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Queuing transitions in the asymmetric simple exclusion process
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Stochastic driven flow along a channel can be modeled by the asymmetric simple exclusion process. We
confirm numerically the presence of a dynamic queuing phase transition at a nonzero obstruction strength, and
establish its scaling properties. Below the transition, the traffic jam is macroscopic in the sense that the length
of the queue scales linearly with system size. Above the transition, only a power-law shaped queue remains. Its
density profile scales asdr;x2n with n5

1
3 , andx is the distance from the obstacle. We construct a heuristic

argument, indicating that the exponentn5
1
3 is universal and independent of the dynamic exponent of the

underlying dynamic process. Fast bonds create only power-law shaped depletion queues, and with an exponent
that could be equal ton5

2
3 , but the numerical results yield consistently somewhat smaller valuesn

.0.63(3). The implications of these results to faceting of growing interfaces and localization of directed
polymers in random media, both in the presence of a columnar defect are pointed out as well.

DOI: 10.1103/PhysRevE.68.056122 PACS number~s!: 64.60.Ht, 05.40.2a, 05.70.Ln, 64.60.Cn
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I. INTRODUCTION

Queuing is a common nonequilibrium phenomenon in
ture. It appears, e.g., in stochastic-type driven transp
through narrow channels, where applications can range f
electron transport along nanowires to traffic flow on hig
ways. Queuing has received a lot of attention from the t
oretical side for over a decade@1,2#. It is well established
that many driven flow processes belong to the same uni
sality class as Kardar-Parisi-Zhang-~KPZ! type growth of
one-dimensional~1D! interfaces@3,4#. In particular, the so-
called asymmetric simple exclusion process~ASEP! @5#
maps exactly onto the so-called body-centered solid-on-s
lattice version of KPZ growth@6#. This model has been use
to describe biopolymerization@7#, gel electronics@8#, di-
rected polymers in random media@9#, traffic jams @10,11#,
and the fluctuations of shock fronts@12–15#. In the case of
periodic boundary conditions, the time development of
ASEP is exactly soluble by the Bethe ansatz@5#. For a wider
class of setups, the exact stationary state has been
structed as well using the so-called matrix method@2,13,15–
17#.

The starting point and motivation for the study presen
here was actually not queuing in driven flow but faceting
KPZ growth. Slow flameless combustion of paper produ
1D burning fronts that evolve in time according to KPZ-ty
growth. The results of early experiments@18# seemed to de-
viate from KPZ behavior, but more recent investigatio
demonstrated that for length scales larger than about 5
mm depending on paper structure, random pinning effect
not play a role any more, and that the interface obeys
KPZ scaling@19#. In these experiments, the paper is impre
nated with KNO3 to provide the oxygen source necessary
maintaining the slow-combustion process. The burning sp
can also be controlled by the KNO3 concentration. In par-
ticular, the rate can be enhanced or reduced in a narrow
along the burning direction. The latter experiments nic
illustrate the presence of nonlinear terms in the equation
motion; the burning front facets for enhanced concentrati
1063-651X/2003/68~5!/056122~10!/$20.00 68 0561
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but not for reduced ones. The details of these experiment
well as the matching of the experimental data with our n
merical results for the slow- and fast-bond ASEP will
published separately@20#. Here we only present the ASE
queuing perspective.

One of the fundamental questions in driven flow
whether a static obstruction, such as a slow bond, alw
results in a traffic jam, or whether stochastic fluctuatio
destroy the queue at weak obstacle strengths. Such a va
ing of the queue as a function of the slow-bond stren
represents a dynamic phase transition. The size of the qu
is the order parameter, i.e., it being finite or infinite in leng
or more precisely, whether the number of ‘‘cars’’ in th
queue scales and diverges with the system size or rem
finite ~in obvious analogy with macroscopic occupation
the ground state in equilibrium Bose condensation!. The ex-
istence of such a transition, its scaling properties, the sh
of the density profile near the obstruction, and also whet
information percolates through the slow bond, are the m
important issues.

The ASEP is one of the simplest nonequilibrium driv
dynamic processes displaying queuing phenomena. Part
move stochastically along a chain of sites 1<x<Ns , only in
one direction, with hopping probabilityp under the con-
straint that the particles can neither pass each other nor
cupy the same site,nx50,1. We use random sequential u
dating of the sites. The obstacle is introduced by modify
the hopping probability torp at one specific bond along th
chain. 0<r ,1 represents a slow bond andr .1 a fast bond.
We choose open boundary conditions with the special b
in the middle of the chain.

