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Universal finite-size scaling behavior and universal dynamical scaling behavior
of absorbing phase transitions with a conserved field
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We analyze numerically three different models exhibiting an absorbing phase transition. We focus on the
finite-size scaling as well as the dynamical scaling behavior. An accurate determination of several critical
exponents allows one to validate certain hyperscaling relations. Using these hyperscaling relations it is possible
to express the avalanche exponents of a self-organized critical system in terms of the ordinary exponents of a
continuous absorbing phase transition.
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I. INTRODUCTION sure finite-size effects, our method is well defined. Further-

more, it can be applied immediately to other classes of ab-

Absorbing phase transitiof®\PT) are a particular class sorbing phase transitions. Second, we consider the activity
of nonequilibrium phase transitions occurring in physical,spreading of a single active seed. The corresponding spread-
biological, as well as chemical systerfesee, for instance, ing exponents are naturally conne(;ted to the givalanche ex-

Ref. [1]). Transitions to absorbing states are of particulaPonents of SOC systenj$0]. In particular, we discuss cer-

interest since they have no equilibrium counterparts and ma{@!n hyperscaling laws relating the spreading exponents to
occur even in one-dimensional systems. A characteristic fedl© Stéady-state exponents of absorbing phase transitions.
ture of absorbing phase transitions is the competition beJ NiS allows us to express the SOC avalanche exponents in
tween the proliferation and annihilation of a certain enfity terms of the exponents of the corresponding absorbing phase

e.g., particles, energy units, viruses, and molecules in Cat&[ansmon(e.g., the exponents of the order parameter and the

lytic reactions, etc. It is essential that no spontaneous Creqorrelation length exponentThus the critical state of SOC

ation of such quantities takes place. At a critical value of the>yStems is closely related to the_grmcal properties of an or-
proliferation-annihilation rate the densipfA) vanishes and dinary second-order phase transition.

the system is trapped forever in the absorbing stdi)
=0.

Directed percolation is recognized as a paradigmatic ex- The first considered model is the CL{&], which is a
ample of absorbing phase transitions. This is reflected by thetochastic variant of a model introduced by Jengkt. In
universality hypothesis of Janssen and Grassberger that mothe CLG model lattice sites may be empty or occupied by
els which exhibit a continuous phase transition to a singlene particle. In order to mimic a repulsive interaction a given
absorbing state generally belong to the universality class gbarticle is considered as active if at least one of its neighbor-
directed percolatioi2,3]. Different universality classes oc- ing sites on the lattice is occupied by another particle. If all
cur, for instance, in the presence of additional symmetries. Imeighboring sites are empty, the particle remains inactive.
particular, particle conservation may lead to the different uni-Active particles are moved in the next update step to one of
versality class of absorbing phase transitions with a contheir empty nearest neighbor sites, selected at random.
served field as pointed out in Ré¢#l]. For instance, the con- The second model is the so-called CT[A?, a modifica-
served lattice gag€CLG) [4], the conserved threshold transfer tion of the threshold transfer process introduced in Rif].
process(CTTP) [4], the well known Manna sandpile model Here, lattice sites may be empty, occupied by one particle, or
[5], as well as a reaction-diffusion modd] belong to this occupied by two particles. Empty and single occupied sites
universality clasg7]. Note that this universality class is of are considered as inactive, whereas double occupied lattice
particular interest since the corresponding systems connesites are considered as active. In the latter case one tries to
the critical behavior of the absorbing phase transition withtransfer both particles of a given active site to randomly cho-
the critical steady state of self-organized criti€BlD0 sys-  sen empty or single occupied nearest neighbor sites.
tems[8]. Actually, SOC sandpile models can be considered The third model is a modified version of the Manna sand-
as driven-dissipative versions @flosed systems exhibiting pile model[5], the so-called fixed-energy Manna mod@).
absorbing phase transitiofg]. In contrast to the CTTP, the Manna model allows for unlim-

In this paper we consider the universal finite-size scalingted particle occupation of lattice sites. We use in our inves-
as well as the universal dynamical scaling behavior of thdigations the original Manna relaxation rules, i.e., lattice sites
CLG model, the CTTP, and the Manna model. First, we in-which are occupied by at least two particles are considered as
troduce a method that allows one to study finite-size effectsictive and all particles are moved to the neighboring sites
in the steady state. In contrast to previous attempts to meaelected at random.

II. MODELS
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FIG. 1. Sketch of the dynamics of the three considered models. t+5 e
. . . . . . 0, 0,0 0,00 00, @0 O
Filled circles mark active particles, whereas nonactive particles are
marked by open circles. The arrows denote how the active particles t+6, o ccoo0o0o00 S o
are (probably moved in the next update step. In the case of the EE
one-dimensional CLG model the particle transfer is deterministic. t+75. ©0.0.0.0.0,0.0.0.0, .0.0,

