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Cohesive energy, stability, and structural transitions in polyelectrolyte bundles
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A lattice of uniformly charged, infinitesimally thin rods decorated with an ordered array of counterions
exhibits anomalous behavior as the spacing between the rods is varied. In particular, the counterion lattice
undergoes a sequence of structural shearing or “tilting,” phase transformations as the spacing between the rods
decreases. The potential implications of this behavior with respect to the packaging of biologically relevant
polyelectrolytic molecules are commented upon.
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[. INTRODUCTION sufficiently interesting and potentially important construct
within biological and polyelectrolyte physics that its proper-
Polyelectrolyte chains naturally repel each other sincdies merit investigation.
they carry an overall electric charge. That these chains will In this paper we analyze more carefully the cohesive en-
nevertheless form condensed phases in the presence of agrgy of the background of negatively charged rods along
positely charged counterions has been known for some timavith a neutralizing, crystalline counterion system. We as-
It has also become clear that this condensation results frosume the counterions form modified face-centered cubic
some form of organization of the counterions, either dynami<{fcc) crystal. Our principal result is that, as the rod density
cal [1,2] or essentially static, in the form of a counterion increases, the counterion system maintains stability by un-
lattice [3]. In both cases, the attraction between oppositelydergoing structural transitions to “tilted” lattices. More pre-
charged regions overcomes Coulomb repulsion between thasely, we have located two symmetry-breaking structural
bare chains and leads to a net attraction. Correlations in th@ansitions: the first is of the three-state Potts type and is
counterion system are crucial, since it is well known thattherefore weakly first orddrl3]. The second is a continuous
mean field theory, represented by solution of the Poissontransition in the Ising universality class. A fluctuation analy-
Boltzmann system of equations, cannot yield an attractiorsis indicates that the transitions are mean field in nature. This
between like-charged rod4,4-§. reflects the dominating influence of long-range Coulomb in-
The physics of polyelectrolytes is relevant to biological teractions between the unscreened charges that are bound to
systems. For example, double-helix DNA will, under certainthe rods. At the end we speculate on how the singularities
conditions, organize into a condensed state in which it selfassociated with such transitions could be relevant to the
assembles into bundles of densely packed parallel [#d$ physics of packaging and other bundling phenomena in biol-
An important venue for this condensation is within the headgy. It is worth noting that structural transitions have been
(or capsids of various viruseg8]. This organization occurs recently observed in DNA-dendrimer compleXéd]. These
in spite of the fact that “naked” DNA carries a strong nega- transitions do not appear to correspond to the specific ones
tive charge—one excess electron per phosphate group on thee discuss. However, the notion of structural transitions in
backbone[9]. DNA has also been observed to form con-complexes of rods and localized charges clearly has an ex-
densed liquid-crystal-like phases in the presence of polyvaperimental as well as a theoretical basis.
lent counterions[10,11]. In addition, counterion-mediated We also touch on, but do not discuss in detail, the coun-
formation of actin bundles has also been obsef&t]. In-  terion “melting” transition expected when the rods are far
terestingly, in this last case, there is evidence of a kind ofpart. This leads to a “counterion liquid.” The attraction be-
counterion lattice, in the form of a charge-density-wave—liketween rods in such a state has been extensively explored by
modulation along the axis of the condensed actin filamentsda and Liu[2,15,16. The melting transition is continuous
In such a lattice, the “counterions” in the lattice actually and can be shown to be in the universality class of the three-
consist of clusters of individual counterions, and can theredimensionalXY model; see, e.g., Reff17-20. A brief re-
fore not be represented as point particles. The question of ariew of the arguments leading to this conclusion appears in
ionic lattice specifically in the case of condensed DNA re-the appendixes.
mains an open one, since there is, as yet, no experimental An outline of this paper is as follows. The following sec-
indication of such an organization of counterions. Furthertion contains the characterization of the lattice and the Cou-
more, theoretical estimates indicate that a three-dimension&mb energy calculations. Section 1ll addresses melting of
(3D) structure requires counterion valencégreater than the counterion lattice, while Sec. IV contains concluding re-
about 6[3]. A lattice of pointlike counterions in condensed marks. A series of appendixes address some technical issues.
biological rodlike molecules thus remains a conjecture Appendix A contains a calculation of the Coulomb energy of
rather than an established fact. Nevertheless, it representsadattice of infinite, uniformly charged rods. Appendix B pro-
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FIG. 1. (Color online Schematic of the counterion lattice, seen
end-on with respect to the rods that support it. The rods are hex-
agonally close packed, and the three sublattices occupied by the
counterions are indicated.