Mean-field theory predicts an infinitely long traffic jam
for all r ,1 and only a logarithmic depletion density profi
near a fast bond@21#. The literature is confused about wh
happens in reality. The notion of anr c,1 queuing transition
seems to have been implicitly presumed in the ASEP lite
ture for over a decade. Kandel and Mukamel@22# presented
early numerical data~for a different but related growth
model involving parallel updating and polynuclear growt!
©2003 The American Physical Society22-1
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suggesting a critical point which would correspond to'r c

.0.7 in our model. Above the queuing transition, they
ported evidence of continuously varying exponents in
density profiles. Some of these aspects have been confir
by more recent studies@23,24#, but to the best of our knowl-
edge, the existence of anr c,1 has not been resolved unam
biguously. For example, in the ASEP studies with a sl
bond and periodic boundary conditions, Janowsky and L
owitz presented their phase diagrams as ifr c51 ~the mean-
field location! @12#. In retrospectr c.0.8 seems to us consis
tent with, e.g., their series expansions@24#. Their main focus
was however elsewhere, with the fluctuations in the posit
of the shock front of the queue, at the far end from the sl
bond, and not with the precise value ofr c .

The exact form of the stationary state in the ASEP c
often be obtained from the so-called matrix and Bethe an
method@2,13,15–17#, but these analytic techniques typical
work only for very specific boundary conditions and/or u
date rules. Schu¨tz @13,25#, for example, foundr c51 for pe-
riodic boundary conditions and parallel updating. That
consistent with our results, because parallel updating cre
intrinsically weaker stochastic noise than random sequen
updating@26#.

The directed polymer community was focused on
slow-bond issue in the mid 1990s@27–32#. The driving force
behind these studies was the realization of such dire
polymers in terms of flux tubes in type-II dirty supercondu
ors. The (111)-dimensional ASEP is equivalent t
(111)-dimensional KPZ-type growth, and the latter to a
rected polymer in two dimensions subject to a random
tential. In these equivalences, the slope of the KPZ interf
is the deviation of the local density from a half filling in th
ASEP, ]h/]x5122r(x), and the mapping of the KPZ
equation to the directed polymer problem involves the c
ebrated Hopf-Cole transformation,W5exp@(l/2n)h# ~with
l and n the KPZ coupling constants; for a review see R
@32#!. The slow bond transforms into a columnar defect w
a short-ranged attractive interaction, and the queuing is
translates into whether the polymer becomes localized t
immediately or only beyond a critical defect strength. T
latter is true above a critical dimensionDc . Power counting
in the KPZ equation and associated field-theoretical ren
malization studies suggest thatDc51, i.e., our ASEP mode
is at the critical dimension. In such cases one expects
r c51, likely accompanied by essential singularities@27–32#.
Our results presented below seem to contradict these fi
theoretical studies, but actually only do so in a limited sen
We find a more complex structure. The queued ASEP ph
represents the strongly localized state. It exists only beyo
critical defect strengthr c,1. The power-law shaped profil
that remains for weaker slow bonds, represents a form
weak localization. Earlier numerical studies in the direc
polymer representation confirmed localization inD5Dc51
for all r ,1 @27,28# but were likely insensitive to this dis
tinction.

Faced with the realization of this process in terms of sl
combustion of paper, our first goal is to settle the location
r c for the sequential update rule, numerically as accuratel
possible. We demonstrate here the presence of a dyn
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phase transition atr c.0.80(2). Thequeue remains infinite
in length all the way up tor c . Its densityrb5 1

2 (11Db)
decreases asDb;ur c2r ub with b.1.46(4). This is pre-
sented in Sec. III after a detailed discussion of our choice
boundary conditions in Sec. II.

Having settled the existence of the critical point, we tu
in Sec. IV, our attention to the density profile near the sl
bond,r( x̃)5 1

2 @11D( x̃)#, with x̃ the distance from the spe
cial bond. It follows always a power law,D( x̃).Db

1Ax̃2n. Below the transition,r ,r c , the density profile has
a power-law tail with exponentn5 1

2 . Above the transition,
r c,r ,1 and Db50, the density profile has a power-la
shape with exponentn5 1

3 . Notice that the remaining power
law queue abover c is still infinite in magnitude, since
*D( x̃)dx̃;Ns

2/3 diverges. In the fast-bond scenario, th
queue has always a power-law profile~i.e., Db50) for all
valuesr .1, with exponentn.0.63(3).

These power-law density profiles are very intriguing,
particular, the fast-bond one. They are different from t
density profiles near reservoirs, e.g., those in the exact s
tion of Derridaet al. @16# for the open boundary condition
with two reservoirs. Those have exponential tails in t
reservoir-dominated phases, and power-law tails with ex
nent 1

2 in the bulk-dominated maximal-current phase. It
well known how to explain these reservoir-related profi
with the help of simple scaling arguments involving the d
namic exponentz5 3

2 , the roughness exponentx5 1
2 , and the

absence or presence of a nonzero group velocity for fluc
tions ~see, e.g., Ref.@11#!.

In Sec. VI, we generalize these heuristic arguments to
density profiles near the slow-bond. This reproduces the
served slow-bond valuesn5 1

2 and n5 1
3 . A similar line of

reasoning for the fast-bond profile yieldsn51/z5 2
3 , but is

on shaky grounds, in particular, in the light of the fact th
our numerical results give systematically a somewhat sma
value.

