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Global stability of neural networks with distributed delays
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In this paper, a model describing the dynamics of recurrent neural networks with distributed delays is
considered. Some sufficient criteria are derived ensuring the global asymptotic stability of distributed-delay
recurrent neural networks with more general signal propagation functions by introducing real parameters
>1,q;>0, andr;;>0,i,j=1,...n, and applying the properties of tihé matrix and inequality techniques. We
do not assume that the signal propagation functions satisfy the Lipschitz condition and do not require them to
be bounded, differentiable, or strictly increasing. Moreover, the symmetry of the connection matrix is also not
necessary. These criteria are independent of the delays and possess infinitely adjustable real parameters, which
is important in signal processing, especially in moving image treatment and the design of networks.
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I. INTRODUCTION He [18], Zhang and Jin19]) have studied the GAS of
Hopfield neural networks with distributed delays. [Ib8],

In the past decade, neural networks such as Hopfield nesopalsamy and He considered the following system of
ral networks[1], cellular neural network§2], and bidirec- integro-differential equations as a model for Hopfield neural
tional associative memory network3,4] have attracted the networks with continuously distributed delays:
attention of the scientific communitie.g., mathematicians,
physicists, and computer scientjstsince they have a wide ) " t
range of applications, for example, pattern recognition, asso- Xi(t)=—aix;(t)+ Zl bj; fﬁmki,—(t—S)gj(xj(s))der i,
ciative memory, and combinatorial optimization. Such appli- =
cations heavily depend on the dynamical behaviors. Thus, an

analysis of the dynamical behaviors is a necessary step for t=0, @)
practical design of neural networks.
One of the most investigated problems in the dynamical Xj(t)=i(t), —oo<t<0, i=1,..n,

behaviors of neural networks is the global asymptotic stabil-

ity (GAS) of the equilibrium point. The property of GAS, wherea;>0 represent the passive decay rates],...n, in
which means that the domain of attraction of the equilibriumwhich n corresponds to the number of units in the network,
point is the whole space, is of importance from a theoreticak, (t) correspond to the state vectors of iltle neural unit at

as well as an applications viewpoint in several fidlil$]. I time t, b;; are the synaptic connection strengts,are the
particular, in the neural field, GAS networks are known to besignal propagation functions; are the constant inputs from
well suited for solving some classes of optimization prob-outside the system, angl, are assumed to be bounded and
lems in real timg7—-10}, with connections to adaptive con- continuous functions ori—=,0]. The kernel functions;; :

trol also[10]. In fact, a GAS neural network is guaranteed to[Q,+w)—[0,+) (i,j=1,...n) are continuous or{0,+x)
compute the global optimal solution independently of theyith |/ “kij(s)ds=1, and satisfy

initial conditions, which in turn implies that the network is

devoid of spurious suboptimal responses. Such GAS neural o

circuits can also be useful for accomplishing other interest- J skj(s)ds<+w, i,j=1,..n. 2

ing cognitive or computational tas41,12. Thus, many 0

scientific and technical workers have been joining the study

field with great interest, and various interesting results on thdhese authors derived the criteria of GAS for the syst&m
GAS of neural networks with constant delays or without de-when the hypothesi€) held.

lays have been reportédd3—17. As is well known, the use In [19], Zhang and Jin also discussed the modgl and

of constant fixed delays in models of delayed feedback progave the criteria for GAS provided that the hypothe&s
vides a good approximation in simple circuits consisting of aheld andg; satisfied the Lipschitz conditions. However, it
small number of cells. However, neural networks usuallyhas become increasingly clear that hypothé8shas im-
have a spatial extent due to the presence of a multitude gfosed serious constraint on both physical realization and
parallel pathways with a variety of axon sizes and lengthspractical application of the networks. On the other hand,
Thus there will be a distribution of conduction velocities there are many signal propagation functions which do not
along these pathways and a distribution of propagation desatisfy the global Lipschitz condition. Kosk@0] and Feng
lays. In these circumstances, the signal propagation is n@nd Plamondof21] describes several commonly used func-
instantaneous and cannot be modeled with discrete delayspns that are not Lipschitz.

and a more appropriate way is to incorporate continuously Motivated by the above discussion, in this paper, we con-
distributed delays. Recently, some auth@@opalsamy and sider the global asymptotic stability of a class of distributed-
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delay recurrent neural networks with general functionsfori=1,...n.

which are described by the following system of integro-

differential equations:
n t
Xi(t)= _hi(xi(t))+j21 bj j_mkij(t_s)gj(xj(s))ds+Ii ,

t=0, 3

X (t)=¢;(t), —oe<t=0, i=1,..n,

whereh;(x;(t)) is continuous and differentiable.

