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Incomplete relaxation in a two-mass one-dimensional self-gravitating system
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Due to the apparent ease with which they can be numerically simulated, one-dimensional gravitational
systems were first introduced by astronomers to explore different modes of gravitational evolution. These
include violent relaxation and the approach to thermal equilibrium. Careful work by dynamicists and statistical
physicists has shown that several claims made by astronomers regarding these models were incorrect. Unusual
features of the evolution include the development of long lasting structures on large scales, which can be
thought of as one-dimensional analogs of Jupiter’s red spot or a galactic spiral density wave or bar. The
existence of these structures demonstrates that in gravitational systems evolution is not entirely dominated by
the second law of thermodynamics and also appears to contradict the Arnold diffusion ansatz. Thus it is correct
to assert that the one-dimensional planar sheet gravitational system is the nonextensive analog of the Fermi-
Pasta-Ulam model of dynamical systems. This paper is an extension of a preliminary study where we conclu-
sively showed mass segregation and equipartition of kinetic energy in a two-mass planar sheet system for the
first time. Here we employ both mean-field theory and dynamical simulation to more thoroughly probe the
statistical and ergodic properties of these systems. Valuable information is obtained from local and global time
averaging, and temporal and spatial correlation functions. Using these tools we show that the system appears
to approach the equilibrium distribution on very long time scales, but the relaxation is incomplete.

DOI: 10.1103/PhysRevE.68.056120 PACS number~s!: 05.90.1m, 05.70.2a, 05.20.2y, 95.10.Fh
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I. INTRODUCTION

The study of one-dimensional models has historica
been motivated by the simplicity of the physical system
Many of these systems have analytical or nearly analyt
solutions. In other cases, although the system is physic
simple, the equations do not admit an analytical solution
are nevertheless straightforward to set up and dynamic
simulate on a computer. One-dimensional systems w
among the first simulations done on computing machine
the late 1940s and early 1950s. One of the first and m
famous numerical experiments was conducted by Fe
Pasta, and Ulam in 1955 on a one-dimensional array
coupled oscillators with force terms that were small pert
bations from linearity@1#. The unexpected nonergodic resu
of the experiment would cause an explosion in dynam
physics and chaos theory several years later. O
dimensional models of gases have been studied extens
in statistical mechanics and one-dimensional lattice mod
have been used in solid state physics to study metal all
magnetic spin systems, glasses, phonon propagation,
tronic bands, and a host of other systems. Due to the ad
complexity of the physics in higher dimensions, on
dimensional systems are often used as simpler model
actual three-dimensional systems.

A central problem for stellar dynamics is the determin
tion of the time scale for the relaxation of an isolated, gra
tationally bound system, such as a galaxy or a globular c
ter. A primary reason for the difficulty is the extreme
complicated nature of physics in three dimensions. Since
1960s, the one-dimensional~1D! self-gravitating system ha
been used as the simplest model for studying the dynam
properties of gravitational systems, such as relaxation
diffusion. The study of 1D gravitational systems is motivat
by two primary factors. The first is the hope that some of
1063-651X/2003/68~5!/056120~17!/$20.00 68 0561
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general features of the 1D system may translate to 3D as
physical systems, perhaps giving some unique insight
the underlying physics. The second is that 1D systems ap
on the surface to be relatively simple but often exhibit int
esting and unexpectedly complex behavior. This has
tainly proved true over the many years that these syst
have been studied.

Correlating results derived from one-dimensional gravi
tional systems to three dimensions is a difficult task, sinc
is well known that dimensionality plays a critical role i
many physical phenomena. Despite this difficulty, seve
important similarities do exist between one- and thre
dimensional gravitational systems and these are summar
below.

~1! Both 1D and 3D systems have long range unscree
gravitational forces.

~2! For systems containing a large number of partic
existing in a stationary state, the distribution of particle p
sitions and velocities is governed approximately by the V
sov equation for incompressible fluid flow@Eq. ~1!#.

~3! Evolution of the systems from a highly nonstationa
state appears to go through a period of violent relaxat
after which the distribution quickly settles down to a qua
equilibrium state.

It is worth noting that three-dimensional gravitational sy
tems suffer from several problems that do not exist in o
dimension.

~1! Through three body or higher-order interactions, p
ticles can gain enough energy to escape~or evaporate! from
the system.

~2! Through three body or higher-order interactions, p
ticles can lose enough energy to form gravitationally bou
pairs ~binaries!.

~3! A singularity exists in the gravitational force atr
50.
©2003 The American Physical Society20-1
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To manage these problems in practical computer sim
tions, two- and three-dimensional programs require elabo
cutoff schemes for the gravitational potential. In contra
since the gravitational field in one dimension is uniform, t
phase space is compact, and the equations of motion
parabolic and easily solvable on a computer without the
of slow integration techniques. This allows the completion
very long simulations of systems with moderately largeN in
a few days or weeks on desktop workstations.

Large astrophysical systems, such as galaxies, may
tain upwards of 1011 stars. Gravitational systems are unlik
gaseous systems~driven by true short-range interactions! or
plasmas~where the range of the electric force is limited b
Debye screening! in that each particle continuously feels th
effect of all the others. As the number of particles in t
system is increased, however, the effect of any single par
relative to the background composed of all other partic
decreases as 1/N. In the limit that N→`, while the total
mass is kept constant, only the long-range interaction of
particle with the continuous background field remains. In t
‘‘mean-field’’ approximation, the evolution of large gravita
tional systems is exactly described by the Vlasov, or co
sionless Boltzmann equation, Eq.~1! @2#,

] f

]t
1v•

] f

]x
2“F•

] f

]v
50, ~1!

whereF is a solution of the Poisson equation. For syste
with finite N, the solution to Eq.~1! provides a short-time
approximation to the single-particle distribution function.
one dimension, the Vlasov equation describes the flow o
incompressible fluid inm5(x,v) space, where them space
is a projection into the (x,v) plane of a point in the
2N-dimensional phase space. Them space then containsN
points, each of which represents the position and velocity
a particle in the system. In the limit that the number of p
ticles,N, approaches infinity while constraining the total sy
tem energy and mass to constants, the system can be
scribed as a continuous fluid inm space. This limit is often
referred to as the Vlasov limit. Liouville’s theorem states th
the area of an element in them space is constant under th
action of the Hamiltonian. Therefore, the flow of this fluid
m space is incompressible and obeys the Vlasov equatio

Following a suggestion by Oort@3#, the one-dimensiona
self-gravitating system~OGS! was first considered as
model for the motion of stars perpendicular to the plane o
highly flattened galaxy by Camm@4#. Camm’s analysis was
the first to apply the Vlasov equation to the 1D system,
assuming that the long-range gravitational forces wash
any effects of stellar encounters, making the system es
tially collisionless. With the assumption of separability of t
distribution function, Camm derived the stationary isoth
mal solution to the Vlasov equation. In 1967, Lynden-B
@5# published a theory describing a rapid relaxation proc
termed ‘‘violent relaxation,’’ in which large changes in th
gravitational potential are driven by rapid fluctuations in t
mass distribution. Cohen and Lecar@6# used the 1D system
to study Lynden-Bell’s theory of violent relaxation and foun
that the systems do relax to a stationary state after a s
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time, but not necessarily to those predicted by Lynden-Be
theory. Later, Cuperman, Hartman, and Lecar@7# investi-
gated violent relaxation and the applicability of Vlasov d
namics. A breakthrough came when Rybicki@8# first derived
the exact single-particle equilibrium distribution function f
the discrete one-dimensional self-gravitating system in b
the canonical and the microcanonical ensemble for arbitr
N. In the Vlasov limit, these distributions were shown
converge to the isothermal solution of the Vlasov equat
found earlier by Camm.

