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Virus shapes and buckling transitions in spherical shells
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We show that the icosahedral packings of protein capsomeres proposed by Caspar and Klug for spherical
viruses become unstable to faceting for sufficiently large virus size, in analogy with the buckling instability of
disclinations in two-dimensional crystals. Our model, based on the nonlinear physics of thin elastic shells,
produces excellent one-parameter fits in real space to the full three-dimensional shape of large spherical
viruses. The faceted shape depends only on the dimensionless Fopplavoankaimbery=Y R?/ k, where
Y is the two-dimensional Young’s modulus of the protein shelk its bending rigidity, andR is the mean virus
radius. The shape can be parametrized more quantitatively in terms of a spherical harmonic expansion. We also
investigate elastic shell theory for extremely large10°< y<10?, and find results applicable to icosahedral
shapes of large vesicles studied with freeze fracture and electron microscopy.
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[. INTRODUCTION spherical triangulation insures that the number of capsomers
in fivefold environments is exactly 18]. A simple icosahe-
Understanding virus structures is a rich and challengingdron of 12 morphological units corresponds (g0 while
problem[1], with a wealth of new information now becom- soccer balls and £ fullerene molecules ar€l,1) structures
ing available. Although traditional x-ray crystallography still With N=32 polygons. A(3,1) icosadeltahedroMN =132 is
allows the most detailed analydig], three-dimensional re- shown in Fig. 1. The polyoma viru$Vv40 is a(2,1) struc-
constructions of icosahedral viruses from cryoelectron miiure with 72 capsomeres, while the much larger adenovirus
crographs are now becoming routifid]. Electron micro- and herpes simplex virus atg,0) and (4,0 structures with
scope images of many identical viruses in a Variety 0f252 and 162 mOI’phOlOgical Units, reSpeCtiVEIy. Structures
orientations are used to reconstruct a three-dimensional imike that in Fig. 1 withh andk nonzero anch#k are chiral.
age on a computer, similar to C(bomputed tomography Note that the relatively small polyoma virt.(sliameter
scans in medical imaging. There are now, in addition, beau440 A) is round[see Fig. 2a)], while the much larger herpes
tiful single-molecule experiments which measure the worksimplex virus(diameter 1450 Ahas a more angular or fac-
needed to load a viruéacteriophagep29) with its DNA  eted shapg9] [see Fig. Bb)]. Faceting of large viruses is in
package[4]. The aim of this paper is to explore the elastic facta common phenomenon; the protein subunits of different
parameters and physical ideas which determine the shapes \§fuses, moreover, are very similegee below. If these pro-
viruses with an icosahedral symmetry, using the theory of
thin elastic shell$5].
The analysis of approximately spherical viruses dates
back to pioneering work by Crick and Watson in 19'%4,
who argued that the small size of the viral genome requires
identical structural units packed together with an icosahedral
symmetry. These principles were put on a firm basis by Cas-
par and Klug in 19627], who showed how the proteins in a
viral shell (the “capsid”) could be viewed as icosadeltahe-
dral triangulations of the sphere by a set of pentavalent and
hexavalent morphological unit§‘capsomers’). The viral
shells(there can also be an outer envelope composed of ad-
ditional proteins and membrane elements from the hosy cell
are characterized by a pair of integefs ) such that the
number of morphological units isl=10(h?+hk+k?)+2.
To get from one pentavalent capsomer to another, one moves
h capsomers along a row of nearest-neighbor bonds on the
sphere, turns 120°, and moves anotksteps. Euler’s theo- FIG. 1. Aright-handed3,1) triangulated neticosadeltahedron
rem relating the number of vertices, edges, and faces of ased to describe virus structure. Tte3d) structure is left handed.
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FIG. 2. The polyoma viruga) is approximately spherical, while FIG. 3. The fivefold disclination in a triangular lattice. In vi-