Another important result of this study, presented in Sec
is that the passage of particles through the slow-bond
itself up in the stationary state as an uncorrelated proc
both below and abover c . Fluctuations travel away from i
from both sides. No information passes through the sl
bond. The fast bond, on the other hand, acts very much
a normal site, and fluctuations flow through it. In Sec. V
we summarize our results.

II. BOUNDARY CONDITIONS

The choice of boundary conditions is important for t
accuracy of our numerical analysis. The special bond cre
a power-law shaped density profile. Therefore we need
fully control other sources for density profiles and minimi
interference. We have chosen open boundary conditions
the special bond halfway along the road, and particle re
voirs on either side, atx51 andx5Ns . Particles can only
hop to the right,x→x11. The hopping probability is equa
to p for all sites, except for three special sites. The proba
ity to hop through the special bond is equal top85rp. The
probability of entering~leaving! the road from~into! the res-
2-2
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ervoir at sitex51 (x5Ns) is equal toap (bp). It is advan-
tageous to setp51, if possible, to maximize the speed of th
Monte Carlo~MC! simulations, but in our case that wou
exclude us from addressing the fast-bond scenarior .1. We
setp5 1

2 throughout this study. There are several alternati
that can speed up the simulations, but we did not feel
need to explore them in this study. For an example,
might set p51 everywhere along the chain except at t
special bond by increasing the update probability of t
bond.

Our choice to employ open boundary conditions mig
appear surprising. They often introduce edge effects~surface
critical phenomena! that are typically more difficult to inter-
pret and control than those for periodic boundary conditio
In the ASEP, however, periodic boundary conditions int
duce a shock wave in the density profile at halfway arou
the chain, opposite to the slow bond. Janowsky and Lebo
@12# studied the fluctuations in the position of this sho
wave and found for it to fluctuate critically, implying th
absence of a characteristic length scale. We like to deco
the slow bond from those fluctuations and do so by us
open boundary conditions. The trade-off are density profi
near the edges of the road induced by the particle reserv
But these are under full control with the help of the exa
solution of ther 51 ASEP with open boundary condition
@16#. The density profiles near the edges have only expon
tial tails, provided that we choose suitable values fora and
b. At r 51, for a5b5 1

2 , the density profile is completely
flat and featureless;rx5 1

2 for all x @16#. Thus, we selecta
5b5 1

2 throughout this study@33#.
Assume that the slow bond creates an infinite queue

the bulk of that queue, far from both the slow bond and
road edge, the stationary state is uncorrelated, becaus
cally it is indistinguishable from a setup with period
boundary conditions without the slow bond. Moreover, fro
the perspective of the sites near thex51 edge, this situation
is indistinguishable from a setup withr 51 ~no slow bond!
where an exit probabilityb at the opposite site of the roa
could be responsible for this enhanced bulk densityDb .
From the exact solution of that setup, we know that the d
sity profile near the entry edge is exponential,r(x). 1

2 (1
1Db)1B exp(2x/j) with a finite correlation lengthj;Db

2 .
Our simulations confirm this@34#.

Other important features of the density profile are pre
termined as well. For alla5b, the density profile has
particle-hole symmetry with respect to the special bo
r(x)512r(Ns112x). DefineD(x) as the deviation of the
density from 1

2 , r(x)5 1
2 @11D(x)#, such that D(x)5

2D(Ns112x). Then, Db is the order parameter of ou
model and represents the spontaneous faceting angle o
slow-combustion interface profile in the KPZ interpretatio

In the steady-state limit, the current along the chain m
be uniform. From the fact that the bulk stationary state
uncorrelated, it follows immediately that its value throu
such a bulk bond is equal to

J5p^n̂x~12n̂x11!&5
p

4
~12Db

2!. ~1!
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This means that we have the option to determineDb by mea-
suringJ. The current from the reservoir to the first site

J5ap^~12n̂1!&5
ap

2
~12D1! ~2!

must be equal to the bulk current in the stationary state. T
yields, for a5 1

2 , that the density at sitex51 is equal to
D15Db

2 .
The density profiles in front and beyond the special bo

obey particle-hole symmetry,̂nL&512^nR&, with xL and
xR the sites immediately in front and beyond the spec
bond. Moreover, we will demonstrate in Sec. V that the ra
R5^n̂Ln̂R&/^n̂R& is very close toR5 1

2 for all values ofr.
The current through the special bond

J5rp^n̂L~12n̂R!&5rp@~11R!^nL&2R# ~3!

must again be equal to the bulk current, thus anchoring
value of the density immediately in front of the special bo
to the order parameter of our process asDL5 1

3 @(12Db
2)/r

21# if R is exactly equal to1
2 .

