RAPID COMMUNICATIONS

PHYSICAL REVIEW E 68, 055302R) (2003

Improved & expansion for three-dimensional turbulence:
Summation of nearest dimensional singularities

L. Ts. Adzhemyart,J. Honkonerf, M. V. Kompaniets: and A. N. Vasil'eV
!Department of Theoretical Physics, St. Petersburg University, Ulyanovskaya 1, St. Petersburg, Petrodvorets, 198504 Russia
Theory Division, Department of Physical Sciences, P.O. Box 64, FIN-00014 University of Helsinki, Finland
(Received 28 February 2003; published 18 November 2003

An improvede expansion in thel-dimensional >2) stochastic theory of turbulence is constructed by
taking into account pole singularities dt—2 in coefficients of thes expansion of universal quantities.
Effectiveness of the method is illustrated by a two-loop calculation of the Kolmogorov constant in three
dimensions.
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The renormalization-groufRG) method in the theory of with the use of renormalization of composite operators have
turbulence is based on the stochastic Navier-Stokes equatidieen used to this end], but without clear-cut conclusions
with a Gaussian random fordd—3]. One of the central yet. Experimentally the anomalous-scaling exponent in the
problems is the calculation of the Kolmogorov constént function S, is at least small, if not zerfl5]. In the third-

the dimensionless amplitude in the scaling g4 order structure functionS;—which we also use in our
calculation—there is no anomalous scaling at all. Therefore
S,(r)=C(&r)23 1 we think that the factoC in Eg. (1) may be consistently

calculated as a constant independent.of

) In the RG approach td-dimensional turbulence a power-
expressing the dependence of the second-order StructUfige correlation function of the random force is often used:

function S,(r) on the relative distancein the inertial range (ff)~Dok4 922=d (k). In the RG framework various
rq<r<L. Here,L is the external length of turbulenagy the 4, antities may then be calculated in the form ofsaexpan-
dissipative length, and’ the energy injection rate per unit sion which subsequently must be extrapolated to the physical
mass(which, in the steady state, coincides with the dissipavalue e=2. For some important quantities tleexpansion
tion rate. breaks off, which for the functio,(r) yields the Kolmog-
There have been several attempts to solve this problemrov exponeng [as in Eq.(1)] at e=2. To find the Kolmog-
[5-14], but they all suffer from ambiguities in connecting orov constant the amplitude of this function has to be calcu-
model parameters and observable quantities. Due to thigated, which, however, can be done only approximately,
there are significant discrepancies in the predicted numericlecause ite expansion does not break off. In calculation of
values forC (the spread is about a factor of. 2n this Rapid  the amplitude, apart from technical difficulties, a principal
Communication we analyze reasons of this unsatisfactorgroblem arises as well: the answer #8(r) has to be ex-
situation and present results of a calculation based both on Hressed in terms of the energy injection ratas in Eq.(1)]
expression ofC in terms of universal quantities and account;\«tooq of the paramet@, of the powerlike forcing func-

of additional singularities arising in two dimensions. Rather,[iOn Different ways to treat this problem in Ref&—14]
unexpectedly, the analysis reveals that these singularitieﬁ )

. ; ave led to different one-loop values Gf

have a major effect on the numerical values of observable |, pot [7] (see also Refd5,6]) the connection between
guantities well above two dimensions. We show that a parti — . . .
summation of these singularities is possible and significantlaxlb0 and& was sought with the aid of the exact relation
improves the numerical value obtained @rTo assess prop-
erties of the expansion produced within the RG approach, we — (d=1)
have carried out the calculation in the two-loop approxima- - z(zw)df dk d¢(k). @
tion (the results of Refg5-14] were obtained in the one-
loop approximation _ ) o

