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Incomplete relaxation in a two-mass one-dimensional self-gravitating system
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Due to the apparent ease with which they can be numerically simulated, one-dimensional gravitational
systems were first introduced by astronomers to explore different modes of gravitational evolution. These
include violent relaxation and the approach to thermal equilibrium. Careful work by dynamicists and statistical
physicists has shown that several claims made by astronomers regarding these models were incorrect. Unusual
features of the evolution include the development of long lasting structures on large scales, which can be
thought of as one-dimensional analogs of Jupiter’s red spot or a galactic spiral density wave or bar. The
existence of these structures demonstrates that in gravitational systems evolution is not entirely dominated by
the second law of thermodynamics and also appears to contradict the Arnold diffusion ansatz. Thus it is correct
to assert that the one-dimensional planar sheet gravitational system is the nonextensive analog of the Fermi-
Pasta-Ulam model of dynamical systems. This paper is an extension of a preliminary study where we conclu-
sively showed mass segregation and equipartition of kinetic energy in a two-mass planar sheet system for the
first time. Here we employ both mean-field theory and dynamical simulation to more thoroughly probe the
statistical and ergodic properties of these systems. Valuable information is obtained from local and global time
averaging, and temporal and spatial correlation functions. Using these tools we show that the system appears
to approach the equilibrium distribution on very long time scales, but the relaxation is incomplete.
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[. INTRODUCTION general features of the 1D system may translate to 3D astro-
physical systems, perhaps giving some unique insight into
The study of one-dimensional models has historicallythe underlying physics. The second is that 1D systems appear
been motivated by the simplicity of the physical systems.on the surface to be relatively simple but often exhibit inter-
Many of these systems have analytical or nearly analyticaksting and unexpectedly complex behavior. This has cer-
solutions. In other cases, although the system is physicallfainly proved true over the many years that these systems
simple, the equations do not admit an analytical solution buhave been studied.
are nevertheless straightforward to set up and dynamically Correlating results derived from one-dimensional gravita-
simulate on a computer. One-dimensional systems wertional systems to three dimensions is a difficult task, since it
among the first simulations done on computing machines ims well known that dimensionality plays a critical role in
the late 1940s and early 1950s. One of the first and mosnany physical phenomena. Despite this difficulty, several
famous numerical experiments was conducted by Fermimportant similarities do exist between one- and three-
Pasta, and Ulam in 1955 on a one-dimensional array oflimensional gravitational systems and these are summarized
coupled oscillators with force terms that were small pertur-below.
bations from linearitf 1]. The unexpected nonergodic results (1) Both 1D and 3D systems have long range unscreened
of the experiment would cause an explosion in dynamicapravitational forces.
physics and chaos theory several years later. One- (2) For systems containing a large number of particles
dimensional models of gases have been studied extensive§xisting in a stationary state, the distribution of particle po-
in statistical mechanics and one-dimensional lattice modelsitions and velocities is governed approximately by the Vla-
have been used in solid state physics to study metal alloysov equation for incompressible fluid fldq. (1)].
magnetic spin systems, glasses, phonon propagation, elec- (3) Evolution of the systems from a highly nonstationary
tronic bands, and a host of other systems. Due to the addeslate appears to go through a period of violent relaxation
complexity of the physics in higher dimensions, one-after which the distribution quickly settles down to a quasi-
dimensional systems are often used as simpler models @&quilibrium state.
actual three-dimensional systems. It is worth noting that three-dimensional gravitational sys-
A central problem for stellar dynamics is the determina-tems suffer from several problems that do not exist in one
tion of the time scale for the relaxation of an isolated, gravi-dimension.
tationally bound system, such as a galaxy or a globular clus- (1) Through three body or higher-order interactions, par-
ter. A primary reason for the difficulty is the extremely ticles can gain enough energy to escépeevaporatgfrom
complicated nature of physics in three dimensions. Since ththe system.
1960s, the one-dimensiondlD) self-gravitating system has (2) Through three body or higher-order interactions, par-
been used as the simplest model for studying the dynamicdicles can lose enough energy to form gravitationally bound
properties of gravitational systems, such as relaxation angairs (binaries.
diffusion. The study of 1D gravitational systems is motivated (3) A singularity exists in the gravitational force at
by two primary factors. The first is the hope that some of the=0.
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To manage these problems in practical computer simulatime, but not necessarily to those predicted by Lynden-Bell's
tions, two- and three-dimensional programs require elaboratéeory. Later, Cuperman, Hartman, and Le@l investi-
cutoff schemes for the gravitational potential. In contrastgated violent relaxation and the applicability of Vlasov dy-
since the gravitational field in one dimension is uniform, thenamics. A breakthrough came when Rybif&] first derived
phase space is compact, and the equations of motion atRe exact single-particle equilibrium distribution function for
parabolic and easily solvable on a computer without the usghe discrete one-dimensional self-gravitating system in both
of slow integration techniques. This allows the completion ofihe canonical and the microcanonical ensemble for arbitrary
very long simulations of systems with moderately lal)@ N, |n the Viasov limit, these distributions were shown to
a few days or weeks on desktop workstations. converge to the isothermal solution of the Vlasov equation

Large astrophysical systems, such as galaxies, may Cofsynd earlier by Camm.
tain upwards of 1# stars. Gravitational systems are unlike | principle, additional information can be obtained from
gaseous systenigriven by true short-range interaction®  tne statistical distribution of particle pairs. Monaghgi,
plasmas(where the range of the electric force is limited by 3nd Fukui and Moritd10] showed that for the OGS in the
Debye screeningn that each particle continuously feels the v/jasoy Iimit, the two-particle distribution function is the
effect of all the others. As the number of particles in theproguct of the single-particle distribution functions, and cor-
system is increased, however, the effect of any single partiClgactions are of order oN~1. In contrast with the single-
relative to the background composed of all other particlegarticle distribution, at the present time an analytical expres-
decreases as N/ In the limit thatN—o, while the total sjon for the pair distribution is not known, and therefore
mass is kept constant, only the long-range interaction of thehere is no exact method for computing the effects of two-
particle with the continuous background field remains. In th'sparticle or higher-order correlations in a system with a finite
“mean-field” approximation, the evolution of large gravita- population.

tional systems is exactly described by the Vlasov, or colli-  computer simulations of finite population 1D systems

sionless Boltzmann equation, EG) [2], show that they tend to progress through several quasiequilib-
rium (approximately stationajystates as they evolve from
‘9_f+v_ ﬁ_vq). ﬂzo (1) arbitrary initial conditions. These quasiequilibrium states of-
at X v ten last for extremely long times. When a simulation is ini-

tiated from a nonstationary distribution, fluctuations caused

where® is a solution of the Poisson equation. For systemshy the changes in the mean-field potential rapidly decay re-
with finite N, the solution to Eq(1) provides a short-time sulting in a state of microscopic relaxation. This process is
approximation to the single-particle distribution function. In frequently referred to as violent relaxatips]. In this state,
one dimension, the Vlasov equation describes the flow of athe system is virializedi.e., XKE)/(PE)=1), and the sys-
incompressible fluid inu=(x,v) space, where thg space tem energy is distributed approximately equally between all
is a projection into the X,v) plane of a point in the the particles in what is called equipartition of total energy.
2N-dimensional phase space. Thespace then containrd  The time scale for microscopic relaxation is distinguished
points, each of which represents the position and velocity ofrom the much longer time scale for macroscopic relaxation
a particle in the system. In the limit that the number of par-to thermal equilibrium.
ticles,N, approaches infinity while constraining the total sys- For anN-particle 1D gravitational system, a single point
tem energy and mass to constants, the system can be de-the 2N-dimensional phase spacé (spacée defines the
scribed as a continuous fluid j space. This limit is often state of the system. The system trajectory in this space is
referred to as the Vlasov limit. Liouville’s theorem states thatgoverned by Hamiltonian dynamics as the state of the system
the area of an element in the space is constant under the changes. Because of inexact knowledge of initial conditions,
action of the Hamiltonian. Therefore, the flow of this fluid in a probability density can be defined that indicates a range of
u space is incompressible and obeys the Vlasov equation. possible states that the system can occupy. For a conservative