In principle, additional information can be obtained fro
the statistical distribution of particle pairs. Monaghan@9#,
and Fukui and Morita@10# showed that for the OGS in th
Vlasov limit, the two-particle distribution function is th
product of the single-particle distribution functions, and c
rections are of order ofN21. In contrast with the single-
particle distribution, at the present time an analytical expr
sion for the pair distribution is not known, and therefo
there is no exact method for computing the effects of tw
particle or higher-order correlations in a system with a fin
population.

Computer simulations of finite population 1D system
show that they tend to progress through several quasiequ
rium ~approximately stationary! states as they evolve from
arbitrary initial conditions. These quasiequilibrium states
ten last for extremely long times. When a simulation is in
tiated from a nonstationary distribution, fluctuations caus
by the changes in the mean-field potential rapidly decay
sulting in a state of microscopic relaxation. This process
frequently referred to as violent relaxation@5#. In this state,
the system is virialized~i.e., 2̂ KE&/^PE&.1), and the sys-
tem energy is distributed approximately equally between
the particles in what is called equipartition of total energ
The time scale for microscopic relaxation is distinguish
from the much longer time scale for macroscopic relaxat
to thermal equilibrium.

For anN-particle 1D gravitational system, a single poi
in the 2N-dimensional phase space (G space! defines the
state of the system. The system trajectory in this spac
governed by Hamiltonian dynamics as the state of the sys
changes. Because of inexact knowledge of initial conditio
a probability density can be defined that indicates a rang
possible states that the system can occupy. For a conserv
system, such as the OGS, the total energy is a constant
defines an isolating integral that will restrict the trajectory
the system to the energy hypersurfaceSE defined by the
Hamiltonian.

In order for a system to approach equilibrium from
arbitrary initial condition, it must exhibit the properties o
both ergodicity and mixing@11#. A system is ergodic if the
phase-space average of a dynamical quantity is equal to
time average. Ergodic flow can exist only if there are
other isolating integrals that will prevent the system fro
sampling the entire energy surface. Ergodicity implies t
all areas of the energy surface are equally accessible and
all states on the energy surface are equally probable, thus
system will spend equal time in equal areas of the ph
space. Qualitatively, mixing is described as the spreading
of the phase-space probability density as the system evo
0-2
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INCOMPLETE RELAXATION IN A TWO-MASS ONE- . . . PHYSICAL REVIEW E 68, 056120 ~2003!
If a system is initially far from equilibrium, then the prob
ability density may fill a localized area on the energy surfa
As the system evolves under the action of the Hamiltoni
this area will move over the energy surface. If the system
mixing, the probability density will begin to spread itself ou
eventually covering the entire energy surface equally wh
preserving its initial area.

When investigating gravitating systems it is important
keep several things in mind. Often, computer simulations
gravitating systems~which are necessarily finite in the popu
lation! are studied with, and compared to, Vlasov dynami
The Vlasov limit is a singular limit in the sense that infini
time averages of dynamical quantities cannot yield the
pected equilibrium results if the limitN→` is taken prior to
theT→` limit. This follows from the fact that a true Vlaso
system has an infinite number of stable stationary soluti
and Casimir invariants, and therefore does not converg
the unique maximum entropy state; i.e. Vlasov dynam
does not obey the second law of thermodynamics. This
been demonstrated by numerical integration of the Vla
equation for the OGS where it was shown that structure
them space appear to persist indefinitely without any sign
dissipation@12#. On the other hand, a finite population sy
tem may sample an approximately stationary state
closely resembles a stationary Vlasov solution for a lo
time. However, for the system with finite population, it is n
truly stationary and will slowly drift away due to discre
particle effects. Therefore an infinite time limitT→` of a
dynamical quantity in the discrete system followed by t
Vlasov limit N→` will give the equilibrium solution pro-
vided the system is mixing.

Prior to 1982 the prevailing thought was that the OG
should relax to equilibrium from an arbitrary initial state in
time scale on the order ofN2tc , wheretc is the approximate
time it takes a particle to make one complete crossing~full
oscillation! in the system@13#. However, Wright, Miller, and
Stein @14# showed that there was no relaxation in a time
2N2tc . Subsequent studies by Leuwel, Severn, and Ro
seeuw@15# showed relaxation in a timeNtc from special
initial states chosen close to equilibrium. From that wo
they predicted relaxation on this same scale for any ini
system chosen close to equilibrium. Reidl and Miller@16#
refuted that claim by showing that the relaxation time d
pends very sensitively on the initial quasiequilibrium sta
chosen. Comparison of the position distribution of compu
simulations with the prediction of Rybicki’s discret
N-particle distribution function continued to show major d
crepancies even after long run times. Particles were m
concentrated toward the center and toward the outer e
than predicted. In addition, Reidl and Miller@17,18# did er-
godic studies of 1D systems containing from 2 to 20 partic
looking for evidence for strong ergodic behavior whi
would result in eventual thermal equilibrium. They found
transition atN511 particles where previously stable regio
of the phase space became ergodic and mixing. In their
sequent study of early relaxation, Reidl and Miller@19#
showed a maximum mixing in phase space when the sys
population was on the order ofN530.
05612
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During this same time period, Tsuchiyaet al. @20,21# be-
gan studying the approach to equilibrium of the single-m
OGS using a measure of the equipartition of total syst
energy among all the particles. This measureD(t) is the
deviation of the average energy per particle from the th
retical equipartition value given by the virial theorem. The
studies showed that after an initial short period of mic
scopic relaxation in whichD(t) is approximately constant
D(t) steadily declines in a linear fashion on a log-log sc
indicating a power-law decay. After some period of time
large peak appears which was interpreted as the onse
thermal equilibrium. Shortly afterward however, using bo
small and large-N systems@22# ~Paper I!, we demonstrated
that this phenomena was not the onset of equilibrium but
it might be evidence for the system becoming trapped
long periods of time in restricted regions of the phase spa
Typically, if the system is followed long enough, many pea
are seen to appear after the first initial large peak, indica
periods where the system is restricted from equally explor
the entire energy hypersurface. Following up on their ear
work with a study of the distribution of particle energie
Tsuchiyaet al. @23# showed evidence for continual trans
tions back and forth between a state closely mimicking
isothermal distribution~isothermal-like! to a far from equi-
librium distribution~transient or itinerant state!. This will be
referred to as the transitional distribution period.

It was recognized by a number of investigators that
alternative approach for studying convergence to equilibri
could be found by employing two different mass species
the OGS@24,25#. The eventual occurrence of equilibrium
would then be characterized by the equipartition of the
netic energy as well as the spatial segregation of the he
and light particles. However, perhaps due to algorithm a
hardware limitations, early attempts failed to obtain a co
vincing result. To complement Tsuchiya’s investigations
the single-component system, we investigated the evolu
of a two-component system consisting of equal populati
of each species with a 3:1 mass ratio@26# ~Paper II!. We
observed that both equipartition of kinetic energy and m
segregation occurred after approximately 106 system cross-
ing times. To our knowledge, this was the first time that t
phenomenon was conclusively demonstrated for this syst
The time scale is on the same order as the occurrence o
transitional distribution period discussed above for a sing
component system.

