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Global stability of neural networks with distributed delays

Hongyong Zhao
Department of Mathematics, Xinjiang Normal University, Urumqi 830054, People’s Republic of China

~Received 23 October 2002; published 25 November 2003!

In this paper, a model describing the dynamics of recurrent neural networks with distributed delays is
considered. Some sufficient criteria are derived ensuring the global asymptotic stability of distributed-delay
recurrent neural networks with more general signal propagation functions by introducing real parametersp
.1, qi j .0, andr j j .0, i , j 51,...,n, and applying the properties of theM matrix and inequality techniques. We
do not assume that the signal propagation functions satisfy the Lipschitz condition and do not require them to
be bounded, differentiable, or strictly increasing. Moreover, the symmetry of the connection matrix is also not
necessary. These criteria are independent of the delays and possess infinitely adjustable real parameters, which
is important in signal processing, especially in moving image treatment and the design of networks.
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I. INTRODUCTION

In the past decade, neural networks such as Hopfield n
ral networks@1#, cellular neural networks@2#, and bidirec-
tional associative memory networks@3,4# have attracted the
attention of the scientific community~e.g., mathematicians
physicists, and computer scientists!, since they have a wide
range of applications, for example, pattern recognition, as
ciative memory, and combinatorial optimization. Such app
cations heavily depend on the dynamical behaviors. Thus
analysis of the dynamical behaviors is a necessary step
practical design of neural networks.

One of the most investigated problems in the dynam
behaviors of neural networks is the global asymptotic sta
ity ~GAS! of the equilibrium point. The property of GAS
which means that the domain of attraction of the equilibriu
point is the whole space, is of importance from a theoret
as well as an applications viewpoint in several fields@5,6#. In
particular, in the neural field, GAS networks are known to
well suited for solving some classes of optimization pro
lems in real time@7–10#, with connections to adaptive con
trol also@10#. In fact, a GAS neural network is guaranteed
compute the global optimal solution independently of t
initial conditions, which in turn implies that the network
devoid of spurious suboptimal responses. Such GAS ne
circuits can also be useful for accomplishing other intere
ing cognitive or computational tasks@11,12#. Thus, many
scientific and technical workers have been joining the st
field with great interest, and various interesting results on
GAS of neural networks with constant delays or without d
lays have been reported@13–17#. As is well known, the use
of constant fixed delays in models of delayed feedback p
vides a good approximation in simple circuits consisting o
small number of cells. However, neural networks usua
have a spatial extent due to the presence of a multitud
parallel pathways with a variety of axon sizes and lengt
Thus there will be a distribution of conduction velocitie
along these pathways and a distribution of propagation
lays. In these circumstances, the signal propagation is
instantaneous and cannot be modeled with discrete de
and a more appropriate way is to incorporate continuou
distributed delays. Recently, some authors~Gopalsamy and
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He @18#, Zhang and Jin@19#! have studied the GAS o
Hopfield neural networks with distributed delays. In@18#,
Gopalsamy and He considered the following system
integro-differential equations as a model for Hopfield neu
networks with continuously distributed delays:

ẋi~ t !52aixi~ t !1(
j 51

n

bi j E
2`

t

ki j ~ t2s!gj„xj~s!…ds1I i ,

t>0, ~1!

xi~ t !5f i~ t !, 2`,t<0, i 51,...,n,

whereai.0 represent the passive decay rates,i 51,...,n, in
which n corresponds to the number of units in the netwo
xi(t) correspond to the state vectors of thei th neural unit at
time t, bi j are the synaptic connection strengths,gj are the
signal propagation functions,I i are the constant inputs from
outside the system, andf i are assumed to be bounded a
continuous functions on~2`,0#. The kernel functionski j :
@0,1`!→@0,1`! ( i , j 51,...,n) are continuous on@0,1`!
with *0

1`ki j (s)ds51, and satisfy

E
0

1`

ski j ~s!ds,1`, i , j 51,...,n. ~2!

These authors derived the criteria of GAS for the system~1!
when the hypothesis~2! held.