Following a suggestion by Oof8], the one-dimensional system, such as the OGS, the total energy is a constant and
self-gravitating system(OGS was first considered as a defines an isolating integral that will restrict the trajectory of
model for the motion of stars perpendicular to the plane of ahe system to the energy hypersurfa8e defined by the
highly flattened galaxy by Cami#t]. Camm’s analysis was Hamiltonian.
the first to apply the Vlasov equation to the 1D system, by In order for a system to approach equilibrium from an
assuming that the long-range gravitational forces wash oudrbitrary initial condition, it must exhibit the properties of
any effects of stellar encounters, making the system esseboth ergodicity and mixing11]. A system is ergodic if the
tially collisionless. With the assumption of separability of the phase-space average of a dynamical quantity is equal to the
distribution function, Camm derived the stationary isother-time average. Ergodic flow can exist only if there are no
mal solution to the Vlasov equation. In 1967, Lynden-Bell other isolating integrals that will prevent the system from
[5] published a theory describing a rapid relaxation processampling the entire energy surface. Ergodicity implies that
termed “violent relaxation,” in which large changes in the all areas of the energy surface are equally accessible and that
gravitational potential are driven by rapid fluctuations in theall states on the energy surface are equally probable, thus the
mass distribution. Cohen and Led#] used the 1D system system will spend equal time in equal areas of the phase
to study Lynden-Bell's theory of violent relaxation and found space. Qualitatively, mixing is described as the spreading out
that the systems do relax to a stationary state after a shoof the phase-space probability density as the system evolves.
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If a system is initially far from equilibrium, then the prob- During this same time period, Tsuchiga al.[20,21] be-
ability density may fill a localized area on the energy surfacegan studying the approach to equilibrium of the single-mass
As the system evolves under the action of the HamiltonianQGS using a measure of the equipartition of total system
this area will move over the energy surface. If the system i®nergy among all the particles. This measwg) is the
mixing, the probability density will begin to spread itself out, deviation of the average energy per particle from the theo-
eventually covering the entire energy surface equally whileretical equipartition value given by the virial theorem. These
preserving its initial area. studies showed that after an initial short period of micro-
When investigating gravitating systems it is important toscopic relaxation in whichA(t) is approximately constant,
keep several things in mind. Often, computer simulations ofA(t) steadily declines in a linear fashion on a log-log scale
gravitating systeméwhich are necessarily finite in the popu- indicating a power-law decay. After some period of time a
lation) are studied with, and compared to, Vlasov dynamicslarge peak appears which was interpreted as the onset of
The Vlasov limit is a singular limit in the sense that infinite thermal equilibrium. Shortly afterward however, using both
time averages of dynamical quantities cannot yield the exsmall and largeN systemg22] (Paper ), we demonstrated
pected equilibrium results if the lim\i— = is taken prior to f[hat .thIS pheno.mena was not the onset of eqq|I|br|um but that
the T— o limit. This follows from the fact that a true Vlasov [t Might be evidence for the system becoming trapped for

system has an infinite number of stable stationary solution?ng pﬁrio_?fhof timte in _re?t::cteddrlegions of thﬁ phase spalfe.
and Casimir invariants, and therefore does not converge tgyplca y, I'the system IS Tollowed long enough, many peaxs

the unique maximum entropy state; i.e. Vlasov dynamicsare.seen to appear after the first.initial large peak, indicat_ing
does not obey the second law of thermodynamics. This h eriods where the system is restricted from equally exploring

L ; [ . i on their earlier
been demonstrated by numerical integration of the Vlaso he entire energy hypersurface. Following up

. . .work with a study of the distribution of particle energies,
equation for the OGS where it was shown that structures "suchiyaet al. [23] showed evidence for continual transi-

the 1 space appear to persist indefinitely without any sign okjqng hack and forth between a state closely mimicking the
dissipation[12]. On the other hand, a finite population sys- jssthermal distributior(isothermal-likg to a far from equi-
tem may sample an approximately stationary state thafyriym distribution (transient or itinerant stateThis will be
closely resembles a stationary Vlasov solution for a longeferred to as the transitional distribution period.
time. However, for the system with finite population, itis not |t was recognized by a number of investigators that an
truly stationary and will slowly drift away due to discrete alternative approach for studying convergence to equilibrium
particle effects. Therefore an infinite time limit—c of a  could be found by employing two different mass species in
dynamical quantity in the discrete system followed by thethe OGS[24,25. The eventual occurrence of equilibrium
Vlasov limit N—co will give the equilibrium solution pro- would then be characterized by the equipartition of the ki-
vided the system is mixing. netic energy as well as the spatial segregation of the heavy
Prior to 1982 the prevailing thought was that the OGSand light particles. However, perhaps due to algorithm and
should relax to equilibrium from an arbitrary initial state in a hardware limitations, early attempts failed to obtain a con-
time scale on the order ®?t., wheret, is the approximate vincing result. To complement Tsuchiya’s investigations of
time it takes a particle to make one complete cros¢fny  the single-component system, we investigated the evolution
oscillation in the systenj13]. However, Wright, Miller, and  of a two-component system consisting of equal populations
Stein[14] showed that there was no relaxation in a time ofof each species with a 3:1 mass rafg] (Paper I). We
2N?t.. Subsequent studies by Leuwel, Severn, and Roussbserved that both equipartition of kinetic energy and mass
seeuw[15] showed relaxation in a timé&lt, from special segregation occurred after approximately Bystem cross-
initial states chosen close to equilibrium. From that working times. To our knowledge, this was the first time that this
they predicted relaxation on this same scale for any initiaphenomenon was conclusively demonstrated for this system.
system chosen close to equilibrium. Reidl and Millé6] The time scale is on the same order as the occurrence of the
refuted that claim by showing that the relaxation time de-transitional distribution period discussed above for a single-
pends very sensitively on the initial quasiequilibrium statecomponent system.
chosen. Comparison of the position distribution of computer In other recent work dynamicists have studied the average
simulations with the prediction of Rybicki's discrete divergence of phase-space trajectories of the OGS. Positive
N-particle distribution function continued to show major dis- Lyapunov exponents are attributes of strong ergodic proper-
crepancies even after long run times. Particles were mories, such as mixing. Earlier, Tsuchiy al. [20] and more
concentrated toward the center and toward the outer edgescently Milanovicet al. [27] and Tsuchiya and Goud28]
than predicted. In addition, Reidl and Millgt7,18 did er- investigated the Lyapunov spectra of the OGS. At this time
godic studies of 1D systems containing from 2 to 20 particleshere are unresolved questions concerning the convergence
looking for evidence for strong ergodic behavior which of the spectra to a universal scaling functionNadecomes
would result in eventual thermal equilibrium. They found alarge. Power-law dependence on population was found for
transition atN=11 particles where previously stable regionsboth maximum and minimum exponents, both of which de-
of the phase space became ergodic and mixing. In their sulzrease with increasingl. This suggests an approach to a
sequent study of early relaxation, Reidl and Millgk9] more integrable system as the population increases. Other
showed a maximum mixing in phase space when the systemecent work has attempted to relate this model more directly
population was on the order &f=30. to physical stellar systems such as globular clugt2es
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While the preceding review has focused on studies of an A(X,1)
isolated one-dimensional gravitational system, it should be ~ o A4mGp(x.b), (3]
noted that they have also played a useful role in studies of
structure formation in cosmology. By including the Hubble wherep(x,t), the mass density, is given by
expansion in the dynamical evolution it is possible to dem-
onstrate the formation of clusters and “voids” in tlespace N
[30,31]. A few models have been considered and, in common p(x,1)= >, ms(x—x;(t)) 3
with galaxy observations, they demonstrate a bifractal distri- =1
bution of matter. They also provide the only model that ex-
actly follows the Zeldovich ansaf32,33 between crossings

and G is the universal gravitational constant aadis the
Dirac delta function. Therefore,