vides the derivation of the term in the energy quadratic in
displacements of counterions from their lattice siies, har-
monic “phonon” dispersion relation Appendix C provides
some heuristics on the melting of the counterion lattice.

FIG. 2. A view of the lattice perpendicular to the axis of the
rods. The spheres represent the counterions. Scanning from left to

II. LATTICE OF RODS AND COUNTERION ENERGY right, one observes the three sublattices.

The “lattice” consisting of a set of negatively charged o ) ) )
rods and attached polyvalent counterions of chairgee will planes at their intersections with rods on the second and third
be treated as a simple ionic lattice. At the first stage of apSublattices, respectively. Repeat this pattern with subsequent
proximation, the fixed charge of the rods will be replaced byPlanes, thereby building an infinite three-dimensional modi-
a uniform negatively charged backgrouas in the jellium fied fcc I_att|ce. Figure 2 _d|splays the lattice from a viewpoint
model of interacting electrorig1]). The counterions will be Perpendicular to the axis of the rods. The three counterion
assumed to form a three-dimensional lattice that generalize®/blattices are evident if one scans the figure from left to
the close-packing arrangement in a fcc crystal. Given that th&ght. If 1, is adjusted appropriately relative to the lattice
rods are infinitesimally thin, there is no prospect of a two-constant of one triangular sublatticé,, the counterion
dimensional arrangement of charges on the surface of any harges themselves sit on a true fcc lattice.
them[3]. As has been noted in the literaty@?], the lattice The three primitive vectors of the Bravais lattice of coun-
we will consider can be constructed starting from a two-terions so constructed are
dimensional hexagonal close-packed structure, via the intro-

duction of three sublattices. Our generalization makes use of = :E " E iy 5

this construction. No significant error is introduced by our a1 2|thr 2 Y+t 0,V3)2 @
neglect of the explicit contribution of the rods themselves to

electrostatic interactions. Dimensional considerations and - . \/§ - -

detailed calculationésee Appendix Alead to the conclusion ay=— 5 lnx+ o lhy+1,(—gxt 9,\3)z, (22

that the Coulomb energy due to interactions between charged

rods consists of two contributions, the first independent of

the separation between rods and the second going as the 53:_|h9+|
logarithm of the separation between rods, assuming overall J3 Y
charge neutrality. The rod-counterion interaction is the same

as the rod-rod interaction because of translational invariance The dimensionless vectgy= §<9x+§/gy encodes the pos-

along the rod's axis. Given that the counterions are forced t@jpjlity of tilting the planes of counterions. The correspond-
sit on the rods, the principal outcome of the rod-counterloqng primitive vectors of the reciprocal Iatticé‘- are con-

interaction arises from the overall charge neutrality enforce%tructed in the standard wd2], so that the relationship

by the charge on the rods. L s -
y g between the two sets of primitive vectorsais b;=274, ;.
To recover the true fcc lattice, the aspect ratiesl,, /1, is

taken to be\/3/2 andé is set equal to zero. The aspect ratio
Imagine a large bundle of hexagonally close-packed penwill play the role of a control parameter in what follows.

cils or rods. Viewed end-on, the rods lie on three triangular Assume overall charge neutrality of the rod-counterion

sublattices, as depicted in Fig. 1. Now pass planes at regulaystem, so that there is exact cancellation between the mean

spacingl, perpendicular(initially) to the rods. Where the charge per unit volume of the counterion lattice and the uni-

first plane intersects the rods on the first sublattice, placéormly charged negative background provided by the rods.

counterion charges. Likewise, treat the second and thirdlVe make use of the Ewald method for the evaluation of the

