximate eigenstates) of Fyr, i.e.,
In particular, while the energy absorption of KR saturates

As an example, consider the casekef4.0, —=2.0, and

after a few kicks, the MKR system continues to absorb en- , d a2

ergy in a more or less linear manner for as long aski€ks. S exn — ml & RInlml a2
Enhancement of dynamical localization length and energy ™R ad ,Zl X m;d,z Kmlg;)Fini(ml 5[
absorption is also observed for other valuesvhfand for a (10
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FIG. 2. (@) The M dependence of the dynamical localization
length of the MKR, characterized by the Shannon entr8gygr
averaged over all approximate eigenfunctions of the MKR propa

gatorFy«r. (b) The M dependence of the bandwidttyr asso-
ciated with the MKR propagatdf«r, defined by a cutoff value
(as small as 107%°) for its matrix elementgm,|Fyr/m,).

where the constant equals 0.96, and is chosen to be 2700.
The results for thevl dependence o8,,xg for M=2 to M
=400 are shown in a log-log plot in Fig(&. Sykg is seen
to behave initially as a smoothly increasing function\of
and then to saturate & ~50. To explain the results from
the perspective of band random matrix theory, we choose

cutoff value for matrix elementém; |Fy«r/m,) so as to de-
fine the bandwidthp,,«r . Interestingly, we find that this cut-
off value must be extremely smadloughly speaking, at least
as small as 10 in order that theM dependence dby kg
resembles that o5, «xg. For example, Fig. @) displays
bukr as a function ofM for a cutoff value of 10%°. The
evident similarities between Fig(& and Fig. 2b) suggest

PHYSICAL REVIEW E68, 056202 (2003

fore the matrix elementém,|Fl=/m,). As such, we infer
that the saturation behavior 8f,xg is simply a result of DL
in the KR.

Detailed studies on numerous other cases with varking
and 7 show that the above result, i.&,,kr first increases
with M and then saturates, is quite general, as long as the
system has a completely chaotic classical limit and quantum
correlations are insignificant. On the other handSjfxr
behaves differently, then there are two possible origins: ei-
ther the system is in the deep quantum regime or there are
non-negligible regular islands in the classical phase space.
For example, in the next section we show cases in which the
energy absorption in the MKR wittM =2 is appreciably
larger than that in the MKR wittM =3. In these cases one
can obtain even more significant changes in DL.

IV. CLASSICAL ANOMALOUS DIFFUSION ASSISTED
CONTROL

In the previous section we studied cases where both the
KR and the MKR essentially have a fully chaotic classical
limit. However, as shown below, the MKR can also display
nonchaotic classical phase space structures that are absent in
the KR. In particular, regular islands with very interesting
transporting properties can be induced in the MKR. In such
cases one can achieve even more dramatic alteration of the
DL than that shown above.

Consider first the classical MKR map E@) for M=2.
Interestingly, in this case there exist transporting trajectories
that are different from those in the KR. In particular, we have

previously observe@20] that for k= (2l,+ 1) trajectories
emanating frorrf=(2|1+ 1), 6==*a/2 will be shifted by

a constant valu¢+(2l,+1)=] in L after each kick. This
observation suggests that transporting regular islands that
differ from the accelerator modes in the KR can be created
by changing the sign of the kicking potential after every two
kicks. This is confirmed in our extensive numerical studies,
both here and in Ref20].

Note that in our previous work20] we were most inter-
ested in the quantum-classical comparison in anomalous dif-
flision and considered relatively small effective Planck con-
stants. In that case we found that quantum anomalous
diffusion induced by the transporting regular islands can be
much faster than the underlying classical anomalous diffu-
sion. Here, to make a closer connection to atom optics ex-
periments, we consider larger-1.0. In these cases the ef-
fective Planck constant is about an order of magnitude larger
than the area of the phase space structures associated with

(i) that we can indeed qualitatively explain the enhanced dyc|assical anomalous diffusion. Intuitively, one would antici-

namical localization length in terms of the band random ma
trix theory, and(ii) that even extremely small quantum fluc-
tuations in the values of the matrix elements of the MKR

Ppate that such transporting regular islands are too small to be
relevant to the quantum dynamics. Surprisingly, this intuition
is incorrect, as shown below.

quantum map operator affect its dynamical localization To be more specific, consider first the case«a#5.0.

length.

