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Queuing transitions in the asymmetric simple exclusion process
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Stochastic driven flow along a channel can be modeled by the asymmetric simple exclusion process. We
confirm numerically the presence of a dynamic queuing phase transition at a nonzero obstruction strength, and
establish its scaling properties. Below the transition, the traffic jam is macroscopic in the sense that the length
of the queue scales linearly with system size. Above the transition, only a power-law shaped queue remains. Its
density profile scales a8p~x"" with v= % andx is the distance from the obstacle. We construct a heuristic
argument, indicating that the exponeﬂvt:% is universal and independent of the dynamic exponent of the
underlying dynamic process. Fast bonds create only power-law shaped depletion queues, and with an exponent
that could be equal t0z=§, but the numerical results yield consistently somewhat smaller values
=0.633). The inplications of these results to faceting of growing interfaces and localization of directed
polymers in random media, both in the presence of a columnar defect are pointed out as well.
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I. INTRODUCTION but not for reduced ones. The details of these experiments, as
well as the matching of the experimental data with our nu-
Queuing is a common nonequilibrium phenomenon in namerical results for the slow- and fast-bond ASEP will be
ture. It appears, e.g., in stochastic-type driven transpompublished separatelj20]. Here we only present the ASEP
through narrow channels, where applications can range frorgueuing perspective.
electron transport along nanowires to traffic flow on high- One of the fundamental questions in driven flow is
ways. Queuing has received a lot of attention from the thewhether a static obstruction, such as a slow bond, always
oretical side for over a decadé,?]. It is well established results in a traffic jam, or whether stochastic fluctuations
that many driven flow processes belong to the same univedestroy the queue at weak obstacle strengths. Such a vanish-
sality class as Kardar-Parisi-ZhafigPZ) type growth of ing of the queue as a function of the slow-bond strength
one-dimensiona(1D) interfaces[3,4]. In particular, the so- represents a dynamic phase transition. The size of the queue
called asymmetric simple exclusion proce§sSEP [5] isthe order parameter, i.e., it being finite or infinite in length;
maps exactly onto the so-called body-centered solid-on-soli@r more precisely, whether the number of “cars” in the
lattice version of KPZ growtfi6]. This model has been used queue scales and diverges with the system size or remains
to describe biopolymerizatiofi7], gel electronics[8], di-  finite (in obvious analogy with macroscopic occupation of
rected polymers in random medjf], traffic jams[10,11,  the ground state in equilibrium Bose condensatidine ex-
and the fluctuations of shock fronf$2—15. In the case of istence of such a transition, its scaling properties, the shape
periodic boundary conditions, the time development of theof the density profile near the obstruction, and also whether
ASEP is exactly soluble by the Bethe angd&} For a wider  information percolates through the slow bond, are the most
class of setups, the exact stationary state has been coimportant issues.
structed as well using the so-called matrix meth®d 3,15— The ASEP is one of the simplest nonequilibrium driven
17]. dynamic processes displaying queuing phenomena. Particles
The starting point and motivation for the study presentednove stochastically along a chain of sites <Ng, only in
here was actually not queuing in driven flow but faceting inone direction, with hopping probabilitp under the con-
KPZ growth. Slow flameless combustion of paper producestraint that the particles can neither pass each other nor oc-
1D burning fronts that evolve in time according to KPZ-type cupy the same site),=0,1. We use random sequential up-
growth. The results of early experiments8] seemed to de- dating of the sites. The obstacle is introduced by modifying
viate from KPZ behavior, but more recent investigationsthe hopping probability top at one specific bond along the
demonstrated that for length scales larger than about 5-1€hain. O<r <1 represents a slow bond and 1 a fast bond.
mm depending on paper structure, random pinning effects dd/e choose open boundary conditions with the special bond
not play a role any more, and that the interface obeys 10n the middle of the chain.
KPZ scaling[19]. In these experiments, the paper is impreg- Mean-field theory predicts an infinitely long traffic jam
nated with KNQ to provide the oxygen source necessary forfor all r <1 and only a logarithmic depletion density profile
maintaining the slow-combustion process. The burning speedear a fast bonf@21]. The literature is confused about what
can also be controlled by the KNCconcentration. In par- happens in reality. The notion of ag<1 queuing transition
ticular, the rate can be enhanced or reduced in a narrow strigeems to have been implicitly presumed in the ASEP litera-
along the burning direction. The latter experiments nicelyture for over a decade. Kandel and Mukarfi22] presented
illustrate the presence of nonlinear terms in the equation oéarly numerical datafor a different but related growth
motion; the burning front facets for enhanced concentrationsnodel involving parallel updating and polynuclear growth
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suggesting a critical point which would correspond~o. phase transition at.=0.80(2). Thequeue remains infinite
=0.7 in our model. Above the queuing transition, they re-in length all the way up ta.. Its densityp,=3(1+Ap)
ported evidence of continuously varying exponents in thedecreases ad,~|r.—r|? with B=1.464). This is pre-
density profiles. Some of these aspects have been confirmeented in Sec. Il after a detailed discussion of our choice of
by more recent studig®3,24], but to the best of our knowl- boundary conditions in Sec. Il.