1+ %gy>2. (2.3

A. Structure of the rod-counterion lattice
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Coulomb sum[21-23. The “reduced” Coulomb energy is
defined as 004 L
~ I
ECouI/(ZZGZ/ZIz;)EECouI: z > = ST 0.02 L
n70 |Nia;+nya,+nsag)
(2.9
- gy 0 1
wheren is a triplet of integersi{;,n,,nz), and the subtrac-
tion S represents the compensating interaction with the -0.02 -
smeared out negatively charged background.
In our calculation, we assume that the distance between -0.04 -
“planes” of ions is fixed atl,,. The effect of a compression
of the lattice of polyelectrolytic rods is to decrease the spac- 5 ‘04 5 ‘02 (; . 62 5 64
ing Iy, . ' ' Ix ' '
B. The Coulomb sum FIG. 3. Contour plot of the Coulomb energy of the generalized

Using Ewald summation techniqué®1-23, one gener- fcc counterion lattice in th({;zjf—gy plane atr=r,~1.1. The four
ates an expression for the Coulomb energy that can be efinima, including the one aj=0, are all of equal depth.

pressed in terms of the sum of four terms. Those terms AlGransition is also a symmetry-breaking one is evident from
Fig. 4. Here, the transition is continuous, in that the appear-

- \/——a1/2(|ﬁ|v)_1/3- (2.5 ance of the six minima at lower aspect ratio is simultaneous
m with the disappearance of the three minima associated with
1 values ofr greater tham, . At mean-field level this transition
= = = is of the standard second-order type. Given the nature of the
n70 |Niay+nyas+nzag| symmetry breaking, it is altogether reasonable to classify it

X {1—erff|n,a;,+ Ny, +ngagla(121,) Y3}, (2.6 @S an Ising-like, orO(1), phase transition. In the case at

hand, the aspect ratio plays the role of temperature. This
means that singularities that one expects to find in the en-
tropy and specific heat of a thermal system will show up here
in the form of nonanalyticities in the dependence of the en-
ergy as a function of spacing between rods, with direct con-
sequences on packing forces.

In light of the continuous nature of the phase transition at
The quantitya in the expressions above is an adjustable ='b and the weakness of the first-order phase transition at
parameter, which is ideally set equal to a value that maxil ~Fa- the question of the effects of fluctuations is clearly
mizes convergence of the Ewald sums in H8s6) and(2.9.  'clevant. We address this question with the use of coarse-
A close-to-optimal choice is= 4. The quantitys in Egs. grained effective Hamilitonians. Assume that the counterions

. . ) . are only allowed to move along the rods. Then, at the onset
l(st'g()::nd(z's) Is the Wigner-Seitz volume of the counterion of the first-order transition, we can express the fluctuations in

the locations of the counterions in terms of a scalar displace-

The mean-field phase diagram of the lattice can be deter- i - . . .
mined by examining the dependence of the Coulomb energ ent fieldu(r) representing counterion displacements paral-
el to the rods. The Coulomb energy can then be written as an

on the aspect ratio and the tilt vectorg. What one finds is expansion in terms of. This energy is most usefully ex-

that forr greater than a threfhold valug~1.1 the Coulomb pressed in terms of the Fourier transform of the displacement
energy is minimized wheg=0. At this threshold value, field. The most relevant terms in the expansion yield the
three minima lying symmetrically in thg plane represent expression

equally low energies. This situation is illustrated in Fig. 3.

- 2
Whenr<r,, g=0 no longer represents a global minimum HZE |l2|2(r—rs)+Ck4+AQ2+B Q

——a W, @7

- - S 2 —1,2
4o @~ Im1by+maby+mabsla L(151,) ¥4

(2.9

. = = —
U mzo |myb;+myb,+ mgh;