. . ruses, the points would correspond to capsomeres, while in lecithin
the larger adenovirug) is more facetednot to scale Images from ) 0 ) .
Ref. [9]. vesicles they correspond to lipid molecules. The highly strained flat

space configuration is shown {a). The buckled form which arises
. . . . =154 is sh inb).
tein assemblies are characterized by elastic constants anJozg 4 is shown in(b)
be”d"."g rigidity [5], we can "’.‘Sk hovy de\_/|at|ons_from a One might expect a similar phenomenon for 12 disclinations
spherical shape develop with increasing virus radius, which.j «0a4 t0 a surface with sphericaltopology. Indeed, the
scales roughly as the square root of the number of morphQs astic energy for 12 disclinations on an undeformed sphere

logical units. ; o
of radiusR has a form similar to Eq(2), namely[15],
In support of the idea that viruses with different overall 42) yI11s)

capsid size are composed of nearly identical monomers, we E~0.604s°Y R/4), (4)
note that most viral coat and capsid proteins have about the
same size, molecular weight, amino acid composition, andvhere the sphere radil® now plays the role of the system
most importantly, the same folded structure in three dimensize. Although it seems highly likely that these 12 disclina-
sions[10]. It is known, moreover, that protein structure de-tions can lower their energy by buckling for lard® the
termines the mechanical properties of proteiris,12.  nonlinear nature of the underlying elastic thepby leads to
Hence, the similarity of the protein structure of the coat/complex interactions between the resulting goni,cal deforma-
capsid proteins suggests similar mechanical properties. [#ons. A boundary layer analysis of the von rid@n equa-
addition, the presence of the same fold of capsid proteins itions for bent plates predicts anomalous scaling for the mean
unrelated virusesgbacterial phages, plant viruses, insect vi- curvature in the vicinity of the ridges connecting conical
ruses, and animal virusegdicate that the fold and its me- singularities[16,17]. Interesting scaling behavior also arises
chanical properties are conserved in evolution and could b# the vicinity of the apexes of the cones themsely/&s].
essential for proper virus assembly. Another interesting physical realization of the buckling prob-
In this paper, we argue that the faceting of large viruses isem lies in the faceting of lecithin vesicles at temperatures
caused by a buckling transition associated with the 12 isosufficiently low so that the lipid constituents have crystal-
lated points of fivefold symmetry. These singularities can bdized [19,20.
viewed as disclinations in an otherwise six-coordinated me- In this paper, we study the ground states of crystalline
dium. It is well known that the large strains associated withparticle arrays with 12 disclinations in a spherical geometry.
an isolated disclination in #at disk spanned by a triangular We find that there are indeed striking manifestations of the

lattice leads to buckling into a conical shape f8,14] buckling transition even in the curved geometry of viral
capsids or crystalline vesicles. The nonlinear Foppl-von
YR/ k=154, (1)  Karman equations for thin shells with elasticity and a bend-

ing energy are solved using a floating mesh discretization
whereY is the two-dimensional Young’s mOdUIUE, is the developed and studied eXtenSiver in the context of “tethered

bending rigidity, andR is the disk radius. The energy of a Surface” models of polymerized membrar{@d]. By taking
single fivefold disclination with “charge’s=2#/6 centered the nodes of the mesh to coincide with the capsomers, even

in a flat array of proteins of sizR is approximately small viruses can be handled in this way, although any buck-
ling transition will surely be smeared out unleBg/a is

1 large, wherea is the spacing between these morphological

Es~ ESZY R (2)  units. Ideas from continuum elastic theory will, of course, be

most applicable for vesicles composed of many lipids and for
large viruses—Viruses with as many as 1692 morphological
units have been report¢@2].
There may be inherent limitations on the size of viral
capsids that follow from the elastic properties of thin shells.
1 Because larger viruses can accommodate more genetic ma-
_ 2 terial, large sizes could confer an evolutionary advantage. If,
B~ (m/3) kIn(R/R,) + fs YR‘Z" © however,glarge viruses buckle away from a sypherical sghape,