It should be emphasized that the RG yields for the strucln the unphysical region<2 this integral has to be cut off at
ture functions a representation in which the Kolmogorovwave numbers of the order df=ry". At fixed € this pro-
power ofr is multiplied by an unknown functiop(z) of the  cedure introduces, first, dependence ©mwf the form Dy
ratioz=r/L. In the inertial range<1, therefore to find the ~(2—¢) in Dy (which has to be taken into account in the
behavior of the structure functions in this range it is necesconstruction of the: expansiol and second, an ambiguity
sary to know the asymptotics @f(z) for z—0. The behav- connected with the possibility to replace the upper limiby
ior ¢(z)~const corresponds to the Kolmogorov scaling,cA with an arbitrary coefficient. The first feature is rather
whereas anomalous scaling means thdiz)cz® with a  natural, because the powerlike forcingds(k)~(2
<0. It is not possible to determine the scaling function —&)k* 972¢ reproduces in the limit—2 the realistic forc-
from the RG equations and more sophisticated methods liking by infinitely large eddiesds(k)~ 6(k). The second fea-
infrared perturbation theory and short-distance expansioture, however, introduces arbitrariness in the sought connec-
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tion betweerDy and & through the coefficient , Which _ _{ C=—[ 0(2) @)
in turn renders the: expansion ofDy-dependent quantities 3Q(2)] 2| d(d+2) '

ambiguous(in Ref.[7] the simplest choice=1 was usejl _ _ _ o
This is a reflection of the fact that the physical content of thelhe use 0fS;(r) in constructing universal quantities is ad-
theory remains unaltered whéy is multiplied by an arbi- vantageous because it can be found exactly from the spectral

trary functionF(e) with F(2)=1. energy balance for a#<2 in the form

Another way to fix the connection betweéry and & has 263
been used in Ref$8—14]. It amounts to the use of an exact Sy(r)=— S(d-DI'(2—&)(r/2) Do
relation (for the physical value=2 of the falloff exponent (4m)9°T (d/2+ )

which allows to connect the spectral energy flux with an
integral of a third-order correlation function, the latter beingallowing us to avoid calculation of graphs in construction of
subsequently calculated in the form of arexpansion. The thee expansion foiS;(r). It also confirms that passing to the
use of this relation in the unphysical regier<2 is tanta- physical limit e—2, in which I'(2—e)~1/(2—¢), requires
mount to a certain choice of the functidh(¢) mentioned Dg=a(2—¢) to yield a finite value of5;(r). The choice of
above. a consistent with Eq(2) leads to the % law” of Kolmog-
Thus thee expansion of the Kolmogorov constant in the orov: Sy(r)=— g?r [4,16].
model with the powerlike forcing is not unambiguous. |n the e expansionQ(e) has the structurfl7,18
Therefore a better or worse agreement with the experimental
value ofC at the one-loop level does not bear much meaning ~
until a procedure for subsequent approximations has been Q)= Qud)e )
pointed out and the stability of obtained results checked. On k=0
the other hand, since the real value of the expansion para
etere=2 is not small, it is difficult to expect good quantita-
tive results without estimating—at least approximately—
higher orders of the expansion.
In the model at hand, only quantities independenDgf
have rigorously unambiguous dependence: gwe will call

Mk d>2. The RG method allows us to find successively the
coefficients ofQ,(d) as a result of calculation of renormal-
ization constants and scaling functions in perturbation theory
(loop expansion In Refs.[5—14] only the one-loop approxi-
mation was used in the calculation of the Kolmogorov con-
: o S stant. A detailed account of the method of calculation and the
them gnlver§al Such quantmes are, €.g., cr|t'|cal eXPONeNtS aqy)its of the two-loop integrals has been given in RET].

and dimensionless ratlo/;of strycture functlctB.}ﬁr), the. Specific results for the expansi@db) of the universal quan-
skewness factof=S;/S5? in particular. Calculation of uni- tity Q(s) for d=3 may be found in Ref{18]. The analytic

versal quant!ties with the. use of the RG method anddhe expression for the one-loop contributi@y,(d) in Eq. (5)
expansion yields unambiguous results and cannot lead ti%[l?]