of the energy. At =r,~1.097, the local minimum aj=0 kQ k?+Q?
disappears. In this sense, one can thinkdds a “spinodal” . .
point. Note the small difference betweeg andr,. The xu(k,Qu(-k,~-Q)
transition atr , is weaklyfirst order. o _ R _
As r is further reduced, corresponding to even closer + 2 i W3(q1,q2,q3)u(q1)u(q2)u(q3)5(31“;2“;3
packing of the rods, a new structural transition is encoun- IR a3
tered, at which the three minima each split into two new
ones. The aspect ratig, at which this transition takes place + > Wy(d1,02.03.94)U(d1)U(g2)u(dz)u(ds)
is approximately equal to 0.801. Contour plots illustrating A1, .- g
the onset of this transition and the evolution of the new mini-
mum energy configurations are shown in Fig. 4. That this X gy +ap+dg+ e (2.9
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1F 1F
05 |
0+
05 | FIG. 4. The emergence of six minima in the
Coulomb energy, and the migration of those
minima as the aspect ratio is decreased below the
1 T 4 threshold value,=0.801. Reading from left to
i right and top to bottom, the values ofare equal
1F to 0.801, 0.693, 0.577, and 0.433, respectively.
The arrow in the bottom-right-hand figure points
to one of the six true minima of the energy.
05 |-
0+
05 |
l o 1 1 1 1 1 und 1 1 1 1
1 05 0 0.5 1 1 0.5 0 0.5 1 gX
Here, we have split the three-dimensional wave vegtimto W(dy, ... .qs)=v(q1+02) +v(dy+0ds) +v(da+qs)
a two-dimensional vectdtin thex-y plane and a component - - -
Q in the z direction. The term with coefficierB is the con- —v(d1) —v(dz) —v(da)
tribution to the quadratic energy reflecting the long-range - - o
nature of the unscreened Coulomb interactions between —u(=091= 02~ Q) (2.12

counterions. We have inserted the “stabilizing” quartic term

going ask*, but have ignored the inessential term propor-Where

tional to Q*, or the cross term, proportional 1¢Q?. It is 4

important to keep in mind that the actual stabilization of the v(Q)= —. (2.13
system results from the shearing transition. Iq?

The higher order terms in the effective Hamiltoni@n9) o _ o _
have the following forms: There are three distinct permutations of the indices in the

first line of the right-hand side of E¢2.11) and six distinct
permutations in the last line of the right hand side of that
W3(01,02,03) = — C1(k3—3k/k%) (2.10  equation. The ternW(q, . .. 0,) appears to be the most
relevant contribution to the fourth-order coupling in the
and Ginzburg-Landau-Wilson model appropriate to this system.
However, as it turns out, the most important term in Eq.
. . . . (2.12) is the first one in the square brackets, going4s
W4(dg, - - 8a) =W(dy, ... 04) That the contributions to the energy associated with fluc-
tuations about the lattice have the forms shown above can be
e .. established through explicit evaluation of Coulomb-type lat-
+Bal (ki ko) (ks-kg) +permutationy tice sums. Appendix B outlines the calculation in the case of
the quadratic terms and presents results for those and the
fourth-order terms that are obtained through explicit evalua-
+B2Q1Q2Q3Q4 tion of those sums.
To perform an analysis of the effects of fluctuations on
S - . this weak first-order transition, one can consider a “Ginzburg
*Bal (ki k) Q3Q4 + permutations: criterion” [24] applied to the one-loop contribution to the
(2.1)  “entropy” of the system[25]. Recall that the leading contri-
bution to the mean-field entropy goesrasrg for r—rg+.
Here, Given the form of the quadratic term in E@.9), and recall-
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ing thats~ dF/dr, with F the free energy, we have the fol-
lowing expression for the one-loop entropy:

k2d3q
SN
2 2 QZ
(r—rok®+Ck*+AQ +Bk2+Q2
k?d’kdQ
—>f > (2.149

(r—rok?+Ck*+B—
k? FIG. 5. Solid line: the reduced Coulomb energy as a function of

aspect ratio in the vicinity of the first-order and continuous transi-

The expression on the right-hand side of E2j14) contains tions. Dashed line: the energy if the counterion lattice is constrained

the important terms in the denominator. A variety of methodsot to tilt. The locations of the transitions are indicated in the figure.

exist for the evaluation of the integrals in this expression.