However, above a critical buckling radiu®,~ /154«/Y,
there is a conical deformatioisee Fig. 3 such that the dis-
clination energy now only grows logarithmically witR
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FIG. 4. Mean-square asphericity as a functionYoR%/« for
many different icosahedral shells. The inset show8$,8 structure N
with Foppl-von Kaman numbery=Y R/ k~400. The arrow marks
the location of the buckling transition in flat space.

the resistance of the capsid to mechanical deformation can F'G- 5. Numerically calculated shapes with,K) indices(2,2),
degrade. As we shall see, a theory of buckled crystalling44. (6.6, and(8,8) for fixed x=0.25 and fixed spring constant
order on spheres also allows estimates of important macrg=—1- The Foppl-von Kemen numbers for these shapes are4s,
scopic elastic parameters of the capsid shell from structura’®. 393, and 694.
data on the shape anisotropy. Estimates of quantities such as
the bending rigidity and Young’s modulus of a empty viral With €=0,6,10,12,16,18 .. [23]. Although any parameter
shell might allow an understanding of deformations due toset of the form{Qg,Q10,Q12, . . .} could be consistent with
loading with DNA or RNA[4]. Although some aspects of an icosahedral symmetry, all buckled objects describable by
virus structure may be accounted for by the physics of shellhe theory of elastic shells in fact lie on a universal curve
theory, we should emphasize that other features could bparametrized by the value of R%/«. Deviations from this
driven by the need for cell recognition, avoidance of immunecurve would presumably describe biological features such as
response, etc. the protrusions of the adenovirus in Fig. 2.

A summary of our investigations of buckling transitionsin  In Sec. Il, we describe our theoretical results for disclina-
a spherical geometridiscussed in detail in Sec)lis shown tion buckling in the icosadeltahedral spherical shells pro-
in Fig. 4. As illustrated in Fig. 4see also Fig. bicosahedral posed by Caspar and Klug as models of viruggks The
shells do indeed become aspherical as the “Foppl-vorenergy, mean-square aspherity, and spherical harmonic con-
Karman number” y=Y R/ k increases from values of order tent of these shells are determined as a function of the Foppl-
unity to YR?/«k>1. The mean square “asphericitytievia-  von Kaman number, discussed above,
tion from a perfect spherical shagpeeparts significantly
from zero whenYR?/«k exceeds 154, the location of the y=YR«k. )
buckling transition in flat spaciel3]. Fits of buckled viruses
or crystalline vesicles to this universal curve would allow anMost viruses have either Foppl-von iaan numbery<150
experimental determination of the ratid«. More quantita- (implying a close to spherical shgper 200<y=<1500 (no-
tive information on the buckled shape can be obtained byiceably bucklegl Higher von Kaman numbers describing

expanding the radiuR( 6, ¢) in spherical harmonics, objects with very sharp corners cannot be obtained for vi-
ruses withR=0.2 um composed of finite size proteins. Of
E course, very high von Kanan numbersare possible for
R(6,¢)= E E QimYem(6, ), (5) spherical vesicles with crystalline order composed of much
=0 m=—+¢

smaller lipid molecule$19,20.

We have studied the scaling of the curvat@eat the
and studying the rotationally invariant quadratic invariantscreases formed after the shells buckle for lajg&Ve even-
allowed for viruses or vesicles with icosahedral symmetrytually recover the scaling proposed and studied in other ge-

namely, ometries by Lobkovsky, Witten, and collaboratdiiss,17),
but only for very largey, y=10’, appropriate for the buck-
7 led icosahedral vesicles described in HeD].
0= \/ 2 1Q¢ml?/ Qoo (6) In Sec. Ill, we discuss briefly the relevance of our work to
20+1 m="¢ m icosahedral viruses from the library of those whose structures
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have been determined by diffraction methods or by cryrowhere u;; is the strain tensoru and N are the two-

electron microscopy1-3,9. For viruses large enough to dimensional2D) Lame coefficients, and a bending energy

buckle, the model seems to account well for the deviation

from the spherical shape using the single adjustable param- 1

etery. Thege fits in tUI’I’Fl) providge informgtion anout thepratio Hb:if dS(xH?+2xcK), ©