Figure 1 summarizes the above discussion. The curr
the densities at the first and last sites, the characteristic
ponential length scale of the density profile near the reser
edge ~in the faceted phase!, and the bulk density are al
linked to each other. This leaves only the spontaneous
ation of a nonzeroDb and the density profile near the spec
bond as independent issues.

b
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L∆

∆∆
1/2
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∆~x
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1

(a) Queued phase (r<r )c

1/2

∆

x~ ∆
∆L

sR

~(x)

N

ρ

x

~

1

 Ax~−ν

(b) Nonqueued SB phase (r <r<1 )c

1/2

∆

Ns

ρ (x) ~~

x

1

 Ax~−ν

x~

(c) Nonqueued FB phase (r>1)

∆L

∆R

FIG. 1. Schematic density profiles are shown: for the slow-bo
~SB! ~a! r ,r c ~queued phase! and ~b! r c<r ,1 ~nonqueued SB
phase! and for the fast bond~FB! ~c! r .1 ~nonqueued FB phase!.
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III. QUEUING PHASE TRANSITION

The first issue at hand is to settle by numerical means
burning question whether there exists a queuing transitio
anr c,1. We perform MC simulations for system sizes up
Ns54096 and analyze them by finite size scaling~FSS! tech-
niques. The order parameter of the queuing transition is
offset of the density in the bulk,Db ~far from both the specia
bond and the edge!. There are several ways to measure th

One can directly measure the density at a site suchx
5 1

4 Ns and perform a FSS analysis to determine
asymptotic value. This works, but neitherx5 1

4 Ns nor any
other fixed site is optimal for such an analysis, because
density profile has a power-law tail at the special bond s
and only an exponential one near the reservoir. Instead
show in Fig. 2 the values forDb from a power-law density
profile fit

D~ x̃!.Db1Ax̃2n ~4!

~with x̃5xR2x the distance from the special bond! at our
maximum system sizeNs54096.

As pointed out in the preceding section,Db is directly
linked to various other quantities, such as the average cur
J, the density at the first site near the edgeD1, and the
characteristic lengthj of the exponential tail in the densit
profile near the edge. We measure these quantities as
and translate the first two into their predictions forDb . The
results, also shown in Fig. 2, are almost indistinguisha
from those of the power-law density profile fits. This co
firms our analysis of the preceding section.

Figure 2 suggests very strongly the existence of a crit
point at aboutr c.0.8. However, this is a common optica
illusion, which vanishes upon zooming-in to this point, as
Fig. 3. Assume that the order parameter obeys the con
tional FSS scaling form

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

∆ b

r

FIG. 2. The order parameterDb vs the strengthr of the special
bond atNs54096, determined from three different datasets:
average currentJ ~squares!, the densityD1 at the first site near the
reservoir edge~crosses!, and three parameter power-law fits to th
density profiles near the special bond~circles!.
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wheree5r c2r . We test how well our numerical data obe
this scaling relation and what the best values ofr c , xD , and
b5xD /y are. The order parameter should scale as a func
of e as Db;eb. In Fig. 4, we show a log-log plot ofDb
versuse for various choices ofr c at N54096. The best
straight line is obtained forr c50.80(2) with slopeb
51.46(4). At the same choice forr c , the order paramete
also scales perfectly as a power lawDb;Ns

2xD with a critical
dimensionxD50.370(5). One should always be on guar
for corrections to scaling. For that reason we plot in Fig
the scaling functionS defined as

Db~Ns ,e!5Ns
2xDS~Ns

ye! ~6!

for r c50.80, xD50.370, andb5xD /y51.46. The data col-
lapses very well, implying only minor corrections to scalin

An alternative scaling form to consider is an exponen
essential-singularity-type infinite-order transition, in partic
lar, with r c51, as suggested by the directed polymer ren
malization studies@27–32#. We tried these forms, shown i
Fig. 6. They fit our MC data poorly.

IV. DENSITY PROFILES

The density profiles near the special bond have a pow
law shape for all values ofr. Figure 7 shows our numerica
results for the exponentn and the amplitudeA as defined in
Eq. ~4!. We performed also two-parameter fits after det
mining Db independently from the numerical values for th
current and the density at sitex51, using the inter-relations
outlined in Sec. II. These results are identical within the M
noise.

The jumps inn at r c andr 51 are very pronounced in Fig
7. It seems safe to conclude, surely as a starting assump
for the discussion in the following two sections, that for slo
bonds the exponent takes the valuen5 1

2 in the r ,r c mac-
roscopic queued phase andn5 1

3 in the r c,r ,1 power-law

e

0

0.025

0.05

0.075

0.1

0.125

0.6 0.7 0.8 0.9 1

∆ b

r

FIG. 3. The order parameterDb vs the strengthr of the slow-
bond in the vicinity of the critical pointr c , as obtained from the
average current dataset.
2-4
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queued phase. To the best of our knowledge only one ea
study, the one by Slanina and Kotrla@23#, observed this type
of power law, but they suggested a value different fromn
5 1

3 . We will present convincing heuristic analytic deriv
tions for our values in Sec. VI.