edge, the existence of ap<<1 has not been resolved unam-  Having settled the existence of the critical point, we turn,
biguously. For example, in the ASEP studies with a slowin Sec. 1V, our attention to the density profile near the slow
bond and periodic boundary conditions, Janowsky and Lebbond, p(x) = [1+A(X)], with X the distance from the spe-
qwitz pres_ented their phase diagrams as.# 1 (the mean- sl pond. It follows always a power lawA(X)=A,
field location [12]. In retrospect .=~0.8 seems to us consis- + A% " Below the transitionr<rc, the density profile has

tent with, e.g., their series expansidi2¢]. Their main focus law tail with =1 Ab the 1 i
was however elsewhere, with the fluctuations in the positlor? power-law tail with exponent= ove he transition,
<r<1l andA,=0, the density proﬁle has a power-law

of the shock front of the queue, at the far end from the slow/ ¢
bond, and not with the precise value rof. shape with exponent= 3. Notice that the remaining power-
The exact form of the stationary state in the ASEP caAaW queue abovere is still infinite in magnitude, since
often be obtained from the so-called matrix and Bethe ansatbA (X)dx~NZ° diverges. In the fast-bond scenario, the
method[2,13,15—-17, but these analytic techniques typically queue has always a power-law profiiee., A,=0) for all
work only for very specific boundary conditions and/or up-valuesr>1, with exponentv=0.633).
date rules. Schm [13,25, for example, found .=1 for pe- These power-law density profiles are very intriguing, in
riodic boundary conditions and parallel updating. That isparticular, the fast-bond one. They are different from the
consistent with our results, because parallel updating creaténsity profiles near reservoirs, e.g., those in the exact solu-
intrinsically weaker stochastic noise than random sequentidion of Derridaet al. [16] for the open boundary conditions
updating[26]. with two reservoirs. Those have exponential tails in the
The directed polymer community was focused on thereservow dominated phases, and power-law tails with expo-
slow-bond issue in the mid 199087-32. The driving force nent 3 in the bulk-dominated maximal-current phase. It is
behind these studies was the realization of such directeell known how to explain these reservoir-related profiles
polymers in terms of flux tubes in type-I1 dirty superconduct-with the help of S|mple scaling arguments mvolvmg the dy-
ors. The (&+1)-dimensional ASEP is equivalent to namic exponent=3, the roughness exponept 3, and the
(1+1)-dimensional KPZ-type growth, and the latter to a di- absence or presence of a nonzero group velocity for fluctua-
rected polymer in two dimensions subject to a random potions (see, e.g., Ref.11]).
tential. In these equivalences, the slope of the KPZ interface In Sec. VI, we generalize these heuristic arguments to the
is the deviation of the local density from a half filling in the density profiles near the slow-bond. Thls reproduces the ob-
ASEP, oh/gx=1-2p(x), and the mapping of the KPZ served slow-bond values=3 andv=1. A S|m|Iar line of
equation to the directed polymer problem involves the celfeasoning for the fast-bond profile weld& 1/z=%, but is
ebrated Hopf-Cole transformatioiy=exg(\/2»r)h] (with ~ on shaky grounds, in particular, in the light of the fact that
\ and v the KPZ coupling constants; for a review see Ref.OUr numerical results give systematically a somewhat smaller
[32]). The slow bond transforms into a columnar defect withvalue.
a short-ranged attractive interaction, and the queuing issue Another important result of this study, presented in Sec. V,
translates into whether the polymer becomes localized to i that the passage of particles through the slow-bond sets
immediately or only beyond a critical defect strength. Theitself up in the stationary state as an uncorrelated process
latter is true above a critical dimensi@.. Power counting both below and above.. Fluctuations travel away from it
in the KPZ equation and associated field-theoretical renorfrom both sides. No information passes through the slow
malization studies suggest thiat=1, i.e., our ASEP model bond. The fast bond, on the other hand, acts very much like
is at the critical dimension. In such cases one expects th@& normal site, and fluctuations flow through it. In Sec. VII,
r.=1, likely accompanied by essential singularifigg—32. ~ We summarize our results.
Our results presented below seem to contradict these field-
theoretical studies, but actually only do so in a limited sense.
We find a more complex structure. The queued ASEP phase
represents the strongly localized state. It exists only beyond a The choice of boundary conditions is important for the
critical defect strength.<1. The power-law shaped profile accuracy of our numerical analysis. The special bond creates
that remains for weaker slow bonds, represents a form o& power-law shaped density profile. Therefore we need to
weak localization. Earlier numerical studies in the directedfully control other sources for density profiles and minimize
polymer representation confirmed localizationD=D .= 1 interference. We have chosen open boundary conditions with
for all r<1 [27,28 but were likely insensitive to this dis- the special bond halfway along the road, and particle reser-
tinction. voirs on either side, at=1 andx=Ng. Particles can only
Faced with the realization of this process in terms of slowhop to the rightx—x+ 1. The hopping probability is equal
combustion of paper, our first goal is to settle the location ofto p for all sites, except for three special sites. The probabil-
r. for the sequential update rule, numerically as accurately aisy to hop through the special bond is equalgb=rp. The
possible. We demonstrate here the presence of a dynamgrobability of enteringleaving the road from(into) the res-

