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Scaling properties of random walks on small-world networks
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Using both numerical simulations and scaling arguments, we study the behavior of a random walker on a
one-dimensional small-world network. For the properties we study, we find that the random walk obeys a
characteristic scaling form. These properties include the average number of distinct sites visited by the random
walker, the mean-square displacement of the walker, and the distribution of first-return times. The scaling form
has three characteristic time regimes. At short times, the walker does not see the small-world shortcuts and
effectively probes an ordinary Euclidean networkdidimensions. At intermediate times, the properties of the
walker shows scaling behavior characteristic of an infinite small-world network. Finally, at long times, the
finite size of the network becomes important, and many of the properties of the walker saturate. We propose
general analytical forms for the scaling properties in all three regimes, and show that these analytical forms are
consistent with our numerical simulations.
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I. INTRODUCTION random networkgsee, e.g., Ref$13,14)). In addition, there
have been several recent studies of random walks on SWN’s
The topological properties of real-world networks have[12,15-22. For example, Jasch and Blumdi7] and
been studied extensively. But an even more intriguing taski.ahtinenet al.[18] have studied the average number of dis-
and a natural extension of these studies, is to understand hawnct sites visited by a walker, and the probability that the
the network structure affects dynamics on the netwdifs walker is at the origin aften steps in the limit that the
Most people have had the unfortunate experience of catchingetwork sizeL—« and, hence, the number of shortcuts
the flu (an example of disease spreadirg picking up a —. In the present work, we present results for the scaling
burning hot platgan example of neural signal transmisgion behavior of such quantities as the mean-square displacement,
These phenomena are all examples of dynamics on the spgre mean number of distinct sites covered during a random
cial kind of real-world networks that have been found towalk, the first-return time, and clarify the procedure for ob-
display “small-world” properties. Of these phenomena, thetaining a scaling collapse for random walks on SWN’s.
greatest attention thus far has been given to the study of
disease spreadingee, e.g., Refd2-5]). It has even been
suggested that the web of sexual contacts has a small-world Il. THE RANDOM WALK
structure]6,7]. Other dynamical models that have been stud-
ied on complex networks include the Hodgkin-Huxley model In previous work[23,24], we developed a simple prob-
[8], Boolean dynamic$9], and the generic synchronization ability function approach for the topological properties of
of oscillators[10]. Extensive reviews can be found in Refs. complex networks generated according to the small-world
[1,2,17. model [25,2§. In this approach, we start from a one-
In this paper, we will present results for a random walk ondimensional regular network with periodic boundary condi-
a small-world networK SWN, defined beloyv Such random tions andL=2N nodes, each node being connected to ks 2
walks may have several applications to real systems. Fonearest neighbors. Hence, the “degree” of each nodekis 2
example, Scalat al.[12] have argued that the conformation Next, we add shortcut ends to each node according to a given
space of a lattice polymer has a small-world topology, andlegree distribution ®,), by following the prescription of
hence, that diffusion and random walks on such small-worldRefs. [27,28. In the present work we use a modified ap-
networks might give insight into relaxation processes such agroach[24] by using the following degree distribution in one
protein folding. dimension(with k=1): Dy=(1—p)P(q)(P) + P Pg-1)(P).
Much is known about random walks on both regular andwhereP,(\) =exp(—\) A%q! is the Poisson distribution. We
then select pairs of shortcut ends at random and connect
them to each other, thus creating a shortcut. This network-
*Electronic address: Almaas.1@nd.edu generating proceduréwith the aboveD,) is equivalent to
TPresent address: NEC Laboratories, 4 Independence Way, Printhat outlined by Newman and Watft&6]. The quantitykp is
eton, NJ 08540. Electronic address: rahul@research.nj.nec.com the probability that a given site has a shortcut. On average,
*Electronic address: stroud@mps.ohio-state.edu there will bex=kpL shortcuts in the network.
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We carry out the random walk on a lattid@olya walk as 100 L ‘
follows: :

(i) There is only one walker on the small-world network [
at a time. 10" b

(ii) The random walker is injected onto a randomly cho-
sen site on the small-world network, a new site for each
walker. We will call this site the “origin” of the walk.