In @19#, Zhang and Jin also discussed the model~1!, and
gave the criteria for GAS provided that the hypothesis~2!
held andgj satisfied the Lipschitz conditions. However,
has become increasingly clear that hypothesis~2! has im-
posed serious constraint on both physical realization
practical application of the networks. On the other ha
there are many signal propagation functions which do
satisfy the global Lipschitz condition. Kosko@20# and Feng
and Plamondon@21# describes several commonly used fun
tions that are not Lipschitz.

Motivated by the above discussion, in this paper, we c
sider the global asymptotic stability of a class of distribute
©2003 The American Physical Society09-1
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delay recurrent neural networks with general functio
which are described by the following system of integr
differential equations:

ẋi~ t !52hi„xi~ t !…1(
j 51

n

bi j E
2`

t

ki j ~ t2s!gj„xj~s!…ds1I i ,

t>0, ~3!

xi~ t !5f i~ t !, 2`,t<0, i 51,...,n,

wherehi„xi(t)… is continuous and differentiable.
It can be easily seen that the recurrent neural netwo

described by system~3! are an extension of system~1!, and
include Hopfield neural networks and BAM~bidirectional
associative memory! networks. To the best of the author
knowledge, few authors@22# have considered the globa
asymptotic stability of the recurrent neural networks~3!. Our
objective in this paper is to study GAS for the distribute
delay recurrent neural networks~3! and to give a set of cri-
teria ensuring global asymptotic stability of this system w
more general signal propagation functions by introduc
real parametersp.1, qi j .0, and r j j .0, i , j 51,...,n, and
applying the properties of theM matrix and inequality tech-
niques. The results related in Refs.@18#, @19#, @22# and the
references cited therein are extended and improved. M
over, these criteria are independent of delays and pos
infinitely adjustable real parameters, and they are eas
check and apply in practice; which is of prime importan
and great interest in many application fields and the des
of networks. Here, we point out that our methods, which
different from previously known results, are based on
properties of theM matrix @23,24# and inequality technique
@3,25–27#. Our theorems drop the Lipschitz condition, a
sumption ~2!, and do not require the signal propagati
functions to be differentiable, bounded, or monotonica
increasing.

II. PRELIMINARY THEORY

Let C@X,Y# be a continuous mapping set from the top
logical spaceX to the topological spaceY, and R15@0,
1`). In particular,C,C†(2`,0#,Rn

‡.
For any f5(f1 ,...,fn)TPC, a solution of the system

~3! is a functionx5(x1 ,...,xn)T: R1→Rn satisfying Eq.~3!
for t>0. Throughout the paper, we always assume that
system~3! has a continuous solution denoted byx(t,0,f) or
simply x(t) if no confusion should occur.A>B (A,B)
means that each pair of corresponding elements ofA andB
satisfies the inequality> ~,!. In particular,A is called a
non-negative vector ifA>0.

For xPRn, we define@x(t)#15„ux1(t)u,...,uxn(t)u…T. For
any fPC, @f#`

15(if1i` ,...,ifni`)T, where if i i`

5sup2`,s<0uf i(s)u, i 51,...,n.
Definition 1. x(t)5x* PRn is called an equilibrium point

of Eq. ~3!, if the constant vectorx* 5(x1* ,...,xn* )T satisfies

hi~xi* !5(
j 51

n

bi j E
2`

t

ki j ~ t2s!gj~xj* !ds1I i ~4!
05190
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for i 51,...,n.
Definition 2. A real n3n matrix A5(ai j ) is said to be an

M matrix if ai j <0 for i , j 51,...,n and iÞ j , and all succes-
sive principal minors ofA are positive.

Definition 3. If f (t): R→R is a continuous function, then
D1 f (t)/dt is defined as

D1 f ~ t !

dt
5 lim

h→01

1

h
@ f ~ t1h!2 f ~ t !#.

Lemma 1. Let A5(ai j ) be ann3n matrix with nonposi-
tive off-diagonal elements@23,24#, then the following state-
ments are true.

~1! A is an M matrix if and only if the real parts of al
eigenvalues ofA are positive.

~2! A is an M matrix if and only if there exists a vecto
j.0 such thatjTA.0.

~3! A is anM matrix if and only if there existswj.0 ( j
51,...,n), such that

(
j 51

n

ai j wj.0, i 51,...,n.