Definition 2 A realnXn matrix A= (a;;) is said to be an
M matrix if a;;=<0 fori,j=1,..n andi#j, and all succes-
sive principal minors ofA are positive.

Definition 3 If f(t): R—R is a continuous function, then
D" f(t)/dt is defined as

D*f(t)

1
—gr = Im It —f(0)].

h—o0t

Lemma 1Let A=(a;;) be annXn matrix with nonposi-

It can be easily seen that the recurrent neural networkive off-diagonal elementf23,24, then the following state-

described by systert8) are an extension of systeft), and
include Hopfield neural networks and BANbidirectional

ments are true.
(1) A'is anM matrix if and only if the real parts of all

associative memojynetworks. To the best of the author’s €igenvalues oA are positive.

knowledge, few author$22] have considered the global

asymptotic stability of the recurrent neural netwo¢Bs Our

objective in this paper is to study GAS for the distributed-

delay recurrent neural network8) and to give a set of cri-

teria ensuring global asymptotic stability of this system with
more general signal propagation functions by introducing

real parameterp>1, q;;>0, andr;;>0, i,j=1,..n, and
applying the properties of thigl matrix and inequality tech-
niques. The results related in Refd&8], [19], [22] and the

references cited therein are extended and improved. More- 4
over, these criteria are independent of delays and possess '

(2) A'is anM matrix if and only if there exists a vector
&£>0 such thatTA>0.

(3) Ais anM matrix if and only if there existsv;>0 (]
=1,...n), such that

n
> a;w;>0, i=1,.n.
=1

(4) A'is anM matrix if and only if there existsv;>0 (i
...Nn), such that

infinitely adjustable real parameters, and they are easy to n

check and apply in practice; which is of prime importance
and great interest in many application fields and the design

E]_ aijWi>0, jzl,n
i=

of networks. Here, we point out that our methods, which are

different from previously known results, are based on the
properties of theM matrix [23,24] and inequality techniques
[3,25-27. Our theorems drop the Lipschitz condition, as-

IIl. GLOBAL ASYMPTOTIC STABILITY

Let x*=(x} ,...x*)T be an equilibrium point of the sys-

sumption (2), and do not require the signal propagationtem 3). Denotingy;(t)=x;(t)—x* , for eachi=1,...n, then
functions to be differentiable, bounded, or monotonicallyhe system3) can be rewritten as follows:

increasing.

Il. PRELIMINARY THEORY

Let C[X,Y] be a continuous mapping set from the topo-

logical spaceX to the topological space&, and R, =[O0,
+ ). In particular,C£C[(—,0],R"].

For any ¢=(¢1,...,¢,) €C, a solution of the system

(3) is a functionx=(xy,....x,)": R, —R" satisfying Eq.(3)

for t=0. Throughout the paper, we always assume that the

system(3) has a continuous solution denoted>yy,0,4) or
simply x(t) if no confusion should occurA=B (A<B)

means that each pair of corresponding element& ahd B

satisfies the inequalitys (<). In particular, A is called a
non-negative vector iAR=0.

ForxeR", we defind x(t)]" = (|x,(t)],....|x(t)])T. For
any ¢eC, [¢le=(ldrl.....[[¢all)T, where [l
=SUR .. <s=<o| #i(S)], i=1,...n.

Definition 1 x(t)=x* e R" is called an equilibrium point
of Eq. (3), if the constant vectox* =(xJ ,... x*)T satisfies

n t
hi(Xi*):]Zl by fﬁmkij(t_s)gj(x?)ds—"li (4)

~ ! t
yi(t)= _hi(Yi(t)H’jZl b; J:wkij(t_s)fj()’j(s))dS,

t=0, (5)
yi(h)=¢;(t), —o<t=<0, i=1,...n,
i which  f;(y))=g;(x)) —gj(x]), &(t)=¢i(t)—x",

hi(y)=hi(x)—hi(5),  y(O)=(1),...ya()T, (1)
= (1), ().
Clearly,x* for Eq. (3) is uniformly stable(US) and GAS
if and only if the equilibrium pointO of Eq. (5) is US and
GAS, respectively.
Throughout the paper, we always assume the following.