IIl. BOUNDARY CONDITIONS
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ervoir at sitex=1 (x=Ny) is equal toap (Bp). Itis advan- (a) Queued phase (r<ry
tageous to sgi=1, if possible, to maximize the speed of the

Monte Carlo(MC) simulations, but in our case that would

exclude us from addressing the fast-bond scenarid. We
setp=3 throughout this study. There are several alternatives
that can speed up the simulations, but we did not feel the
need to explore them in this study. For an example, one
might setp=1 everywhere along the chain except at the
special bond by increasing the update probability of that

bond. X
Our choice to employ open boundary conditions might (b) Nongueued SB phase (r.<r<1)

appear surprising. They often introduce edge effétsface —

critical phenomengthat are typically more difficult to inter-

pret and control than those for periodic boundary conditions.
In the ASEP, however, periodic boundary conditions intro-

duce a shock wave in the density profile at halfway around
the chain, opposite to the slow bond. Janowsky and Lebowitz

[12] studied the fluctuations in the position of this shock (c) Nonqueued FB phase (r>1)
wave and found for it to fluctuate critically, implying the =
absence of a characteristic length scale. We like to decouple P AR ~AX

AN

the slow bond from those fluctuations and do so by using
open boundary conditions. The trade-off are density profiles
near the edges of the road induced by the particle reservoirs.
But these are under full control with the help of the exact
solution of ther=1 ASEP with open boundary conditions £ 1 schematic density profiles are shown: for the slow-bond
[16]. The density profiles near the edges have only exponensg (a) r<r, (queued phaseand (b) r.<r<1 (nonqueued SB
tial tails, provided that we choose suitable valuesdoand  phasg and for the fast bondFB) (c) r>1 (nonqueued FB phase

B. At r=1, for a= =13, the density profile is completely

flat and featureless, =3 for all x [16]. Thus, we selectr  This means that we have the option to determligeby mea-

—pn—1 H
= =73 throughout this study33], o suringJ. The current from the reservoir to the first site
Assume that the slow bond creates an infinite queue. In

the bulk of that queue, far from both the slow bond and the

road edge, the stationary state is uncorrelated, because lo- J=ap((1-ny))= a—p(l—Al) )

cally it is indistinguishable from a setup with periodic 2

boundary conditions without the slow bond. Moreover, from

the perspective of the sites near the 1 edge, this situation must be equal to the bulk current in the stationary state. This

is indistinguishable from a setup with=1 (no slow bond yields, for =3, that the density at site=1 is equal to

where an exit probability3 at the opposite site of the road Aleg_

could be responsible for this enhanced bulk dengity. The density profiles in front and beyond the special bond

From the exact solution of that setup, we know that the denobey particle-hole symmetryn, )=1—(ng), with x, and

sity profile near the entry edge is exponentig{x)=3(1  xg the sites immediately in front and beyond the special

+Ap) + B exp(—x/¢) with a finite correlation lengtf~A2.  bond. Moreover, we will demonstrate in Sec. V that the ratio

Our simulations confirm thi34]. R=(n_ng)/(ng) is very close toR=3 for all values ofr.