[34].
This paper continues the investigation of multiple-mass N
component systems started previously by us in Paper Il. A(X,t)=27G >, m; S(x—x;(t)), (4)
j=1

There, as a preliminary study, a single system size and mass

ratio was investigated. The results conclusively showed for ] ]

the first time mass segregation and equipartition of kinetidvhereS(x) is defined as
energy. Here the complete mean-field theory is developed for

an equilibrated two-mass system in the Vlasov limit using -1 x>0

the maximum entropy principle. Coupled differential equa-

tions for the resulting density functions in the space for S(x)=0, x=0

each mass species are derived and can be integrated numeri-

cally for any given temperature and mass ratio. They are 1, x<0. (5)
used to estimate the particle distribution of systems with fi-

nite population in equilibrium. The acceleration experienced by flik particle from the left

_ Dynamical simulations of systems with varying popula- herefore depends only on the difference in the mass of par-
tion (N=16, 32, 64, 128and three different mass ratios jcjes on the right and on the left and can be expressed sim-
(2:1, 3:1, and 5:Lwere carried out on the computer. The ply as

observed equipartition of kinetic energihe ratio of the ki-

netic energies of the heavy to light massasd mass segre- A=27G(Mg—M),). (6)
gation were compared with the theoretical predictions. In !

addition, an extensive range of statistical measures calCuxt the instant when two particles cross, the velocities do not
lated from the numerical simulations are used to investigatgnange. Therefore the velocity of each particle vatdes-
properties that cannot be predicted from mean-field theoryinyouslyin time while, at a crossing, each particle experi-
These include the spatial correlation between particle posignces a discrete jump in the acceleration. Between crossings
tions, the time correlation of kinetic energy fluctuations, andine particle positions evolve quadratically in time. The

a measure of the rate of relaxation toward equilibrium. Aschange in the acceleration of thih particle during a cross-
shown below, surprising results are obtained, some of Wthli'hg is

appear to contradict the conventional wisdom concerning
gravitational systems. AAj=*47Gm; 5, (7)

where the top signs correspond to the case wherejttine
Il. DESCRIPTION OF THE SYSTEM particle has a crossing with a particle coming from the left

The two-mass component 1D self-gravitating system is %nn(?atzeo??;fr:yz'tgerrf ,tg a crossing from the right. The Hamil-

collection of N labeled, planar sheets, each of constant mass

density, infinite in they-z plane, which are constrained to N

move along the axis under their mutual gravitational attrac- H= z P + 277@2 ;M| X, — X (8)

tion. It is convenient to introduce an auxiliary labeling which =1 2m; = b

increases in the direction of increasirgrherefore, in speci-

fying the auxiliary particle number, sgythe acceleration of wherep;, X;, andm; are the momentum, position, and mass

that particle is uniquely defined and vice versa. of the jth particle, respectively. It is customary to define the
Only gravitational forces are consideréice., no short- characteristic period of a particle in the system @s

range interactions Therefore, on crossing, they merely pass=(Gp,/7) Y2, wherep, is the equilibrium mass density

through one another. Since the sheets are infinite in extengvaluated at the origin an@ is the universal gravitational

the gravitational field in the direction is uniform. Clearly, constant. This represents a typical period of oscillation of a

the system can be thought of as a collection of particles eagbarticle in the system.

with massm; constrained to move in one dimension. The Since the potential energy is a linear homogeneous func-

gravitational acceleration is found through Poisson’s equation of the coordinates, all dependence on parameters can be

tion scaled away by introducing convenient units as follows:
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2F 4AE 112 1 E 112 The two distribution functiond,, andf,,, will independently
=— =|=—— =——||=— satisfy the Vlasov or Collisionless Boltzmann equation,
“3am? {SM} ’ LMGHW} ’ v q
9) af4(X,0) . (t\afa(x,u) de(x) af 5(X,v) 0. (19
v - =0,
wherelL is the lengthV is the velocity,T is the time,G is the dat 7o X v
universal gravitational constant, aftland M are the total
system energy and mass, respectively. The dimensionless  gf(x,v) \&fb(x,v) dp(X) dfp(X,v)
units of acceleration, velocity, position, and time are then ot +u(t) X ox e =0, (19
given by
V[3M]22 where the acceleration
A-a= e V_’UZE[?} ' o
a=—=—Vo(Xx). (16)
xoxe| MLt 10 "
TXETE ) Ty (19

For a stationary distribution, the functions are independent of
For simplicity set time so the first terms on the left are expressly zero. The
entropy of the system is given by
M=1 and 27rG=1, (11

. 3 S=—kTrPInP]
making the total energy of the systdfs 7, and the charac-

teristic period of oscillationt;=277. These units will be B ()i £(N)
adopted throughout the remainder of this paper. =~k | dT'fIn £, 17)
. VLASOV (MEAN-FIELD ) THEORY whereP is the probability that the system is at a particular
FOR THE TWO-MASS SYSTEM point in the phase space ardis Boltzmann’s constant.

. I . . Therefore, f Eq(12),
Here we derive the equilibrium solution for the probabil- erefore, from Eq(12)

ity distribution and mass density of the two-mass system in

the Vlasov(or mean-fieldl limit. In this limit all correlations S=—k f dr ] fain]l fa+f drpIT foiIn]1 fb}
between particles vanish and, therefore, the derivation begins a a b b
with the assumption of statistical independence. Coupling (18

this assumption, Eq12), with the Hamiltonian Eq(8) an

expression, Eq(19), is obtained for the entropy. Subject to Which reduces to
constraints on the energy and normalization of probability,
the entropy is maximized using the method of Lagrange mul-
tipliers, Egs.(21) and(22). The solution yields the reduced
partition functions, Eqs(36), and the form of the particle
density functions, Eq(37). With these and the boundary | et a,=N,/N anda,=N,/N whereN, andN,, are the
conditions at the Origin and at |nf|n|ty, Poisson’s equationnumbers of partic|es of mass typaandb respective|y, ie.,
givesa first-order differential equation for the potentialin -~ anda,, are the fractions of the total number of particles of

the two-mass mean-field theory, E¢9). The remaining each type. Then the total entropy per particle is
constantsA and B are solved with the help of Ed53). A
final integral forx as a function ofp is obtained and solved
numerically. Inversion of the solution yields as a function S=—=— an dugfaln fa—abf dupfpInfy,. (20
of x. All of these elements can be applied to Eg§7) to

calculate the density of each species as a function of position

that can be compared with results obtained from simulations=XPressed in this formg survives the Viasov limit. Next we

Consider theN-particle distribution functiorf ™ (x; ,v;) construct the extremum afgiven the constraints
for a system with two mass types. In the Vlasov limit

S=-k . (19

Naj d,uafaln fa+ ij d,ubfbln fb

E=(H) (21
f‘N)=];[ fa]_b[ fi 12 ang
is the product over the single-particle distribution functions dufe [ dufom 05
of each mass type, where Mafa= | dupfp=1. (22)
H f =H f.(x v, etc (13) The energy, given by the statistical average of the Hamil-
iy R ' tonian, is
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1 2 1 2
<H>:§Ma d/uafava'l'EMb dlLbbeb
+7OM [ dua [ duilxexiltafs
+7GME [ duy | duglro—xilfofs

+27TGMabe d,LLaJ d,LLb|Xb_Xa|fafb, (23)

whereu,=(x{ ,v{), f,=f(x.), andM, is the total mass of
particles of typea, such thatM,=Nm,. Introducing
Lagrange multipliers3, y., vy, let