The power-law queue for fast bonds,r .1, is quite in-
triguing. This is where Kandel and Mukamel@22# sighted a
possible continuously varyingn. We interpret our data a
strong evidence for a nonvarying constant valuen
.0.63(3). The drop in the estimates in Fig. 7 nearr 51
resembles conventional~multicritical-type! crossover scal-
ing, but we cannot verify this explicitly, because this pow
law decays much faster than in both slow-bond phases,
e.g., atr 51.1, the amplitude sinks underneath our MC no
level already at aboutx.60. We excludex,20 from our fits
to avoid ~short-distance-type! corrections to scaling.

Obviously we would like to ‘‘talk’’ this fast-bond power
law profile towardsn5 2

3 , since that number occurs natural
in 1D KPZ-type processes. However, our heuristic argum

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

-3.5 -3 -2.5 -2 -1.5 -1 -0.5

ln
 ∆

b

ln (ε=rc-r)

(a)
rc=0.9

0.84
0.82
0.80
0.78
0.74

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4

ln
 ∆

b

ln (1/Ns)

(b)

FIG. 4. Determination of the critical point and critical exp
nents.~a! Double logarithmicDb;ueub type plots of the order pa
rameter withe5r c2r at Ns54096 for various choices ofr c . The
best straight line is found atr c50.80(2) and with slopeb
51.46(4). ~b! Double logarithmic plots ofDb;Ns

2xD as a function
of system sizeNs at r c50.80. The slope~dashed line! yields xD

50.370(5). Forclarity we show only the data forDb obtained from
J ~squares! andD1 ~crosses!.
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for n51/z5 2
3 is not very strong, see Sec. VI, and the fits

the MC data in Fig. 7 remain consistently below that valu
For this reason we also studied the followingr→` like

setup. Consider a normal chain without any special bond
with the site in the middle allowed to be doubly occupie
nNs/2

50,1,2. In this setup we can increase the hopping pr

ability p to p51 and thus speed up MC simulations (a and
b are again set equal to12 ). The log-log plot of the density
profile, shown in Fig. 8, is quite straight. Still, the slop
suggests a somewhat smaller exponent,n50.64(2) ~using
20,x,500 as the fitting range!. n5 2

3 is still a possibility,
but seems to require a significant subdominant correctio
scaling power-law term. A more detailed analysis becom
meaningful only when the noise level is brought down by

0

0.5

1

1.5

2

2.5

3

3.5

-1.5 -1 -0.5 0 0.5 1 1.5 2

N
sx ∆

[∆
(N

s,
ε)

]

Ns
yε

64
128
256
512

1024
2048
4096

FIG. 5. Data collapse by Eq.~6!, i.e., the scaling function of the
order parameter using the valuesr c50.80, xD50.370, andb
51.46 as found in Fig. 4.

0.1

1

10

0.1 1

-ln
 ∆

b

 1-r

FIG. 6. The same data as in Fig. 2 fitted to a scaling form
type Db „Db[exp@2a(12r)b#…, represent a so-called essentia
singularity characteristic for a possible infinite-order-type transit
with r c51. The curves fail to straighten out, indicating that this
a poor fit.
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FIG. 7. The exponentn ~a! and the amplitudeA ~b! of the
power-law shaped density profile, defined in Eq.~4!, for variousr at
system sizesNs52048 ~crosses! andNs54096 ~circles!.
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FIG. 8. The density profiles in ther→` model atNs54095,
implemented as a normal chain with uniform hopping probabi
p51, but one special double occupancy site in the middle. T
dashed line, with slopen50.64, serves as guide to the eye; a slo
n52/3 seems too steep.
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least one more order of magnitude from our currentdr/r
.0.001 level, which requires vastly longer MC runs.

V. UNCORRELATED PASSAGE

Our numerical observation that the density profile near
special bond always follows a power law,dr; x̃2n, in all
three phases, is far from obvious. The actual values forn are
even more intriguing. In this and the following sections, w
present intuitive heuristic explanations for the slow-bo
values, and also address the fast-bond case. An impo
ingredient in this is that the passage through the slow bon
an uncorrelated random process in both the macrosc
queued phase atr ,r c and the power-law queued phase
r c,r ,1.

In the macroscopic queued phase, the absence of pas
correlations is easily understood. Fluctuations travel aw
from the slow bond, both in front and beyond it. The gro
velocity of fluctuationsvg points away from the slow bond in
both directions.vg5dJ/dr represents the local response
the current to a density fluctuation. The stationary state
uncorrelated inside the bulk, such that the current is equa
J5prb(12rb) and vg5p(122rb)52pDb . Fluctuation-
type wave packets travel with this velocity along the roa
while they broaden spatially asj;t1/z, with the 1D KPZ
dynamic exponentz5 3

2 . In the KPZ growth context,Db rep-
resents the average slope of the growing surface, and
traveling wave packet reflects that the interface moves p
pendicular to the local surface orientation.