(iii) At each discrete time stepthe walker will jump to a
randomly chosen nearest neighbor of its current siteith 10°
probability 1k(m). Here, k(m) is the number of nearest
neighbors of sitam, i.e., the degree of noda. —

(iv) The random walker is allowed to wander the network 10" 3
for a time longer than the “saturation time” for the quantity i
studied, i.e., the time when that quantity approaches its lim- 10°
iting behavior. 10

(v) We average over different random walkers and real- /g
izations of the small-world lattice until the results converge.

NCO\/L
o

8
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FIG. 1. This figure shows the scaling collapse oy, the
average number of distinct sites visited by the random walker for
lll. SCALING BEHAVIOR x=pL=10 (circles, system sizet=10" and L=10°); x=100

A. General form (squaresL=10* and 2.5<10%; and x= 1000 (asterisks,L = 10°

. . and L=2.5x10°). The scaling collapse is very good, making it
In earlier work[23,24], we demonstrated that the basic yiicult to identify the two curves for eack value.

probability distributionP(m|n;L,p) (the probability that two

sites sep_a_rated byhops_ before the introduction of shortc_uts Erdds [30] for a random walker on an infinité-dimensional

has a minimal separation ofi hops when shortcuts are in- o415y |attice. They found thdt,,~ vt in one-dimensional

cluded scales withx in the limit of p<1, for all choices of (1D), Negy~t/Intin 2D, andN,~t for d>2, in the limit of

x. As a consequence, topological quantities derived from™ " (% " oo Hd network modify this re-

P(m[n;L,p) display a scaling with=pL in the same limit. g5 Following the arguments of RdL7], we expect that
we will first state our main result for th? scaling .O.f the for short timest<£? (with £€=1/p), the random walker will

random walk in general, and then consider specmc €Xpe probing regions of the small-world netwd] that are

amples. LetO(p,L.t) be some measurable quantity for the essentially without shortcuidinear regions Hence, the be-

random walk on a SWN, which saturates to a finite value, - should be similar to thp=0 case where the walker

Osar as t—. AS specific examples, we will discuss the_ coversNo,~ vt sites. For long timest>L &, we expect all
mean-square displacement and the average number of sﬂ&s

o e sites in the network to be covered aNg,=L. For
covered by Fh? random walker |r.1 time We propose that intermediate timesé?<t<L ¢, the walker spends on the av-
O(p,L,t) satisfies the scaling law:

erage&? time steps per linear region, beforsmawregion is

O(p,L,t)=04. F(p2t,pL). (1)  accessed—the shortcuts act like a kind of branching process
for the random walk. As a consequence, in this time regime

We have numerically confirmed this scaling ansatz, as dethere should be/¢? segments covered andg,~t [17].

scribed in the rest of this paper. According to Ed), a  Combining these regimes, we obtain the scaling form

scaling collapse is observed if one plots the quantity of in- )

terest for various choices of the variablgs (), holding x Neo=L S(t/£%x), 2

=pL=const, forany choice ofx. This behavior is in con-

trast to previous statements that a scaling collapse cannot B&'ere

expected wherx>100[18]. Note also that the scaling col-

lapse is seen only fdixedvalues ofx=pL and that a pre- \/§/x, y<1

requisite for scaling is thgb<1. Previous worker$17,18 S(y:x)~1{ y/x, 1l<y<x (3

attempted to show scaling collapse for fixed valueg @br

p) while varyingp (or L), and did not obtain a perfect scal-

Ing collapse. By contrast, our present results display a perfe%{ndyztlgz. This is the expected finite-size scaling form for

scaling collapse fof fixed values af In the fo!I(.)W|.ng, Ve the average number of distinct visited nodes in the small-
present our numerical results for two quantities: the mean

- ) world model in the limitx>1.
number of distinct sites coverell,,,, and the mean square .
. 2 In Fig. 1, we show a plot of our calculated.,, for x
displacementr-).

=10 (circles, 107 (squarey and 18 (stars. For each value

of x, we have used different values pf ranging fromp

=0.0002 top=0.01, two for eachx value. The scaling col-
The average number of distinct nodes visited by a randonapse is excellent. These results suggest that the scaling prop-

walker, denoted\,,, was first studied by Dvoretzky and erties of the small-world network determine the scaling of

1, y>x,

B. Average number of distinct visited sites
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FIG. 2. Effects of finite size on the average number of covered
sites,N.,y,, Which is plotted as a function of tinteat fixed density
of shortcutsp=0.01 for four different system sizek:=10°, 10",
10°, and 16. The saturation seen at all four valueslois a finite-
size effect.