Y/ k of the Young’s modulus to the bending rigidity. We also

discuss the possible relevance of spontaneous curvaturgherex is the bending rigidityxg the Gaussian rigidityH

terms and outward pressure induced by packaged DNA angndK the mean and Gaussian curvatures, respectidéliR,

RNA in this section. See Reff24] for a discussion of similar andR, are the principal radii of curvaturé =1/R;+ 1/R,

issues for the shapes of liquid membranes with a sphericalnd K =1/R;R, [5].) For a closed surface with fixed topol-

topology. ogy the Gaussian curvature integrates to a congpaavided

that k¢ is constantand will henceforth be dropped, as it will

Il. DEFECTS ON CURVED SURFACES have no influence on the shape. Instead of the Laoedfi-

cients we will use the 2D Young’s modulté$and the Pois-

Topological defects play a very important role in crystal- son ratiow, which are given by

line matter. A particularly common type of defect, the dislo-
cation, is largely responsible for the strength of materials, Au(pu+N) \
and in two-dimensional systems the unbinding of disloca- =
tions may drive the crystal into a hexatic ph&28]. Discli-

nations, on the other hand, are much less common in th‘.Ia'aking the variation of{ with respect to coordinates param-

CWS“’?”'”G p_hase because of their very large energy. In quas('a'trizing the surface leads to the Foppl-vorritan equations
two-dimensional curved surfaces, however, the situation ma

be quite different. The Gaussian curvature of the surface wil\y\{hldl1 are h|ghly nonllne%r'ffgnd whose solution even in
“screen” out the strain around the defect and thus lower the® oo geometries Is very di icul6]. . .
The energy of disclinations on flexible crystalline mem-

energy. Moreover, when a crystalline surface is bent to fombranes was studied by Seung and Nelson in RES]. As
a closed surface with spherical topology, defects are NeCeiscussed in the Introduction, for a thin flat plate of finite

sarily introduced into th_e Ia_lttlc_e. For a triangular lattice on 4 adiusR with an isolated fivefold disclination at the center,

sphere the number of disclinations has to be at least 12. Mor; . . .
: the energy grows quadratically with the radiukg,

generally, the differencéNs—N; between the number of . .

) T > =AYR, where A~ 7/288 is a numerical constant. If the

fivefold disclinations and the number of sevenfold disclina-

tions (assuming defects with coordination numbers Otherdlscllnatlon is allowed to buckle out of the plane this energy

than 5, 6, or 7 are absens precisely six times the Euler 1S Te.duced’ and.grows Iogarlthm}cally for_Iar&qnth aco-

L . . efficient proportional tok. In the inextensional limity — o
characteristicy of the triangulated surface, i.eNs—N7 the problem simplifies considerably and the energy is
=6x=12(1—g), where g is the genus or number of P P y g9y

handles. Thus for shapes such tigat 0 (the sphergand EpuckedBrIn(Ra), where B~ /3 anda the lattice con-

torii with extra handles §=2), the ground state must nec- stant. Thus, for small plates the flat solution is lower in en-
. - handiesg=2), the g ergy, whereas for large plates the buckled solution wins. An
essarily contain disclinationgA simple torus has genug

= : : . instability separating these two regimes occurs whgg
=1, so there is no topological necessity for defects. ~Epuoeq OF YR k~BIA. A detailed calculation in Ref,

e a1 o the rantion st el value MR~ 154
pology. P Y The spherical shapes of icosahedral symmetry we are in-

structure can be expected to dominate the energetics and af- : : .
fect the overall shape of the structure. The repulsive intera::%-eresuad in here can approximately be thought of as being

composed of 12 disclinations, and should therefore undergo

tion between the 12 disclinations will favor an arrangement. _. . "
. - X . : > a similar transition from flat to buckled. Because the surface
which maximizes their separation. Absent an instability to-