In other recent work dynamicists have studied the aver
divergence of phase-space trajectories of the OGS. Pos
Lyapunov exponents are attributes of strong ergodic prop
ties, such as mixing. Earlier, Tsuchiyaet al. @20# and more
recently Milanovicet al. @27# and Tsuchiya and Gouda@28#
investigated the Lyapunov spectra of the OGS. At this ti
there are unresolved questions concerning the converg
of the spectra to a universal scaling function asN becomes
large. Power-law dependence on population was found
both maximum and minimum exponents, both of which d
crease with increasingN. This suggests an approach to
more integrable system as the population increases. O
recent work has attempted to relate this model more dire
to physical stellar systems such as globular clusters@29#.
0-3



a
b

s
le
m

o
tr
x

s
r

a
fo
ti
f

ing
a

m
ar
fi

la-
s
e

-
I
lc
a
or
os
n
A
ic
in

is
a
o
c-
h

ss
te

a
he
ua

par-
im-

not

ri-
ings
e

-

eft
il-

ss
he

y
l
f a

nc-
n be

K. R. YAWN AND B. N. MILLER PHYSICAL REVIEW E 68, 056120 ~2003!
While the preceding review has focused on studies of
isolated one-dimensional gravitational system, it should
noted that they have also played a useful role in studie
structure formation in cosmology. By including the Hubb
expansion in the dynamical evolution it is possible to de
onstrate the formation of clusters and ‘‘voids’’ in them space
@30,31#. A few models have been considered and, in comm
with galaxy observations, they demonstrate a bifractal dis
bution of matter. They also provide the only model that e
actly follows the Zeldovich ansatz@32,33# between crossings
@34#.

This paper continues the investigation of multiple-ma
component systems started previously by us in Pape
There, as a preliminary study, a single system size and m
ratio was investigated. The results conclusively showed
the first time mass segregation and equipartition of kine
energy. Here the complete mean-field theory is developed
an equilibrated two-mass system in the Vlasov limit us
the maximum entropy principle. Coupled differential equ
tions for the resulting density functions in them space for
each mass species are derived and can be integrated nu
cally for any given temperature and mass ratio. They
used to estimate the particle distribution of systems with
nite population in equilibrium.

Dynamical simulations of systems with varying popu
tion (N516, 32, 64, 128! and three different mass ratio
~2:1, 3:1, and 5:1! were carried out on the computer. Th
observed equipartition of kinetic energy~the ratio of the ki-
netic energies of the heavy to light masses! and mass segre
gation were compared with the theoretical predictions.
addition, an extensive range of statistical measures ca
lated from the numerical simulations are used to investig
properties that cannot be predicted from mean-field the
These include the spatial correlation between particle p
tions, the time correlation of kinetic energy fluctuations, a
a measure of the rate of relaxation toward equilibrium.
shown below, surprising results are obtained, some of wh
appear to contradict the conventional wisdom concern
gravitational systems.

II. DESCRIPTION OF THE SYSTEM

The two-mass component 1D self-gravitating system
collection ofN labeled, planar sheets, each of constant m
density, infinite in they-z plane, which are constrained t
move along thex axis under their mutual gravitational attra
tion. It is convenient to introduce an auxiliary labeling whic
increases in the direction of increasingx. Therefore, in speci-
fying the auxiliary particle number, sayj, the acceleration of
that particle is uniquely defined and vice versa.

Only gravitational forces are considered~i.e., no short-
range interactions!. Therefore, on crossing, they merely pa
through one another. Since the sheets are infinite in ex
the gravitational field in thex direction is uniform. Clearly,
the system can be thought of as a collection of particles e
with massmj constrained to move in one dimension. T
gravitational acceleration is found through Poisson’s eq
tion
05612
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]A~x,t !

]x
54pGr~x,t !, ~2!

wherer(x,t), the mass density, is given by

r~x,t !5(
j 51

N

mjd„x2xj~ t !… ~3!

and G is the universal gravitational constant andd is the
Dirac delta function. Therefore,

A~x,t !52pG(
j 51

N

mjS„x2xj~ t !…, ~4!

whereS(x) is defined as

21, x.0

S~x!50, x50

1, x,0. ~5!

The acceleration experienced by thej th particle from the left
therefore depends only on the difference in the mass of
ticles on the right and on the left and can be expressed s
ply as

Aj52pG~MR2ML!. ~6!

At the instant when two particles cross, the velocities do
change. Therefore the velocity of each particle variescon-
tinuously in time while, at a crossing, each particle expe
ences a discrete jump in the acceleration. Between cross
the particle positions evolve quadratically in time. Th
change in the acceleration of thej th particle during a cross
ing is

DAj564pGmj 71 ~7!

where the top signs correspond to the case where thej th
particle has a crossing with a particle coming from the l
and the bottom signs to a crossing from the right. The Ham
tonian of the system is

H5(
j 51

N pj
2

2mj
12pG(

j , i
mimj uxi2xj u, ~8!

wherepj , xj , andmj are the momentum, position, and ma
of the j th particle, respectively. It is customary to define t
characteristic period of a particle in the system astc
5(Gr0 /p)21/2, wherer0 is the equilibrium mass densit
evaluated at the origin andG is the universal gravitationa
constant. This represents a typical period of oscillation o
particle in the system.

Since the potential energy is a linear homogeneous fu
tion of the coordinates, all dependence on parameters ca
scaled away by introducing convenient units as follows:
0-4
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L5
2E

3pGM2
, V5F 4E

3M G1/2

, T5F 1

pMGGF E

3M G1/2

,

~9!

whereL is the length,V is the velocity,T is the time,G is the
universal gravitational constant, andE and M are the total
system energy and mass, respectively. The dimension
units of acceleration, velocity, position, and time are th
given by

A→a5
A

2pMG
, V→v5

V

2 F3M

E G1/2

,

X→x5F3pM2G

2E GX, T→t5
t

T
. ~10!

For simplicity set

M51 and 2pG51, ~11!

making the total energy of the systemE5 3
4 , and the charac-

teristic period of oscillationtc52pt. These units will be
adopted throughout the remainder of this paper.

III. VLASOV „MEAN-FIELD … THEORY
FOR THE TWO-MASS SYSTEM

Here we derive the equilibrium solution for the probab
ity distribution and mass density of the two-mass system
the Vlasov~or mean-field! limit. In this limit all correlations
between particles vanish and, therefore, the derivation be
with the assumption of statistical independence. Coup
this assumption, Eq.~12!, with the Hamiltonian Eq.~8! an
expression, Eq.~19!, is obtained for the entropy. Subject
constraints on the energy and normalization of probabi
the entropy is maximized using the method of Lagrange m
tipliers, Eqs.~21! and ~22!. The solution yields the reduce
partition functions, Eqs.~36!, and the form of the particle
density functions, Eq.~37!. With these and the boundar
conditions at the origin and at infinity, Poisson’s equati
givesa first-order differential equation for the potentialw in
the two-mass mean-field theory, Eq.~49!. The remaining
constantsA and B are solved with the help of Eq.~53!. A
final integral forx as a function ofw is obtained and solved
numerically. Inversion of the solution yieldsw as a function
of x. All of these elements can be applied to Eq.~37! to
calculate the density of each species as a function of pos
that can be compared with results obtained from simulatio

Consider theN-particle distribution functionf (N)(xi ,v i)
for a system with two mass types. In the Vlasov limit

f (N)5)
a

f a)
b

f b ~12!

is the product over the single-particle distribution functio
of each mass type, where

)
a

f a5)
j

f a~xj ,v j !, etc. ~13!
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The two distribution functions,f a and f b , will independently
satisfy the Vlasov or Collisionless Boltzmann equation,

] f a~x,v !

]t
1v~ t !

] f a~x,v !

]x
2

]w~x!

]x

] f a~x,v !

]v
50, ~14!

] f b~x,v !

]t
1v~ t !

] f b~x,v !

]x
2

]w~x!

]x

] f b~x,v !

]v
50, ~15!

where the acceleration

a5
]v
]t

52“w~x!. ~16!

