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Stability of a neural network model with small-world connections
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Small-world networks are highly clustered networks with small distances among the nodes. There are many
biological neural networks that present this kind of connection. There are no special weightings in the con-
nections of most existing small-world network models. However, this kind of simply connected model cannot
characterize biological neural networks, in which there are different weights in synaptic connections. In this
paper, we present a neural network model with weighted small-world connections and further investigate the
stability of this model.
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A great deal of research interest in the theory and applivector, A=diaga,,a,,...ay} is a positive diagonal matrix,
cations of small-world networks has arisgh+8| since the g(u)=[g1(u;),9,(U,),...,gn(un)]" denotes the neuron ac-
pioneering work of Watts and Strogaf2]. Some common tjvation functions withg(0)=0, | =[I,l,,...,Iy]" is a con-
properties of complex networks, such as Internet serversiant vectorW={w;; }yxn is the connection-weighting ma-
power grids, human communities, and disordered porous merix, in which, as in[13], w;; is defined as follows: if there is
diaz are mainly determined by the type of connection among connection between neuranand neuronj (j#i), then
their vertices or nodes. Among various _networks, Oone eXthere is a uniform random distributiom;; =w;; in the con-
tremal case is a regular network with a high degree of locahection, with values gw;;=w; <1; otherwise,w;;=wj
clustering and a large average distance, while the other ex= (j#i). The diagonal elements & are all zeros, which
tremal case is a random network with negligible local clus-means that there are no self-connections of nodes within the
tering and a small average distance. In between the two exretwork. Throughout this paper, we assume that each activa-
tremes there are small-world networks, which are a speciajon function in Eq.(1) satisfies the following sector condi-

type of complex network with a high degree of local cluster-tjon: There is a real constarke R, such that
ing as well as a small average distance.

Many biological neural networks are small-world net- g;(x)—g;(y)
works[10-13. In most existing literature about small-world S TS
networks, there are no weightings in the internal connections
of nodes. However, there are many networks, particularly  Thjs type of neural network with full and regular connec-
biological neural networks, having weights associated withjons has been extensively investigated. However, neural net-
the connections. These connection-weighted networks cann@jorks with small-world connections have not been thor-
be described and characterized by the previously proposeglighly studied, particularly with respect to their stabilities.
small-world network models. Of particular interest[l3],  For example, it is not clear whether or not the small-world
where small-world neural networks have random weights imeyral networks are easier to stabilize than the fully con-

their connections; the paper studied the cluster coefficienected ones. In this paper, we address this question by care-
and the characteristic path of such networks. In this papety|ly studying the model(1).

we use dynamical equations to describe a connection- |n the following, we always shift the equilibriura* of
weighted small-world neural network model and then furthefetwork (1) to the origin. By making the transform(t)

k, V x,yeR, j=1.2,.N.

study its stability with respect to the network topology. =u(t)—u*, we convert mode{l) to the following:
For this purpose, consider a neural network witeu-
rons described by dx(t)
—— = —AX(t) +WT(x(t)), 2
oudt) Au(t) +Wgu(t))+1 (1) !
——=—Au u ,
dt g where f;(x;(t))=g;(x;(t) +u¥)—g;(u), j=1,2,...N. Note

) thatf; also satisfies a sector condition in the form of
where u(t) =[u(t),u,(t),...,un(t)]" is the neuron state

*Email address: cgli@uestc.edu.cn For this small-world neural network model, we have the fol-
"Email address: gchen@ee.cityu.edu.hk lowing theoretical result.
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Lemma Let A ,,,{M) denote the largest eigenvalue of ma-
trix M. If N o —Ak+W)<O0, then network2) is asymptoti-
cally stable about the origin.

Proof. Select a Lyapunov function as

N
V()= fo f (s)ds.

Using the method presented [ih4,15, it is easy to verify
thatV(x(t)) is a Lyapunov function. In fact, if we define the
following function:

Gi(u)=min‘ f:fi(a)da,Joufi(a)da},

we haveG;(0)=0, G;(u)=G;(|ul); for reR", G;(r)>0,
r>0; Gj(r)— +oo, r—+o. Let G=min{G;}. Then

N .
V(x)=i§l . f.(s)ds

=2, G(|xi[)=G(|x)).

Therefore, we have achieved a lower bound by a positive

radially unbounded function. It is then easy to verjfi5]
that

G(x(D=V(x()h=ak|x|? g>1.
The derivative ofV(x) along the trajectories of E@2) is,

by using Eq.(3),

V() =[F1(X1), - ) T X - %] T
=fT(x(t)[ — Ax(t) + WH(x(t))]
= —fT(x(t))Ax(t)+ fT(x(t))WF(x(t))

<fT(x(t)) f(x(t))

A+W
k

I (D).

A
$)\ma>¢( _E+W

Therefore, ifA ma(—Ak+W)<0, then we have/(x(t))<0,
implying that network(2) is asymptotically stable about the
origin.

BecauseA is a diagonal positive matrix, it is easy to de-
duce the following corollary.
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FIG. 1. Maximum eigenvalue oV with respect top.

Corollary. If N\ (W)<min{a/k}, then network(2) is as-
ymptotically stable about the origin.

Although we can derive some less conservative stability
conditions for Eq(2), we use only the above results in this
paper, because they are very simple and easy to verify. Fur-
ther, because these conditions use only the maximum eigen-
value of the connection matri¥, we can “average” them
when using statistical methods to investigate the properties
of the connection matrix, as further explained in the follow-
ing.