; . : : : ... of the sphere is already curved, and hence breaks the up-
e e s o e oW SyTimeLy at was presen o a in lte, 1 5 o
) y Y, " clear that a sharp instability survives in this case. However,
tices. We show below that, as a result of competition be-

; . : even if this is the case, we might still expect to see remnants
tween strain and bending energies, these structures may up: o . :
o . i . of the transition in the form of a sharp if not singular cross-
dergo a bucklinglike transition(smeared by finite size

effecty from a smooth round shape to a sharply faceteVE" We construct below simple estimates of the energies

shape as the size or elastic constants are varied and transitions involved.
P ' The total energy of the closed shell in the vicinity of the

transition is~12 times the energy of a disclinatidmvith
radius approximately equal to the radius of the spherieis

We assume a thin shell described by a continuum elasticontributions from the background curvature of a sphere,
theory, with energyH="H¢+ H,, [5], including both an in- given approximately by 8«x+4mkg. In the inextensional
plane stretching energy limit the short distance cutoff in the buckled disclination en-
ergy was provided by the lattice constant. For finitehe
cutoff is determined instead by a balance of strain and bend-
ing. We may in this case approximate the buckled disclina-

2u+N T 2uHN (10

A. Disclination buckling on spheres

Hz1 dS(2uu? +\u? 8
sT5 pUij + N Ui, ®)
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tion by a flat inner regiom <R, with energyAYF% and an
outer buckled regiom >R, with energyB«In(R/R,). Mini-

mizing the sum with respect tg,, givesY Rglxz B/2A, and
E=«B[3+In(RR)].

Because the disclination energy is independent of the two-
dimensional Poisson ratio and the Gaussian rigidity drops
out, the solution depends only on a single dimensionless pa-,
rameter,y=Y R?/ k, which we term the Foppl-von Kman o
number. Note that if the 2D elastic theory derives from a thin
shell of finite thicknessd built from a 3D isotropic elastic
medium, we havey=12(1—v3)(R/d)?, where v; is the
three-dimensional Poisson ratio, a result independent of the ;5 |
3D Young’s modulusy'; [5]. In summary, we then expect the [
energy of the closed shell with 12 disclinations to approxi-
mately be

10 10° 10 10 10
E 6Bvy/y,+D, Y<Yp Y=Y R/
== (12)
Kk [6B[1+In(y/yp)]+D, y>vp, FIG. 6. Total energy. Dotted and dashed lines are fits to Egs.

) (11) and (12), respectively. The arrow indicates the value gf
where y,=Y R/ k. The background curvature gives a con- gptained from the fit.

stant contributionD~4m7(2+ kg/k), leading as well to a

small shift in the disclination energies and hencéiandB. o continuum limit this model becomes equivalent to Egs.
For a perfect sphere, e.g.,A20.6047/36 [15]. (8) and (9) with parameter§13]
As the disclinations become more sharply buckled the

whole structure will become more faceted. This leads to the

formation of ridges connecting the vertices of the icosahe- 2 1

dron. The energy of similar ridges has been studied recently Y ﬁf' =3 (19
[16,17, uncovering some remarkable scaling relations. As

the ridges become sharper upon increasinthe energy will

increase asE jgge/ k=1.240"%(Y L%/ )%, where a is the J3. 4

angle in radians and. is the length of the ridge. In this K= 75K, KG= = 3K (16)
regime the shape is very close to an icosahedron with sharp

facets, witha~0.365 and_~1.23R, and a total of 30 ridges. . .

In the limit of very largey=Y R/ k the energy should there- The relationkg=—4«/3 was calculated by comparing the

fore crossover to bending energy of a triangulated cylinder and sphere with the
corresponding continuum expressions, and differs from the
E/k=CyY®+const, y—o, (12) one used in Ref.13]. Closed triangular surfaces of icosahe-
dral symmetry are constructed for non-negative integers
whereC~3.8. (h,k) according to the geometric principles of Caspar and

~ To check these arguments and to calculate more propeklug [7], and the minimum energy configuration is found
ties of the shells we now present numerical calculations. numerically using a conjugate gradient method for different

values ofk. As discussed in the Introduction, the integers

B. Numerical results (h,k) denote the number of steps along the two lattice vec-
cretized versions of Eq$8) and (9) [13]: Figure 5 shows some examples of the resulting shapes.