The precise form ofvg for spatially varying densities
r(x) is more complex, but for slowly varying ones, like her
we can assumevg is well represented by

vg~x!5p@122r~x!#52pD~x!. ~7!

D(x) is positive in the macroscopically queued phase, s
that the center of mass of a fluctuation packet moves a
from the slow-bond linearly in time,xCM;t. During this
process, it spreads over a widthj;t1/z. Fluctuations detach
from the slow bond, because the center of mass of the pa
propagates faster than its broadening front. Therefore
density fluctuations at the slow bond are uncorrelated
time. No memory remains at the slow bond of anything ha
pening there before. No information passes through the s
bond.

Most of this remains true in the power-law queued pha
at r c,r ,1. Now the group velocity vanishes in the bul
but remains nonzero near the slow bond, because of
power-law shaped density profile of the queue. The cente
mass of a fluctuation packet still moves away from the sl
bond, but only asxCM;t1/(11n), see Eq.~7!. During this, it
spreads again over a widthj;t1/z. Therefore, for alln,z
215 1

2 the packet detaches from the slow bond.n5z21 is
the critical value. Numerically we findn. 1

3 , see Fig. 7~a!.
So the density profile near the slow bond organizes itself
form where the passage fluctuations through the slow b
are uncorrelated in time and density fluctuations originat
on the road do not affect it.

e
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It is useful to test this explicitly by numerical simulation
in particular, in the power-law queued phase. Time corre
tors, such as the current-current autocorrelation function,
the preferred tools for this, but unfortunately they do n
yield much useful information. The current-current correla
drops in magnitude by two orders within 10 MC time step
not only near the slow bond, but everywhere along the r
as well. This reflects that, in KPZ growth,dJ;Ns

2s scales
with a larges.2.

As a second best choice, we focus instead on spatial
relations between the densities across the slow bond. C
sider the ratio

R5
^n̂Ln̂R&

^n̂R&
, ~8!

with n̂L andn̂R the density operators at the sites immediat
in front and beyond the special bond. For reference, the s
type of ratio for two nearest-neighbor sites anywhere alo
the road, in the bulk, far from edges and slow bonds, is eq
to 1

2 , because the bulk stationary state is uncorrelated, w

^n̂i n̂i 11&5^n̂i&^n̂i 11&. Near the edges, however, and in pa
ticular, inside power-law profiles, the neighbors are cor
lated, and the ratio moves away from12 .

Figure 9 shows thatR, as defined in Eq.~8!, is almost
equal to1

2 for all values ofr. The deviations are only of orde
3%. This is consistent with the picture that fluctuatio
travel away from the slow bond from both sides.

To quantify this in more detail, we consider the followin
mean-field-type approach, in which the road in front a
beyond the slow bond are treated as reservoirs~devoid of
fluctuations as far as the slow bond is concerned!. We solve
thus the following two-site problem, with only sitesxL and
xR on either side of the slow bond. Particles hop onto sitexL
with an effective probabilityaeffp from the road in front of
it, treating the road as a reservoir; then move through

0.48

0.485

0.49

0.495

0.5

0.505

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

R=
<

n L
n R

>
/<

n R
>

r

4
64

128
256
512

1024
2048
4096

FIG. 9. The ratioR defined in Eq.~8!. R remains close to the
uncorrelated passage value1

2 for all r. The small deviations, of
order 3%, do not scale with system size, and are mostly descr
already by a four-sites-type mean-field approximation, the das
line.
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slow bond with probabilityrp; and finally hop away fromxR
onto the road beyond the slow bond with probabilityaeffp,
treating that as a reservoir as well. Finally, we tuneaeffp to
the value where the current takes the same value as in
true system. This approximation yields rather triviallyR
5 1

2 for all r and allaeff . The dashed line in Fig. 9 showsR
for the next level of mean-field theory, with four sites inste
of two, taking into account local correlations. These suffi
to reproduce already most of the small deviations we obse
in the trueR as a function ofr, and support the uncorrelate
passage nature of the process.

The ratio remains equal toR. 1
2 for fast bonds, and ac

tually even better than forr ,1. How do fluctuations trave
there? The group velocity changes its sign~moving direc-
tion!, because the power-law queue,D( x̃).Ax̃2n, turns into
a depletion zone with negative amplitudeA. Fluctuations
travel towards the fast bond from both sides. It might se
therefore that this passage process must be highly correla
However, fluctuations originating from all over the roa
bombard the fast bond from both sides, and average e
other out. Consider a fluctuation created at a distancex from
the fast bond. The center of mass of this fluctuation mo
towards it, and arrives after a time of flightt;xn11. During
this time, it has broadened over a widthj;t1/z. Ignoring the
center of mass movement, its leading edge would arrive
the fast bond after a timet;xz. For n.z215 1

2 the leading
edge arrives well before the center of mass, and the latter
be neglected. Again,n5z215 1

2 , is the critical value. For
fast bonds we find numericallyn.0.63, see Fig. 7~a!. This
explains why R5 1

2 . The density profile organizes itse
again into a form where the passage correlations rem
simple. The fast bond acts very much like an ordinary b
site, and fluctuations flow through it.