FIG. 3. Comparison of the approximatidstarg to N, EQ.
(5), with numerical datgsolid line) for L=10° and p=0.01. The
asymptotic [ — o) curve(dotted ling satisfiesN ., 't for smallt
(t<&2=1/p?) andN,t for larget (t>£2). The change of slope
between the two behaviors occurs nears?.

the random walk; hence, to find a scaling collapse, one must
keep the average number of shortcais;onstant. This figure {12, ...,%}, what is the mean number distinctintegers
also shows that, asincreasesN.,, deviates more and more chosen? This latter problem is easily solved: The probability
from thep=0 result. that a given integer isiot chosen in a given trial ig=1

If, instead, we hold the density of shortcuts constant and-1/2x; hence, the probability that a given integer is not
vary the system size, we can explore the finite-size effects oohosen im; trials isq"i~e™ " (29 (where we have assumed
the average number of covered sitRs,,. In Fig. 2 we plot x>1). Thus, the mean number of distinct integers chosen
the succession of curvés=10° 10%, 10°, and 16, all with  aftern; trials is
p=0.01. Upon examination, we find that the slope of the
resulting scaling curve changes from 1/2 to 1. That is, for | cov= 2x(1—e Ny, (4)
smallt (t<£?), Neoy~ Jt, after which, at larget, there is a
crossover td\¢,,~t, and finally, at even largel finite-size  For the original problem, the above expression gives us the
effects become apparent. This behavior observed in the simyymbper of distinct regions visited by the walker after
lations agrees very well with the arguments preceding Edjumps, and each distinct region visited by the walker corre-
(3). Note that, wher<L, we do not see a crossover to the sponds to coverind./(2x) sites. Furthermore, after tinie
linear regime in.WhiCH\lcov"’t before finite size effects start the random Wa|ker haS, on average, tah?ﬁ l4p2tJ jumps_
to become dominant. _ _ _ Hence, the probability that the walker visits a new region

We now derive an approximate expressionlig, which — after then;th jump is exp¢-|2yJ/x). Also, the time spent by
is consistent with Eq(3) and also in good agreement with the walker in this new region i€ =t— (1/4p?)|4p?t|, while
the largex simulation results. We note that, on average, therghe number of sites covered in this time interval is given by
are  shortcut ends in the network, defining 2ontiguous 7| je., proportional to the expression for tpe=0 case.

‘regions” in the 1D network. If a walker takes a shortder  Combining these estimates, we find that the mean number of
“‘jump” ), it transports the walker from one region to another,gjies visited after time is given by

randomly chosen, region in the network. When the number

of jumpsn; is small compared tox2 there is a high prob- 2

ability that the regions visited by the walker are “distinct” S(yyx)%1_e*(Z/X)lYJ_g__\/y_—Me*(Z/X)lyJ. (5)

(as defined more precisely belpwHowever, whem;~2x, X

there is a high probability that some regions will be visited

more than once. These multiple visits lead to saturation ef- Expression(5) is clearly only an approximation to the

fects since the already visited sites do not contributd 4g.  exact functionS(y,x). However, it does captures the key
We now derive an expression for the mean number oprocesses leading to the growth and saturatioNgf, and

distinct regions visited by the walker im; jumps. Because hence is a useful approximation. In Fig. 3, we compare this

each jump transports the walker from one region to anothefunction to the numerically obtained curves f8fy,x) at p

randomly chosen region, the number of distinct regions is=0.01, takingL=10" and L—. The agreement is quite

obtained by solving the following problem: H; integers good and shows that E(p) is a reasonable approximation to

are chosen independently and randomly from the sethe scaling function.
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FIG. 4. Mean-square displaceménf(t)) for a random walker
on a SWN for several values @i<0.01 and the three choices for
average numbers of shortcuts= pL=10, 1¢, and 18. Note that
each constant-curve consists of two distincip(L) combinations.
(r?(t)) saturates at largebecause of finite-size effects.

FIG. 5. Mean-square displacemént(t)) as a function of time
t for a random walker on a succession of networks, all with the
same density of shortcutp £ 0.01), and system sizes varying from
L=10%to L=10". Except for very large, all curves collapse onto
a single scaling curve, the curve which would be obtainedLfor
C. Mean-square displacement — oo, but at sufficiently largé, finite-size effects become important.