For a stationary distribution, the functions are independen
time so the first terms on the left are expressly zero. T
entropy of the system is given by

S52k Tr@P ln P#

52kE dG f (N)ln f (N), ~17!

whereP is the probability that the system is at a particu
point in the phase space andk is Boltzmann’s constant
Therefore, from Eq.~12!,

S52kF E dGa)
a

f a ln )
a

f a1E dGb)
b

f b ln )
b

f bG
~18!

which reduces to

S52kFNaE dmaf a ln f a1NbE dmbf b ln f bG . ~19!

Let aa5Na /N andab5Nb /N whereNa andNb are the
numbers of particles of mass typesa andb respectively, i.e.,
aa andab are the fractions of the total number of particles
each type. Then the total entropy per particle is

s[
S

kN
52aaE dmaf a ln f a2abE dmbf b ln f b . ~20!

Expressed in this form,s survives the Vlasov limit. Next we
construct the extremum ofs given the constraints

E5^H& ~21!

and

E dmaf a5E dmbf b51. ~22!

The energy, given by the statistical average of the Ham
tonian, is
0-5
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^H&5
1

2
MaE dmaf ava

21
1

2
MbE dmbf bvb

2

1pGMa
2E dmaE dma8uxa2xa8u f af a8

1pGMb
2E dmbE dmb8uxb2xb8u f bf b8

12pGMaMbE dmaE dmbuxb2xau f af b , ~23!

wherema85(xi8 ,v i8), f a85 f (ma8), andMa is the total mass of
particles of type a, such that Ma5Nama . Introducing
Lagrange multipliersb,ga ,gb , let

I 5s1b~E2^H&!1gaS 12E dmaf aD1gbS 12E dmbf bD .

~24!

We need to findf a and f b such that

daI 5dbI[0, ~25!

where da represents the variation with respect tof a , and
similarly for db . Linearizing ind f a andd f b , we find

daI 52aaE dmad f a~11 ln f a!2b
Ma

2 E dmad f ava
2

2pGbMa
2E dmad f aE dma8uxa2xa8u f a8

2pGbMa
2E dma8d f a8E dmauxa2xa8u f a

22pGbMaMbE dmad f aE dmbuxb2xau f b

2gaE dmad f a , ~26!

and similarly fordbI . Collecting terms and using the sym
metry of the dummy variables gives

daI 5E dmad f aF2aa~11 ln f a!2b
Ma

2
va

2

22pGbMa
2E dma8uxa2xa8u f a8

22pGbMaMbE dmbuxb2xau f b2gaG ~27!

and finally the first variation with respect to typea is

daI 5E dmad f a@2aa~11 ln f a!2bMah~va ,x!2ga#50,

~28!

where
05612
h~va ,x!5 1
2 va

21w~x! ~29!

and

w~x!52pGFMaE dx8ux2x8una~x8!

1MbE dx8ux2x8unb~x8!G1const ~30!

is the gravitational potential. In Eq.~30!

na~x8!5E f a~x8,v !dv ~31!

is the single-particle density function for particles of massa
and similarly for massb. The term in@ # in Eq. ~28! must
equal zero; therefore,

2aa~11 ln f a!2bMah~va ,x!2ga50. ~32!

Solving for f a(va ,x) gives

f a~va ,x!5e2(11ga /aa)e2(bMa /aa)h(va ,x) ~33!

and similarly for f b(vb ,x).
A solution for w(x) is needed to substitute back into th

equations forf a and f b . If the equation forw(x) cannot be
solved in an obvious manner analytically, it can be do
numerically. First note that Poisson’s equation for the to
density is

d2w~x!

dx2
54pG@ra~x!1rb~x!#

54pG@Mana~x!1Mbnb~x!#. ~34!

It is clear from Eq.~33! that in order to normalize the prob
ability density, the term multiplying the exponential must
the partition function

Za5E dma
2e2(bMa /aa)[(1/2)v21w(x)] . ~35!

To obtainna(x) andnb(x) thev dependence inZa andZb is
integrated out to get reduced partition functions for bo
mass types,

za5E dx8e2(bMa /aa)w(x8)

and

zb5E dx8e2(bMb /ab)w(x8) ~36!

and therefore

na~x!5
1

za
e2aw(x) and nb~x!5

1

zb
e2bw(x) ~37!

where
0-6
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TABLE I. ConstantsA, B, za , andzb .

Mass ratio (b/a) A B za zb

2:1 0.1962125883 0.3037874117 2.4502466167 1.5825844
3:1 0.1639079303 0.3360920697 2.9331663805 1.4304688
5:1 0.1238967947 0.3761032053 3.8804008776 1.2782907
m

l

-
ra-

d.
a5
bMa

aa
and b5

bMb

ab
. ~38!

Differentiating with respect tow(x) and rearranging gives

na5
21

a

dna

dw
and nb5

21

b

dnb

dw
. ~39!

Substituting this into Poisson’s equation, Eq.~34!, leads to

d2w

dx2
14pGFMa

a

dna

dw
1

Mb

b

dnb

dw G50, ~40!

giving

d2w

dx2
14pG

d

dw FMana

a
1

Mbnb

b G50. ~41!

It is possible to show that

1

2 S dw

dxD 2

14pGFMana

a
1

Mbnb

b G5const ~42!

is an integral invariant of Eq.~41! thus reducing it to a first-
order differential equation. Substituting Eq.~37!, the expo-
nential forms forna andnb , into Eq. ~42! gives

1

2 S dw

dxD 2

1Ae2aw(x)1Be2bw(x)5const, ~43!

whereA andB are also constants. The constantsA andB can
be determined by analyzing the boundary conditions. Sy
metry considerations atx50 give

w~0!50 ~44!

and

Udw

dxU
x50

50. ~45!

With Eq. ~43! this implies thatA1B5const. The boundary
condition at infinity,w(uxu→`), implies

w→`⇒Udw

dxU5const. ~46!

From the Hamiltonian Eq.~8! it is seen that far away from
the mass distribution

w~x!52pGMuxu1const. ~47!
05612
-

This then gives

1

2 S dw

dxD 2

5A1B5
1

2
~2pGM!2. ~48!

M52pG51 implies thatA1B5 1
2 . The constant in Eq.

~43! is therefore equal to12 . SubstitutingA1B for the con-
stant in Eq.~43! gives the following first-order differentia
equation forw(x):

dw~x!

dx
5@2A~12e2aw(x)!12B~12e2bw(x)!#1/2. ~49!

Equations~42! and~43! can be used to find an equation forA
independent ofB giving

A5
4pGMa

a F E
2`

`

e
2aw(x)

dxG21

. ~50!

Using Eq.~49! and the fact thatdx5dw(dx/dw) in Eq. ~50!
gives

A5
4pGMa

a F E
2`

` dwe
2aw

@2A~12e2aw!12B~12e2bw!#1/2G21

.

~51!

Rearranging and using Eq.~11! produces

E
0

` dwe
2aw

@A~12e2aw!1B~12e2bw!#1/2
5

A2Ma

aA
. ~52!

The simple substitution ofu5e2aw and du52ae2aw then
gives

E
0

1 du

@A~12u!1B~12ub/a!#1/2
5

A2Ma

A
. ~53!

Equation~53! contains two known quantities,Ma ~the to-
tal mass of particles of typea) and b/a ~the ratio of the
masses of typeb to type a). This equation was solved nu
merically for various mass ratios using a Romberg integ
tion technique to obtain the value of the constantA and then
usingA1B5 1

2 to obtain the constantB. OnceA andB were
determined, the reduced partition functions, Eq.~36!, were
integrated in a similar form as Eq.~53!. Table I shows the
value of A, B, za , andzb for the three mass ratios studie
Note that for a single-mass systemA5B50.25.
0-7
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The potential functionw(x) is required to obtain the com
plete form for the density functionsna(x) andnb(x). Rear-
ranging Eq.~49! and integrating gives the following equatio
for x as a function ofw:

uxu5E
0

w dw8

@2A~12e2aw8!12B~12e2bw8!#1/2
. ~54!