For the one-dimensional CTTP, stochaskift) as well as determin-
istic (right) particle movements may occur. Only the one- FIG. 2. Sketch of the dynamics of the one-dimensional CTTP.
dimensional Manna model is characterized by a full stochastic dyAt update stef an active site is triggered by the external field in a
namics inD=1. cluster of inactive sites. The arrows denote how the active particles
(full circles) are moved in the next update step. Due to the dynamic
The three models are sketched in Fig. 1. We use in alfules of the CTTP only two different relaxation proceséeslected
cases periodic boundary conditions, i.e., closed systems afgndomly occur: both particles are moved to the same empty site or
considered and the number of particles is conserved. In oloth particles are moved to two adjacent sites. Thus, the dynamics
simulations(see Refs[13,14] for detaily we start from a of the one-dlmensm_nal CT_TP is characterized by a trlv_lgl random
random distribution of particles. All models reach after aWalk of the perturbation. This random walk proceeds until it reaches
transient regime a steady state which is characterized by tH8€ Poundary of a cluster.
average density of active sitpg. The densityp, is the order  _ - ~ ) _
parameter and the particle densitys the control parameter R(1,00=R(0,1)=D(0,1)=1 and the nonuniversal metric
of the absorbing phase transition, i.e., the order parametdfctors can be determined from the amplitudes of
vanishes at the critical densipy. according top < 8p”, with

—0)~ B
the reduced control parametdip=p/p.—1. In addition pa5p,n=0)~(2,0p)", ©
to the order parameter we consider its fluctuatidys,. p(Sp=0h)~(ayh)?'® (4)
Approaching the transition point from abov@p>0) the & ' n ’
fluctuations diverge according tdp,<dp " (see Refs. ayApa(Sp=0h)~(ayh)~ 7. (5)

[13,14)). Below the critical densityin the absorbing state
the order parameter as well as its fluctuations are zero in th€hese equations are obtained by choosing in the scaling
steady state. forms[Egs. (1) and (2)] a,5ph=1 anda,h\’=1, respec-
Similar to equilibrium phase transitions it is possible in tively.
the case of absorbing phase transitions to apply an external A recently performed analysis of the universal scaling
field h which is conjugated to the order parameter, i.e., thefunctions as well as of the critical exponents &2 [7]
field causes a spontaneous creation of active partisles, confirms the conjecture of Rdi4] that the CLG model, the
for instance, Ref{1]). A realization of the external field for CTTP, and the Manna model belong to the same universality
absorbing phase transitions with a conserved field was devetiass. The situation is more complicated in one-dimensional
oped in Ref.[13] where the external field triggers move- systems where a splitting of the universality class occurs.
ments of inactive particles which may be activated in thisThe reason for the nonuniversal behavior is that the dimen-
way. At the critical densityp. the order parameter and its sional reduction changes the stochastic character of the dy-
fluctuations scale as.,x<h?'” andApaoch*V’/U, respectively. nhamics(see Fig. 1 For instance, the CLG model is charac-
It was shown recently that the order parameter and itéerized by deterministic toppling rules =1 and exhibits a
fluctuations obey in the steady state the scaling fdimis trivial phase transition witlB=1 andp.= 1/2 (see also Ref.
22 in Ref. [4]). Due to the trivial behavior of the one-
pal 5p,h)~>\_B~R(ap5p)\,ahh)\"), (1) dimensional CL_G mo_del we consider in this work the two-
and the three-dimensional CLG model only.
. In the case of the CTTP we observe that roughly 40% of
aApy6p,h)~N7 D(a,dp\,aph\?). (2 the relaxation events are deterministic. Furthermore, a per-
g 5 turbation that is triggered by the external field performs a
The universal scaling function’(x,y) andD(x,y) are the simple random walksee Fig. 2 This pathologic behavior is
same for all systems belonging to a given universality classompletely different from the behavior of the one-
whereas all nonuniversal system-dependent featergs the  dimensional Manna model that is characterized by a pure
lattice structure and the update schemee contained in the stochastic relaxation of active particles to the next neighbors.
so-called nonuniversal metric factoas, a,, anda, [15]. More than the other models the Manna model is therefore the
The universal scaling functions are normed by the conditionparadigm of the universality class of absorbing phase transi-

056102-2



UNIVERSAL FINITE-SIZE SCALING BEHAVIOR AND . .. PHYSICAL REVIEW E68, 056102 (2003

tions with a conserved field. In the following we will call 0.20 w .
that class the Manna universality class since universality CTTP. D=2 0.013 :
classes are often labeled by the simplest model belonging t ’
them. =32 0012 | H
The universality splitting of the one-dimensional systems %15 |
is in full agreement with the universality hypothesis of sand- p=0.98p, 0011 |- i
pile models[16]. According to this conjecture the universal-
ity classes of sandpile models are determined by the way th@% 010 | 0010 ‘ |
particles are distributed to the next neighb@@sterministic, a 0 1000 2000
stochastic, directed, undirected, &t®©bviously, the Manna
universality class is characterized by a stochastic and undi
rected distribution of particles. 0.05 i

P4(1)

Ill. STEADY-STATE FINITE-SIZE SCALING

Similar to equilibrium critical phenomena we assume that  ¢.00
the system sizé& enters the scaling fornj€gs. (1) and(2)]
as an additional scaling field, i.e.,