such “paradoxes” as different one-loop values for the Kol-
mogorov constant. 1

In view of this we have pursued the goal of finding a Qo(d)= 5[4(d+2)]1/3- (6)
suitable universal quantity the physical value of which would
be simply connected with the Kolmogorov constant, and calt,g two-loop contributionQ,(d) gives rise to integrals
culating this quantity with the aid of the RG. The skewnesshich may be evaluated numerically for adyFord=3 the
factor S, connected with the Kolmogorov constant through .5(culation of the Kolmogorov constant according to E4).
the exact relatioiC = (—4/55)°[4,16], might serve as such yields the valuesCY)=1.47 (one-loop approximationand
a quantity_. Howeve_r, in the unphy_sical region 2 '_[he stru_c- C®=3.02(two-loop approximation Although the two-loop
ture functionS,(r) T,tdh,ez model with the powerlike forcing - ¢orrection is not small, the recommended experimental value
correlationd; (k) ~k ° c_qntams—ata;zngn indepen- ot c~2.0[4,19 lies in between the values given by the two
dent ofr UV-divergent additive term~ A" [for S3(r)  4pproximations. Hardly any more could be expected in view
this problem is absent, see belbwAs a consequence, a of the fact that the value of the expansion parameter is not
straightforward generalization of the skewness facfr gmg|, Below we show that the agreement with the experi-
=$3/S3” to the regione<3 becomes pointless, because thement may be significantly improved by an approximate ac-
pOWerS ofr in this definition do not cancel due to the con- count of the high_order terms of the expanstém
stant term inSy(r). Therefore as the desired universal quan-  Analysis of the dependence of the functi®@g(d) on the
tity we chose the “nearest relative” of the skewness factor,space dimensionl shows that they have singularities ct

the quantity[17] <2. In particular, Q(d)~A~K for 2A=d—2—0. This
means that in the course dftending to 2 the expansiaib)
raSy(r)lar  raSy(r)lar necessarily will become “spoiled,” because the relative con-
Q(e)= o =" (3)  tribution of the high-order terms will grow without limit. In
|Ss(r)| [—Ss(r)] the present two-loop approximation this feature shows in that

the ratioQ4(d)/Qq(d) in the limit d—ce (far away from all
independent of in the whole region 6.e<2 which allows  singularitie$ is abouts; and monotonically grows with de-
us to find the physical values of andC as creasingd assuming atl=3 the value=3 of which the ma-
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jor part is brought about by graphs singular in the limk 2 which corresponds to an approximate calculation of the co-
=d—2—0. This gives rise to hope that summation of lead-efficients (7) of the ¢ expansion(5) with the account ofn
ing A singularities in Eq(5) allows us to improve quantita- terms in the sun(8). For a RG calculation of the quantity

tive results of the RG theory. Q! in the (s,A)-expansion schem{@0] an n-loop approxi-
In the theory of turbulence the space dimensiba2 is  mation would be needed.
exceptional from both the physical point of vigadditional Let us assume for the moment that we have carried out an

conservation laws, inverse energy casgaaed the formal n-loop calculation in the usual expansion thus determining
procedure of UV renormalization, because in the limit the following partial sum of the serid§),
—2 new divergences appear in the graphs of the perturba-
tion theory. These divergences show as poled\im the
coefficientsQ,(d) for n=1 in Eq. (5). A consistent proce- 81’32:0 Qu(d)==QL", (11)
dure to deal with these divergences by an additional
renormalization—which we shall use—has been developednd ann-loop calculation in thee,A)-expansion scheme as
and gives rise to a two-parameterA) expansiorj20] of all  well, hence having determined the quant@ﬂ of Eq. (10).
renormalized quantities. Then we may amend the su¢hl) by an approximate con-
It should be noted that in thi,A) expansion the reversal tribution of all higher powers of* not taken into account in
of the direction of the energy cascade near two dimensiongq. (11). The required information of this contribution is
does not show. This reversal takes place on the crossovepntained in the quantit® ") . To obtain the improved value

between the direct and inverse energy cascades—in thge sum

(d,e) plane[21] (instead ofe the exponent of the inertial-
range energy spectrufa(k)~k ™ is used in Ref[21]; m s ) |
=4e—1 for e<2). The point is that the center of the,A) sQM=¢ kZO |—20 (e/A)* gy A
expansiore=0, d=2, the final point of extrapolatioa=2, R
d=3, as well as the segment of the line passing throughyhich enters twice in the sum of Eq4.0) and(11). Thus we
these points all lie in the region of the direct cascade fag e at the followingn-loop approximation:
away from its borderline. Therefore in extrapolation along
this line segment the problem of the inverse cascade does not Q=M+ QM — sQM (12)
arise. '