Again, the integral can be converted to a more manage
form by making the substitution

u5e2aw8⇒e2bw85ub/a. ~55!

This gives the following form for the integral definingx as a
function of w for a particular mass ratio:

uxu52
1

aE1

e2awdu

u
$122@Au1Bub/a#%21/2. ~56!

The integral was evaluated numerically using an adap
step size integration technique and inverted to obtain
value of w over a range ofx. A cubic spline interpolation
algorithm was used to obtain values for the function in
integrand for any value ofx where the integral was evaluate
numerically. Figure 1 shows the one-sided potential fu
tions for all three mass ratios investigated.

The parameterb defines the temperature of the system.
these units, for a system with an energy of3

4 , b52. The
value ofb, the fitted functions forw(x), the reduced parti-
tion functionsza and zb , and Eq.~37! provide all the ele-
ments needed to calculate the density of particles in equ
rium and compare them with the results of simulations
systems of varying mass ratio and particle number.

FIG. 1. Potential function from the mean-field theory for t
2:1, 3:1, and 5:1 mass ratio OGS. All units are dimensionless.
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IV. TWO-MASS DYNAMICAL SIMULATIONS

The dynamical simulations of two mass-species 1D gra
tational systems were run on high-speed workstations r
ning under the Linux operating system. Since, between
counters, the particles fall freely toward each other un
their mutual gravitational attraction, the solutions to simp
quadratic equations are all that is required to determine
particle positions and velocities at future times. Instead
updating the entire system at each encounter, by taking
vantage of the simplicity of the system clever schemes
be devised to efficiently update the positions and veloci
of only the encountering particle pair and its nearest nei
bors. The algorithm first calculates the time when ea
neighboring pair of particles will have a crossing. The sma
est crossing time is found and that pair of particles is allow
to evolve up to the time of crossing. The new crossing tim
for that pair and their nearest neighbors is calculated, and
smallest crossing time in the list of pair crossing is fou
again. This process continues as the system is allowe
evolve and statistical data are taken at specific time interv
In addition, at regular intervals the entire set of coordina
and velocities is updated to a common time and the cros
time table is recalculated as another measure in redu
cumulative numerical errors which might cause particle p
sitions to get out of order. For systems larger than 64 p
ticles, it is more efficient to use a binary tree to store a
track the particle information rather than traditional line
storing and sorting techniques. These systems were allo
to evolve for a total time of 108t.

Two types of data files were maintained as the numer
experiments progressed. First, ‘‘snapshots’’ of all the parti
positions and velocities were taken at fixed intervals
1000t for the entire length of the simulation. These sna
shots are a record of the position and velocity of all syst
members at a particular time in the system evolution. T
advantage of snapshot data is that all averages can be c
lated after the completion of the simulation to save calcu
tion time, and both forward and backward averages can
calculated if desired. In addition, calculation of particle de
sities and correlations is simplified with the snapshots. In
second type of data file, running averages were calcula
and saved independently. These data were taken at inte
of much shorter duration than the snapshots during the e
system evolution, and at longer time intervals than the sn
shots during the late stages of evolution. Thus the short-t
dynamics could be studied more accurately, while effect
use of storage was permitted during the later stages.

For this study, the ratio of the mass of the heavy to lig
particles was varied as well as the total number of partic
in the system. Five different system populations with thr
different mass ratios were investigated. The specific par
eter values used are displayed in Table I. Initial conditio
were generated by uniformly sampling points inside a box
fixed size inm space for both heavy and light particles. Th
size and shape of the box are determined by the total en
and the desired virial ratio, respectively. A virial rat
Rv ir ial '2 was chosen to reduce the effects of the init
violent relaxation phase. These conditions were chosen
0-8
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INCOMPLETE RELAXATION IN A TWO-MASS ONE- . . . PHYSICAL REVIEW E 68, 056120 ~2003!
cause they provide an initial state that~1! is far from equi-
librium, ~2! has a kinetic energy ratio which is easily cha
acterized, and~3! will rapidly approach a quasiequilibrium
Vlasov state@23,26#. Since both the heavy and light particle
are sampled identically inside the fixed box inm space, there
is no equipartition of kinetic energy or mass segregation
the initial state and it is far from equilibrium. In addition, du
to this sampling, the initial value ofRkinetic will be approxi-
mately equal to the ratio of the heavy to light masses.
Fig. 2 for a view of a typical initial state of the system inm
space for a 5:1 mass ratio, and Fig. 3 for a view of the fi
state of the system inm space for a 5:1 mass ratio followin
a complete run.

V. STATISTICAL MEASURES

In general, the ergodic properties of a system are diffic
to ascertain. Ergodicity has been proven rigorously for on
handful of dynamical systems. There are, however, some
dicators that are useful in determining whether a system
ergodic and mixing. The decay of correlations in time is

FIG. 2. Initial state (m space! of a 128-particle two-mass OGS
with a 5:1 mass ratio. All units are dimensionless.

FIG. 3. Final state (m space! of a 128 particle two-mass OGS
with a 5:1 mass ratio. All units are dimensionless.
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necessary consequence of mixing behavior and is one of
eral measures used to analyze gravitational systems. In P
II, equipartition of kinetic energy and mass segregation w
taken as direct signs that the system was sampling the e
librium distribution. In this study, we use dynamical simul
tion to test the predictions of Vlasov equilibrium theory f
finite size systems. Specifically, we compare the ratio of
kinetic energies of the two mass types, the average dista
from the system center of mass for the heavy and light s
cies (DH andDL), and the average particle densities of ea
mass type with the mean-field theory presented in Sec. III
addition, theN-body simulations can also be used to stu
properties not addressed by mean-field theory. In this
egory we include both spatial and temporal correlation fu
tions, and the rate of relaxation of the system towards eq
librium. We also compare the relaxation time scales of
two-species systems with those studied earlier for a sin
mass component.

A. Equipartition of kinetic energy „Rkinetic…

The equipartition theorem states that every coordinate
is represented by a simple quadratic expression in the Ha
tonian of a conservative system~e.g., p2/2m) will, on the
average, contributekT/2 to the energy.Rkinetic , which is the
ratio of the average kinetic energy of the heavy mass p
ticles to the light mass particles (Rkinetic5^KEH&/^KEL&),
is used to measure equipartition. As a thermodynamic sys
relaxes, the system members begin to share kinetic en
equally on the average. For a system containing two type
masses, this sharing should be easily observed. Therefor
the system relaxes, the ratioRkinetic should approach a valu
of unity. This is a measure of macroscopic relaxation to eq
librium. In an isolated system with a finite number of pa
ticles such as the OGS~microcanonical ensemble!, however,
the equipartition theorem may be exact only in the limit
largeN.

B. Mass segregation of heavy and light particles„DH and DL…

As the system evolves in time and equipartition of kine
energy begins, the heavy particles are transferring som
their kinetic energy to the lighter ones. While the syste
continues to relax, the light particles move farther out fro
the center of the system forming a halo, and the heavy
ticles move in toward the center forming a core, in a proc
called mass segregation. As the system evolves we can t
this process by computing the time average of the dista
from the origin for both the heavy (DH) and light (DL)
masses. The separation of these quantities is a another
indication that the system may be macroscopically relax
to an equilibrium configuration and is closely related
Rkinetic .