=5t BE- () 30| 1 [ et {1 [ et
24

We need to findf, andf, such that

84l = 8,1 =0, (25)

where 6, represents the variation with respect ftp, and
similarly for 8,. Linearizing in 6f, and 6f,,, we find

5a|:—aaf d,LLaz‘)‘fa(lelnfa)—,B%J' duadf 02
— 7 GM3 [ duasta | dutlxa-xlts
—wGpm3 [ dugots [ dudx—xlts
_ZWGBMaMbI dMa5faf dp|Xp—Xal

- '}’aJ duadfs, (26)

and similarly for §yl. Collecting terms and using the sym-
metry of the dummy variables gives

Ma
—ag(1tInfy)— g5 03

5al=f du,of,
~276pM3 [ dulxa s
_ZWGIBMaMbJ duplXo=Xalfo—7va| (27
and finally the first variation with respect to types

Sal = f duadf[ — aa(1+Inf)— BM h(v,,X)— ¥4]=0,
(28)

where

PHYSICAL REVIEW E 68, 056120 (2003

h(va.x)=305+@(X) (29

and

e(X)=27G Maf dx’'|x—x"|ny(x")

+const (30

+MbJ dx’|x—=x"[np(x")
is the gravitational potential. In E¢30)

na(X’)=f fa(x",v)dv (31
is the single-particle density function for particles of mass
and similarly for mass. The term in[] in Eq. (28) must
equal zero; therefore,

—ay(1+Infy)—BMih(v,,X) —y,=0. (32
Solving for f (v, ,X) gives
fa(va,X):e—(1+'ya/aa)e—(,BMa/aa)h(va,X) (33)

and similarly forf,(vy,,X).

A solution for ¢(x) is needed to substitute back into the
equations forf, andf,. If the equation forp(x) cannot be
solved in an obvious manner analytically, it can be done
numerically. First note that Poisson’s equation for the total
density is

d?e(x)
dx?

=4mG[pa(X)+ pp(X)]

= 47G[ Many(X) + Mpny(x)]. (34)

It is clear from EQq.(33) that in order to normalize the prob-
ability density, the term multiplying the exponential must be
the partition function

Z.= f dule (BMalaa)l(112)0%+ (0] (35)

To obtainn,(x) andny(x) thev dependence id, andZ,, is
integrated out to get reduced partition functions for both
mass types,

za=f dx’ e~ (BMalag)e(x")
and

7= j dx’ e~ (BMp/ap)e(x") (36)
and therefore

1 1
Na(X)= e a¢() and np(x)= Z—be*b“’(x) (37
a

where
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TABLE I. ConstantsA, B, z,, andz,.

PHYSICAL REVIEW E 68, 056120(2003

Mass ratio b/a) A Z Zy
2:1 0.1962125883 0.3037874117 2.4502466167 1.5825844396
3:1 0.1639079303 0.3360920697 2.9331663805 1.4304688333
5:1 0.1238967947 0.3761032053 3.8804008776 1.2782907030
BM BM, This then gives
a= " 2 and b=a—. (38
2 b 1(dg)\? 1 ,
Differentiating with respect ta(Xx) and rearranging gives 21 dx =A+B= 5(2WGM) ' (48

—1dn,
Ng=———

a do

-1 dnb

and anT w (39)

Substituting this into Poisson’s equation, E84), leads to

2
(0] Ma dna Mb dnb B
X2+47TG a do b do =0, (40)
giving
dZQD d Mana Mbnb
E+4WG@ a + b =0. (41
It is possible to show that
1/dg\? Mana  Mgng
> &) +47G + b =const (42

is an integral invariant of Eq41) thus reducing it to a first-
order differential equation. Substituting E@7), the expo-
nential forms for, andny,, into Eq.(42) gives

1/de
2\ dx

2

+Ae 2™+ Be P¢(X) = const, (43

whereA andB are also constants. The constafitandB can

be determined by analyzing the boundary conditions. Sym-

metry considerations at=0 give

¢(0)=0 (44)
and
de B
ax X=0—0. (45)

With Eq. (43) this implies thatA+B=const. The boundary
condition at infinity, o(|x| —), implies

de
o= o =const. (46)

From the Hamiltonian Eq(8) it is seen that far away from

the mass distribution

o(X)=27GM|x|+const. (47

M=27G=1 implies thatA+B=3. The constant in Eq.
(43) is therefore equal tg. SubstitutingA+ B for the con-

stant in Eq.(43) gives the following first-order differential
equation fore(x):

de(x)

o —L[2A(1- e 2¢()) +2B(1—e P¢(M)]2 (49

Equationg42) and(43) can be used to find an equation for
independent oB giving
“ _a (x) -1
j e’ dx} .

Using Eq.(49) and the fact thatix=de(dx/d¢) in Eq. (50)
gives

A47GM,
A:
a

(50

_ 47GM, foc dee '
a —=[2A(1—e 2%+ 2B(1—e P¥)]¥2|
(51
Rearranging and using E¢l1) produces
e dee 2M
f ¢ _ \/— a. (52)
0o [A(l-e 3)+B(1—e P¥)]¥2  aA

The simple substitution ofi=e™ 3¢ anddu= —ae 2 then
gives

1 du V2M,
f = . (53
o [A(1-u)+B(1-u"®1¥2 A

Equation(53) contains two known quantitie$) , (the to-

tal mass of particles of typa) and b/a (the ratio of the
masses of typé to typea). This equation was solved nu-
merically for various mass ratios using a Romberg integra-
tion technique to obtain the value of the constargnd then
usingA+B= 3 to obtain the constarB. OnceA andB were
determined, the reduced partition functions, E26), were
integrated in a similar form as E@53). Table | shows the
value of A, B, z,, andz, for the three mass ratios studied.
Note that for a single-mass systeh¥ B=0.25.
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0.6 ] ] IV. TWO-MASS DYNAMICAL SIMULATIONS

— 2:1Mass Ratio | The dynamical simulations of two mass-species 1D gravi-

05 1 2: m::x:: 7= tational systems were run on high-speed workstations run-
ning under the Linux operating system. Since, between en-

04 counters, the particles fall freely toward each other under

) their mutual gravitational attraction, the solutions to simple

T quadratic equations are all that is required to determine the
E 0.3 particle positions and velocities at future times. Instead of
E updating the entire system at each encounter, by taking ad-
02 vantage of the simplicity of the system clever schemes can

be devised to efficiently update the positions and velocities
of only the encountering particle pair and its nearest neigh-
bors. The algorithm first calculates the time when each
neighboring pair of particles will have a crossing. The small-
est crossing time is found and that pair of particles is allowed
to evolve up to the time of crossing. The new crossing times
04 0.6 08 10 for that pair and their nearest neighbors is calculated, and the
Position smallest crossing time in the list of pair crossing is found
again. This process continues as the system is allowed to
evolve and statistical data are taken at specific time intervals.
In addition, at regular intervals the entire set of coordinates
. _ _ . ) and velocities is updated to a common time and the crossing
The potential functiorp(x) is required to obtain the com-  ime table is recalculated as another measure in reducing
plete form for the density functions,(x) andnp(x). Rear-  cymulative numerical errors which might cause particle po-
ranging Eq(49) and integrating gives the following equation gjtions to get out of order. For systems larger than 64 par-

FIG. 1. Potential function from the mean-field theory for the
2:1, 3:1, and 5:1 mass ratio OGS. All units are dimensionless.