Hypothesis H. h; are differentiableaiéinfxiER{hi(xi)}

>0, andh;(0)=0 (i=1,...n), whereh;(x;) represents the
derivative ofh;(x;).

Hypothesis H. The functions f; (j=1,..n) satisfy
yjfi(y;)>0 (y;#0), and there exist positive constants
(j=1,...n) such that
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fi(y)) Then, the systen5) can be rewritten as
Nj=sup———, Vy;eR. (6)
yj#0 Y
- t
Hypothesis H. There exist constanty;, r;; R, andp Zi(t)=—Wi_lhi(WiZi(t))+Wi_l_Zl bjj f_ kij(t—s)

>1, such thatA—(BA+BA) is an M matrix, where A o
=diag{a}, B=((p—1)/p|by;| (P~ G/ (P~ 1), A X f(w;z;(s))ds, t=0,
= diagh\" W), B ((1/p)|b,J|qu) A =diagh /i, i]
=1,..n. Zi(t):(,Di(t), —oo<t<0, i=1,..n. (9)

Theorem 1For system(5), suppose thal; andf; satisfy
the hypothesesi; andH, above. Assume furthermore that Obviously, the equilibrium poin© of system(9) is US and

the parameters of systefB) satisfy H;. Then the equilib- GAS if and only if the equilibrium poinO of system(5) is
rium point O of Eq. (5) is US. US and GAS, respectively. We now show for aany0O and

~ o~ _ T +
Proof. SinceA— (BA +BA) is anM matrix, by Lemma 1, @~ (#1:--¢n) €C, when[e].. <Ee,
there exist constants;>0 (j=1,...n), such that

[z(t)]"<Ee for t=0, (10

n
1 - (p—r;i/(p—1) — ) /(p—
a 'p 1[ Zl wi twi[ (p— 1N IR by [ (PRI TYherel (1)1 = (2 (1), za(D)])T, E=(L,...,1).
. If (10) is false, then there must be somandt;>0 such

+)\;ij|bij|Qij]é—yi<l, (7)  that
|zi(t)[=€ (11)
wherei,j=1,..n.
Let and
Zi(t):{ -1 N (8)
Wi Tgi(D)=ei(t), —o<t<O0. From Eq.(9), we have
D" [z(1)]

gt~ sonzi(H)z(t)
=sgnzi(t)< —Wi_fﬁi(wizi(t))wLwi_lzl bijft kij(t—s)f;(w;z(s))ds
|= —»

n
t
\—a||Z|(t)|+]Zl erWJ|b”|f7 k|](t_S))\J|ZJ(S)|dS (13)
So

tl S n _
|Zi(t1)|ge*""it1|2i(0)|+f0 eai(tls)<f ,Zl i tw;[bij |\ jkij (s 6)|z(6)|d6 | ds

:e_a‘t1|2i(0)|+f —ay(ty— s)( E W, WJ )\(P rjj)/(p= l|b |(P= i)/ (P~ 1) (P~ 1/p[)\ i |l i 1P

—oj=1

inj(s_ 6)|Z](6')|d0)ds

By using the inequalitp¥b' ~*<ka+ (1—k)b for 0<k<1 anda,b>0, we obtain an estimate for the right-hand side of the
inequality above:
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ty s
|Zi(t1)|$||(pi||me*ait1+j e*ai(tlfs) f
0

—o0

inj(s_ 0)|Z](0)|d0)ds

t
se*aitle+f
0

t
<e dlie+ f
0

which contradicts the equalifjl1), and so(10) holds. By the

PHYSICAL REVIEW E68, 051909 (2003

n
_ — —ri)/(p—1 —a: _ o .
p 1j21 w; le[(p—l))\jp rjp/(p )|bij|(p aij)/(p 1)+)\]_ru|bij|q”]

n
1 o at,— re — —ri)/(p—1 — Qs — i -
e st S)< jO p ljgl Wi 1WJ[(p_1))\fp I’“) (p )|b|]|(p q'J)/(p l)+)\;lj|b”|q'1]k|](a)€d0 ds