C. Particle density averages†ŠNm,j„t…‹‡

Throughout the time of the simulations, data are taken
the density of particles of each mass type (m5H or L for
heavy or light! in the configuration space. For each ma
type, bins of equal probability were created based on
0-9
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mean-field theory discussed previously. These bins var
size but are scaled so that each bin will contain 5% of
particles for a system in equilibrium. Since the potential
symmetric about the origin, the statistics of the correspo
ing bins on each side of the origin are combined during
data collection of the simulations. To create the bins,
respective density functions, Eq.~37!, are integrated by step
ping in position until the integral is equal to 0.05. This pr
cess is continued until all ten bins for the positive config
ration space have been calculated. Since the system
symmetric, these bins are then mirrored to the nega
space. During a simulation, at regular snapshots in time,
number of particles in each bin@Nm, j (t)# is counted and the
results are averaged up to that simulation time. The valu
the end of a complete simulation will give a good long-tim
average for the population of each bin. This can then
compared to the theoretical mean-field prediction to estim
the applicability of the mean-field theory to the actual d
namical system.

D. Relaxation measure†sm
2
„t…‡

To track the relaxation of the density to the equilibriu
prediction, we compare the average density in each bin a
time t and 2t. To quantify the difference, we define the st
tistical function of time,sm

2 (t), as follows:

sm
2 ~2t !5

1

Nbin
(
j 51

Nbin

@^Pm, j~2t !&2^Pm, j~ t !&#2 ~57!

where

^Pm, j~ t !&5
2Nbin

N
^Nm, j~ t !& ~58!

is the time averaged population of binj up to timet normal-
ized to the theoretically determined number of particles
bin, and them5(H,L) indicates either the heavy or ligh
masses. This measure is similar to a variance if we cons
the value at the later time, 2t, as the true mean. Alternativel
we can think ofsm

2 (t) as a metric between vectorsPm, j (t8)
at different times. The rate at which this measure decrea
may give useful insights into how these systems relax.
example, linear decay on a log-linear plot would indica
exponential decay in time and a characteristic decay tim
relaxation could be defined. On the other hand, linear de
on a log-log plot would imply a power-law decay and n
characteristic decay time.

E. Bin correlation

Useful information concerning the spatial correlation
particle pairs can be obtained by computing the correla
of populations in different bins. The bin correlation for ea
mass type is calculated in the following manner: The aver
and the variance for each bin is first calculated using
entire dataset covering the full duration of the simulati
using

sn, j
2 5Š~Nn, j2^Nn, j&!2

‹ ~59!
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where n indicates the mass types, andj indicates the bin
number. Next, the correlation between mass types in spe
bins at a specific timeCm,i ;n, j (t) is calculated using

Cm,i ;n, j~ t !5
Š@Nm,i~ t !2^Nm,i&#@Nn, j~ t !2^Nn, j&#‹t

sm,isn, j
,

~60!

whereNn, j (t) is the population of mass typen in bin j at
time t of the simulation and the average^ & t is taken up to
time t.

F. Time correlation †C„t…‡

We can learn about the duration of memory in the syst
by studying correlations in time. In order to investigate t
possibility of the presence of long-time oscillations or no
mal modes that might develop as the system relaxes, co
lations of the macroscopic kinetic energy ratioRkinetic were
computed for a steady progression of time delays. Since
lier studies of the single-component system suggested th
exists in one of several macrostates for periods of ab
106t, the data were averaged over sequential blocks
60 000t dimensionless time units. The time correlation fun
tion Ck(t) essentially gives the average of the product of
fluctuations of a variable measured at time separationt. Thus
the time correlation inx is defined

Ck~ t !5F 1

N2k (
j 51

N2k

xjxj 1kG2^x&2, ~61!

where N is the total number of data points,j labels each
block of duration t560 000kt, and xj is the average of
Rkinetic within block j.

G. Equipartition measure †D„t…‡

In their studies of a single-component system, Tsuch
et al. @20,21# proposed a test for the equipartition of tot
energyD(t) as a measure of phase-space ergodicity. Fo
system that is completely ergodic over the energy surfa
the value of a macroscopic observable is simply the ti
average of the corresponding microscopic operator ove
infinite time period. Equipartition of total energy is the equ
division of energy among the members of a dynamical s
tem over an indefinitely long time period. In the conclusio
we will explain that this is a necessary, but insufficie
manifestation of ergodicity@22#. In the infinite time limit, the
average of the energy per unit mass~specific energy! « i will
achieve a unique value for alli,

« i5 lim
T→`

1

TE0

T

« i~ t !dt5«0[
5E

3
~62!

for a system with a single-mass species.
Convergence to equipartition can be quantified by int

ducingD(t) defined by
0-10
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D~ t ![
1

«0
S 1

N (
i 51

N

@« i~ t !2«0#2D 1/2

, ~63!

where« i(t) is the averaged value of the specific energy up
a timet. Therefore,D(t) measures the deviation of the ave
age energy per particle from the theoretical equipartit
value. If a system is sampling the equilibrium ensemb
D(t) will trend monotonically toward zero. However, th
vanishing ofD(t) is not a guarantee of equilibrium, and ca
occur for other ensembles.

VI. SIMULATION RESULTS AND COMPARISON
TO THEORY

Using the algorithm discussed in Sec. IV, simulatio
were carried out for three different mass ratios~2:1, 3:1, and
5:1! and four different populations (N516, 32, 64, 128! for
a duration of 108 time units. For all runs, the statistical qua
tities defined in the preceding section were computed.
first consider the behavior of the kinetic energy ratio of t
two species,Rkinetic . In all cases we found that as tim
progressed,Rkinetic approached the equilibrium value o
unity. Important insights can be gained by studying how t
limit is approached.

Figure 4 shows a lin-log plot ofRkinetic for a 128-particle
system with 2:1 mass ratio. This graph is a continuous a
age of the last 903106t in the negative time direction star
ing at the end of the run, i.e., a backward average. By s
ping the backward average after 903106t we reduce the
effect of the initial transients due to violent relaxation.
Paper II this backward average was also calculated u
data averaged over windows of 60 000t. In that caseRkinetic
appeared to rapidly approach the expected value of u
Here we seeRkinetic approaching unity more slowly as th
simulation progresses since the effect of fluctuations in t

FIG. 4. Linear plot ofRkinetic for a 128-particle systems with
2:1 mass ratio backward averaged over the last 903106t of the
simulation. All units are dimensionless.
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is not reduced by local averaging. The results for all syst
populations and mass ratios were similar. Of course, as
system populations increase the statistical fluctuations
crease.

Rkinetic was also averaged in the forward direction usi
the complete dataset from the initiation of the simulatio
Figure 5 is a lin-log plot of a forward averagedRkinetic for a
64-particle system with a 2:1 mass ratio. Notice that the
tial value will closely, but not exactly, represent the syste
mass ratio. Also note the presence of a long lasting plat
from about 23102t until 106t where the curve begins to di
down toward unity. We should be mindful that this is a log
rithmic plot, so early times are emphasized in the figure.
fact, the remainder of the evolution is also very gradual. T
dip at 106t occurs at approximately the same time as
onset of mass segregation.

To quantify the long lasting memory effects discuss
above, a time correlation functionCk(t) was also calculated
for Rkinetic @see Eq.~61!# for a 64-particle system with a 3:1
mass ratio using the 60 000t windowed data. Figure 6 show
the time correlation function rapidly descending toward ze
early, then slowly rising to a local maximum approximate
107t later, and finally dropping back down to near zero i
dicating the possible existence of long- time low frequen
modes in the system.