for x as a function of: ticles, it is more efficient to use a binary tree to store and
track the particle information rather than traditional linear
@ do’ storing and sorting techniques. These systems were allowed
x| :J o —— 15+ (®4  to evolve for a total time of 1.
0 [2A(1—e " )+2B(1-e )] Two types of data files were maintained as the numerical

experiments progressed. First, “snapshots” of all the particle
Again, the integral can be converted to a more manageablgositions and velocities were taken at fixed intervals of
form by making the substitution 1000r for the entire length of the simulation. These snap-
shots are a record of the position and velocity of all system
members at a particular time in the system evolution. The
advantage of snapshot data is that all averages can be calcu-
lated after the completion of the simulation to save calcula-
This gives the following form for the integral definingas a  tion time, and both forward and backward averages can be
function of ¢ for a particular mass ratio: calculated if desired. In addition, calculation of particle den-
sities and correlations is simplified with the snapshots. In the
1 (e—2edu second type of data file, running averages were calculated
X|=— af (1 2[Aut Bu”@]}~%2  (56)  and saved independently. These data were taken at intervals
! of much shorter duration than the snapshots during the early
system evolution, and at longer time intervals than the snap-
The integral was evaluated numerically using an adaptivehots during the late stages of evolution. Thus the short-time
step size integration technique and inverted to obtain thelynamics could be studied more accurately, while effective
value of ¢ over a range ok. A cubic spline interpolation use of storage was permitted during the later stages.
algorithm was used to obtain values for the function in the For this study, the ratio of the mass of the heavy to light
integrand for any value of where the integral was evaluated particles was varied as well as the total number of particles
numerically. Figure 1 shows the one-sided potential funcin the system. Five different system populations with three
tions for all three mass ratios investigated. different mass ratios were investigated. The specific param-
The parameteB defines the temperature of the system. Ineter values used are displayed in Table I. Initial conditions
these units, for a system with an energy of 8=2. The  were generated by uniformly sampling points inside a box of
value of B, the fitted functions forp(x), the reduced parti- fixed size inu space for both heavy and light particles. The
tion functionsz, and z,, and Eq.(37) provide all the ele- size and shape of the box are determined by the total energy
ments needed to calculate the density of particles in equiliband the desired virial ratio, respectively. A virial ratio
rium and compare them with the results of simulations forR,;;i; =2 was chosen to reduce the effects of the initial
systems of varying mass ratio and particle number. violent relaxation phase. These conditions were chosen be-

u=e 2 =g be'=yba (55)
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20 ‘ ‘ ‘ ‘ ‘ ‘ necessary consequence of mixing behavior and is one of sev-
s } } } } | e LightMasses eral measures used to analyze gravitational systems. In Paper
T }“””T"”T"T"ﬂ ° T'e"“y Mafses | I1, equipartition of kinetic energy and mass segregation were
10 L ‘L,,Ejr,:,,%%671.6777%7777%f7%.777 taken as direct signs that the system was sampling the equi-
o 0@ e 1%, ﬁ?. e I° . librium distribution. In this study, we use dynamical simula-
. 05 - Fo ey Tms’*g*’”cf*+ﬂi:‘**%**** tion to test the predictions of Vlasov equilibrium theory for
S 00— L”@Lgi;g.oLWLL.”:JLQE{L‘,,, finite size systems. Specifically, we compare the ratio of the
® Lo % -O‘%c R kinetic energies of the two mass types, the average distance
05 4 :m%@——:r;——f!—g—:r—;oi:ﬁ———" :g—oi——?}———f from the system center of mass for the heavy and light spe-
A L,,i,{‘?,jiL,,",,L,,,,L:ﬁ L,,;;ﬁ,,,, cies Dy and_DL), and the average particle densi_ties of each
| 00 Cos 4 | | | mass type with the mean-field theory presented in Sec. Ill. In
15 o R S e S S addition, theN-body simulations can also be used to study
i i i i i i i properties not addressed by mean-field theory. In this cat-
20 ' ' ' ' ' ' ' egory we include both spatial and temporal correlation func-
-2.0 -1.5 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 . . .
Posit tions, and the rate of relaxation of the system towards equi-
ositon

librium. We also compare the relaxation time scales of the

two-species systems with those studied earlier for a single-
mass component.

FIG. 2. Initial state f« spacé of a 128-particle two-mass OGS
with a 5:1 mass ratio. All units are dimensionless.

cause they provide an initial state tha) is far from equi-
librium, (2) has a kinetic energy ratio which is easily char-
acterized, and3) will rapidly approach a quasiequilibrium The equipartition theorem states that every coordinate that
Vlasov statd23,26. Since both the heavy and light particles is represented by a simple quadratic expression in the Hamil-
are sampled identically inside the fixed boxinspace, there tonian of a conservative systefe.g., p?/2m) will, on the

is no equipartition of kinetic energy or mass segregation ireverage, contributeT/2 to the energyRyinetic, Which is the

A. Equipartition of kinetic energy (Ryinetic)

the initial state and it is far from equilibrium. In addition, due ratio of the average kinetic energy of the heavy mass par-

to this sampling, the initial value dRy;,etic Will be approxi-

ticles to the light mass particleR(inetic=(KEL)/(KE.)),

mately equal to the ratio of the heavy to light masses. Se&s used to measure equipartition. As a thermodynamic system

Fig. 2 for a view of a typical initial state of the systemin

relaxes, the system members begin to share kinetic energy

space for a 5:1 mass ratio, and Fig. 3 for a view of the finaequally on Fhe average. For a system containing two types of
state of the system ip space for a 5:1 mass ratio following masses, this sharing should be easily observed. Therefore, as

a complete run.

V. STATISTICAL MEASURES

the system relaxes, the rafy;,tic Should approach a value
of unity. This is a measure of macroscopic relaxation to equi-
librium. In an isolated system with a finite number of par-
ticles such as the OG®nicrocanonical ensemblehowever,

In general, the ergodic properties of a system are difficulthe equipartition theorem may be exact only in the limit of
to ascertain. Ergodicity has been proven rigorously for only darge N.
handful of dynamical systems. There are, however, some in-
dicators that are useful in determining whether a system i®. Mass segregation of heavy and light particle§D,, and D,)

ergodic and mixing. The decay of correlations in time is a

As the system evolves in time and equipartition of kinetic
energy begins, the heavy particles are transferring some of

4.0 . . h . .
| | | | [ e Light Masses their kinetic energy to the lighter ones. While the system
30 f———— b el gl o HeavyMasses continues to relax, the light particles move farther out from
1 1 el e | i i the center of the system forming a halo, and the heavy par-
20 4+ —— ) ) A . | . d th t f . .
! ! . e ! ., ticles move in toward the center forming a core, in a process
104 ‘r,,,.Q,,,,p-,%.%,%,gt,,,-,;,,,,p,” called mass segregation. As the system evolves we can track
> } } } K. DR I } this process by computing the time average of the distance
;ﬁ 00 === F”*’F”"‘L’g e e from the origin for both the heavyD(y) and light )
> 1 1 oL % | 1 1 masses. The separation of these quantities is a another good
1.0 Fo—— P . .- . . >
! ! o o | ! ! indication that the system may be macroscopically relaxing
20 F-——- P e e e e e to an equilibrium configuration and is closely related to
30 L L7777L7777L7777L7777L7777L7777L7777 Rkinetic-
| | | | | | |
-4.0 } } } } } } } C. Particle density averaged (N, ;(1))]
-8.0 6.0 4.0 2.0 0.0 2.0 4.0 6.0 8.0 . . .
Position Throughout the time of the simulations, data are taken on

the density of particles of each mass type=H or L for

FIG. 3. Final state & space of a 128 particle two-mass OGS
with a 5:1 mass ratio. All units are dimensionless.