VI. A DERIVATION OF THE DENSITY PROFILES

In the preceding section we found that the density profi
organize themselves into a form such that the pass
through the special bond is an uncorrelated process. Here
give heuristic arguments for the actual values of the ex
nents:n5 1

2 at r ,r c andn5 1
3 at r c,r ,1 for slow bonds.

We also explain why for fast bondsn.1/z.
First, consider the slow-bondn5 1

2 power-law density
profile in the macroscopic queued phase atr ,r c . The total
number of excess particles in this queue diverges with s
tem sizeNs asdN;Ns

1/2. This has a familiar ring to it. In the
Derridaet al. @16# type open system setup with reservoirs
both sides and no special bonds, the fluctuations in the t
number of particles on the road scale asdN;Ns

1/2. In that
setup, this property does not translate into power-law-ty
density profiles, except when the road is half filled,rb5 1

2 .
The density profiles are exponential or featureless in the
rbÞ 1

2 phases where either reservoir controls the bulk d
sity.

The parking garage process of Ref.@11# is closer to queu-
ing dynamics. In that study the two reservoirs were merg
into one, such that the road forms a loop starting and end
in the same parking garage. The total number of cars in

ed
d
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system is then conserved, leading to dynamic phase tra
tions between condensate-type stationary states where
garage is macroscopically occupied and a normal ph
where it is not. That process has two parameters, the
number of cars in the system and a modified hopping pr
ability ap to jump from the garage onto the first site of th
road.

The fluctuations in total number of particles on the road
again equal todN;Ns

1/2. The explanation of this goes a
follows @11# for the normal phase, the nonmaximal-curre
condensate phase, and also at the transition point betw
them. The group velocity of fluctuationsvg is nonzero. This
means that the departure of cars from the garage is an un
related process. Fluctuations detach from the garage bec
they travel away faster~linear in time! than they are spread
ing backward~asj;t1/z with z5 3

2 ). Moreover, after a time
of flight tflight5Ns /vg they move around the loop, return t
the garage, and are completely erased. So we deal withtflight
random uncorrelated deposition events. The fluctuation
the number of cars on the road therefore scale astflight

1/2 . In the
condensate phase, these fluctuations do not lead to an o
in the average density of parked cars, because the gara
macroscopically occupied, and positive and negative fluc
tions cancel out against each other. But at the transi
point, the bottom of the garage becomes visible. This lim
the negative density fluctuations, and therefore introduce
bias towards increased occupation, such that the numbe
parked cars is enhanced and scales asdNP;Ns

1/2.
The same type of reasoning applies to the slow-bo

setup. The passage through the slow bond is a stoch
uncorrelated event~as demonstrated in the preceding se
tion!, similar to departures from the garage mentioned abo
Again, all memory is erased aftertflight;Ns , the time that
takes for a fluctuation to travel from the slow bond to t
reservoir. The fluctuations in the number of cars pass
through therefore scale astflight

1/2 . These fluctuations are bi
ased again, because the sites immediately in front and
yond the slow bond are not reservoirs. Excess particles w
ing to pass are spread out, and not available for immed
passage. The passage process is biased, because slow
process particles slower than normal bonds, while the p
ing probability of vacancies does not depend on the valu
r. ~Our process has particle-hole symmetry but only in c
junction with left-right mirroring with respect to the speci
bond.! The total number of excess cars near the slow b
waiting to pass scales therefore asdNP;Ns

1/2. These extra
particles must be accommodated over a stretch of roax
,xL behind the slow bond. We can imagine two ways
realize this: an exponential density profile with a correlat
length diverging asj;Ns

1/2 or a power-law profile withn
5 1

2 as we actually observe. The power law is indeed m
likely given the intrinsic critical nature of ASEP.

Next, let us generalize this argument to then5 1
3 power

law above the queuing transition, atr c,r ,1. The time of
flight of a fluctuation to travel from the slow bond all th
way back to sitex51, scales now only as,tflight;Ns

n11 since

vg52pD( x̃); x̃2n. Assume thatn, 1
2 , in which case the

fluctuations still detach from the slow bond and the pass
05612
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through the slow bond remains uncorrelated. The proces
the slow bond is still biased toward low density fluctuation
FSS corrections to the total number of cars in the queu
proportional totflight uncorrelated events:

dN;tflight
1/2 ;Ns

(n11)/2. ~9!