0 1000 2000
t

FIG. 3. The decay of the order parameter close to criticality for

pa 5P,h,L)N)\_Bﬁpb&ap5p)\,ahh)\ayaﬂ-)\_”), the two-dimensional CTTP. After a so-called metastable regime the
_ system passes to the absorbing phase. The inset displays that no
axApydp,h,L)~N? Dppda,dpN,anhN?,a LA™ "), clear saturation of the order parameter could be observed.
(6)
. , 0,0L)=Q(6p,0L)]|s,=
where the exponent, describes the divergence of the spa- QA )=Q(8p.0L)]5p-0
tial correlation length, i.e&, «6p~ "L. Note that the univer- NQpb&apﬁp(aLL)_”i,O,l)l,sp=o=Qpbc(O,O,l),

sal scaling functions depend now on the particular choice of

the boundary conditions, the system shape, €i5]. (10
Throughout this work we use in all dimensions hyper cubichich is obviously universal. The universal value
lattices with periodic boundary conditioripbc). However,
the universal scaling functiorf€qs. (1) and (2)] are recov-
ered in the thermodynamic limit, e.g.,

bpbc(o,o,l) corresponds to an intersection point if one plots
Q as a function ofp for various system sizels. Thus it is
possible to determine the critical valpg from the common
= B intersection point. This cumulant intersection method is very
Rppd X,¥,2)=R(X,Y). 7 S .

podX,¥, %) =R(x.y) ™ useful and was applied in numerous wotkse, for instance,

In addition to the order parameter and its fluctuations weRRef. [17] and references thergin . _
consider the fourth-order cumula@, which is defined as As usual finite-size effects have to be taken into account if

(see, for instance, Ref17]) the correlation length is of the order of the system size. A
feature of these finite-size effects is that a given system may

<pg> pass within the simulations from one phase to the other. This

Q=1-—5. (8 behavior is caused by critical fluctuations, i.e., approaching
3(p2) the transition point the order parameter vanishes whereas its

For nonvanishing order-parameter the cumulant tend® to fluctuations diverge. But in contrast to common second-order
rphase transitions the situation is drastically different in the

=2/3 in the thermodynamic limit. In the case of a zero orde case of absorbing phase transitions. Approaching the transi-

parameter the cumulant vanishes if the order parameter hon oint the correlation length, increases and as soon as
characterized by a Gaussian distribution symmetrically dis-, . P gt .
. is of the order ofL the system may pass to an absorbing

tributed around zero. The latter case is observed in equilibState and is trapped forever. In addition to the absorbin
rium systems, e.g., the Ising model for-T,. In the case of PP ) 9

ky
absorbing phase transitions the order parameter is nomase (p)=0 for 5<0) the steady-state order parameter

negative per definition. Thus the order parameter is chara@nd its higher moments var?ishp@L:'O) even in a small
terized by a nontrivial distribution close to criticality and the ViCinity above the critical point. Thus in the case of absorb-

above scenario does not apply. ing phase transitions it is impossible to consider finite-size
Nevertheless, one expects that the cumulant obeys treffects of steady-state quantities a_round the critical point.
scaling form In order to bypass this problem it was suggedtszg, for

instance, Ref[18]) that we consider metastablgns) or
Q(8p,h,L)~Qpod@,8p\,agh\ %2 LA 7). (9) quasisteady-state values of the order parameter and its higher
moments<p§>,_,ms. This is shown in Fig. 3 for the order
Notice that no metric factaag is needed since the cumulant parameter of the two-dimensional CTTP close to the transi-
is already dimensionless. ChoosiagL\ ~"-=1 we get for  tion point. After a short transient regime the system reaches a
zero field metastable state where it can spend a certain time until it
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CTTP, D=2 e
10” p=p, x
L=16,32,64,128,256 or
o I
S <
=2
A4 L
10°
~_ Wl
10 10°  10°  10°  10°
ah
107 ; ; ; ; —
10™° 10° 10° 10” 107 807
ah
FIG. 4. The density of active sitgs, as a function of the exter- FIG. 5. The universal finite-size scaling analysis of the order