heavy or lighi in the configuration space. For each mass
type, bins of equal probability were created based on the
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mean-field theory discussed previously. These bins vary imvhere n indicates the mass types, apdndicates the bin
size but are scaled so that each bin will contain 5% of thewumber. Next, the correlation between mass types in specific
particles for a system in equilibrium. Since the potential isbins at a specific tim€, ;. ;(t) is calculated using
symmetric about the origin, the statistics of the correspond-

ing bins on each side of the origin are combined during the 4y ) 4y _
data collection of the simulations. To create the bins, the  C;.,i(t)= (N (1)~ (N JENo 5V <N”’J>]>t,
respective density functions, E@7), are integrated by step-
ping in position until the integral is equal to 0.05. This pro-
cess is continued until all ten bins for the positive configu-
ration space have been calculated. Since the system WhereN, (t) is the population of mass type in bin j at
symmetric, these bins are then mirrored to the negativéme t of the simulation and the average, is taken up to
space. During a simulation, at regular snapshots in time, théme t.
number of particles in each b[iN, ;(t)] is counted and the

results are averaged up to that simulation time. The value at

the end of a complete simulation will give a good long-time
average for the population of each bin. This can then be We can learn about the duration of memory in the system
compared to the theoretical mean-field prediction to estimat®y studying correlations in time. In order to investigate the

the applicability of the mean-field theory to the actual dy-Possibility of the presence of long-time oscillations or nor-
namical system. mal modes that might develop as the system relaxes, corre-

lations of the macroscopic kinetic energy ralQ;,qiic Were
computed for a steady progression of time delays. Since ear-
lier studies of the single-component system suggested that it
To track the relaxation of the density to the equilibrium exists in one of several macrostates for periods of about
prediction, we compare the average density in e_ach bin atthgeb - the data were averaged over sequential blocks of
timetand 2. To qu_antn‘yzthe difference, we define the sta- 6o 000 dimensionless time units. The time correlation func-
tistical function of time,o7,(t), as follows: tion C,(t) essentially gives the average of the product of the
Npin fluctuations of a variable measured at time separdati®hus

2oty P (2t))—(P. . 2 the time correlation irx is defined
(2= 2 [Pny(20) = (Pmy()]* (57

1 N—k

Om,iOn,j

(60)

F. Time correlation [C(t)]

D. Relaxation measure] o2 (t)]

where Cu(t)= —(x)?, (61)

2Npin
(Pm,j(1))= T<Nm,i(t)> (58 whereN is the total number of data pointg,labels each
block of durationt=6000Kk7, and x; is the average of

is the time averaged population of Himp to timet normal-  Ryjyetic Within block j.
ized to the theoretically determined number of particles per
bin, and them=(H,L) indicates either the heavy or light
masses. This measure is similar to a variance if we consider
the value at the later time2as the true mean. Alternatively ~ In their studies of a single-component system, Tsuchiya
we can think Ofg'rzn(t) as a metric between vectoPsm,j(t’) et al. [20,21] proposed a test for the equipartition of total
at different times. The rate at which this measure decrease&ergyA(t) as a measure of phase-space ergodicity. For a
may give useful insights into how these systems relax. Fosystem that is completely ergodic over the energy surface,
example, linear decay on a log-linear plot would indicatethe value of a macroscopic observable is simply the time
exponential decay in time and a characteristic decay time t@verage of the corresponding microscopic operator over an
relaxation could be defined. On the other hand, linear decaifinite time period. Equipartition of total energy is the equal
on a log-log plot would imply a power-law decay and no division of energy among the members of a dynamical sys-
characteristic decay time. tem over an indefinitely long time period. In the conclusions
we will explain that this is a necessary, but insufficient,
manifestation of ergodicit}22]. In the infinite time limit, the

) ) . . ) average of the energy per unit maspecific energye; will
Useful information concerning the spatial correlation of achieve a unique value for dll

particle pairs can be obtained by computing the correlation

G. Equipartition measure [A(t)]

E. Bin correlation

of populations in different bins. The bin correlation for each 1T 5E
mass type is calculated in the following manner: The average &;= lim ?jo gi(t)dt=go= 3 (62)
and the variance for each bin is first calculated using the T
entire dataset covering the full duration of the simulation
using for a system with a single-mass species.
Convergence to equipartition can be quantified by intro-

i =((Npj=(Np )% (59 ducingA(t) defined by
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FIG. 4. Linear plot ofRy;neiic fOr a 128-particle systems with a
2:1 mass ratio backward averaged over the last B®r of the
simulation. All units are dimensionless.

FIG. 5. Lin-log plot of Ryjnetic fOr a 64-particle system with a
2:1 mass ratio forward averaged over the entire length of the simu-
lation. All units are dimensionless.

N 1/2
A(t)= i(i E [;(t)_%]z) : ’ 63) is not rgduced by local ayeraging. The'results for all system
N &1 populations and mass ratios were similar. Of course, as the
B system populations increase the statistical fluctuations de-
whereeg;(t) is the averaged value of the specific energy up toecrease.
a timet. Therefore A(t) measures the deviation of the aver-  Riinetic Was also averaged in the forward direction using
age energy per particle from the theoretical equipartitiorthe complete dataset from the initiation of the simulation.
value. If a system is sampling the equiliborium ensembleFigure 5 is a lin-log plot of a forward averag@;neiic for a
A(t) will trend monotonically toward zero. However, the 64-particle system with a 2:1 mass ratio. Notice that the ini-
vanishing ofA(t) is not a guarantee of equilibrium, and can tial value will closely, but not exactly, represent the system

occur for other ensembles. mass ratio. Also note the presence of a long lasting plateau
from about 2< 10?7 until 10°~ where the curve begins to dip
VI. SIMULATION RESULTS AND COMPARISON down toward unity. We should be mindful that this is a loga-
TO THEORY rithmic plot, so early times are emphasized in the figure. In

fact, the remainder of the evolution is also very gradual. The

Using the algorithm discussed in Sec. IV, simulationsdip at 1¢+ occurs at approximately the same time as the
were carried out for three different mass rati@sl, 3:1, and onset of mass segregation.
5:1) and four different populationdN= 16, 32, 64, 128for To quantify the long lasting memory effects discussed
a duration of 18 time units. For all runs, the statistical quan- above, a time correlation functidd,(t) was also calculated
tities defined in the preceding section were computed. Weor Ry;,..ic [See Eq(61)] for a 64-particle system with a 3:1
first consider the behavior of the kinetic energy ratio of themass ratio using the 60 08@vindowed data. Figure 6 shows
two species,Ryjnetic- IN all cases we found that as time the time correlation function rapidly descending toward zero
progressed Ryinetic approached the equilibrium value of early, then slowly rising to a local maximum approximately
unity. Important insights can be gained by studying how this10’r later, and finally dropping back down to near zero in-
limit is approached. dicating the possible existence of long- time low frequency

Figure 4 shows a lin-log plot dRy;petic for a 128-particle  modes in the system.
system with 2:1 mass ratio. This graph is a continuous aver- Mass segregation, the spatial separation of different mass
age of the last 98 10°7 in the negative time direction start- species, is quantified 9, andD, and occurred in all runs.
ing at the end of the run, i.e., a backward average. By stopFigures 7, 8, and 9 show lin-log plots Bf; andD, versus
ping the backward average after 000°7 we reduce the time for 128-particle systems with 2:1, 3:1, and 5:1 mass
effect of the initial transients due to violent relaxation. In ratios, respectively. Here as well we see a transient period
Paper Il this backward average was also calculated usinfpllowed by a long plateau where the segregation seems sta-
data averaged over windows of 60 G00n that caseRynetic  tionary (but see the comment above concerning Fig. 5
appeared to rapidly approach the expected value of unityrhen, after about &, a period of rapid divergence is again
Here we sedRyjetic approaching unity more slowly as the initiated, and then tapers off towards the end of the run. The
simulation progresses since the effect of fluctuations in timenean-field predictions for the equilibrium values®f, and
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FIG. 6. Linear plot of the time correlation function &;etic FIG. 8. Mass segregation for a 128-particle systems with a 3:1
for a 64-particle system with a 3:1 mass ratio using the slidingmass ratio. The vertical axis showB andD_) the average of the
window of width 60 006. All units are dimensionless. absolute value of the distance from the origin for the light and

heavy masses. Predictions from theory are indicated by the horizon-

D, are also indicated on the graphs. Note that the timegal lines. All units are dimensionless.