In particular, comparing Fig.(3) with Fig. 2(b), one sees
that the saturation behavior 8f,« for largeM is consistent
with the saturation behavior dfy,xg. The latter reflects the

saturation of the matrix elementsn;|Fxgrlm,) and there-

05620

Figure 3 displays the classical phase space structures of both
the KR and the MKR withM =2. While the regular islands
seen in Fig. &) (the KR casgare not transportindthat is,

the momentum of the trajectories launched from these is-
lands is bounded and oscillates periodichlly simple com-
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FIG. 3. Classical phase space structureépthe standard map islands seen in panéb) are transporting.
and (b) the map of Eq(9) with M=2, in the case ok=5.0. All
variables are in dimensionless units. Note that the small regular Consider now the quantum dynamics of these systems.
islands seen in panéb) are transporting while those in pan@  There have been only a few studies on the quantum dynam-
are not. ics of &function-kicked systems where classical chaos coex-

putation reveals that the small islands seen in Fig) B the ists with transporting regular islands. Of particular relevance

MKR case are transporting. That is, classical trajectoriedS the previous result that the accelerator modes of the KR
launched from the rightleft) transporting regular island enhance deviations from the normal DL behavior in the KR

shown in Fig. 8b) have their momentum shifted by (—m)  [28,29, even for systems far from the semiclassical limit.
on the average after each kick, indicating that these island%'nce]c the MKR d'5p|ar¥3 additional tt)ransportl?g 'ﬂa”dsa Vt‘)’e
- : = therefore anticipate that DL may be strongly affected by
originate from the marginally stable poitt=(2l,+ 1), S oo
g=+m/2 with «=. Hence, in this case phase rr%anipulatioand'fy'ng the Hamiltonian from the KR to the MKR system.
in going from the KR to the MKR has both destroyed the This is indeed seen below. The results are, however, counter-
nontransporting regular islands of KR and induced transporti-”tuitive, since the classical transporting regular islands cre-
ing regular islands. Consider a second case WitL0.0. ated by phase manipulation of the kicking field are found to
The corresponding classical phase space structures argve an area that is much smaller than the effective Planck
shown in Fig. 4a) (KR) and Fig. 4b) (MKR) (Note that, to ~ constant. _
clearly display the transporting regular islands, only a part FOr example, for each of the KR and MKR, Figs. 5 and 6
of one phase space cell is shown heralhile there are display energy absorption f(_)r the casessfl.0,k=5.0 and
hardly any regular islands seen in Figa$ two small trans-  7—1.0, k=10.0 (corresponding toc=5 and x=10), respec-
porting regular islands are seen in Figby The average tively. Als_o shown is the MKR case W|tM_:3, dlscgssed _
momentum shift for each kick associated with these two isPelow. Itis seen that the energy absorption associated with
lands is found to be+3mw, consistent with the fact that the MKRwithM=2 (upper dashed lindés much larger than
x=10.0 is close to 3. that of the KR(solid line). Consider, for examplek at a
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2000 T r otic, i.e., the classical dynamics displays characteristics of
anomalous diffusion due to transporting regular islands in
1600 | /"‘\,w My phase space. Thus one can expect statistical deviations from
Wv»’ Y the band random matrix theory, used previously to relate
1200k ,’W,r b to the extent of control.
A A These results emphasize that the control mechanism here
‘R I is uniquely based upon the transporting regular islands cre-
800 wh / } ated by our control scenario. This is further supported by the
/ v line shape for DL, which can be strongly nonexponential, as
400 ,"'qufw.»ww St b o discussed below.
-
00 500 1000 1500 V. NONEXPONENTIAL LINE SHAPES FOR DYNAMICAL

time (units of T) LOCALIZATION

It was pointed out more than two decades Hgjathat the

of the KR can be mapped onto the problem of Anderson
localization in disordered systems. In particular, an exactly
soluble case of disorder in tight-binding models, i.e., the
Lloyd model [30], suggests that dynamical localization
e , should assume an exponential line shape, at least on the av-
specific timet=1500" when the energy absorption of both o346 This has been confirmed by numerous computational
the KR and the MKR has clearly shown signs of saturationy jies on the KR. For example, Figial clearly demon-
(e.g., the average rotational energy may decrease Wilh tim§'trates, for both the KR and the i\/IKR, that the distribution
due to statistical fluctuationsin the first caseFig. 5, E  function P(m) can be fitted beautifully with an exponential
=67.7 for the KR andE=1269.7 for the MKR. In the sec- function with a characteristic localization length.

ond caseFig. 6), E=798.0 for the KR and =10 049.0 for However, the Hamiltonian nature of the KR and MKR
the MKR. In both cases a control factor larger than an ordetmplies that there always exist some subtle quantum phase
of magnitude has been achieved in going from the KReorrelations in the quantum dynamics. Hence, in addition to
Hamiltonian to the MKR case wit =2. some universal properties of DL, the DL line shape can dis-
This is not the case foM =3, 7=1.0, k=5.0 shown in  Play rich nonuniversal properties, e.g., the system may dis-
Fig. 5. Here the energy absorption in the MKR with= 3 is play nonexponential dynamical localization. Nonexponential
only slightly larger than in the KR and far less than in the dynamical localization has been previously observed in the
MKR with M=2. Similarly, for the case ofr=1.0, k KR butits origins are still poorly understo¢as,31.
=10.0 shown in Fig. 6, although energy absorption in the Here, we demonstrate that the MKR wih=2 can dis-
MKR with M=3 is much enhancedcompared with the play strongly nonexponential line shapes for DL, rarely seen
KR), it is still not as significant as in the MKR withi N the KR. We focus on the MKR witiM =2 since the clas-
—2. This indicates, as confirmed by directly examinings'cal MKR with M =2 has transporting regular islands that