Shapes of varying size withT numbers” as large a3

€ 5 =h2+hk+k?~1500 are studied. Below we calculate some
Hs=5 <.EJ> (Iri=rjl-a) (13 properties of the shells to characterize the shapes quantita-
tively.
and

~ 1. Energy

_x A —n.)2 We first plot the total energy as a function of the Foppl-

Hp (ny—ny)*. (14 L S .

2.1m) von Kaman number+y in Fig. 6. Similar to results for an

isolated disclination in a disk with free boundary conditions
Here (ij) denote pairs of nearest-neighbor verti¢esich  [13], the energy crosses over from a “flat” regime dominated
we identify with the centers of the capsomers of a Virus py stretching energy to a “buckled” regime dominated by
with positions r;, and (IJ) pairs of nearest-neighbor bending energies. Fitting the functional form, Ety), gives

plaquettes of a triangulated surface, with unit nornmlsin ~ A~0.005, B~1.30, y,~130, which compares quite well
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FIG. 7. Mean-squared aspherityee Eq.(17)] as a function of
y=YR/« for various “triangulation numbersT=h?+hk+k?.
Data from shapes of three different sizes collapse onto a singl
universal curve, indicating that the continuum limit has been
reached for these sizes.

FIG. 8. Combination of spherical harmoni¢tsee text, which
fall on a universal curve for large enough shells. Points for triangu-
Fations defined by{,0),h=5,6, . ..,25 weraised to construct the
solid curve. Forh<5 deviations due to discreteness become large
and those points have been omitted for clarity. Points labeled 1-6
correspond tay~0.5,30,1000,15 000;810°, and 2.5< 10°, respec-

with the estimates above. For large= 10" a crossover to the tively

form given by Eq.(12) (indicated by the dashed line in the
figure) occurs.
R(6,¢)=2, R;8(¢—¢;)8(cosf—cosh;),  (20)
]

2. Aspherity

As a measure of the deviation from a perfectly sphericaBnd R; .6, ¢;) represents the polar coordinates of vertex
shape centered on the origin we calculate the mean-squar&dom the coefficient®Q,, we form the rotation-invariant

aspherity, defined by combinations
|
41
(AR?) 1 & (R=(R)? Zm 2 21
<R>2 :Ngl T, (17) Qi 20+1 & |Qiml (21

For a shape of icosahedral symme®ys are nonzero only
whereR; is the radial distance of vertexand (R) is the  for 1=0,6,1Q... [23]. We plot, in Fig. 8,Q;0/Qo Vs
mean radius, Qs/Qq, Which for large shells should fall on a universal
curve parametrized by R?/«x. Note thatany point in the

1 (Q6/Q0,Q10/Qp) plane would be consistent with an icosa-
<R>:N Z«l Ri. (18) hedral symmetry. Continuum elastic theory, however, pre-
dicts auniversalset of functionsQ,(y) parametrized only by

The result, which is displayed in Fig. 7, shows a rather shargn® Foppl-von Keman number. The buckling transition oc-

but nonsingular crossover from spherical shape to faceted &S between the points labeled 2—4 in Fig. 8, while the
roughly y=YR/«~150. The second increase around CcroSSover to the ridge scaling for very largehappens be-

YR/ k~10" coincides roughly with the sharpening of the tWeen points 4-6.