nal field for various system sizds The inset displays the corre- parametep,, the fluctuationsp,, as well as of the cumular@®
sponding order-parameter fluctuations. The dashed lines correspofgt the one-dimensional CTTP and the one-dimensional Manna
to the asymptotic behavior of the infinite systeiss.(4) and(5)].  model. The long-dashed lines correspond to the power-law behav-
iors of the infinite systeniEgs. (4) and (5)] and to the cumulant
finally enters an absorbing state. In the metastable phase thigit 2/3, respectively. The data are obtained from simulations of
order parameter is expected to fluctuate around a well desystem sizes e {2048,4096,819where up to 18 lattice update
fined average valugo,), s Which is used for the finite-size Steps are performed.
scaling analysis. This method was applied in previous works ) )
(e.g., Refs[4,9,18 and the results sound mostly valid. discussed analysis of the metastable regime.
Nevertheless this method can be questioned. First, there is According to the above scaling lay&gs.(6) and(9)] the
no well defined average value of the order parameter in thénite-size scaling forms are given by
metastable regime. This can be seen in the inset of Fig. 3 -
where we scrutinize the data. No clear saturation of the order ~ Pa(0.h,L)~(a L) "+ Rysd0.anh(a L)'+, 1),
parameter can be observed. Second, the method is quite in- _
efficient. In the case of the data presented in Fig. 3 we used aAApa(O,h,L)~(aLL)V"”Lprd(o,ahh(aLL)"’”L,1),
5x 10’ different initial configurations fot. =32 to get a suf-
ficiently averaggd estimate of the order parameter. Although Q(O,h,L)~(~3pbc(0,ahh(aLL)"’”L,1). (11)
roughly 10* lattice updates t(,,,~2000) were performed,
no clear saturation could be observed. Thus reliable data fdfor the sake of convenience we norm the universal scaling
larger lattice sizesl(=64,128,256. . .), which are required  fynction Qpbc by the condition
for an appropriate finite-size scaling analysis, cannot be ob-
tained within moderate computer times. Third and final, no Qpvd0,1,)=0. (12)
rigorous proof exists that the metastable order-parameter mo-
ments(p';)LmS scale in the same way as the correspondingSince the metric factoay, is known from previous simula-
steady-state order-parameter moments. tions [7] [via Eq. (4)] the above condition can be used to
In contrast to the consideration of metastable phases wegetermine the metric facta, . Taking into account that the
choose a different method in order to study finite-size effectgorrelation length scales at criticality as
in the steady state. In our simulations we measure the order
parameter at the critical densityg=0) as a function of the a & ~(aph)™'7, (13
conjugated fieldh for various system sizes. Due to the exter- .
nal field the system cannot be trapped forever in the absortwe find that Eq(12) implies that the universal functioQ .
ing phase. Therefore, steady-state quantities are available feg positive fora L>a, £, and negative fora L<a, ¢, .
all densities. In Fig. 4 we present the order parameter and itNote that in the case of equilibrium phase transitions Eg.
fluctuations for the two-dimensional CTTP model. The(12) is useless since the cumulant is usually positive.
finite-size effects, i.e., the deviations from the behavior of In Figs. 5—7 we present the universal finite-size scaling
the “infinite” system (L>&,) can be clearly seen. Note that analysis of the CLG model, the Manna model, and the CTTP
the data fol. =32 are averaged over310’ lattice updates for D=1,2,3. Since the exponenf8 and o were already
and we obtain smooth curves of the order parameter, its flucdetermined in previous workd,13,14 we just vary the cor-
tuations, as well as of the cumulant. Thus, the numericatelation length exponent, in order to produce data col-
effort of this method is significantly smaller than the abovelapses. The value of the nonuniversal metric facoris
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2 : : TABLE I. The critical exponents of the considered models be-
low the upper critical dimensioB.=4. The data of the exponents
B ando are obtained from Ref14]. The finite-size scaling analysis
oL yields the values of, andy’, whereas the exponents &, 6, and
z are obtained from activity spreadirigee text The values ofg’
andv, are determined via scaling laws. In particular, the values of
e v| are in good agreement with those of direct measurements of the
N order-parameter persistence distributi@d]. In the case of the one-
g— dimensional models we observe a splitting of the universality class.
S
D=1 D=2 D=3
a 0.141+0.024 0.41$0.015 0.745%:0.017
-6 r S 0.170+0.025 0.516:0.020 0.765:0.025
0 0.350+0.030 0.316:0.030 0.146:0.030
z 1.393+0.037 1.53%0.024 1.8230.023
‘%0—2 B 0.382£0.019 0.63%0.009 0.84@:0.012
el 0.319+ 0.052anna 0.624+0.029 0.82%0.034
o 2.710+ 0.04Qpanna 2.229+0.032 2.06%0.043
FIG. 6. The universal finite-size scaling analysis of the order 1.7700.058& 11p
parametelp,, the fluctuationsAp,, as well as of the cumular® v, 1.347+0.09%20na 0.799+0.014 0.593 0.013
for the two-dimensional models. The long-dashed lines correspond 1.760* 0.06Qp
to the power-law beha_wc_nrs of the |nf|n|_te systéhys. (4) and(5)] _ | 1.876+0.135 s 1,225+ 0.029 1.08%0.027
and to the cumulant limit 2/3, respectively. The data are obtained 2 452+ 010
from simulations of system sizelse{64,128,256 where up to , ) 10&rre
0.550+ 0.04Qanna 0.367+0.019 0.152:0.017

5% 10’ lattice update steps are performed.

0.670*0.04Q-11p

determined via Eq(12). We observe good data collapses for
v, =0.799-0.014 forD=2 and v, =0.593+0.013 for D

=3. The data collapses are quite sensitive for variations of TABLE IL.

The nonuniversal metric factors of the considered

the exponents. Thus the quality of the corresponding datg,ggels. The uncertainty of the metric factors is less than 5%.

collapses are used to estimate the error bars. The values of

the exponents as well as of the nonuniversal metric factors D=1 D=2 D=3
are listed in Tables | and 1.
CTTP
2 : : : a, 0.607 0.341 0.384
an 0.220 0.013 0.093
ol a 187.7 45.42 24.51
a, 1014.0 4.617 2.173
a 1379.0 24.90 4.239
-2 r ap 0.107 0.078 0.094
3 an 6.062 2.818 1.069
< 4t CLG
S a, 0.509 0.434
an 0.062 0.391
nd a, 9.241 8.881
a, 2.107 1.441
-8 r a 11.22 3.140
ap 0.157 0.183
10 5 an 1.249 0.569
10 o Manna
a1 (a,L) a, 0.662 0.211 0.311
FIG. 7. The universal finite-size scaling analysis of the order®h 7.52<10°° 0.007 0.074
parametep,, the fluctuationsdp,, as well as of the cumular@ ~ 3a 588.9 78.56 32.24
for the three-dimensional models. The long-dashed lines corresporfi. 205.9 6.011 2.367
to the power-law behaviors of the infinite syst¢iys.(4) and(5)] a 7.99x 10 35.53 4.824
and to the cumulant limit 2/3, respectively. The data are obtainedp 0.063 0.059 0.089
from simulations of system sizeke{16,32,64 where up to a, 64.02 3.600 1.229