In Ref.[20] this two-parameter renormalization procedurefor Q. Our two-loop calculation yields the result
was considered an alternative to the usai@xpansion. We

n—-1

n-1n-1

exploit it in a different manner—as a way to improve the (1) 2(e+A)% v
expansion5) by carrying out an approximate summation of Q:a=2 2
. R 3(2e+3A)
the high-order contributions.
To single out the leading poles, expre3g(d) as (2& 1
k Li= 1+|0.518%k + —A” (13
Qu(d)=A"*q(4), 24=d-2, ) QP 6
with a regular function for the quantitiesQ‘"), Q{?} with the subsequent expres-
sions forsQW), sQ?:
A)= Al 8 2
qk( ) |=20 Qi ( ) 5Q(l):§(28)1/3,
Substitution of the expressions from E@8) and (8) in Eq. @
(5) leads for the quantit to the representation 5Q :(1+ 2_8 1+(0.51819+ EA } (14)
sQW 9A 6
Q(S):smkzo |Zo (el A)*qA'. (9  Calculating adl=3 the quantityQ'? from Eq.(11) with the

aid of Eq.(6) and the valugQ,(3)=0.4748 found in Refs.
. ) . [17,18, and substituting the result together with E¢s3)
The (e,4) expansion corresponds to the asymptotic regimeng(14) in Eq. (12) we find Q. in first and second approxi-
e~A—0, Ale=const. Hence the quantities/A)"in Eq.(9)  ation: (1) =1.38, Q%)= 1.84. Substitution of these values
are not considered small and the pow&tsplay the role of a ° g

: : in Eq. (4) at d=3 yields for the Kolmogorov constant and
formal small parameter. The quantify from Eq.(9) in the " o vness factor the valued{V=1.79, c2}=2.37,
nth-order approximation is

S{=-0.33,s3)=—0.22.
® n-1 In Table | we have compared values of the Kolmogorov
113 k PN constant calculated according to Ed) in the first and sec-
/A A= , nh=1, 10 )
¢ kzo |:Eo S Qe (19 ond order of the usuat expansion C,), the double(e,A)
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TABLE I. One- and two-loop values of the Kolmogorov con- In conclusion, we have shown that a proper account of the
stant in thee expansion C.) and the double(s,A) expansion “nearest singularity” in the coefficients of the expansion
(C,.»); the contributionC s in Eq. (4) is from the correctio’Q™  (5) leads to a significant improvement of the results of the

in Eq. (12), and the valueC,; is from Egs.(4) and(12). two-loop RG calculation atl=3. We have analyzed the ef-
fect of this procedure for otheat as well. It reduced signifi-
n C. Cen Cs Cett cantly the relative contribution of the two-loop correction in

the whole range considered>d=2.5. At the same time
this contribution remained large d&2, which might be an
effect of singularities in the next exceptional dimensibn
=1. Itis also possible that this is a reflection of the proxim-
ity to the zero-transfer crossover curve in dimensions close
expansion C, »), the contributionCs in Eq. (4) from the to 2. _

correction Q™ in Eq. (12) and the valueC,;; obtained O_bviously, the prop_oseql procedure of approximate sum-
from Egs.(4) and (12). In all the cases the recommended Mation of thee expansion is applicable not only to the cal-
experimental value of the Kolmogorov constai 2.0 lies culation ofQ(e), but all universal quantities such as dimen-
between the values of the first and second approximatiorﬁ'ons of composite operators.
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1 1.47 1.68 1.37 1.79
2 3.02 3.57 4.22 2.37
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