~4! A is anM matrix if and only if there existswi.0 (i
51,...,n), such that

(
i 51

n

ai j wi.0, j 51,...,n.

III. GLOBAL ASYMPTOTIC STABILITY

Let x* 5(x1* ,...,xn* )T be an equilibrium point of the sys
tem ~3!. Denotingyi(t)5xi(t)2xi* , for eachi 51,...,n, then
the system~3! can be rewritten as follows:

ẏi~ t !52h̃i„yi~ t !…1(
j 51

n

bi j E
2`

t

ki j ~ t2s! f j„yj~s!…ds,

t>0, ~5!

yi~ t !5c i~ t !, 2`,t<0, i 51,...,n,

in which f j (yj )5gj (xj )2gj (xj* ), c i(t)5f i(t)2xi* ,

h̃i(yi)5hi(xi)2hi(xi* ), y(t)5„y1(t),...,yn(t)…T, c(t)
5„c1(t),...,cn(t)…T.

Clearly,x* for Eq. ~3! is uniformly stable~US! and GAS
if and only if the equilibrium pointO of Eq. ~5! is US and
GAS, respectively.

Throughout the paper, we always assume the followin
Hypothesis H1 . hi are differentiable,ai, infxiPR$ḣi(xi)%

.0, andhi(0)50 (i 51,...,n), where ḣi(xi) represents the
derivative ofhi(xi).

Hypothesis H2 . The functions f j ( j 51,...,n) satisfy
yj f j (yj ).0 (yjÞ0), and there exist positive constantsl j
( j 51,...,n) such that
9-2
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l j5 sup
yjÞ0

f j~yj !

yj
, ;yjPR. ~6!

Hypothesis H3 . There exist constantsqi j , r j j PR, andp

.1, such thatA2(BL1B̃L̃) is an M matrix, whereA
5diag$ai%, B5„(p21)/pubi j u(p2qi j )/(p21)

…, L

5diag$lj
(p2r jj )/(p21)

%, B̃5„(1/p)ubi j uqi j
…, L̃5diag$lj

r jj%, i , j
51,...,n.

Theorem 1. For system~5!, suppose thathi and f i satisfy
the hypothesesH1 and H2 above. Assume furthermore tha
the parameters of system~5! satisfy H3 . Then the equilib-
rium point O of Eq. ~5! is US.

Proof. SinceA2(BL1B̃L̃) is anM matrix, by Lemma 1,
there exist constantswj.0 ( j 51,...,n), such that

ai
21p21H (

j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!

1l j
r j j ubi j uqi j #,g i,1, ~7!

wherei , j 51,...,n.
Let

zi~ t !5H wi
21yi~ t !, t>0,

wi
21c i~ t !,w i~ t !, 2`,t<0.

~8!
05190
Then, the system~5! can be rewritten as

żi~ t !52wi
21h̃i„wizi~ t !…1wi

21(
j 51

n

bi j E
2`

t

ki j ~ t2s!

3 f j„wjzj~s!…ds, t>0,

zi~ t !5w i~ t !, 2`,t<0, i 51,...,n. ~9!

Obviously, the equilibrium pointO of system~9! is US and
GAS if and only if the equilibrium pointO of system~5! is
US and GAS, respectively. We now show for anye.0 and
w5(w1 ,...,wn)TPC, when@w#`

1,Ee,

@z~ t !#1,Ee for t>0, ~10!

where@z(t)#15„uzi(t)u,...,uzn(t)u…T, E5(1,...,1)T.
If ~10! is false, then there must be somei and t1.0 such

that

uzi~ t1!u5e ~11!

and

@z~ t !#1<Ee for t<t1 . ~12!

From Eq.~9!, we have
he
D1uzi~ t !u
dt

5sgnzi~ t !żi~ t !

5sgnzi~ t !S 2wi
21h̃i„wizi~ t !…1wi

21(
j 51

n

bi j E
2`

t

ki j ~ t2s! f j„wjzj~s!…dsD
<2ai uzi~ t !u1(

j 51

n

wi
21wj ubi j u E

2`

t

ki j ~ t2s!l j uzj~s!uds. ~13!