P(m) (not shown after saturation, that for both cases the &€ a_bsent in the KR. Se_zcon(_j, transporting regular islands
dynamical localization length of the MKR with =3 is no ~ May induce large fluctuations in DI28]. However, we ex-
larger than that of the MKR witiV =2, contrary to what is &mine below cases with connections to anomalous diffusion

observed in the previous section. This is because the undefS Well as those without clear connections to anomalous dif-
lying classical dynamics of MKR here is not completely Cha_fusmn. We have also studied other versions of_the MKR with
M =2, and have found that nonexponential line shapes for
DL in the latter case are much less common than inthe
15000 T . — 2 case
S '
N Figure 7 compares nonexponential line shapes for DL in
12000 the MKR (upper dashed linggo the analogous exponential
o i line shapes for DL in the KRsolid lines, for four different
9000 values ofk and 7. The line shapes are obtained by propagat-
Jeq 7z g, ing the quantum dynamics for 8000 kicks from the initial

6000

FIG. 5. The time dependence of the dimensionless scaled rotaBL
tional energyE for the KR (solid ling), for the MKR with M =2
(uppermost dashed lineand for the MKR withM =3 (middle
dashed curve with 7=1.0,k=5.0, and the initial stat{0).

T
&

o - state|0), and will remain essentially the same for longer
propagation timefg32]. The huge difference between the KR
and MKR line shapes is striking. As shown in Fig. 7, in the
# MKR case,P(m) plotted on a logarithmic scale displays
I structures that are far from a purely exponential line shape.
0 500 1000 1500 For example, one sees that the initial exponential decay rate
time (units of T) of P(m) with |m| is considerably smaller than its lar¢yey
exponential decay rate, suggesting that multiple characteris-
FIG. 6. As in Fig. 5 except=1.0,k=10.0. tic lengths are needed to describe the DL of the MKR. It is

T
.
1

3000

0
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FIG. 7. Four examples of nonexponential line shapes for dynamical localization in the MKRMwitR, shown in terms of the
probability P(m) of finding the system in the staten) after 8000 kicks, with the initial statf0). In each case the broad line shape
is associated with the MKR, and for the purpose of comparison, the narrow line shape of the analogous KR is alséashevir),
k=5.0, (b) 7=2.0,k=5.0, (c) ==1.0,k=5.7, and(d) 7=2.0,k=6.0.

also seen that the difference {m) between KR and MKR The nonexponential line shapes for DL arise from ex-
can be as large as ten orders of magnitude or more. Furthéremely small quantum fluctuations and residual quantum
Figs. 1b) and 7c) indicate that the decay rate &(m) for correlations in quantum chaos. To be able to resolve the non-
large|m| in the MKR case is very similar to that in the KR eXxponential line shape for DIP(m) has to be known with
case, although this is not the case in Figs) and 7d). high precision. For example, the two shoulders shown in Fig.
To the best of our knowledge, this is the first demonstra-/(D) involve occupation probabilities?(m) as small as
tion that intriguing differences in the line shapes for DL can™ 10" *“ It is therefore not surprising that, while it is com-
be created by simply changing the sign of the kicking poten/on to have strongly nonexponential line shapes for DL in
tial periodically. the MKR case, each individual I_me shape is highly sensitive
The four cases of nonexponential line shapes shown ifo the exact value of the effective Planck constant. For ex-

Fig. 7 can be divided into two categories, based upon thgmple, for the case shown in Figlby, increasing the value

75 _
properties of their underlying classical dynamics. The classi9f 7irom 2.0 to 2.0+107" can completely destroy the non

cal dynamics associated with the cases in Figs, ahd 7b), exponential line shape. This drastic change in the line shape

hown in Figs. &) and 4b), displ transporting reqular for DL even occurs without causing an obvious difference in
sho gs- a » dispiays transporting regu'a energy absorption behavior. Evidently, then, both experimen-
islands. The presence of these classical structures implies

#) observations and theoretical predictions of nonexponen-

@nhomoger!eous cla_ssical phase space, _qnd, as demonStraﬁﬁqjdynamical localization are far from trivial and are in need
in the previous section, may have a significant impact on thes f,rther study.