Other important features of the density profile are predeThe current through the special bond

termined as well. For alle=p, the density profile has

particle-hole symmetry with respect to the special bond, - -

p(x)=1—p(Ns+1—x). DefineA(x) as the deviation of the J=rp(n.(1=ng)=rp[(1+R)(n)—R] 3

density from 3, p(x)=3[1+A(X)], such thatA(x)=

—A(Ng+1—x). Then, A, is the order parameter of our must again be equal to the bulk current, thus anchoring the

model and represents the spontaneous faceting angle of thalue of the density immediately in front of the special bond

slow-combustion interface profile in the KPZ interpretation. to the order parameter of our processfgs=3[(1—A2)/r

In the steady-state limit, the current along the chain must-1] if R is exactly equal tc.

be uniform. From the fact that the bulk stationary state is Figure 1 summarizes the above discussion. The current,

uncorrelated, it follows immediately that its value throughthe densities at the first and last sites, the characteristic ex-

such a bulk bond is equal to ponential length scale of the density profile near the reservoir
edge (in the faceted phageand the bulk density are all
linked to each other. This leaves only the spontaneous cre-

(1) ation of a nonzerad , and the density profile near the special
bond as independent issues.

Ns

X

3= (AL )= (1= D).
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FIG. 3. The order parametéy, vs the strengthr of the slow-
FIG. 2. The order parametey, vs the strength of the special ~ bond in the vicinity of the critical point., as obtained from the
bond atN =4096, determined from three different datasets: theaverage current dataset.
average currend (squarey the densityA; at the first site near the
reseryoir ed.geﬁcrosse}s and three pargmeter power-law fits to the Ap(Ng, €)= b*XAAb(b*lNS’byf), (5
density profiles near the special bofaircles.

wheree=r.—r. We test how well our numerical data obey
lll. QUEUING PHASE TRANSITION this scaling relation and what the best values afx, , and

The first issue at hand is to settle by numerical means thé’):xA/y are. ;he ord_er parameter should scale as a function
burning question whether there exists a queuing transition c’ﬁf € asipe”. .In Fig. 4 we show a log-log plot od,,
anr.<1. We perform MC simulations for system sizes up to VErsuse for various ph0|ces of ; at N:409.6' The best
Ns=4096 and analyze them by finite size scalif@9 tech- straight line is obtained forrC:0.80(2) with slope
niques. The order parameter of the queuing transition is the 1.444). At the same choice for thgxordt_ar pargmeter
offset of the density in the bulky,, (far from both the special IS0 scales perfectly as a power lay~N_ ™ with a critical
bond and the edgeThere are several ways to measure this dimensionx,=0.3705). Oneshould always be on guard

One can directly measure the density at a site suck as for corrections to scaling. For that reason we plot in Fig. 5
=1N, and perform a FSS analysis to determine thethe scaling functior§ defined as
asymptotic value. This works, but neithee 3N nor any
other fixed site is optimal for such an analysis, because the Ap(Ng,€)=N_"*S(NYe) (6)
density profile has a power-law tail at the special bond side
and only an exponential one near the reservoir. Instead, wir r,=0.80, x,=0.370, and3=x, /y=1.46. The data col-
show in Fig. 2 the values fok,, from a power-law density lapses very well, implying only minor corrections to scaling.
profile fit An alternative scaling form to consider is an exponential

essential-singularity-type infinite-order transition, in particu-
T e T lar, with r.=1, as suggested by the directed polymer renor-
AG)=Ap+Ax @ malization studie$27—-37. We tried these forms, shown in
_ Fig. 6. They fit our MC data poorly.
(with x=xg—x the distance from the special bgnat our
maximum system sizsl,=4096.

As pointed out in the preceding sectio, is directly
linked to various other quantities, such as the average current The density profiles near the special bond have a power-
J, the density at the first site near the edfye, and the law shape for all values af. Figure 7 shows our numerical
characteristic lengtly of the exponential tail in the density results for the exponent and the amplitudé\ as defined in
profile near the edge. We measure these quantities as welg. (4). We performed also two-parameter fits after deter-
and translate the first two into their predictions fiogs. The  mining A, independently from the numerical values for the
results, also shown in Fig. 2, are almost indistinguishablecurrent and the density at site=1, using the inter-relations
from those of the power-law density profile fits. This con- outlined in Sec. Il. These results are identical within the MC
firms our analysis of the preceding section. noise.

Figure 2 suggests very strongly the existence of a critical The jumps inv atr . andr =1 are very pronounced in Fig.
point at aboutr .=0.8. However, this is a common optical 7. It seems safe to conclude, surely as a starting assumption
illusion, which vanishes upon zooming-in to this point, as infor the discussion in the following two sections, that for slow
Fig. 3. Assume that the order parameter obeys the convetonds the exponent takes the value 5 in the r <r, mac-
tional FSS scaling form roscopic queued phase ame 3 in ther <r<1 power-law

IV. DENSITY PROFILES
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FIG. 5. Data collapse by E@6), i.e., the scaling function of the
order parameter using the values=0.80, x,=0.370, andp
=1.46 as found in Fig. 4.