So

uzi~ t1!u<e2ai t1uzi~0!u1E
0

t1
e2ai ~ t12s!S E

2`

s

(
j 51

n

wi
21wj ubi j ul j ki j ~s2u!uzj~u!udu D ds

5e2ai t1uzi~0!u1E
0

t1
e2ai ~ t12s!S E

2`

s

(
j 51

n

wi
21wj@l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!#~p21!/p@l j
r j j ubi j uqi j #1/p

3ki j ~s2u!uzj~u!udu D ds.

By using the inequalityakb12k<ka1(12k)b for 0,k,1 anda,b.0, we obtain an estimate for the right-hand side of t
inequality above:
9-3
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uzi~ t1!u<iw i i`e2ai t11E
0

t1
e2ai ~ t12s!S E

2`

s

p21(
j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #

3ki j ~s2u!uzj~u!udu D ds

<e2ai t1e1E
0

t1
e2ai ~ t12s!S E

0

1`

p21(
j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #ki j ~u!e du D ds

,e2ai t1e1E
0

t1
e2ai ~ t12s!S E

0

1`

ki j ~u!aie du D ds5e2ai t1e1~12e2ai t1!e5e,
m

r-
which contradicts the equality~11!, and so~10! holds. By the
meaning of uniform stability, we derive that the equilibriu
point O of system~9! is US.

By the proof of the above theorem and Eq.~10!, for any
given wPC, there must be somee0.0. When @w#`

1

,Ee0 , we have a solutionz(t) of the system~9! that satis-
fies

@z~ t !#1,Ee0 for t>0,

which leads to the following corollary.
Corollary 1. If the conditionsH1–H3 hold, then the so-

lutions of system~9! are uniformly bounded.
Theorem 2. Suppose thatH1–H3 hold, then the equilib-

rium point O of system ~9! is globally attractive, which
means the equilibrium pointO of system~5! is also globally
attractive.

Proof. For any givenwPC, we first prove

lim sup
t→1`

@z~ t !#150, ~14!
05190
where lim supt→1`@z(t)#1

5„lim supt→1`uz1(t)u,..., lim supt→1`uzn(t)u…T. From Cor-
ollary 1, there exists a non-negative constant vectors
5(s1 ,...,sn)T, such that

lim sup
t→1`

@z~ t !#15s. ~15!

According to the definition of the superior limit and Co
ollary 1, for a sufficiently small constant«.0, there ist2
.0, such that

@z~ t !#1<~11e!s for any t>t2 . ~16!

Since*0
`ki j (s)ds51, i , j 51,...,n, for the above« there must

be T.0 such that

g ie0E
T

`

ki j ~s!ds<«, i 51,...,n. ~17!

From Eqs.~13!, ~16!, and~17!, whent>t21T, we obtain
d

D1uzi~ t !u
dt

1ai uzi~ t !u<E
2`

t

(
j 51

n

wi
21wj ubi j ul j ki j ~ t2s!uzj~s!uds5S E

2`

t2T

1E
t2T

t D (
j 51

n

wi
21wj ubi j ul j ki j ~ t2s!uzj~s!uds

5E
2`

t2T

(
j 51

n

wi
21wj ubi j ul j ki j ~ t2s!uzj~s!uds1E

t2T

t

(
j 51

n

wi
21wj ubi j ul j ki j ~ t2s!uzj~s!uds

5E
2`

t2T

(
j 51

n

wi
21wj@l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!#~p21!/p@l j
r j j ubi j uqi j #1/pki j ~ t2s!uzj~s!uds

1E
t2T

t

(
j 51

n

wi
21wj@l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!#~p21!/p@l j
r j j ubi j uqi j #1/pki j ~ t2s!uzj~s!uds.

Again, by using the inequalityakb12k<ka1(12k)b for 0,k,1 anda,b.0, we obtain an estimate for the right-han
side of the inequality above:
9-4
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D1uzi~ t !u
dt

1ai uzi~ t !u<p21E
2`

t2T

(
j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #ki j ~ t2s!uzj~s!uds

1p21E
t2T

t

(
j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #ki j ~ t2s!uzj~s!uds

<p21E
T

1`

(
j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #ki j ~s!e0ds

1p21(
j 51

n

wi
21wi@~p21!l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #~11«!s j

<ai«1P21(
j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #~11«!s j .