5% 10 lattice update steps are performed.
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In the case of the one-dimensional Manna model and the ' '
one-dimensional CTTP we observe the expected splitting of
the universality class. The correlation length exponent 10
the field exponentr, as well as the scaling functions differ
clearly (see Table | and Fig.)5Furthermore, the value of,
for the Manna model,y, =1.347£0.091, differs clearly
from v, =1.80+0.01 obtained in a previous work including &*10”
a finite-size scaling analysis of metastable stai€s. 8
Despite this splitting of universality we observe that the 3
fourth-order cumulant tends for all models in all dimensions ~

0

to infinity if one approaches the transition point, i.e., 107 .
Quod 0x,1)——c for x—0, (14)
10° >
This behavior is caused by the vanishing steady-state fluc 0 e e e e ‘
tuations[see Eq.(8)]. Thus, we assume that the divergent 10° 107 107 10° 10°
fourth-order cumulant is a characteristic feature of all ab- at(alL)

sorbing phase transitions, independent of the considered lat- ) ) . . )
tice structure as well as of the particularly considered univer- FIG. 8. The dynamical scaling analysis for the one-dimensional
sality class. Preliminary simulations for directed percolation®TTP and the Manna model. The long-dashed lines correspond to

support this conjecture and will be published elsewhere. e power-law behaviors of the infinite systef&ss.(19), (21), and
(22)]. System sizes frorh=512 up toL=28192 are considered and

the data are averaged over at least different initial natural con-
IV. DYNAMICAL SCALING BEHAVIOR figurations(see text
A. Homogeneous particle source
According to the above scaling forf&qg. (17)] we plot in
Figs. 8—10 the rescaled order parameter as a function of the

rescaled time. We observe good data collapsesvfe0.419

In the following we investigate the dynamical scaling be-
havior in the vicinity of the absorbing phase transition. First,

we consider how the order parametgrdecays, starting the _ = -

simulations from a random distribution of particie®-called f?g;;{ggft ObO_Zg fo_lfr[])_z aqda_0'745t0'017’2 ;
homogeneous particle soujcAbove the transition point the _'tﬁ " ' ; orb=s. lesfe r:[/s?]u?S ?hre n agrefetr::en
density of active sites decreases in time and tends to the! 0se of previous simulations:l. In the case of the

steady-state valuedespite of finite-size effects as discussed,c\)/lne'd'rnenZ'OlnaI rgoghelshwe (:bger\ée thgtlg‘le;:ggzrz anc;j the
above. Below the transition point the density of active sites anna model are both characterizeddsy0. ) an

decreases exponentially to zero. At the critical point the or-Z:1'393t 0'03.7’ bu; the correspond|ng scah.ng. curves of
der parameter decays algebraically according to both models differ slightly. It is possible that this indicates a

pa~(at) ™, (15 10° : : : :
wherea; denotes a corresponding nonuniversal metric factor.
A finite system size limits this power-law behavior and one W
expects that the order parameter obeys at criticality the scal ~ 10° | [ .
ing ansatz T
107 -
— = _ _ L -
paL,O)~N"*IRgp(ath ™"l a LAT"), (16) 30-10_2 105 r
T~ [107, & T
e . o~ ~ 10
where we have to distinguish the universal functi®isand 3 "
R. For the sake of simplicity we choo&(1,)=1. Setting L
a LA""t=1 one gets the finite-size scalifg§S9 form 10 L1O0 T ]
~ 107 -
pL,t)~ L‘“ZR")bc(att(aLL)‘Z, 1), a7 .
1070+ 10° 0 10°
where z=v| /v, denotes the dynamical exponent as usual. 10*105 o 10‘4 10'_2 P 16" o 0
Finite-size effects have to be taken into account @xt) t{aL)”
:tpss, Wlth at aL
" 2 FIG. 9. The dynamical scaling analysis for the two-dimensional
tess=a, “(a L))" (18 models. The long-dashed lines correspond to the power-law behav-

= h i f . b h | iors of the infinite systemgEqgs.(15), (21), and(22)]. System sizes
or t<tgss the scaling function obeys the power law ¢qn | —gq up toL =512 are considered and the data are averaged

AF‘?{)bC(X,.l)Nxfa, Whereasﬁ”)bc(x,l) decays exponentially for over at least X10° different initial natural configurationgsee
x>1, i.e.,t>1ggs. text).
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10° Since the absorbing state is nontrivial, one has to investi-
gate the spreading activity at the so-called natural density
(see, for instance, Ref18]). For each considered model an
absorbing state at. is prepared and a particle is moved to a
randomly selected site in order to create one active seed. We
obtain for all dimensions convincing data collapses which
are shown in the insets of the Figs. 8—10. The values of the
exponents agree with those of previous wofk$ and are
listed together with the nonuniversal metric factors in Tables
I and Il. In summary activity spreading from a localized seed
is characterized for all three models by the same universal

scaling function® andN.