Mass segregation, the spatial separation of different m
species, is quantified byDH andDL and occurred in all runs
Figures 7, 8, and 9 show lin-log plots ofDH andDL versus
time for 128-particle systems with 2:1, 3:1, and 5:1 ma
ratios, respectively. Here as well we see a transient pe
followed by a long plateau where the segregation seems
tionary ~but see the comment above concerning Fig.!.
Then, after about 106t, a period of rapid divergence is aga
initiated, and then tapers off towards the end of the run. T
mean-field predictions for the equilibrium values ofDH and

FIG. 5. Lin-log plot ofRkinetic for a 64-particle system with a
2:1 mass ratio forward averaged over the entire length of the si
lation. All units are dimensionless.
0-11
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K. R. YAWN AND B. N. MILLER PHYSICAL REVIEW E 68, 056120 ~2003!
DL are also indicated on the graphs. Note that the tim
where the curves for the heavy and light masses begi
diverge are approximately equal for all three mass ratios.
see that by the end of the run the time averaged quant
have not yet achieved their equilibrium values. We also
that there is no apparent dependence of the relaxation
on the mass ratio for this process.

Comparison of time scales for mass segregation betw

FIG. 6. Linear plot of the time correlation function ofRkinetic

for a 64-particle system with a 3:1 mass ratio using the slid
window of width 60 000t. All units are dimensionless.

FIG. 7. Mass segregation for a 128-particle systems with a
mass ratio. The vertical axis shows (DH andDL) the average of the
absolute value of the distance from the origin for the light a
heavy masses. Predictions from theory are indicated by the hori
tal lines. All units are dimensionless.
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systems of different populations did not reveal any obvio
pattern either. However, the segregation time scales for
two smaller systems~16 and 32 particles! were significantly
shorter than for the larger systems~64 and 128 particles!
with segregation for the 32-particle 3:1 mass ratio syst
being the shortest clear transition. Although it may be ser
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n-

FIG. 8. Mass segregation for a 128-particle systems with a
mass ratio. The vertical axis shows (DH andDL) the average of the
absolute value of the distance from the origin for the light a
heavy masses. Predictions from theory are indicated by the hori
tal lines. All units are dimensionless.

FIG. 9. Mass segregation for a 128-particle systems with a
mass ratio. The vertical axis shows (DH andDL) the average of the
absolute value of the distance from the origin for the light a
heavy masses. Predictions from theory are indicated by the hori
tal lines. All units are dimensionless.
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dipitous, it is intriguing that this result matches well wi
those of Reidl and Miller@19# for a single-component sys
tem, where maximum mixing in phase space was seen
system sizes of approximately 30 particles.

To directly compare mean-field~Vlasov! theory with the
simulations, the configuration space was partitioned into b
of equal probability according to the theory~see Sec. III!. In
the simulations, the time averaged population of each
was calculated over the course of the run. The results
128-particle systems with mass ratios of 2:1, 3:1, and 5:1
shown in the summary chart, Fig. 10.

In Fig. 10 we label the bins according to their distan
from the system center. A general trend is seen in which
bin population increases with the distance from the sys
center. Thus, when compared with the theoretical pre
tions, the inner bins are slightly underpopulated while
outer bins are overpopulated. It is important to recognize
the outer boundary of the last bin is at infinity. In gener
agreement with theory is better for both the lighter ma
components and the smaller mass ratios.

The relaxation measuresm
2 (t) was calculated by compar

ing the complete dataset of bin populations at the timest and
2t @Eq. ~57!#. Thus, as a run progresses, the relative sep
tion in time between the data points is ever increasing. F
ure 11 showssm

2 (t) for a 128-particle system with a 2:
mass ratio plotted on a log-log scale. Linear decay wit
slope of approximately21 is observed both before and aft
the peak. The occurrence of this peak coincides with
transitions of bothRkinetic and mass segregation. The fin
linear decay indicates that the system is asymptotically
proaching a stationary or quasiperiodic distribution while
slope indicates power-law decay and the lack of a charac
istic decay time to equilibrium for the system.

The results forsm
2 (t) are very similar to the equipartition

measureD(t) from Paper I for a system with a single-ma
component. A typical log-log plot ofD(t) for a single-mass

FIG. 10. Bin average data for 128-particle systems with 2:1, 3
and 5:1 mass ratios. The vertical axis is the average numbe
particles in each bin and the horizontal axis labels the bin num
Data for both the heavy and light masses are shown. The theo
cally predicted value is shown as the horizontal line at the value
6.4. All units are dimensionless.
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system of 64 particles with similar ‘‘waterbag’’ initial condi
tions is reproduced in Fig. 12. Take special note of the lin
decay with slope approximately20.5 both before and afte
the peak. However, the time scales for the peaks are app
mately an order of magnitude different.

The correlation of bin populations,Cm,i ;n, j , is displayed
in Figs. 13 and 14 in 3D plots. They show the correlatio
for the light and heavy particles, respectively, of a 12
particle system with 3:1 mass ratio after a simulation

,
of
r.
ti-
f FIG. 11. Log-log plot ofsm

2 (t) for a 128-particle system with a
2:1 mass ratio. Note the linear decay with slope equal to21 both
before and after the peak indicating the lack of a characteri
decay time. All units are dimensionless.

FIG. 12. D(t) for a 64-particle system with the waterbag initi
conditions showing an ‘‘equilibrium’’ peak as defined by Tsuchiy
Konishi, and Gouda followed by a general trend toward zero.
units are dimensionless.
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108t. The plot for the light particles shows a large dow
ward spike indicating a high degree of correlation betwe
the outermost bin and its nearest neighbors. As the separ
from the last bin increases, the correlation moves rap
towards zero. For the inner bins, the correlation is somew
flat. In the case of the heavy masses, there is a large neg
correlation between the outermost bin and all other bins.
magnitude of this negative correlation increases as the s
ration from the outermost bin increases, i.e., moving towa
the center of the system and away from the outermost bi

FIG. 13. Correlation of bin populations after 108t for the light
masses of a 128-particle system with a 3:1 mass ratio. Note
large negative correlation between the outer bins and their ne
neighbors. All units are dimensionless.

FIG. 14. Correlation of bin populations after 108t for the heavy
masses of a 128-particle system with a 3:1 mass ratio. Note
large negative correlation between the innermost and outerm
bins ~center to edge of the system!. All units are dimensionless.
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significant negative correlation occurs between the outerm
and innermost bins indicating system wide influence.

The cross correlation between the heavy and light m
bin populations was also calculated for each run. Figure
shows the cross correlation for a 3:1 mass ratio 64-part
system. A large negative correlation is seen between the
ferent mass types in the outermost bins, while the correla
between the outer and inner bins tends to grow more pos
as the separation between bins increases. Plots of the 2:1
5:1 mass ratios~not shown! have similar trends with the
exception that the magnitude of the correlations increase
the mass ratio becomes larger. Since the decay of corr
tions is closely related to relaxation, this may indicate th
larger mass ratio systems have longer relaxation tim
Analysis of other system sizes also showed similar tren
When comparing the cross correlations of different syst
sizes, the magnitude of the correlations steadily increase
the system population increases. This in turn may indic
that the relaxation time increases as a function of the sys
population.

VII. SUMMARY AND CONCLUSIONS

As an extension of our earlier investigation of the tw
mass OGS, this paper included a larger variety of sys
populations and mass ratios than the study initially begun
Paper II. The original investigation was the first to defin
tively show mass segregation and equipartition of kine
energy in a two-mass OGS. Here, by expanding the rang
statistical tools used for the analysis the system evolution
been probed more deeply.

As a basis for the investigation, a theoretical mean-fi
model was developed in the Vlasov limit using the maximu
entropy principle. Potential functions were derived for ea

he
est

he
st

FIG. 15. Cross-correlation~light to heavy masses! of bin popu-
lations for a 64-particle system with a 3:1 mass ratio after 108t.
Note the large negative correlation between the outermost bins
the increasing positive correlations between the outermost bin
the rest of the system. All units are dimensionless.
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mass ratio and from these predictions for the particle de
ties. These predictions were compared with results from
dynamical simulations. Additional statistical measures u
included spatial correlation functions and a time-depend
relaxation measure.