+ e
1eai“15>( f kij(0)a;e da) ds=e dlie+(1—e dl)e=c¢,
0

where limsup., ,.[z(t)]"

meaning of uniform stability, we derive that the equilibrium = (limsup_, . ..|z,(t)],...,limsup_, . ..|z,(t)|)". From Cor-

point O of system(9) is US.
By the proof of the above theorem and E0), for any
given ¢eC, there must be some,>0. When [¢];

<Eey, we have a solutior(t) of the system(9) that satis-
fies

[z(t)]*<Ee, for t=0,

which leads to the following corollary.

Corollary 1. If the conditionsH;—H3 hold, then the so-
lutions of system(9) are uniformly bounded.

Theorem 2 Suppose thaH,—H3 hold, then the equilib-
rium point O of system(9) is globally attractive, which
means the equilibrium poir® of system(5) is also globally
attractive.

Proof. For any giveng e C, we first prove

limsudz(t)]* =0,

t— 4+

(14

D" |z(1)]
dt

n
t
+ai|zi(t)|$Jl 1241 Wf1Wj|bij|)\jkij(t—3)|zj(5)|dsz

ollary 1, there exists a non-negative constant veator
=(04,...,00)", such that

limsudz(t)]" =o.

t—+ow

(15

According to the definition of the superior limit and Cor-
ollary 1, for a sufficiently small constant>0, there ist,
>0, such that

[z()]"<(14+€)o for any t=t,. (16)
Sincefgkij(s)ds= 1,i,j=1,...n, for the above: there must

be T>0 such that

'}’iEOJ kij(s)ds<e, i=1,.n.
T

17

From Egs.(13), (16), and(17), whent=t,+ T, we obtain

=T [t n .
J'7 +J;T)j21 W; WJ|b|J|)\Jk|J(t_S)|ZJ(S)|dS

t—=T n t n
= E W|_1WJ|b|J|)\Jk|J(t_S)|ZJ(S)|dS+ 2 W|_1WJ|b|J|)\Jk|J(t_S)|ZJ(S)|dS
U | t-Tj=1

n
t—=T
_ —r ) (p-1 _q. _ _ . .
= > w; leD\Ep rjj)/(p >|bij|(p ai/(P~1)](p 1)”’[)\;“Ibi,-Iq'J]l”’kij(t—s)|zj(s)|ds

—w j=1

n
t
-1 —ril(p-1 g (D D)a (D ) )
+ >w Wj[)\ﬁp il )|bij|(p aip)/(p=1)7(p 1)/p[)\jr”|bij|q”]1/pkij(t_s)|zj(s)|ds'

t-Tj=1

Again, by using the inequalitg“b ¥<ka+ (1—k)b for 0<k<1 anda,b>0, we obtain an estimate for the right-hand

side of the inequality above:
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D [z(t)]
dt
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-1 "
_ _ —rl(p-1 g (p— ; )
+aylz(t)[<p 1f7w 121 W, 1Wj[(p_1))\§p i)/(P )|bij|(p i) /(P l)+)\jr”|bij|q”]kij(t_s)|2j(s)|ds

n
t
_ _ —r)(p—1 (b , )
+p 1J_szl w; 1Wj[(P—1)7\§p i/ )|bij|(p i /(P 1)+)\jr“|bij|q”]kij(t_5)|zj(3)|ds

n
+
_ - —-rii)/(p—1 —g: — o .
=p lfT j§:1 W; lW][(p_l))\jp I'“)(p )|b”|(p q'l)/(p 1)+)\;“|bij|q'l]kij(S)€0dS

n

! p_ljzl Wflwi[(p_l)hﬁp_r”)/w_l“bij|(p_q”)/(p_l)+)‘;”|bij %i](1+¢) 0

n

<aje+ P*ljZl wi Wi (p—D)AP P oy (P AP g N iy 4] (14 )

It follows from the above inequality that we have

n

t
Z0]=e 1z () + [ea

n
<e Az(0)|+(1—e ")