Aiming to describe a transition from a regular network to
a random networl{,9] introduced an interesting model, now
referred to as the small-worl(SW) network. The original
SW model can be described as follows. We take a one-
dimensional lattice oN vertices arranged in a ring with con-
nections only between nearest neighbors. We then “rewire”
each connection with probabilify. Rewiring in this context
means randomly reconnecting the whole lattice, with the
¢tonstraint that no two different vertices can have more than
one connection between them, and no vertex can have a con-
nection with itself.

Note, however, that it is quite possible for the SW model
to be broken into unconnected clusters. This problem can be
resolved by a slight modification of the SW model, suggested
by Newman and WatteNW) recently[1]. In the NW model,
we do not break any connection between any two nearest
neighbors. Instead, we add with probabilftya connection
between each unconnected pair of vertices. Likewise, we do
not allow a vertex to be coupled to another vertex more than
once, or a vertex to be coupled with itself. Fo= 0, this
reduces to the originally nearest-neighbor coupled network;
for p=1, it becomes a globally coupled network. Here, we
are interested in the NW model starting from a nearest-
neighbor lattice with four neighbors and a connection-adding
probability O<p<1.

From a coupling-matrix point of view, networt2) with
small-world connections evolves according to the rule that,
in the nearest-neighbor coupling mati¥ if w;;=0, we set
wij=w;;=w with probability p and a uniformly randomly
distributed weight 8w<1. We denote the new small-world
coupling matrix byW(p,N) and letA ,,(p,N) be its largest
eigenvalue. According to the corollary above,\if,.,(p.N)
<min{a /k}, then the corresponding small-world neural net-
work is asymptotically stable about its zero state.
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FIG. 2. Maximum eigenvalue oV with respect ta\. FIG. 3. Stability zone of the network in the given example.

Clearly, the network stability depends on the probability : . .
p, SO it is more practical to investigate the statistical proper—ematlcal expectatignand(2) for any givenp (0,11, there

. o " . .
ties of the connection matri}V. It is easy to see that the exists a critical valueN suph that if 5<TN$N then the .
mathematical expectation of the number of neurons that ar%mall—world neural network is asymptotically stable about its

connected to each neuron, i.e., the number of nonzero entrigS"o statg(in the sense of mgthematical expectalion'
in each row oM/(p,N), is n,=4+ (N—5)p. Because of the Clearly, neural networks with small-world connections are

uniform random distribution of the weight values, it is also easier to stabilize than their regular fully connected counter-

easy to see that the mathematical expectation of the sum rs. . .
entries in each row ofV(p,N) is 0.54+(N—5)p], where Next, we co':’lilde;\eindgxample of net\c/jvo(hﬂg), W't.h the
N=5 (the smallest neuron number of the nearest-neighbo‘?onSFa,mt vectoi =0, A= '?‘9{5’5’---’3’.6‘9 the activation
lattice with four neighbors Thus, by Lemma 2 of16], we conditiong(-)=tanh(), which also satisfies conditiof3).

can calculate the mathematical expectation A\gf,,(p,N), Frqm the above rgsults, we know that for any givetor
any givenp), there exists a correspondipgor a correspond-

which is 0.54+ (N—5)p], whereN=5. Hence, the small- .
world neural network is asymptotically stable about its zeroN9 N) that guarantees the stability of the network. The

state, in the sense of mathematical expectation, if40.5 hatched hzone 'SI.F'g'f?’hS.hOWS |t|he vleguespoalnd N thakt
+(N=5)p]<minfa/k}, N=5. This also means that the ensure the stability of this small-world neural network. In
small-world neural network is asymptotically stable in thethIS exa_mple,_the aver?‘ged _numl_)er of connections of each
sense of mathematical expectation if the number of connedi€lron in various configurations "%:.9'8592' This result
tions of each neuron, in the networks is.<2min{a; /k}. also coincides with the above analysis.

Figures 1 and 2 show the numerical values\gu(PN) on SRR 2 SRS RS, RS TS 12
as a function of the probability and the number of neurons P y yzed.

. . lytical expression has been derived that establishes the rela-
N. In these figures, for each pair of valygandN, \ ,.{pP,;N) . . i -
's obtained by averaging the results of 20 runs. From th Ir?e?rsehzlal?eb;t\;vne eEi(t)rllc? isé:Iblrigjrirl]iézzoprrkzt{c?gtmﬁi(;?ss;all-
above analysis and these figures, we can segih&br any y 9 P

. = ; . world connections, the results obtained in this paper are
?rlc\)/rina\t/gllljjtez (?[I)Nabgtyjt)\mmfxg’/g)ag]sriﬁgrsee;seasln;gjsr; Iz)n;eoarlly practical and should be useful for further studies of this kind

(2) for any given value op e (0,1], Aa{p:N) increases al- of neural network model.

most linearly to+o asN increases te-«. The above results We acknowledge support from the National Natural Sci-
imply that, if the given matrixA satisfies mife;/k}>2 then  ence Foundation of China under Grant No. 60271019, the
(1) for any givenN=5, there exists a critical valug* such  Hong Kong Research Grants Council under the CERG Grant
that if Os<p=p* then the small-world neural network is as- No. CityU 1004/02E, and the Youth Science and Technology
ymptotically stable about its zero stdta the sense of math- Foundation of UESTC under Grant No. YF020207.
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