N

ridges, where the asymptotic scaling in EtR) sets in. Note 4. Curvature
that the log-linear plot of Fig. 7 extends the rangeyaf Fig. o .
4 by six orders of magnitude. The curvatureC across the midpoints of the ridges con-
necting the vertices of the icosahedra is plotted in Fig. 9. As
3. Icosahedral spherical harmonics y=YRe/k increases through the transition the ridges get

sharper and the shape becomes more faceted. A perfect
E‘Sphere would hav€ =1/R. However, as seen in Fig. &R
saturates to a slightly smaller value0.7, for very smally,
implying that the shape is not perfectly spherical below the
- buckling transition. In fact, there is a weak tendency toward
R(6:¢) % QmYim( 8, ). 19 a dodecahedral shagenhich is the dual to the icosahedpon
The effect is hardly visiblécf. Fig. 7), however. The data for
where the densitiR(6, ¢) is defined by large shells are well described by a scaling form

We first expand the radial density of points on the surfac
in spherical harmonics,
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5 discussed in Sec. Il B, vK’s in excess of®18re required to
see clearly the interesting scaling predictions of Refs.
[16,17. In the remainder of this section, we comment on the
relevance of our work to spherical virusgk3,7,9, where
the vK’s are of the order of a few thousand or less.
Reference[3] compiles cryroelectron micrographs and
other data on=30 different viruses, arranged in order of
increasing size. These images highlight the trend that small
viruses are round and larger viruses are more faceted. We
view faceted viruses as the result of 12 simultaneous buck-
ling transitions, centered on 12 disclinations, similar to the
buckling of anisolateddisclination centered on a disk with
open boundary conditiorf43]. The spherical packing of the
protein capsomers in viruses not only forces in 12 disclina-
tions (which we assume reside at the vertices of an icosahe-
0-301 o 3 5 7 dron) [7], but also breaks the up/down symmetry of a disk
YRYK with respect to the direction of buckling. Hence, we expect
(and find numericallythat the sharp buckling transition with
FIG. 9. Curvature at the midpoints of the ridges. The pointsincreasing size in Ref13] is smeared out. As shown in Fig.
labeled 16 are for the same valuesjyols in Fig. 8. The dashed 11 for bacteriophage HK9@with 72 capsomels good one
line shows the asymptotic scaling behaviery*®. parameter fits in real space to the full three-dimensional
shape of spherical viruses are possible. Our best fit for
C=R™'F(YR/«x), (22)  Foppl-von Kaman number of this mature form of HK97 is
y=Y R/ k=1480, from which we can extract the ratio of the

depending on the single paramet{a}g In the limit of large  voung's modulusy to the bending rigidityx, given that the
argumentsy—~, we find F(y)— y~°, consistent with the virus diameter is R=60 nm[3].

scaling arg’umentg of Lobkovslqt@ al. [16,13. Note, how- The precursor capsid or “prohead” of HK97 is rather
ever, thatys well in excess of 10are required before one gpperical in contrast to the larger, more faceted mature in-

CR (at midpoint of ridges)

begins to see this asymptotic result of “ridge scaling.” fectious virus shown in Fig. 1f27]. It seems likely that this
virus particle undergoes a buckling transition as it passes
l1l. DISCUSSION from the prohead to its mature infectious form. Indeed, the

prohead shell is wrinkled or corrugated relative to the mature
form [27]. It seems reasonable to regard this transformation
asa change in the effective thicknabef the viral shell:d’

of the prohead goes td<d’ in the mature form. As dis-
cussed in Sec. Il Ay=12(1— »3)(R/d)? if we approximate
éhe shell by a uniform isotropic elastic medium with Poisson
ratio v5 [5]. SinceR increasesfrom 52 nm—60 nm asd
decreases, it is plausible that-(R/d)? rises and that the

f transformation from proheadhead is accompanied by a

We have analyzed a model, based on (thighly nonlin-
ean physics of thin elastic shells, which may be suitable for
describing the shapes of large viruses and of large vesicl
with crystalline order in the lipids. Application of our results
to vesicles[19,20 seems straightforward, once sufficiently
precise freeze fracture or confocal microscope images b
come available. Figure 10 illustrates two highly faceted
shapes we found for the large Foppl-vonri@n numbers or
“vK’s” which might be relevant to the experiments of Re ) .
[20]. One complication neglected here concerns possibl@UcKling transition. .~ . .
phase separation of the binary lipid mixtures studied by . Figure 12 shows a similar f'.t o the yeast L-Awrus,_whu;h
Dubois et al. in the vicinity of the 12 disclination§20]. It Yields y=YR/«x=547. The diameter of the yeast virus is

would be interesting to investigate this effect, although a2R=43 nm, which leads to the conclusion tHat/«]eas