Combining Eq.(15) with the definition of the superior limit,
there aret=t,+T, 1=1,2,..., such that liqL ,.|z(t)|

=0oj, |:1,n
Letting t}— +0°, ¢—0, so we have

n
~1,- - —ri)/(p—1
oi=a 'p 1121 Wi 1Wj[(P—1)?\}p i P~

><|bij|(D_Qij)/(p_1)+)\;ij|bij|Qij]0-j
n
$ai—1p—1j21 Wi—le[(p_1)>\§p—r”)/(p—1)
><|bij|(p_Qij)/(p—1)+)\;ij|bij|Qij]a'
wherei=1,2,...n and a=max{oj}. Thus, we obtain
n
asmax( a p1> Wi’le[(p—1))\§p_r“)/(p_1)
i =1
><|bij|(p_qij)/(p_1)+)\jrij|bij|qij]) a.
If o#0, thena must be a positive constant. That is,

n
may( a P S wtwi(p- AP P
i 1=

X |bij|(pqij)/(pl)+)\;ij|bij|q”]) =1,

ae+ p*lgl wile[(p—l)xgp”1”“’1>|bij|<pqij>’<p1>+>\ini|b”|qn](1+s)ajds)

s+af1p’1j§=:1 wi1w,-[(p—1)>\§p‘rii”<p‘”|bij|<r>qm/(p1>+x;ii|bij|qij](1+s)a,-) :

which contradicts the conditiod ;. Hence,o must be a zero
vector and Eq. (14) holds. Therefore, we obtain
lim,_ ,[2(t)]" =0, ie., lim_,..[y(t)]*=0. This com-
pletes the proof.

By Theorems 1 and 2, we obtain the following resuilt.

Theorem 3Assume that the conditiort$;—H 3 hold, then
the equilibrium pointx* of system(3) is GAS.

Corollary 2. If the signal propagation functiong; are
globally Lipschitz with Lipschitz constants;, i.e., |gj(uj)
—0;(vj)|<\jluj—v| for all uj,v; e R. Furthermore, we as-
sume that the conditiond; andH; hold. Then the equilib-
rium pointx* of system(3) is also GAS.

Proof. Clearly, the globally Lipschitz conditions imply
H,. From Theorem 3, we obtain that the equilibrium point
x* of system(3) is GAS.

To compare Theorem 3 with some previous results in
[18,19,22, we make the following remarks.

Remark 1 Let p=2, r;j=q;j=1 in Hs, and h;(x;)
=a,X;, respectively. Taking the signal propagation functions
gj(x;)=tanh@;x), i,j=1,...n. Moreover, if the condition
H; and hypothesig2) hold, then we can easily obtain the
result given in Gopalsamy and H&8] as a special case.

Remark 2Letp=2,r;;=q;=1 (i,j=1,...n) in Hg, re-
spectively. Then the conditioil; becomes the following
form:

A—HA is an M matrix,

where H=B+B=(|b;;|) and A=A =diag]\;}. By Defini-
tion 1, we easily obtain thaA—HA is anM matrix if and
only if AA"*—H is anM matrix.
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If hypothesis(2) holds, the signal propagation functions
gj(x;) satisfy globally Lipschitz conditions with Lipschitz
constants,j, andAA ~1—H is anM matrix. Assume further-
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Lipschitz conditions. In fact, ifj;(x;) are globally Lipschitz
with Lipschitz constant$ ;>0 (j=1,2), i.e., there are con-
stantsL;>0 such that

more thatH ; is satisfied. Then we can easily obtain the result

given in[22] as a corollary.

Remark 3 The result of Zhang and Jin [19] stated that
system(3) with h;(x;)=a;x; was GAS provided hypothesis
(2) held, the signal propagation functiomgg(x;) satisfied
globally Lipschitz conditions with Lipschitz constanis,
and— (AA 1+ H) was anM matrix. Here, we point out that
the statement “ (AA~1+H) was anM matrix” in [19] is
not true. From the proof of the theorem[itO], the condition
should be tha®A ~—H is anM matrix. Moreover, the glo-
bal Lipschitz conditions and hypothesB® are not necessary
in our results.