We now compute the mean-square displacengeftt)) =<0.01. We see that initially, the walker probes a regular
of the random walker as a function of tirh€To calculate this  network, andR(t/£2;x) is linear int. Whent/&2~1, the
quantity, we first, at each time step, find tiénimaldistance  walker begins to reach some shortcuts in the network, and
from the current position of the random walker to the originthere is a crossover to superdiffusive behavior. Finally, at
(i.e., the smallest number of steps needed for the randomill larger t/£2, finite-size effects become important and
walker to reach the originusing a breadth-first search R(t/£?;x) saturates.
method. Then we allow the walker to move through the net-  To further explore finite-size effects on the mean-square
work until {r?(t)) has saturated. Finally, we average overdisplacement, we have studigd?(t)) in a succession of
different initial positions of the walker and realizations of the networks, each with the same density of shortcuts,
network. =0.01, but with different linear sizk. In Fig. 5, we plot the

Now, we know that for a random walk on an infinite, calculated(r?(t)) for values ofL differing by factors of 10
hypercubic,d-dimensional lattice(r?(t))=(1/2)Dt, as can  and ranging from 1to 10. The resulting curves are all
be shown using, e.g., a generating function formalismyery similar to theL —o curve, until finite-size effects pro-
[13,29. However, on dinite lattice,(r*(t)) must approach a e saturation witkir2)=¢2. Only for the largesk values

constant for larg. In this limit, each node of the network ;.0 \ve aple to reach the superdiffusive regime, and even for
has equal probability of being occupied by the random,_ 1 his regime is so narrow that we cannot determine
walker. This insight immediately gives )= ¢, where¢is  with confidence the exponent of the expected power-law
the squared minimum distance between a pair of nodes, ayime dependence.
eraged over all possible pairs and network realizations. The development of an approximate analytical expression
On a SWN, the other relevant length scale for the randonfor (r2(t)) is difficult, since we need the minimal distance
walker is = 1/p, the averagedistance the walker travels to petween two lattice points. However, we know the limiting
reach a shortcut. These two lengths suggest the followingorms for(r?(t)). Further, by making the approximation that
scaling ansatz{r?)=¢?R(t/&%pL). We can also infer the the random walker only uses a shortcut once, we can extend
behavior of R(y,x) using simple arguments. For timés the arguments used to derive the approximate expression for
< £2, the walker is exploring regions of the network without N, Eq. (5). Hence, we can write down the following an-
shortcuts, and we expect diffusive behavior similar to that ofsatz for(r2(t)):

a regular network, givindR(y,x)~y/€?. Whent~\/’ﬁ/p, 1

we expect the mean-square displacement to saturate, and 1o WPZAYP T

R(y,x)=1. The transition between the two types of behavior Rlyx)=1-e (1 2V M))' ©

is not sharp, since the walker may reach a shortcut before it

has travelled a distancg In Fig. 6, we compare this ansatz with the simulations for
We have numerically confirmed this scaling collapse for aL =10’; evidently it agrees reasonably well with the numeri-

wide range ofx values. In Fig. 4, we ploR(t/¢%,x) for a  cal results.

sequence of networks witk=pL=10, 1¢, and 18. For We can write down the scaling function in several limiting

each constant- curve, we use two distinct values @f  regimes, without necessarily using the above ansatz for the
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FIG. 6. Comparison of the approximatigstars to (r2(t)), Eq. FIG. 7. Scaling collapse of the first-return time distribution,

(6), with numerical datasolid line) for L=10" andp=0.01. The  f(O1), plotted against the dimensionless time-t/¢*(L,p) for
asymptotic [ — =) curve(dotted ling satisfies(r?(t))«t for small networks with the average number of shortcxitspL=100 using

t (t<£?) and(r?(t))oct? for larget (t>¢2). L=10"* andL=2.5x 10" nodes.
specific functional form. For example, we must have The “small-world” effect on the first-return time distribu-
- tion is most clearly seen at large valuesxofin Fig. 8, we
R(y;x)~yl(p=€9), y<1, (7)  plot f(0;t) for a network ofl = 1P sites and a shortcut den-