for v=1/z=1% is not very strong, see Sec. VI, and the fits to
the MC data in Fig. 7 remain consistently below that value.
For this reason we also studied the following:« like
setup. Consider a normal chain without any special bond but
with the site in the middle allowed to be doubly occupied,
Nng2=0,1,2. In this setup we can increase the hopping prob-
ability p to p=1 and thus speed up MC simulations and
B are again set equal %). The log-log plot of the density
profile, shown in Fig. 8, is quite straight. Still, the slope

FIG. 4. Determination of the critical point and critical expo- SUggests a somewhat smaller exponert,0.64(2) (using
nents.(a) Double logarithmicA,~|e|? type plots of the order pa- 20<x<<500 as the fitting range v=1% is still a possibility,
rameter withe=r.—r at Ng=4096 for various choices af.. The =~ but seems to require a significant subdominant correction to
best straight line is found at,=0.80(2) and with slopeg  scaling power-law term. A more detailed analysis becomes
=1.464). (b) Double logarithmic plots oﬁb~NS_XA as a function ~Meaningful only when the noise level is brought down by at
of system sizeNg at r.=0.80. The slopgdashed ling yields x
=0.37(Q5). Forclarity we show only the data fak, obtained from

J (squaresand A, (crosses

gueued phase. To the best of our knowledge only one earlier i 5 R 8

study, the one by Slanina and Kotfl23], observed this type » ]
of power law, but they suggested a value different from > =
=1. We will present convincing heuristic analytic deriva- =

tions for our values in Sec. VI.

The power-law queue for fast bonds>1, is quite in- ' [ 8
triguing. This is where Kandel and Mukamé?2] sighted a '
possible continuously varying. We interpret our data as
strong evidence for a nonvarying constant value
=0.633). Thedrop in the estimates in Fig. 7 near1
resembles conventiondmulticritical-type crossover scal-

10

In Ay
.
T
=
1

0.1

ing, but we cannot verify this explicitly, because this power- 01

law decays much faster than in both slow-bond phases, and,
e.g., ar =1.1, the amplitude sinks underneath our MC noise

1-r

level already at about=60. We excludec<20 from our fits FIG. 6. The same data as in Fig. 2 fitted to a scaling form of

to avoid (short-distance-typecorrections to scaling.

type A, (Ap=exg—a(1l-r)"]), represent a so-called essential-

ObViQUSW we WOU'? "Ke to “talk” this fast-bond power-  singularity characteristic for a possible infinite-order-type transition
law profile towardsy= 3, since that number occurs naturally with r;=1. The curves fail to straighten out, indicating that this is
in 1D KPZ-type processes. However, our heuristic argumena poor fit.
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least one more order of magnitude from our currépip
=0.001 level, which requires vastly longer MC runs.

V. UNCORRELATED PASSAGE

Our numerical observation that the density profile near the

special bond always follows a power ladp~x"", in all
three phases, is far from obvious. The actual values fare
even more intriguing. In this and the following sections, we
present intuitive heuristic explanations for the slow-bond
values, and also address the fast-bond case. An important
ingredient in this is that the passage through the slow bond is
an uncorrelated random process in both the macroscopic
queued phase at<r. and the power-law queued phase at
re<r<1.

In the macroscopic queued phase, the absence of passage
correlations is easily understood. Fluctuations travel away
from the slow bond, both in front and beyond it. The group
velocity of fluctuations ; points away from the slow bond in
both directionsv = 6J/6p represents the local response of
the current to a density fluctuation. The stationary state is
uncorrelated inside the bulk, such that the current is equal to
J=ppp(1—pp) and vy=p(1l—2py)=—pA,. Fluctuation-
type wave packets travel with this velocity along the road,
while they broaden spatially a&~t*?, with the 1D KPZ
dynamic exponerz= 3. In the KPZ growth context\, rep-
resents the average slope of the growing surface, and the
traveling wave packet reflects that the interface moves per-
pendicular to the local surface orientation.

The precise form ofvy for spatially varying densities
p(X) is more complex, but for slowly varying ones, like here,
we can assumey is well represented by

vg(X)=p[1=2p(x)]=—pA(X). )

A(X) is positive in the macroscopically queued phase, such
that the center of mass of a fluctuation packet moves away
from the slow-bond linearly in timexcy~t. During this
process, it spreads over a widgh-t*?. Fluctuations detach
from the slow bond, because the center of mass of the packet
propagates faster than its broadening front. Therefore the
density fluctuations at the slow bond are uncorrelated in
time. No memory remains at the slow bond of anything hap-
pening there before. No information passes through the slow
bond.