guantum dynamics even when their size is much smaller than
the effective Planck constant. In this regard, the nonexponen-
tial line shapes shown in Figs.(& and 7b) may not be
totally surprising. However, for the other two MKR cases This paper has dealt with control of dynamical localiza-
shown in Figs. ) and 7d), we did not find any regular tion in kicked-rotor systems. In all cases we manipulated the
islands in their classical phase space even when examined esternal kicking field to alter the properties of the rotor sys-
a very fine scale, suggesting that their classical dynamics iem, i.e., the distribution of population among rotor energy
essentially fully chaotic. Thus, understanding the nonexpolevels after saturation as well as the energy absorption. In
nential line shapes shown in Fig(cy and Fig. 7d) will be particular, we have examined the effect of introducing a re-
even more challenging. versal of the kicking field afteM kicks which, within the

VI. DISCUSSION AND CONCLUSIONS
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framework of quantum mechanics, corresponds to introduchave qualitatively explained the results in Sec. Il in terms of
ing a phase shift among rotor energy levels. well-known features of band random matrix theory. How-

Two parameter regimes have been examined, one whicaver, we found that the bandwidth of the quantum map op-
shows enhanced DL lengths with increasMgand the other erator had to be defined using an extremely small cutoff
which need not. This behavioral difference can be undervalue for the matrix elements, suggesting that a quantitative
stood in terms of the character of the underlying classicalnderstanding of MKR results such as Fig. 2 may require
phase space: the former systems are completely chaotdifferent models of band random matrix ensembles.
whereas the latter show a mixed phase space that includes The strongly nonexponential line shapes for DL found in
transporting regular islands. Indeed, we have found that evetihe MKR with M =2 further demonstrate the need for more
if the transporting islands are tiny compared to the effectiveheoretical work on properties of DL. In particular, our re-
Planck constant, they still have a profound effect on the consults should motivate greater interest in characterizing and
trol of the DL. Further, a comparison of traditional kicked- understanding nonexponential dynamical localization, with
rotor system to modified kicked-rotor systems shows that thefforts directed toward explaining why nonexponential dy-
latter are much more capable of displaying nonexponentiahamical localization occurs for some system parameters and
dynamical localization. Thus, by modifying the kicking po- not for others. This is of importance in understanding the
tential we are able to control the dynamical localization inhigh sensitivity of nonexponential line shapes for DL to the
the kicked rotor. exact value of the effective Planck constant.

The results of this paper are relevant to two fields of We have chosen the system parameters to be within the
study: quantum control and kicked-rotor dynamics. From theeach of current atom optics experiments on the KR
control perspective, modifying the kicking field changes theAlthough experimental studies of nonexponential line shapes
dynamics. However, this system does not obviously permit éor DL are difficult, we believe that it is straightforward to
picture in terms of interfering quantum pathwayke stan-  experimentally observe the results of Sec. Il and Sec. IV.
dard view of weak field coherent contrd5,16]) since(a)  Apart from the atom optics realization of KR and MKR, it is
the kicking field is always on, antb) there are a multitude also interesting to consider a molecular version of KR and
of interfering transitions responsible for the observed behavMKR, i.e., diatomics periodically kicked in strong micro-
ior. Indeed, it is even difficult to isolate the interfering path- wave fields[5,18]. Preliminary computational studig83]
ways that are responsible for dynamical localization in theconfirm that directly observing quantum control of dynami-
simple kicked rotor, whose dynamics is easier than that otal localization in molecular rotational motion is possible,
the MKR. e.g., in the case of quantum anomalous diffusion. Another

From the viewpoint of kicked-rotor studies in the field of promising experimental realization of KR and MKR requires
quantum chaos, this paper provides insights into the quantutkicked particles in a square-well potent{@4]. Along this
dynamics in the case displaying classical anomalous diffueirection an interesting modélvhich is very different from
sion. As one of the results of this study, we find that classicaburg has recently been proposed for the study of classical
transporting regular islands can dramatically affect the quanand quantum anomalous diffusip®5].
tum dynamics even when their size is much smaller than the In summary, consideration of control in classically chaotic
effective Planck constant. Further, the MKR system pro-quantum systems is of general interest and importance to
posed in this paper provides a model for the study of quanboth the fields of quantum chaos and quantum control. In this
tum dynamics where the underlying classical chaos coexistsaper we have demonstrated, via a modified kicked-rotor
with transporting regular islands. By choosing proper systenmodel, that dynamical localization, perhaps the best known
parameters, we can create transporting regular islands whoplenomenon in quantum chaos, can be modified over a wide
size varies from being much larger to being much smallerange. The results are of both experimental and theoretical
than that of the accelerator modes of KR. Encouraged bynterest.
this, we plan in the near future to further use the MKR to
;tudy quantum tunngling between the transporting regular ACKNOWLEDGMENTS
island and the chaotic s¢20,29 and between transporting
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