The activity spreading of APT with a conserved field is
closely connected to avalanche processes in SOC systems
[9]. In particular, the Manna model is a paradigmatic ex-
10" 10 10" ample of a class of SOC systems, the so-called sandpile

at(aL)” models. The SOC version and the APT version of the Manna
model are characterized by the safm@croscopi¢ dynamic

FIG. 10. The dynamical scaling analysis for the three-rules but the boundary conditions differ. Closed boundary
dimensional models. The long-dashed lines correspond to thgonditions lead to a globally conserved particle density in the
power-law behaviors of the infinite systerfiSgs. (15), (21), and  case of absorbing phase transitions. But sandpile models are
(22)]. System sizes fronh =16 up toL =128 are considered and per definition driven-dissipative systems where particles
the (_jata are averaged over at least®f different initial natural (sand grains are injected into the system and dissipated
configurationg(see text through open boundaries. The self-organization of SOC sys-
tems corresponds to the fact that they approach, without any
‘external fine tuning, the critical staf@(t)—p¢] in the in-
finitesimally slow driving limit(so-called separation of time
scales, see Reff21]). In the critical state the external driving

B. Localized particle source triggers (scale invariant avalanchelike relaxation events.

In addition to a homogeneously distributed source of acThese avalanche processes are described by certain critical
tive sites one usually considers the activity spreading geneexponents which can be derived from the spreading expo-
ated from a single active se€@0]. In this case it is custom- nentsé, 6, andz [9,10]. In particular, the avalanches are
ary to examine the survival probabilify(t) that the system characterized by several quantitiesee, for instance, Refs.
is still active aftert update steps. Furthermore, one investi-[16,22), e.g., the sizes (number of elementary relaxation
gates how the number of active sifég(t) increases in time. €vents, the area (number of distinct toppled sitgshe time
At criticality the survival probability as well as the averaget (number of parallel updates until the configuration is
number of active sites are expected to scale as stablg, as well as the radius exponentradius of gyration

In the critical steady state the corresponding probability dis-
aPPa(Lvt)~)\7(sy“ﬁpbc(att}\7V”aaLL)\ih)a (19 tributions decay algebraically,

2

universality splitting similar to the steady-state scaling be
havior.

anNa(L, ) ~N"INppdath " "a LA "), (20) Pyoex™ ™, (25)

The universal functions are normed B9(1x)=1 and characterized by the avalanche exponents with x
N(1,2)=1 and we find in the thermodynamic limit e{s,a,t,r}. Assuming that the size, area, etc., scale as a
power of each other,
apP.~(at) ~°, (21
NC R (26)

anNa~(agt)’. (22)
The finite-size scaling forms are obtained by settingOne obtains the scaling relations
a LA""1=1, yielding

. Tyr — 1 27)
apP(L,t)~L Py dait(a L) 1), (23 L (
aNNa(L,t)~L”Zprc(att(aLL)’Z,l). (24)  The exponenty,, equals the dynamical exponentthe ex-

5 5 ponenty,, corresponds to the fractal dimension of the ava-
Again the scaling function® ;. and N, decay exponen- lanches, and the exponent, indicates whether multiple
tially for t>tgss, whereas they exhibit an algebraic behaviortoppling events are relevanty{,>1) or irrelevant s,
fOI’ t<t|:ss. :1)
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These avalanche exponents are connected to the spreadii 2.5 . . .
exponentss, 6, andz (see, for instance, Reff10]). First, the {
survival probabilityP4(t) is simply given by the integrated :Ts !
avalanche duration 2 Ta

) *T
oc S ,L % |
P(t)=2> Pyt) 28 &
t'=t
= i 3t
yielding < 1 i
2
7=1+94. (29 8 15 - s%7 .:g .
[} - E
Since y;, =z the radius exponent is given by 8 : . ;
7,=1+26. (30) s J
Taking into account that the avalanches of the Manna mode ! 1 2 3
are compact {,,=D) below the upper critical dimension D

Dc=4 [22,23 we find FIG. 11. The avalanche exponents of the Manna model in vari-

75 ous dimensions. In order to avoid overlaps the exponents are
T,=1+—. (3D slightly shifted. The avalanche exponents of the SOC version of the
D Manna modelleft) are obtained from Ref26] for D=1 and from

. ) . Refs.[23,2 for D=2,3. Using the Eq929)—(33) we obtained the
Finally, the number of topplings, for an avalanche that is 3yajanche exponentsniddle) from the spreading exponends 6,
active at timet equals the integrated numbers of active siteSangz Using certain hyperscaling relations it is possible to express
I.e., the avalanche exponen(gght) in terms of the exponents of the

continuous absorbing phase transition, see Ep—(57).

t
stPa(t)=t§O Ne(t), ELRT Fig. 13 we check this scaling law. As can be seen it is
fulfilled within the error bars.
leading to[10] Next, we consider the hyperscaling relation
=1+ 33 _D.F ) 36
ST vt s (33 ‘9_7_7”_ : (36)