It follows from the above inequality that we have

uzi~ t !u<e2ai tuzi~0!u1E
0

t

e2ai ~ t2s!S ai«1p21(
j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #~11«!s jdsD

<e2ai tuzi~0!u1~12e2ai t!S «1ai
21p21(

j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #~11«!s j D .
-

int

in

ns

e

Combining Eq.~15! with the definition of the superior limit,
there are t l>t21T, l 51,2,..., such that limt l→1`uzi(t l)u
5s i , i 51,...,n.

Letting t l→1`, «→0, so we have

s i<ai
21p21(

j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!

3ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #s j

<ai
21p21(

j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!

3ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j #a,

wherei 51,2,...,n anda,maxj$sj%. Thus, we obtain

a<max
i

S ai
21p21(

j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!

3ubi j u~p2qi j !/~p21!1l j
r j j ubi j uqi j # Da.

If sÞ0, thena must be a positive constant. That is,

max
i

S ai
21p21(

j 51

n

wi
21wj@~p21!l j

~p2r j j !/~p21!

3ubi j u~p2qi j !/~p21!1l
r j j ubi j uqi j # D>1,
j

05190
which contradicts the conditionH3 . Hence,s must be a zero
vector and Eq. ~14! holds. Therefore, we obtain
limt→1`@z(t)#150, i.e., limt→1`@y(t)#150. This com-
pletes the proof.

By Theorems 1 and 2, we obtain the following result.
Theorem 3. Assume that the conditionsH1–H3 hold, then

the equilibrium pointx* of system~3! is GAS.
Corollary 2. If the signal propagation functionsgj are

globally Lipschitz with Lipschitz constantsl j , i.e., ugj (uj )
2gj (v j )u<l j uuj2v j u for all uj ,v jPR. Furthermore, we as
sume that the conditionsH1 andH3 hold. Then the equilib-
rium point x* of system~3! is also GAS.

Proof. Clearly, the globally Lipschitz conditions imply
H2 . From Theorem 3, we obtain that the equilibrium po
x* of system~3! is GAS.

To compare Theorem 3 with some previous results
@18,19,22#, we make the following remarks.

Remark 1. Let p52, r j j 5qi j 51 in H3 , and hi(xi)
5aixi , respectively. Taking the signal propagation functio
gj (xj )5tanh(ljxj), i , j 51,...,n. Moreover, if the condition
H3 and hypothesis~2! hold, then we can easily obtain th
result given in Gopalsamy and He@18# as a special case.

Remark 2. Let p52, r j j 5qi j 51 (i , j 51,...,n) in H3 , re-
spectively. Then the conditionH3 becomes the following
form:

A2HL is an M matrix,

where H5B1B̃5(ubi j u) and L5L̃5diag$li%. By Defini-
tion 1, we easily obtain thatA2HL is an M matrix if and
only if AL212H is anM matrix.
9-5
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If hypothesis~2! holds, the signal propagation function
gj (xj ) satisfy globally Lipschitz conditions with Lipschit
constantsl j , andAL212H is anM matrix. Assume further-
more thatH1 is satisfied. Then we can easily obtain the res
given in @22# as a corollary.

Remark 3. The result of Zhang and Jin in@19# stated that
system~3! with hi(xi)5aixi was GAS provided hypothesi
~2! held, the signal propagation functionsgj (xj ) satisfied
globally Lipschitz conditions with Lipschitz constantsl j ,
and2(AL211H) was anM matrix. Here, we point out tha
the statement ‘‘2(AL211H) was anM matrix’’ in @19# is
not true. From the proof of the theorem in@19#, the condition
should be thatAL212H is anM matrix. Moreover, the glo-
bal Lipschitz conditions and hypothesis~2! are not necessar
in our results.

IV. ILLUSTRATIVE EXAMPLES

Example 1. Let n51, h1(x1)[h(x)52@x(t)1ex(t)21#,
g1(x1)[g(x)5x, and k11(t2s)52/p@11(t2s)2#. Obvi-
ously,*0

`k11(s)ds51, a15 infxPRḣ1(x)52, andl151. Con-
sider the scalar recurrent neural network system

ẋ~ t !522@x~ t !1ex~ t !21#1E
2`

t 2

p@11~ t2s!2#
x~s!ds.