sity of p=0.01. For short waiting times, as expectéD,t)
behaves like that of p=0 network(no shortcuts However,
. for intermediate waiting times such thét<t<L ¢, we find
= >pye2. e L R
Rlyx)=1, y p\/ez ® that f(0t) is independenbf t. This independence indicates
However, the known limiting behaviors cannot give the scal-that the position of the random walker is completely random-

ing function in the intermediate regime. We therefore use thdzed: the memory of the walker’s starting position is no
above ansatz to propose longer retained in the system and the walker is equally likely

to occupy any site in the network. This occurs when(?,

and

R(y)~y2(p?0?),  L<y<pye2 (9)
. . . . 10°
We are not able to verify this last behavior numerically from
our present results. 100 b i
D. First-return time distribution 100 [ ]
Next, we turn to another property of a walker on a SWN, A
namely, the distribution of first-passager first return 3 10 F ]
times. This is the probability that a walker will return to a v
given sitem for thefirst timeat timet after leaving that site. 310° 7

We denote this distribution ag(m,t;L,p). Note that this
distribution does not saturate to a finite value whefoo, 10 r
and hence, it shows that the scaling collapse of random walk
properties is not only limited to those which saturate to a 10
finite value. In order to find a smooth distribution, we must

make a slight change to the random walker rules: For each 10 s 0 10r 00 100 10t 108 10°  10°
time step, the walker is now allowed to stay on the current u=ti<l’(L,p)>

node with probability J/k(m)+1].

An extensive review of first passage processes has been FIG. 8. First-return tir_ne distributiorf,(0t), plotted against the
given by Rednef32]. Unlike the other quantities presented dimensionless timei=t/¢%(L,p). For waiting timest<¢?(L,p),
in this paper, the first-return time does not saturate to a finitéhe first-return time distributiori(0t) behaves like that of @=0
value, instead it approaches zero. However, the scaling cohetwork, with f(0t)~t™%% For intermediate waiting times
lapse is still present. This collapse is demonstrated in Fig. 7,¢%(L,p)<t<L¢&], f(0t) is independent of, since each node is
where we plotf (0t) for two different (p,L) combinations, occupied with equal probability. For-L¢, lattice finite-size effects
holding x constant. dominate. The inset shows/(2)3f (0t/€?).

G—oL=10%p=0.01

056105-5



ALMAAS, KULKARNI, AND STROUD PHYSICAL REVIEW E 68, 056105 (2003

as discussed above for?(t)). Also, L is the characteristic  visited sites,N.,,, and the mean-square displacemértt)
time for the asymptotic decay d¢{m,t;L,p), since it is the for random walks on SWN’s, both of which we have studied
saturation time scale foNg,,. Note that the separation of over a wide range of node numbdrsand shortcut densities
€2(L,p) andL¢ increases with increasing number of short-p. In both cases, we find that E€L) is satisfied, and the
cutsx in the system, making the “knee” of the first-return quantities depend only on the single variakke pL. Addi-

distribution more pronounced. _ tionally, we find that nonsaturating properties also show a
For a random walk on a finite intervg0,L ] with an ab-  scaling collapse, as exemplified by the first-return time.
sorbing wall at zero and a reflecting wall htthere is a Thus, we have shown that the dynamical behavior of a

similar effect in the first return timgs2,33; att~L2 there is  random walker on a SWN has the same scaling behavior as

an enhancement of the first-return probability. In our casethat exhibited by purely geometrical properties of the net-

the origin of this effect is the splitting of the time scalés  work (as described in, e.g., RéR3]). This scaling behavior

andL &, while for the walk on the finite interval the cause for should be useful in interpreting a variety of other properties

this effect are the contributions from reflected trajectories. on SWN’s, and may be of value in studying real-world phe-
nomena for which a SWN is a good model.

IV. SUMMARY

In summary, we have studied the behavior of a random ACKNOWLEDGMENTS
walker on a small-world network, using a combination of
numerical methods and scaling assumptions. We conjecture This work was supported by NSF through Grant No.
that the scaling law of Eq(l) is obeyed by measurable, DMR01-04987(E.A. and D.S). and the U.S. Department of
saturating propertie®(p,L,t) of a random walk on a SWN. Energy, Office of Science, Division of Materials Research
Among these properties are the average number of distin¢R.V.K).
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