Thus, the avalanche exponents of the Manna model are nattthjs scaling relation can be derived if one assumes that the

rally related to the spreading exponents of the absorbingteady-state scaling forms and the dynamical scaling forms
phase transition. In Fig. 11 we compare our results withcgn be combined to
those of SOC simulations of the Manna model. The data

show that the above scaling relatiofsgs. (29)—(33)] are 0.8 : :
fulfilled. 10— ‘
5 0.8 [EI
V. DISCUSSION Tos| .
. . . . 06 % m=0.4 F . 1]
In this section we check several scaling relations. Due to 2z opi,
the pathological behavior of the one-dimensional CTTP we&y: Foz 0
use the corresponding values of the Manna model for our - 00— 5 s
consideration. At the beginning we check the scaling reIationS 0.4 5 D .
©
y'=Dv,~28 Gy & .
>
which can be easily derived from the scaling form of the g2 | oy ]
order-parameter histogrataee, for instance, Reff18]). The mDv -2 ¢
corresponding data are plotted in Fig. 12. As can be seen, th %
above scaling relation is fulfilled within the error bars.
Taking into consideration that a weak external field may 0.0 ‘ ‘ '
trigger spreading events one finds that the field exponent it ! 12) 8

given by[1]
FIG. 12. Test of the scaling relations =Dv, —28, a= /v,
o=Dv, +vy—vd. (35 (insed, as well ass= B/ v (insed.
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3.2 . . In the case where one starts the simulations with a single
' e seedp, =L P we gett=L?P(P~29 Taking into account
il = DIy that z<zD/(D —z6) we find thattrss<t,, i.e., finite-size
0471 B 1 effects take place before the algebraic decay of active par-
o 281 & IE | ticles start§Eq. (15)] and the second scaling regime does not
?= ¢ .?, 02 occur. Furthermore, we can use fett gsthe approximation
c
z g Ei B -1z -D D/z— &
:" 24 + 0.0 y 5 é - prC(O1OaLL(att) 1l!a0|— (att) )
3 by ~Rood0,0%, Laopa d art)*' )~ agl (at) "+~
B (4D
© 20 + [ o] §§ i
BDv +v -8 and Eq.(40) reads now
N ~ag(at) Atbiz=s (42)
1.6 ' ‘ ‘
1 2 3
D Comparing this result with Eq22) we obtain the hyperscal-

) ) ing relation Eq(36) as well asag=1/ay . In the inset of Fig.
FIG. 13. Test of the hyperscaling relations=Dv, +»—»6 13 we display the data of the corresponding exponents. The

and 6=D/z— B/v|— & (see inset hyperscaling relation, Eq(36), is fulfilled within the error
bars.
Na(8p,h,L,t,pa0=L"pa(dp,h,L,t,pa0 The situation is completely different if one starts the

Dy — = ” simulations with a homogeneous particle source. For in-
~L N PRppd @,5pN,anh\ 7, stance, a random distribution of particles leads for the two-
a LA "L, ath ", agpa ALY 19). dimensional CTTP to an initial densify, ¢~0.1703. In that

‘ case the crossover time
(37
1

Here the initial density of active sites,, appears as an to=—
additional scaling fieldsee, for instance, Reffl] and refer- ay

ences thereinand the scaling function behaves asymptoti- _ _ .
cally as is too small and the short time scaling regimé,¢t? for 1

<t<t.,) cannot be observed. On the other hand, the scaling
x forx<1 form, Eq.(37), yields for the second regimé (<t<<tggd

const forx>1. (38

— Pao ~1.14 (43)

1 —1/(Dlz— &)
an )

Rppd 0,090, 1)~

pa(op,h,L.t,pag
Starting at criticality from a low density of active sités.g., -
several seedsthe number of active sites increases Mg ~(at) PRy, (0,08 L(at) ~ M 1a0p, ¢°'*9)
«t? until it reaches a maximum and crosses over to the ex-

~ - Blv|B
pected asymptotic decayct™ . The crossover time is de- (at) IRpbd 0,092,1.2). (44)

termined b
y Comparing this result with Eq15) we get the scaling rela-
O(aOpa,({attco) blz- 5): 1, (39 tion
which corresponds to a merging of the surviedd former B
separatedclusters of activity[1]. The scaling of the cross- a=—, (45

over time explains the choice of the scaling exponents in Eq. "I
37). Settinga;tA~ "I=1 we find at criticalit ~
S 9% y as well asR,,{0,00°,10)=1. But as can be seen from the

N40,0L,t,pa0~LP(at) A inset of Fig. 12 this scaling relation is clearly violatedDn
5 ' =1 andD=2. ForD=3 we think that the violation of Eq.
X Ropd0,08 L(at) " *%,1a0p,d ast) > 9). (45) is hidden by the overlapping error bars, i.e., the above