This queue heaps up behind the slow-bond, and again
ranges itself in the form of a power-law shaped density p
file, dr; x̃2n. Self-consistency implies that (n11)/252n
11→n5 1

3 , in accordance with the observed value.
Then.0.63(3) power law for the fast bond is more cha

lenging. This is a fundamentally different phenomeno
Again fluctuations travel across the system, but now run
wards the fast bond instead of away from it. Actually,
shown already in the pceding section, forn.z215 1

2 the
time of flight of the center of mass of a fluctuationtflight

;Ns
n11 is longer than the time it takes that same fluctuat

to spread over the entire systemt;Ns
z . In the r ,1 phases,

we are allowed to ignore for this reason the spreading of
fluctuations, and only consider their center of mass mot
~the time of flight!. At r .1 this is reversed. In ther ,1
phases, the exponentn was insensitive to the actual value o
the dynamic exponentz of the dynamic process. In ther
.1 phase, it must depend onz.

A n. 2
3 power-law tail is very rare. It does not appea

e.g., anywhere in the Derridaet al. @16# type two-reservoirs
setup. Interestingly, however, this density profile appea
already in the parking garage ASEP study@11#; at the
second-type condensation transition, from the ‘‘normal’’
the ‘‘maximum current’’ phase. The characteristic featu
was that, at the transition point, the garage started to tran
information ~seized to act as a reservoir!, and that at that
point the bulk group velocity was zero. The similarities wi
the fast bonds are striking. We are clearly looking at t
same type of phenomenon. The slow-bond does not tran
information, while the fast bond acts very much like a no
mal site and fluctuations move~i.e., they spread! through it
~see also the preceding section!.

What might the true value ofn.0.63(3) be? An obvious
guess is thatn51/z, but how to explain this? One of th
crucial aspects must be again that the processing of fluc
tions is biased at the fast bond, leading to a depletion qu
with a total deficit of

dN;E
0

Ns/2

dx̃x̃2n;Ns
12n;Ns

1/3

particles. The sign of this in now negative, because at the
bond the particles are processed faster than at the no
bonds, while the passing rate of vacancies does not dep
on r.

Density fluctuations are created everywhere along
road, all the time, and with a common characteristic am
tude. Each spreads in time over a regionj;t1/z. A fluctua-
tion created at a distancex̃ from the fast bond arrives ther
after a time t; x̃z and with a reduced amplitude~from
spreading! of order Ax̃21/z. The asymmetry in processin
2-8
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high and low density fluctuations gives rise then to a den
deficit of orderAx̃21/z from fluctuation originating at dis-
tancex̃. Next, adopting rather frivolously superposition pri
ciple concepts, one would guess that the total density de
in front of the fast bond scales asdN;*0

Ns/2dx̃ Ax̃21/z

;Ns
121/z in agreement with what we observed numericall

Although the last argument is reasonably appealing, i
certainly not convincing. A more robust explanation
needed. Moreover, the numerical valuen.0.63(3) is suffi-
ciently lower to cast serious doubts thatn5 2

3 is correct. On
the other hand, the above argument serves as a proper
of magnitude estimate.

VII. SUMMARY

In this study, we reconfirmed numerically, and beyo
doubt the presence of a queuing phase transition in the A
with a slow bond of strengthr c.0.80(2). We established
the two scaling exponents of this transition. The order
rameter, the excess density in the queue, vanishes aDb
;ur c2r ub with b51.46(4). At the transition point, the
number of particles in the queue scales with system siz
Db;Ns

xD with xD50.370(5).
From a more general perspective, the transition illustra

that weak obstructions do not give rise to macroscopic tra
jams~queues with lengths that scale linearly with the syst
size!. The stochastic fluctuations overwhelm the slow bo
abover c .

A second result of our study is that abover c a power-law
shaped queue~traffic jam! remains,dr.Ax̃2n, with x̃ the
distance from the obstruction and opposite signs forA in
front and beyond the obstruction. The exponent is equa
a

n-

ys

,
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n5 1
3 . This value is most likely universal, because our he

ristic derivation for the general case does not involve spec
details of the dynamics. In particular, it does not involve t
KPZ value of the dynamic exponentz, except for the require-
ment that fluctuations travel faster away from the slow bo
than they spread. The argument applies for any process
z.11n5 4

3 .
From the directed polymer perspective our results are

expected. The slow-bond queuing transition represent
crossover from strong to a weaker~but still strong! form of
localization, because then5 1

3 power-law density tail near
the slow bond contains still an infinite number of particle
~naively! the polymer distribution behaves aŝW&
;exp@(l/2n)^h&#;exp(2Cx12n). It will be interesting to see
how this weak localized phase, and the above exact s
consistent argument forn5 1

3 , can be integrated and recon
ciled with the field-theoretical descriptions of Refs.@27–32#.

For fast bonds~such as a local widening of the road!, a
macroscopic depletion queue~with a length proportional to
the road length! never appears. Instead, a power-law shap
depletion queue is always present with exponentn
.0.63(3). It remains yet unclear whether this value is equ
to n51/z. It will be interesting to study how our result
extend to other models of driven flow along one-dimensio
channels, in particular, to non-KPZ type dynamics.
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