The following statements summarize the main results
the two-mass investigation.

~1! Dynamical simulations of all mass ratios and syst
sizes demonstrated that the macroscopic relaxation pro
ties of mass segregation and equipartition of kinetic ene
converge to their predicted equilibrium values.

~2! Positional correlation functions calculated from d
namical simulations showed large correlations existing e
after 108t ('107tc). This represents an extremely long tim
in the system evolution.

~3! The 1/t behavior of the relaxation measure,s2(t),
indicates the lack of a characteristic relaxation time for
system, and possible fractal structure in the phase spac
addition, it is contradictory to the exponential decay of c
relations one would expect from a normal thermodynam
system exhibiting ergodic behavior. A peak in the relaxat
measure occurs at the transition from the long-lived qu
equilibrium state to another state more closely representa
of equilibrium.

~4! Time correlations of the ratio of kinetic energies in
system containing two-mass types showed long-time co
lations on the order of 1.43107t. This is over 23106 char-
acteristic times. In that period of time, an individual partic
in a 128-particle system will have had over 53108 crossings
with other system members. Clearly relaxation to equil
rium, if it occurs in this system, occurs on an extremely lo
time scale and weak, but significant, correlations continue
exist.

The simulations showed that mass segregation and e
partition of kinetic energy occur for all system populatio
and mass ratios at roughly similar times with all of the
being on the order of a few milliont. These macroscopic
transitions occur at significantly later times than virializati
and the rapid microscopic relaxation seen in the single-m
systems, but it is of the same order as the large first trans
peaks seen later in time inD(t) for the single-mass system
@20–22#. By themselves, these two simple measures
strong indicators of a transition to a final equilibrium sta
from a quasiequilibrium state. However, other measures s
as analysis of the density and velocity distribution functio
indicate that the system has not completely relaxed to
equilibrium distribution even after very long time
@20,21,27#. For the limited number of runs attempted, ana
sis of the time scales for mass segregation and equipart
show that the macroscopic relaxation time is independen
both the system population and the mass ratio. However,
bin correlation functions indicate that the relaxation tim
may indeed be correlated with both the mass ratio and
system population.

An interesting feature of the relaxation measuresm
2 (t) is

the linear decay~on a log-log plot! that occurs both early an
late in the system evolution. This 1/t decay indicates tha
there is no characteristic time for relaxation of the syst
and may indicate a fractal structure to the phase sp
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Klinko and Miller have shown similar results in a system
concentric spherical shells with angular momentum@35#.
However, the decay for that system was strictly monoto
cally decreasing on average. In this case, the regions ot
decay were separated by a large peak whose timing co
sponded with other features of the system dynamics suc
mass segregation, and equipartition of kinetic energy. T
initial decay is representative of the long-lived quasiequil
rium state. As the system transitions from this state to o
more closely representative of equilibrium, the peak insm

2 (t)
begins to form as it measures differences in the two sta
over the 2t2t time interval. This peak insm

2 (t) was very
reminiscent of those that occurred inD(t) for the single-
mass system. Following this transition,sm

2 (t) is then mea-
suring the approach to the new state at botht and 2t, and the
1/t decay is again evident.

As a direct comparison with the mean-field theory, t
configuration space was divided into bins of equal proba
ity calculated from the theory. During the simulation a ru
ning average of the population of each bin was kept. At
conclusion of the simulation the average population of e
bin was compared to the theoretically predicted value. It w
noted that in all cases the simulations followed the predic
densities fairly well with the inner bins being slightly und
populated and the outer bins slightly overpopulated. Th
results hold for the larger 128-particle systems as well. T
would also be consistent with results found by Tsuch
et al. in which an overabundance of higher energy partic
was found to be present in the distribution for a single-m
system that otherwise looked very similar to the isotherm
distribution@21#. These higher energy particles tended to
side, on average, farther out in the tail of the density dis
bution. This is reflected in the overshoot ofDL seen in the
mass segregation plots.

Another interesting result came from the bin correlatio
These results reinforced to some degree the results of the
population averages. The correlation measure showed la
negative correlations between the outermost bin and all o
bins. In addition, the plots of the bin correlation for the lig
and heavy masses were quite dissimilar with the light mas
showing an unusual negative correlation spike between
outermost bin and its nearest neighbor. This spike was
seen in the heavy mass correlations where there wa
roughly consistent negative correlation between the ou
most bin and all other bins.

The bin cross correlation of the different mass types in
cated a correlation between relaxation time and both m
ratio and system population. The magnitude of the cross
relations increased as the mass ratio and the system po
tion increased. This implies that the relaxation time~related
to the time scale of the decay of correlations in the syste!
increases as the mass ratio and the system population
crease. A large negative correlation between the light
heavy masses in the outermost bins was evident in all
tems as well as large positive correlations between the
ermost bin and all other bins.

Substantial work has been done on the OGS over m
than 30 years; however, the question of ergodicity and re
ation is still an open issue. This paper has shown that t
0-15
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mass systems exhibit several features normally assoc
with systems either approaching or that have already atta
equilibrium, however, substantial correlations still exist af
simulation times exceeding 108t. This suggests that collec
tive motion may take place over very long times. This ty
of behavior has been previously observed in Vlasov simu
tions of the OGS@12#. In addition, some of the difference
noted between the Vlasov theory and simulation results~e.g.,
in the bin population studies! must be due to finite size ef
fects, although this was not indicated in other measures
the range of system populations studied here~e.g., the time
scale for mass segregation!. Finite size effects may be
masked by differences in the initial conditions.

In these numerical experiments consideration of the e
lution of both average quantities and correlations sugges
following scenario: The system rapidly relaxes to a quasi
tionary state. We conjecture that this state is ‘‘close’’ to
stationary Vlasov state, of which there are many~since for
the latterN→` they cannot be identical!. At present we lack
the ability to predict this state from the set of initial cond
tions. The system then appears to slowly, but continuou
evolve through a sequence of quasistationary states un
finally approaches thermal equilibrium. As in highe
dimensional systems we expect that, asN increases, the time
to approach equilibrium will also increase and thus beco
more difficult to observe in simulations. Thus we could s
that in gravitational systems relaxation itself is a discreten
effect. It is especially hard to observe in one-dimensio
systems because, at crossings, only the acceleration o
crossing pair changes so the mixing is very slow. Thus
have shown here that there is a window in population wh
we can observe that the system approaches the equilib
state. For smaller values ofN, as was demonstrated for th
ac
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single-mass system, the phase space may be segmente
stable and unstable regions in which it will be trapp
@17,18#. For larger values ofN we expect equilibration on
longer times, but to see it will require an extensive comp
tational effort. We anticipate that for sufficiently largeN
there is a scaling region where theN dependence of the evo
lution is more pronounced. However, we have not seen
dence for this for the system sizes we were able to simul
It would be interesting if in fact the scaling behavior cou
be determined from theory.

Clearly, based upon these results as well as those of o
researchers, it is still not possible to draw a definitive co
clusion on the question of relaxation in the OGS. Howev
the general results of these studies suggest that equilibriu
being approached. The evolution of global measurement
the macroscopic behavior of the one-dimensional s
gravitating system indicates that the system is relaxing to
equilibrium state in a finite, but very long time, while me
surements of more local properties of the system, such
time averaged probability densities, are within a few perc
of the equilibrium values, but have not completely co
verged. What is clear, however, is that these systems ex
very weak diffusion, extremely long correlations in time, a
weak ergodic properties in the phase space. Future work
need to include more thorough studies of other correlati
in the system as well as an investigation of the possible fr
tal structure in the phase space.
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