(40) scaling relation is violated below the upper critical dimen-
sion, as already observed in previous simulatipfis Fur-
The full crossover can be observed if the particular value ofhermore, the violation of the scaling relation, &45), ex-
the initial density of active sites, oleads to ¥t <trss(as plains vv_hy the well known hyperscaling relation of directed
it was for instance observed for directed percolatiaf). ~ Percolation
Therefore, the first regimgEq. (22)] is obtained for Xt
<t.,, the second regimgEq. (15)] for t.<t<tpgs, and 0+ ot 5= E (46)
finite-size effects take place in the third regime fortggs. z
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' The percolation probability is expected to vanish at the criti-
cal density according to
S N Ppercoc 5Pﬁ . (48)
Na~te \\N;t'w Y Assuming that the survival probability obeys the scaling
| form
Zm W \
= apPy( 5p,L,t)~>\‘5”\\Ppbc(ap5p)\,att)\‘"H,a,_L)\‘”l)
/ \ (49
VY
N;t—a\ o\ we find in the thermodynamic limit
L
Pperc= M P4 8p,t,0) ~ap (a,8p) *IPppd 1,0,
3 t—o
(50)
In ¢ foo leading to the scaling relation
FIG. 14. Sketch of the crossover behavior of the number of 5= :8_, (51)
active sitedN,. Fort<tg, N, scales as’, whereas it is expected to V| '

decrease for>t., asN,<t 7"l It is possible that a too low expo-

nent (@<p/v)) is observed in simulations if one has not reachedThus the hyperscaling relations, E¢35) and(36), read now
the asymptotic scaling regim@ong-dashed ling

is not fulfilled for absorbing phase transitions with a con- o=v Dry=F, 52
served field. »,D—B—B'

It is worth mentioning that this scaling anomaly is not - - 7 7 (53
caused by the particular initial configuratiorandom distri- d

bution of particles We have observed the same behavior for In th ¢ directed lati Isg’ due t
amorenatural initial configuration, where the correlations of n Ie case ? mzc et' percola |oa%,e(|qua Sp” due to al
the active and nonactive sites are not trivial. In this case Wépeflatsymme y utn ?hr ;”E)e trﬁveré ] rt] a dmore fgen_era
start the simulations from a steady state at the critical densit ontext one expects mat both exponents |tﬂsﬂr, or in-
with nonzero fielch. Switching off the external field we have tance, in systems with infinitely many absofb'”g states or, as
measured the relaxation of the order parameter from the jnflh OUr case, in systems where a co_nserved field co_qples to the
tial density p, o= pa(pe,h). For p,o~0.1 we observe the order parameter. The number of independent critical expo-
a,0— Pa\Mc»,'l)- a, . ; ’ ;
same scaling function and the same exporeas in the case nents is therefpre expected to be fcﬁarg.,ﬁ,ﬁ |, v) in- :
of a random initial configuration. stead of three independent exponents for directed percolation
A possible explanation of the above scaling anomaly idB:v| IfjiF) Inlgr?]er to Ched(.:k this sce;?ﬁrl[ohwe/ comspare'ln the
that the asymptotic scaling regime is so far not observed. Thigset of Fig. 12 the spreading exponentit '8 y| . Surpns-
situation is sketched in Fig. 14. In the case of the two—'ngly’ we obse_rve that both yalues agree W'th'.n the error bars
dimensional CTTP the crossover takes place gt+1.14 for all d_lmensmns, su.ggestlng.:,B’. It IS po;smle that the
whereas finite-size effects occur e~ 6000 forCL=512, uncertainty of our estimates hides a tiny difference of both
Thus, the condition ,<t<tgggseems to be fulfilled and one exponents. A more accurate test of the scaling relafeB :
would expect to observe the asymptotic scaling behavioFOuld b_e_ obtal_ned by a_dlrect measurement of the percolation
t~#”lI. But it is known that crossovers span several decadegrobab llity which remains the topic of future research.
of magnitudes, usually 5, 6, 7 or even more decddes, for
instance, Ref[24] for a recent work on crossover effects for VI. CONCLUSIONS
the same universality clasdn this way it is possible that
one observes in simulations a smaller exponent0.419
than the asymptotic valueg{v=0.522). Future work on
larger lattice sizesl(>512) are needed to clarify whether
the scaling anomaly can be explained by a simple crossov

We analyzed numerically the critical behavior of three
different models exhibiting a continuous phase transition into
an absorbing state. In particular, we introduce a method
which allows one to consider finite-size effects in the steady
Ghtate. It is therefore possible to obtain accurate estimates of
effec_:t. . . _ the correlation length exponent. Additionally, we determine

Finally, we consider the percolation probabil@pecthat e spreading exponents which describe the spreading of ac-
a path of active S|t_es propage.lt.es .through the system. vaﬁvity at the critical point. A detailed analysis of certain scal-
ously, the percolation probability is related to the survivalingrejations shows that usual hyperscaling relations are ful-
probability via filled. Only the activity spreading from a homogeneous

Pperc= lim P(t). (47  particle source exhibits a scaling anom_aly. So far _this scaling
t—oo anomaly is not understood and remains the topic of future
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research. The number of independent exponents due to the Fig. 11 we compare these values with the avalanche ex-
scaling anomaly of the exponeatis at least four. In the case ponents obtained from SOC simulations of the Manna model
that B#p’ it is even 5. [23,25,28. All SOC exponents agree within the error bars
Since the hyperscaling relations, E@85) and (36) are  with the avalanche exponents derived via the above scaling
fulfilled, it is possible to connect the SOC avalanche expodaws. Thus it is possible to express the avalanche exponents

nents to the steady-state exponents of the corresponding aprs,7,, .. .) of SOCsystems in terms of the usual critical
sorbing phase transition: exponents of a second-order phase transition
8 (B,v, TR ). Inthis way, the critical state of SOC sand-
g i I 1t I-
r=1+7+D— — =1+, (54) pile models is closely related to _the critical state of an ordi
v, v, nary second-order phase transition.
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