Most of this remains true in the power-law queued phase
atr.<r<1. Now the group velocity vanishes in the bulk,
but remains nonzero near the slow bond, because of the
power-law shaped density profile of the queue. The center of
mass of a fluctuation packet still moves away from the slow
bond, but only ascy~tY**", see Eq(7). During this, it
spreads again over a widgh~t'2. Therefore, for allv<z
—1=1 the packet detaches from the slow bomekz—1 is
the critical value. Numerically we find=3, see Fig. 7a).

implemented as a normal chain with uniform hopping probability SO the density profile near the slow bond organizes itself in a
p=1, but one special double occupancy site in the middle. Thdorm where the passage fluctuations through the slow bond

dashed line, with slope=0.64, serves as guide to the eye; a slopeare uncorrelated in time and density fluctuations originating

v=2/3 seems too steep.

on the road do not affect it.
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slow bond with probability p; and finally hop away fronxg

0.505 e
o NI onto the road beyond the slow bond with probabilityp,
8 I § ¥ treating that as a reservoir as well. Finally, we tungp to
051 pret S 1 the value where the current takes the same value as in the
A | s true system. This approximation yields rather trivially
g 0495} +&§ 1 =1 for all r and allay. The dashed line in Fig. 9 show’
N ‘ o X 4 e for the next level of mean-field theory, with four sites instead
s 00k P & 1%" o of two, taking into account local correlations. These suffice
3’& ' il Eé 256 to reproduce already most of the small deviations we observe
I, 512 o in the trueR as a function of, and support the uncorrelated
0485 & ® %84213 . passage nature of the process.
4096 o The ratio remains equal tR=3 for fast bonds, and ac-
tually even better than far<1. How do fluctuations travel
0.48 — ; e i i
02 04 06 08 1 12 14 16 18 there? The group velocity changes its signoving direc-
r tion), because the power-law queus(x) =AX"*, turns into

a depletion zone with negative amplitude Fluctuations
FIG. 9. The ratioR defined in Eq(8). R remains close to the travel towards the fast bond from both sides. It might seem
uncorrelated passage valgefor all r. The small deviations, of therefore that this passage process must be highly correlated.
order 3%, do not scale with system size, and are mostly describedowever, fluctuations originating from all over the road
already by a four-sites-type mean-field approximation, the dasheflompard the fast bond from both sides, and average each
line. other out. Consider a fluctuation created at a distarfcem
the fast bond. The center of mass of this fluctuation moves
Itis useful to test this explicitly by numerical simulations, towards it, and arrives after a time of flight x”**. During
in particular, in the power-law queued phase. Time correlathjs time, it has broadened over a width t'2. Ignoring the
tors, such as the current-current autocorrelation function, argepter of mass movement, its leading edge would arrive at
the preferred tools for this, but unfortunately they do notihe fast bond after a time~ X2 Forv>z—1=1 the leading
yield much useful information. The current-current correlatoredge arrives well before the center of mass, and the latter can
drops in magnitude by two orders within 10 MC time steps,q neglected. Againy=z—1=1, is the critical value. For
not only near the slow bongl, but everywhere along the roag, <t honds we find numerically=0.63, see Fig. (8). This
as well. This reflects that, in KPZ growtd)~N ” scales  eyplains why R=3. The density profile organizes itself
with a larges=2. again into a form where the passage correlations remain

As a second best choice, we focus instead on spatial cokimple. The fast bond acts very much like an ordinary bulk
relations between the densities across the slow bond. CoRjte, and fluctuations flow through it.

sider the ratio

_ <n|_nR> ®) VI. A DERIVATION OF THE DENSITY PROFILES
(NR) In the preceding section we found that the density profiles
R R organize themselves into a form such that the passage
with n,_ andng the density operators at the sites immediatelythrough the special bond is an uncorrelated process. Here we
in front and beyond the special bond. For reference, the samgive heuristic arguments for the actual values of the expo-
type of ratio for two nearest-neighbor sites anywhere alongents:v=3 atr<r, andv=3 atr.<r<1 for slow bonds.
the road, in the bulk, far from edges and slow bonds, is equalve also explain why for fast bonds=1/z.
to 3, because the bulk stationary state is uncorrelated, with First, consider the slow-bond=3 power-law density
(nini+1)=(n;}(ni,,). Near the edges, however, and in par-profile in the macroscopic queued phase < ;. The total
ticular, inside power-law profiles, the neighbors are correnumber of excess particles in this queue diverges with sys-
lated, and the ratio moves away from tem sizeNg asSN~NY2. This has a familiar ring to it. In the
Figure 9 shows thaR, as defined in Eq(8), is almost Derridaet al.[16] type open system setup with reservoirs on
equal to for all values ofr. The deviations are only of order both sides and no special bonds, the fluctuations in the total
3%. This is consistent with the picture that fluctuationsnumber of particles on the road scale @~NZ2. In that
travel away from the slow bond from both sides. setup, this property does not translate into power-law-type
To quantify this in more detail, we consider the following density profiles, except when the road is half fillgg= 3.
mean-field-type approach, in which the road in front andThe density profiles are exponential or featureless in the two
beyond the slow bond are treated as reserv@evoid of p,#3 phases where either reservoir controls the bulk den-
fluctuations as far as the slow bond is concejn¥¢e solve  sity.
thus the following two-site problem, with only sites and The parking garage process of Rif1] is closer to queu-
Xgr On either side of the slow bond. Particles hop ontosjte ing dynamics. In that study the two reservoirs were merged
with an effective probabilitye.gp from the road in front of into one, such that the road forms a loop starting and ending
it, treating the road as a reservoir; then move through thén the same parking garage. The total number of cars in the
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system is then conserved, leading to dynamic phase trandiirough the slow bond remains uncorrelated. The process at
tions between condensate-type stationary states where tifge slow bond is still biased toward low density fluctuations.
garage is macroscopically occupied and a normal phaseSS corrections to the total number of cars in the queue is
where it is not. That process has two parameters, the totgroportional totgg, Uncorrelated events:

number of cars in the system and a modified hopping prob-
ability ap to jump from the garage onto the first site of the

road. . . .
The fluctuations in total number of particles on the road is' 'S queué heaps up behind the slow-bond, and again ar-

again equal toSN~NY2. The explanation of this goes as rgnges it’sye-ilf in the form- of a poyver-law shaped density pro-
follows [11] for the normal phase, the nonmaximal-currentfil€; 5P~)§ ". Self-consistency implies that/(-1)/2=—»
condensate phase, and also at the transition point betweehl—»=3. in accordance with the observed value.
them. The group velocity of fluctuations, is nonzero. This The »=0.63(3) power law for the fast bond is more chal-
means that the departure of cars from the garage is an uncdg"9ing. This is a fundamentally different phenomenon.
related process. Fluctuations detach from the garage becaudg@in fluctuations travel across the system, but now run to-
they travel away fasteflinear in time than they are spread- Wards the fast bond instead of away from it. Actually, as
ing backward(as £~ tY# with z=2). Moreover, after a time Shown already in the pceding section, ferz—1=3 the
of flight tggni=Ns/v4 they move around the loop, return to tlmewolf .fllght of the center of.mass of a fluctuatiofyn .
the garage, and are completely erased. So we dealtygih ~N¢ "~ is longer than the time it takes that same fluctuation
random uncorrelated deposition events. The fluctuations i Spread over the entire systemNg. In ther <1 phases,
the number of cars on the road therefore scalé{gzﬁ. Inthe We are allowed to ignore for this reason the spreading of the
condensate phase, these fluctuations do not lead to an offdéictuations, and only consider their center of mass motion
in the average density of parked cars, because the garage(fge time of flight. At r>1 this is reversed. In the<1
macroscopically occupied, and positive and negative fluctuaPhases, the exponentwas insensitive to the actual value of
tions cancel out against each other. But at the transitiothe dynamic exponent of the dynamic process. In the
point, the bottom of the garage becomes visible. This limits>1 phase, it must depend an
the negative density fluctuations, and therefore introduces a A »=35 power-law tail is very rare. It does not appear,
bias towards increased occupation, such that the number 6fg., anywhere in the Derridet al. [16] type two-reservoirs
parked cars is enhanced and scalesds~ Ni’z. setup. In_terestmgly, however, this density profile appeared
The same type of reasoning applies to the slow-bondlready in the parking garage ASEP stufyl]; at the
setup. The passage through the slow bond is a Stochas»@@cond-type condensation transition, from the _“n_ormal” to
uncorrelated eventas demonstrated in the preceding sec-the “maximum current” phase. The characteristic feature

tion), similar to departures from the garage mentioned aboveVas that, at the transition point, the garage started to transmit
Again, all memory is erased aftéfgn~Ns, the time that information (seized to act as a reservpind that at that

takes for a fluctuation to travel from the slow bond to thePOint the bulk group velocity was zero. The similarities with
reservoir. The fluctuations in the number of cars passingn® fast bonds are striking. We are clearly looking at the
through therefore scale dgg,. These fluctuations are bi- Same type of phenomenon. The slow-bond does not transmit