IV. ILLUSTRATIVE EXAMPLES

Example 1Let n=1, h;(x;)=h(x)=2[x(t) +e®—-1],
g1(X1)=9g(x)=x, and ky,(t—s)=2/m[1+ (t—s)?]. Obvi-
ously, [gkyi(s)ds=1,a; =inf,.ghi(x) =2, and\ ;= 1. Con-
sider the scalar recurrent neural network system

t
X(t)=—2[x(t)+e"V-1]+ f

i (=g X(9ds

(18

Takingb,1=1, p=2, qq;=r1,=1. By simple calculation, we
obtain thatA— (BA+BA)=1 is a 1Xx1 M matrix, andx*
=0 is an equilibrium point of Eq(18). In view of Theorem
3, we derive thak* =0 is GAS. It should be noted here that
Josku(s)ds=co, i.e., hypothesig2) is not satisfied. How-
ever, the GAS of the equilibrium point for systgi8) can-
not be derived by using the methods[&8,19,23.

Example 2 Consider the continuously-distributed-delay
recurrent neutral network system

2
t
0= ~hu0a(0)+ 3, by | ky(t-9)9,04(sNds 1,

(19
2

t
Xo(t)=— hz(Xz(t))+jZl by; fﬁxkzj(t_s)gj(xj(s))ds_k Py

Let g;(x;)=x", kij(t)=2/m(1+t?), and h;(x;)=3(x;
+e-1),i,j=1,2. It is very easy to see thdgk;;(s)ds
=1, [5skj(s)ds=+oo, anda;=inf, _ghi(x)=3,1,j=1,2.
Moreover, if we setl;=3e—3/4, 1,=3e—3/2, b;;=1/2,
bi,=1/4,b,,=1/2, andb,,=1, then Eq(19) has an equilib-
rium point x* = (x} ,x5)"=(L1)" and [g04) - g;(1)](x
—1)=(x;"—1)(x;—1)>0 (x;#1), that is, f;(y;)y;>0
(y;#0), j=1,2. Howeverg;(x;) =x"* do not satisfy global

|9j(uj) —gj(v|<Ljluj—v|
for arbitrary u;,v;eR,j=1,2.

Then we chooser;=(1/8)L** andv;=0, j=1,2. Substi-
tute u; and v; into the above inequality, we obtain
(1/2)L; Y2<(1/8)L; M2, that is, 1/2<1/8, which contradicts
1/2>1/8. Therefore, the signal propagation functi@jéx;)
do not satisfy global Lipschitz conditions.

By employing the method of computation of the extreme
value of functions, we derive még;(x)—1/(x,—1)}=4/3 as
x;=—1/8, which implies su)qﬂ{[gj(xj)—l]/(xj—l)}
=4/3, for arbitraryx; e R, i.e., su9j¢0[fj(yj)/yj]=4/3, for
arbitraryy; e R. So, the functiond;(y;) satisfyH, with \;
=4/3.

Taking p=2, q;;=rj;=1 (i,j=1,2) inH3, and by using
Lemma 1, we obtaiA— (BA+BA)=("3,; 523 is anM
matrix. In view of Theorem 3, the equilibrium point*
=(xJ ,x5)T=(1,1)" of Eq. (19 is GAS. However, it is very
difficult to obtain the result by using the techniques of
[18,19,22.

V. CONCLUSIONS

In this paper, we derive some simple sufficient criteria
ensuring the global asymptotic stability of distributed-delay
recurrent neural networks with more general signal propaga-
tion functions by employing the properties of thMe matrix
and inequality techniques. These criteria are independent of
delays and posses infinitely adjustable real paramgters
>1, q;>0, andr;>0, i,j=1,...n. The results presented
here are more general and easier to check than those given in
the related literature because the restrictions of sufficient
conditions are less restrictive than those[118,19,23. For
instance, we do not assume that the signal propagation func-
tions g; satisfy the Lipschitz condition. Moreover, the hy-
pothesis(2) and the symmetry of the connection mathix
are also not necessary. For this reason, our results possess
highly important significance in some applied fields, for ex-
ample, the global optimization problem and the design of
networks. In addition, the methods of this paper may be ex-
tended to discuss more complicated systems such as
Hopfield neural networks, cellular neural networks, and bi-
directional associative memory networks.
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