~18!

Takingb1151, p52, q115r 1151. By simple calculation, we
obtain thatA2(BL1B̃L̃)51 is a 131 M matrix, andx*
50 is an equilibrium point of Eq.~18!. In view of Theorem
3, we derive thatx* 50 is GAS. It should be noted here th
*0

`sk11(s)ds5`, i.e., hypothesis~2! is not satisfied. How-
ever, the GAS of the equilibrium point for system~18! can-
not be derived by using the methods of@18,19,22#.

Example 2. Consider the continuously-distributed-dela
recurrent neutral network system

ẋ1~ t !52h1„x1~ t !…1(
j 51

2

b1 jE
2`

t

k1 j~ t2s!gj„xj~s!…ds1I 1 ,

~19!

ẋ2~ t !52h2„x2~ t !…1(
j 51

2

b2 jE
2`

t

k2 j~ t2s!gj„xj~s!…ds1I 2 .

Let gj (xj )5xj
1/3, ki j (t)52/p(11t2), and hi(xi)53(xi

1exi21), i , j 51,2. It is very easy to see that*0
`ki j (s)ds

51, *0
`ski j (s)ds51`, andai5 infxiPRḣi(xi)53, i , j 51,2.

Moreover, if we setI 153e23/4, I 253e23/2, b1151/2,
b1251/4, b2151/2, andb2251, then Eq.~19! has an equilib-
rium point x* 5(x1* ,x2* )T5(1,1)T and @gj (xj )2gj (1)#(xj

21)5(xj
1/321)(xj21).0 (xjÞ1), that is, f j (yj )yj.0

(yjÞ0), j 51,2. However,gj (xj )5xj
1/3 do not satisfy global
05190
lt

Lipschitz conditions. In fact, ifgj (xj ) are globally Lipschitz
with Lipschitz constantsL j.0 ( j 51,2), i.e., there are con
stantsL j.0 such that

ugj~uj !2gj~v j !u<L j uuj2v j u

for arbitrary uj ,v jPR, j 51,2.

Then we chooseuj5(1/8)L j
23/2 and v j50, j 51,2. Substi-

tute uj and v j into the above inequality, we obtai
(1/2)L j

21/2<(1/8)L j
21/2, that is, 1/2<1/8, which contradicts

1/2.1/8. Therefore, the signal propagation functionsgj (xj )
do not satisfy global Lipschitz conditions.

By employing the method of computation of the extrem
value of functions, we derive max$@gj(xj)21#/(xj21)%54/3 as
xj521/8, which implies supxjÞ1$@gj (xj )21#/(xj21)%
54/3, for arbitraryxjPR, i.e., supyjÞ0@ f j (yj )/yj #54/3, for

arbitraryyjPR. So, the functionsf j (yj ) satisfyH2 with l j
54/3.

Taking p52, qi j 5r j j 51 (i , j 51,2) in H3 , and by using
Lemma 1, we obtainA2(BL1B̃L̃)5(22/3

7/3
5/3
21/3) is anM

matrix. In view of Theorem 3, the equilibrium pointx*
5(x1* ,x2* )T5(1,1)T of Eq. ~19! is GAS. However, it is very
difficult to obtain the result by using the techniques
@18,19,22#.

V. CONCLUSIONS

In this paper, we derive some simple sufficient crite
ensuring the global asymptotic stability of distributed-del
recurrent neural networks with more general signal propa
tion functions by employing the properties of theM matrix
and inequality techniques. These criteria are independen
delays and posses infinitely adjustable real parameterp
.1, qi j .0, and r j j .0, i , j 51,...,n. The results presente
here are more general and easier to check than those giv
the related literature because the restrictions of suffic
conditions are less restrictive than those in@18,19,22#. For
instance, we do not assume that the signal propagation f
tions gj satisfy the Lipschitz condition. Moreover, the hy
pothesis~2! and the symmetry of the connection matrixbi j
are also not necessary. For this reason, our results pos
highly important significance in some applied fields, for e
ample, the global optimization problem and the design
networks. In addition, the methods of this paper may be
tended to discuss more complicated systems such
Hopfield neural networks, cellular neural networks, and
directional associative memory networks.
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