ased again, because the sites immediately in front and bdformation, while the fast bond acts very much like a nor-
yond the slow bond are not reservoirs. Excess particles wait@! Site and fluctuations movee., they spreadthrough it
ing to pass are spread out, and not available for immediateS€€ also the preceding section , _
passage. The passage process is biased, because slow bond¥/hat mlghtihe true value af=0.63(3) b_e.?An obvious
process particles slower than normal bonds, while the pas§@uess is thaw'=1/z, but how to explain this? One of the
ing probability of vacancies does not depend on the value offucial aspects must be again that the processing of fluctua-
r. (Our process has particle-hole symmetry but only in conlions is biased at the fast bond, leading to a depletion queue
junction with left-right mirroring with respect to the special With a total deficit of
bond) The total number of excess cars near the slow bond N2
Wait_ing to pass scales therefore 8dp~NY?. These extra 5N~f ° dxx '~N1""~NL3
particles must be accommodated over a stretch of poad 0
<x_ behind the slow bond. We can imagine two ways to ] o _
realize this: an exponential density profile with a correlationParticles. The sign of this in now negative, because at the fast
length diverging asi~ Ni’z or a power-law profile withy bond the particles are processed faster than at the normal
—1 as we actually observe. The power law is indeed mordonds, while the passing rate of vacancies does not depend
likely given the intrinsic critical nature of ASEP. onr.. _

Next, let us generalize this argument to the & power Density fluctuations are created everywhere along the
law above the queuing transition, mt<r<1. The time of road, all the time, and with a common characteristic ampli-

: : I i 1

flight of a fluctuation to travel from the slow bond all the tude. Each spreads in time over a regoat™*. A fluctua-
way back to sitex= 1, scales now only asggy~ N;/*l since tion created at a distancefrom the fast bond arrives there

Ug:_pA(})NT(V_ Assume thatv<%, in which case the after a timet~x? and with a reduced amplitudérom
fluctuations still detach from the slow bond and the passagspreading of order Ax 2. The asymmetry in processing

SN~ tga ~ N D2, )
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high and low density fluctuations gives rise then to a densityw= 3. This value is most likely universal, because our heu-
deficit of orderAXx 2 from fluctuation originating at dis- ristic derivation for the general case does not involve specific
details of the dynamics. In particular, it does not involve the

tancex. Next, adopting rather frivolously superposition prin- _ .
pting y SUperb P KPZ value of the dynamic exponentexcept for the require-

ciple concepts, one would guess that the total density OIefiCment that fluctuations travel faster away from the slow bond
in front of the fast bond scales a8N~ [N¥’dx Ax 1z y

1-1f - ) 0 ) than they spread. The argument applies for any process with
~Ng 7 in agreement with what we observed numerically. 71 4 ;=4
Although the last argument is reasonably appealing, it is  From the directed polymer perspective our results are un-
certainly not convincing. A more robust explanation is expected. The slow-bond queuing transition represents a
needed. Moreover, the numerical value-0.63(3) is suffi-  crossover from strong to a weakéut still strong form of
ciently lower to cast serious doubts that § is correct. On  |ocalization, because the=3 power-law density tail near
the other hand, the above argument serves as a proper ordfie slow bond contains still an infinite number of particles;

of magnitude estimate. (naively) the polymer distribution behaves agWw)
~exg (M2v){h)]~exp(=Cx™). It will be interesting to see
VIl. SUMMARY how this weak localized phase, and the above exact self-

consistent argument far= %, can be integrated and recon-

In this study, we reconfirmed numerically, and beyond iled with the field-theoretical descriptions of Reia7-32.

doubt the presence of a queuing phase transition in the AS For fast bondgsuch as a local widening of the road

m;h t@osgglia%ngxggﬁgsggmc;ig .igﬁ)s'iti\é\;e ?rsggbgf;:rdpamacroscopic depletion queywith a length proportional to
rameter, the excess density in the queue, vanisheAas the road lengthnever appears. Instead, a power-law shaped

~|ro—r|# with B=1.464). At the transition point, the depletion queue is always present with exponent

. : . . =0.633). It remains yet unclear whether this value is equal
number of particles in the queue scales with system size B v=1/z. It will be interesting to study how our results

X' 1 f—
Ap~Ng* with x4, =0.3705). extend to other models of driven flow along one-dimensional

From a more general perspective, the transition illustrateghannels, in particular, to non-KPZ type dynamics.
that weak obstructions do not give rise to macroscopic traffic

jams(queues with lengths that scale linearly with the system
size). The stochastic fluctuations overwhelm the slow bond
abover.. We would like to thank Joachim Krug for helpful discus-

A second result of our study is that abovea power-law  sjons. This research was supported by the National Science
shaped queuéraffic jam) remains,dp=AXx"", with X the  Foundation under Grant No. DMR-9985806, by a grant from
distance from the obstruction and opposite signsAoin  the Netherlands Organization for Scientific Research
front and beyond the obstruction. The exponent is equal t¢dNWO), and by the Academy of Finland.
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