where the curves for the heavy and light masses begin to

diverge are approximately equal for all three mass ratios. Weystems of different populations did not reveal any obvious
see that by the end of the run the time averaged quantitie@attern either. However, the segregation time scales for the
have not yet achieved their equilibrium values. We also se&vo smaller systemél6 and 32 particloswere significantly
that there is no apparent dependence of the relaxation tim@horter than for the larger systeni®4 and 128 particlgs

on the mass ratio for this process. with segregation for the 32-particle 3:1 mass ratio system

Comparison of time scales for mass segregation betwed?€ing the shortest clear transition. Although it may be seren-
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FIG. 7. Mass segregation for a 128-particle systems with a 2:1 FIG. 9. Mass segregation for a 128-particle systems with a 5:1
mass ratio. The vertical axis showd { andD ) the average of the mass ratio. The vertical axis showd,{ andD,) the average of the
absolute value of the distance from the origin for the light andabsolute value of the distance from the origin for the light and
heavy masses. Predictions from theory are indicated by the horizomeavy masses. Predictions from theory are indicated by the horizon-
tal lines. All units are dimensionless. tal lines. All units are dimensionless.
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FIG. 10. Bin average data for 128-particle systems with 2:1, 3:1, 0.0001 T~ N ' '
103 104 108 108 107 108

and 5:1 mass ratios. The vertical axis is the average number of

particles in each bin and the horizontal axis labels the bin number. Time

Data for both the heavy and light masses are shown. The theoreti-

cally predicted value is shown as the horizontal line at the value of F|G. 11. Log-log plot ofs2(t) for a 128-particle system with a

6.4. All units are dimensionless. 2:1 mass ratio. Note the linear decay with slope equat fio both
before and after the peak indicating the lack of a characteristic

dipitous, it is intriguing that this result matches well with decay time. All units are dimensionless.

those of Reidl and Millef19] for a single-component sys-

tem, where maximum mixing in phase space was seen fagystem of 64 particles with similar “waterbag” initial condi-
system sizes of approximately 30 particles. _ tions is reproduced in Fig. 12. Take special note of the linear

_ To d_|rectly compare mean-fleldllasow the(_)r_y W'th_ the . decay with slope approximately 0.5 both before and after
simulations, the configuration space was partitioned into bing,q peak. However, the time scales for the peaks are approxi-
of equal probability according to the theaisee Sec. Il In mately an order of magnitude different.

the simulations, the time averaged population of each bin 1nhe correlation of bin population€,, .., is displayed
was calculated over the course of the run. The results fo, Figs. 13 and 14 in 3D plots. They ého\]/v the correlations
128-particle systems with mass ratios of 2:1, 3:1, and 5:1 arg;, the light and heavy particles, respectively, of a 128-

shown in the summary chart, Fig. 10. o particle system with 3:1 mass ratio after a simulation of
In Fig. 10 we label the bins according to their distance

from the system center. A general trend is seen in which the
bin population increases with the distance from the system EEEE%EEE§EEE§EEEEEEEE§EEE§EEEEE
center. Thus, when compared with the theoretical predic- A B R A R
tions, the inner bins are slightly underpopulated while the
outer bins are overpopulated. It is important to recognize that
the outer boundary of the last bin is at infinity. In general,
agreement with theory is better for both the lighter mass 0.1
components and the smaller mass ratios.

The relaxation measur@ﬁq(t) was calculated by compar- £
ing the complete dataset of bin populations at the titreesd <
2t [Eq. (57)]. Thus, as a run progresses, the relative separa-
tion in time between the data points is ever increasing. Fig- 0.01 3
ure 11 show&rﬁq(t) for a 128-particle system with a 2:1
mass ratio plotted on a log-log scale. Linear decay with a
slope of approximately- 1 is observed both before and after
the peak. The occurrence of this peak coincides with the

transitions of bothR,,eiic and mass segregation. The final 0.001

linear decay indicates that the system is asymptotically ap-

proaching a stationary or quasiperiodic distribution while the Time

slope indicates power-law decay and the lack of a character-

istic decay time to equilibrium for the system. FIG. 12. A(t) for a 64-particle system with the waterbag initial

The results foir;,(t) are very similar to t_he eqL_Jipartition conditions showing an “equilibrium” peak as defined by Tsuchiya,
measureA (t) from Paper | for a system with a single-mass Konishi, and Gouda followed by a general trend toward zero. All
component. A typical log-log plot oA (t) for a single-mass units are dimensionless.
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FIG. 13. Correlation of bin populations after®0for the light FIG. 15. Cross-correlatioflight to heavy masse®f bin popu-

masses of a 128-particle system with a 3:1 mass ratio. Note thiations for a 64-particle system with a 3:1 mass ratio aftétr10

large negative correlation between the outer bins and their nearebtote the large negative correlation between the outermost bins and

neighbors. All units are dimensionless. the increasing positive correlations between the outermost bin and
the rest of the system. All units are dimensionless.

10%7. The plot for the light particles shows a large down- = . )

ward spike indicating a high degree of correlation betwee@lgnl_ﬂcant negative gorrela_tlon occurs be_twe_en the outermost
the outermost bin and its nearest neighbors. As the separati@fd innermost bins indicating system wide influence.

from the last bin increases, the correlation moves rapidly 1he cross correlation between the heavy and light mass
towards zero. For the inner bins, the correlation is somewhaRin Populations was also calculated for each run. Figure 15
flat. In the case of the heavy masses, there is a large negati$80Ws the cross correlation for a 3:1 mass ratio 64-particle
correlation between the outermost bin and all other bins. TheyStém. A large negative correlation is seen between the dif-
magnitude of this negative correlation increases as the sepffént mass types in the outermost bins, while the correlation
ration from the outermost bin increases, i.e., moving toward®€tween the outer and inner bins tends to grow more positive

the center of the system and away from the outermost bin. &S the separation between bins increases. Plots of the 2:1 and
5:1 mass ratiognot shown have similar trends with the

exception that the magnitude of the correlations increases as

ey

] \£P the mass ratio becomes larger. Since the decay of correla-
0.00 ; \\[ED\ tions is closely related to relaxation, this may indicate that
0.02 §$ et \\\\\\ larger mass ratio system; have longer rela?<ayon times.
0.04 — TN T Analysis of other system sizes also showed similar trends.
0,06 ,_kj 9 \\\\\\ When comparing the cross correlations of different system
0.08 — &\\ N sizes, the magnitud_e of_the correlatio_ns_steadily incr_eas_es as
S o0 L :\S\\\\\ the system populat_lon increases. This in turn may indicate
012 e N \\\\ that tlhe_ relaxation time increases as a function of the system
By NS population.
o T eSS
. N §§< B Z
-0.18 <>< VIl. SUMMARY AND CONCLUSIONS
-0'2098 \ As an extension of our earlier investigation of the two-
LA mass OGS, this paper included a larger variety of system
- 54 0 populations and mass ratios than the study initially begun in
3 7 8 9 Paper II. The original investigation was the first to defini-

tively show mass segregation and equipartition of kinetic
i energy in a two-mass OGS. Here, by expanding the range of
statistical tools used for the analysis the system evolution has
FIG. 14. Correlation of bin populations after®0for the heavy ~ been probed more deeply.
masses of a 128-particle system with a 3:1 mass ratio. Note the As a basis for the investigation, a theoretical mean-field
large negative correlation between the innermost and outermognodel was developed in the Vlasov limit using the maximum
bins (center to edge of the systénAll units are dimensionless. entropy principle. Potential functions were derived for each
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mass ratio and from these predictions for the particle densiKlinko and Miller have shown similar results in a system of
ties. These predictions were compared with results from theoncentric spherical shells with angular moment{i35].