— -2 _ =2 H
modest enrichment of one lipid species near a disclinatior™ 1-24 NM “. Note that[ Y/« Jike7=1.64 nm “, consistent

could be incorporated into a renormalized core energy. Ag\{lth the arguments gi\{en in the I.ntroduction that spherical
viruses have roughly similar elastic constants.

Our models for virus shells are based on two important
assumptions. The first is the neglect of a spontaneous curva-
ture term[26] in bending energies such as Hf). Such a
term might be significant if the viral building blocks had a

pronounced conical shape similar to, say, surfactant mol-
ecules in a micell€26,28 or laboratory cork stoppers. Sev-
eral lines of evidence suggest that neglect of this term might
be justified. Although certain virus scaffolding proteins
FIG. 10. Two shapes for the large Foppl-vonrian numbers  (Which can act as templates for early phases of constryction
y=15600 and & 10° (points 4 and 5 in Figs. 8 and dllustrating ~ do have a conical shape, these are discarded in the mature
the sharpening of the ridges in the ridge scaling regime. icosahedral viruses of interest to us hgt¢ It is hard to see
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FIG. 11. Real space fit to a virus structure. The curve shows the root-mean-square deviation from the experimental virus shell of
bacteriophage HK9Tfull virus and cross section shown in the lower part of the figamed the theoretically calculated shape. The best fit
occurs at the minimum foy~1480 and the corresponding shape is depicted in the inset. Shading indicates the distance of the shell from the
center.

a strong mechanism for precisely defined hinge angles ian energy, as has been explored by Bruinsma, Rudnick, and
very large viruses composed of many capsoni2és30. In  Gelbart[32].

vitro assembly experiments on the polyoma virus do produce In general our work is more likely to be applicable to
spherical aggregates with 12, 24, and 72 pentameric unitarge viruses, for which simple continuum models can be
depending on conditions gfH, calcium concentration, etc. justified. Icosahedral viruses are usually composed of a com-
[31], which could be accounted for by a spontaneous curvabination of fivefold and sixfold symmetric packing units,
ture term. Although we neglect spontaneous curvature herayith the 12 fivefold units centered on the vertices of an
it is certainly possible that the physics of small viruges icosahedrorithe polyoma virus SV403] with its 72 identi-

the scaffolding proteins themselyesre influenced by such cal pentamers is an exceptjorBecause the strain energies
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3.5

RMS (A)

10

FIG. 12. Real space fit to yeast virus L-A with inset and actual virus as described in Fig. 11. The best fit ocourS4ar

which lead to buckling extend far from the disclinations DNA. Although changes in the details of DNA packing can
which produce thenm[13], we would expect our results be detected, the protein shell itself is unchanged. Thus, due
for large viruses to be insensitive to differences in the shapesither to DNA condensation or an exceptionally strong shell,
of packing elements. Special packing elements at the lthe osmotic pressure of the DNA is insufficient to change the
fivefold sites could be incorporated into a disclination coreshape. Of course, the nucleic acid content of a virus could

energy. o “nevertheless play an important role in shell asseri®4}.
A second key assumption is our neglect of the osmotic

pressure due to the confined DNA or RNA package of the
virus [4]. Here we can appeal to an experiment. Earnshaw
and Harrison[33] have compared the structure of phage

lambda(P22 with its full complement of DNA to the struc- It is a pleasure to acknowledge valuable advice and con-
ture of lambda mutants containing only 78% of the nativeversations with S. Harrison, B. Shraiman, J. Johnson, S. Bur-
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