dynamical simulations. Additional statistical measures usediowever, the decay for that system was strictly monotoni-
included spatial correlation functions and a time-dependergally decreasing on average. In this case, the regionstof 1/

relaxation measure. decay were separated by a large peak whose timing corre-
The following statements summarize the main results fosponded with other features of the system dynamics such as
the two-mass investigation. mass segregation, and equipartition of kinetic energy. This

(1) Dynamical simulations of all mass ratios and systeminitial decay is representative of the long-lived quasiequilib-
sizes demonstrated that the macroscopic relaxation propefium state. As the system transitions from this state to one
ties of mass segregation and equipartition of kinetic energynore closely representative of equilibrium, the peakef(t)
converge to their predicted equilibrium values. begins to form as it measures differences in the two states

(2) Positional correlation functions calculated from dy- over the 2—t time interval. This peak imzm(t) was very
namical simulations showed large correlations existing evememiniscent of those that occurred i(t) for the single-
after 167 (~10't). This represents an extremely long time mass system. Following this transition?(t) is then mea-
in the system evolution. suring the approach to the new state at liaithd 2, and the

(3) The 1/t behavior of the relaxation measure(t), 14 decay is again evident.
indicates the lack of a characteristic relaxation time for the As a direct comparison with the mean-field theory, the
system, and possible fractal structure in the phase space. donfiguration space was divided into bins of equal probabil-
addition, it is contradictory to the exponential decay of cor-ity calculated from the theory. During the simulation a run-
relations one would expect from a normal thermodynamioing average of the population of each bin was kept. At the
system exhibiting ergodic behavior. A peak in the relaxationconclusion of the simulation the average population of each
measure occurs at the transition from the long-lived quasibin was compared to the theoretically predicted value. It was
equilibrium state to another state more closely representativigoted that in all cases the simulations followed the predicted
of equilibrium. densities fairly well with the inner bins being slightly under

(4) Time correlations of the ratio of kinetic energies in a populated and the outer bins slightly overpopulated. These
system containing two-mass types showed long-time correresults hold for the larger 128-particle systems as well. This
lations on the order of 1410"7. This is over 2<10° char-  would also be consistent with results found by Tsuchiya
acteristic times. In that period of time, an individual particle et al. in which an overabundance of higher energy particles
in a 128-particle system will have had ovex30® crossings  was found to be present in the distribution for a single-mass
with other system members. Clearly relaxation to equilib-system that otherwise looked very similar to the isothermal
rium, if it occurs in this system, occurs on an extremely longdistribution[21]. These higher energy particles tended to re-
time scale and weak, but significant, correlations continue tgide, on average, farther out in the tail of the density distri-
exist. bution. This is reflected in the overshoot Bf seen in the

The simulations showed that mass segregation and equinass segregation plots.
partition of kinetic energy occur for all system populations  Another interesting result came from the bin correlation.
and mass ratios at roughly similar times with all of themThese results reinforced to some degree the results of the bin
being on the order of a few milliom. These macroscopic population averages. The correlation measure showed larger
transitions occur at significantly later times than virialization negative correlations between the outermost bin and all other
and the rapid microscopic relaxation seen in the single-massins. In addition, the plots of the bin correlation for the light
systems, but it is of the same order as the large first transitioand heavy masses were quite dissimilar with the light masses
peaks seen later in time ia(t) for the single-mass systems showing an unusual negative correlation spike between the
[20-22. By themselves, these two simple measures ar@utermost bin and its nearest neighbor. This spike was not
strong indicators of a transition to a final equilibrium stateseen in the heavy mass correlations where there was a
from a quasiequilibrium state. However, other measures sudfbughly consistent negative correlation between the outer-
as analysis of the density and velocity distribution functionsmost bin and all other bins.
indicate that the system has not completely relaxed to the The bin cross correlation of the different mass types indi-
equilibrium distribution even after very long times cated a correlation between relaxation time and both mass
[20,21,27. For the limited number of runs attempted, analy-ratio and system population. The magnitude of the cross cor-
sis of the time scales for mass segregation and equipartitiorelations increased as the mass ratio and the system popula-
show that the macroscopic relaxation time is independent ofon increased. This implies that the relaxation titnelated
both the system population and the mass ratio. However, thg the time scale of the decay of correlations in the system
bin correlation functions indicate that the relaxation timeincreases as the mass ratio and the system population in-
may indeed be correlated with both the mass ratio and therease. A large negative correlation between the light and
system population. heavy masses in the outermost bins was evident in all sys-

An interesting feature of the relaxation measufg(t) is  tems as well as large positive correlations between the out-
the linear decayon a log-log plox that occurs both early and ermost bin and all other bins.
late in the system evolution. Thistldecay indicates that Substantial work has been done on the OGS over more
there is no characteristic time for relaxation of the systenthan 30 years; however, the question of ergodicity and relax-
and may indicate a fractal structure to the phase spacation is still an open issue. This paper has shown that two-

056120-15



K. R. YAWN AND B. N. MILLER PHYSICAL REVIEW E 68, 056120 (2003

mass systems exhibit several features normally associateihgle-mass system, the phase space may be segmented into
with systems either approaching or that have already attainestable and unstable regions in which it will be trapped
equilibrium, however, substantial correlations still exist after[17,18. For larger values oN we expect equilibration on
simulation times exceeding 48 This suggests that collec- longer times, but to see it will require an extensive compu-
tive motion may take place over very long times. This typetational effort. We anticipate that for sufficiently larde

of behavior has been previously observed in Vlasov simulathere is a scaling region where thedependence of the evo-
tions of the OGY12]. In addition, some of the differences lution is more pronounced. However, we have not seen evi-
noted between the Vlasov theory and simulation regelty.,  dence for this for the system sizes we were able to simulate.
in the bin population studigsnust be due to finite size ef- It would be interesting if in fact the scaling behavior could
fects, although this was not indicated in other measures fdbe determined from theory.

the range of system populations studied herg., the time Clearly, based upon these results as well as those of other
scale for mass segregatjonFinite size effects may be researchers, it is still not possible to draw a definitive con-
masked by differences in the initial conditions. clusion on the question of relaxation in the OGS. However,

In these numerical experiments consideration of the evothe general results of these studies suggest that equilibrium is
lution of both average quantities and correlations suggest thieeing approached. The evolution of global measurements of
following scenario: The system rapidly relaxes to a quasistathe macroscopic behavior of the one-dimensional self-
tionary state. We conjecture that this state is “close” to agravitating system indicates that the system is relaxing to the
stationary Vlasov state, of which there are mdaeince for  equilibrium state in a finite, but very long time, while mea-
the latterN— <o they cannot be identicalAt present we lack  surements of more local properties of the system, such as
the ability to predict this state from the set of initial condi- time averaged probability densities, are within a few percent
tions. The system then appears to slowly, but continuouslyof the equilibrium values, but have not completely con-
evolve through a sequence of quasistationary states until iterged. What is clear, however, is that these systems exhibit
finally approaches thermal equilibrium. As in higher- very weak diffusion, extremely long correlations in time, and
dimensional systems we expect thatNamcreases, the time weak ergodic properties in the phase space. Future work may
to approach equilibrium will also increase and thus becomaeed to include more thorough studies of other correlations
more difficult to observe in simulations. Thus we could sayin the system as well as an investigation of the possible frac-
that in gravitational systems relaxation itself is a discretenestal structure in the phase space.
effect. It is especially hard to observe in one-dimensional
systems because, at crossings, only the acceleration of the ACKNOWLEDGMENTS
crossing pair changes so the mixing is very slow. Thus we
have shown here that there is a window in population where The authors are grateful for the support of the Research
we can observe that the system approaches the equilibriuffoundation and the Division of Information Services of
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