The essence of the results follows from a rescaliQy, lattice. The simplest compares theegative interaction en-

=k2x. Then, the integral to perform is ergy of the lattice tkgT. It is reasonable to expect that the
lattice will resist the disordering effects of thermal fluctua-
tions when
f k2d?kdx (2.15
(r—rg)+CK+Bx? ' 2202
. S TECOLH 2kBT- (3-1)
We now note that this has the same qualitative dependence v

on the “reduced temperaturer—rg, as the corresponding

one-loop integral of a five-dimension®(n) model with ~ Assuming that the general conditicfe?/(kgTl,)>1 for
short-range interactions. A further rescaling of the integratiorthe existence of a “Wigner crystal” in the counterion-
variables produces a leading singularity proportional to ( polyelectrolyte system are mgg], we expect the crystal dis-
—r)%2 compared to the mean-field result is proportional tocussed here to be stable as longs,,| is of order unity or
r—rs. This application of the Ginzburg criterion shows that greater. According to Fig. 5, this should be the case as for a
the transition isun-renormalizedA calculation of the renor- range of aspect ratios that encompass the two structural tran-
malization of the fourth-order interaction leads to the samesitions on which this paper has focused.

conclusion, namely, that fluctuations lead to a well-behaved An alternative estimation of the threshold at which melt-
change in the amplitude. This leads to the conclusion thaing of the counterion lattice takes place is based on the Lin-
because of the long-range dipole-dipole interactions betweetlemann criterion21], according to which a lattice melts
the charges embedded on the rods, the first-order shearighen thermally induced displacements are some fraction of
phase transition of the charge latticeratr, is essentially the lattice spacing. This leads to approximate predictions for
mean field in nature. Similar arguments, allowing for modi-the melting transition that we expect to be consistent with the
fications in the form of Eq(2.9) by, for example, breaking energy-vs-entropy arguments, leading to the critel(®:)
rotational symmetry in th&-y plane, reveal that fluctuations for the stability of the counterion lattice against melting.

do not modify the mean-fieldontinuousshearing transition. When melting takes place, it does so in the same way that
Technically, the transition at=r, is Ising-like with effective  charge-density waves disappear, that is to say, continuously,
dimensionalityd>4. with thermodynamic signatures that identify its universality

The full results of the Coulomb energy calculations areclass as that of the 3®Y model. Theoretical arguments and
shown in Fig. 5. The analysis above reveals that fluctuations
do not qualitatively change the picture.

N
. ) : Lo 1.65
Figure 6 displays thdvery smal) discontinuity in the rB Leal \
derivative JE,,/dr at the first-order transition at=r . — 1l :
S [
0 1.62} .
I1l. MELTING OF THE COUNTERION LATTICE ILUO 1.61 F I
.'\ 1 |r
i . . . Q 1
The three-dimensional lattice of statically correlated Lo 1105 1.11 1.7 12

counterions being discussed can be reasonably expected to
exist at low enough temperatures and for sufficiently close r a

packing of the lattice of rods. At high temperatures and when

the spacing between rods is relatively large, the counterion FIG. 6. A plot of JEc,,/dr in the immediate vicinity ofr
lattice will not be stable against thermal fluctuations. A vari-=r,, illustrating the discontinuity there, associated with the first-
ety of arguments lead to the criteria for the existence of thiorder phase transition to the sheared lattice.
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experimental observations that justify this conclusion in thether experiments on, for example, the kinetics of DNA pack-
case of charge-density-wave systems can be found in th&ging, since such a transition could occur “on the fly” as the
literature[17—20. Appendix C contains a brief, heuristic ar- “spooling” progresses[28,29. In other potential experi-
gument for the nature of the melting transition in the coun-ments, DNA or other bundles of varying density could be
terion system. prepared and probed statically.

V. CONCLUSIONS ACKNOWLEDGMENTS
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force exerted by the decorated rods on each other, as deter-

mined by the “pressure”p=—JEc,,/dr. The pressure APPENDIX A: THE COULOMB SUM FOR UNIFORMLY

(analogous to the entropy in a thermal system as discussed CHARGED RODS

has a discontinuity at=r,, and a discontinuous derivative As discussed in the text, the charges on the rods have

fT_thr:k.rb't.The fsgguoll?rltles are EOt.St”km%‘ecaul F'gl' 9. .thbeen assumed to be smeared out into a three-dimensional
€ KInelcs of bundling or packaging such moiecuies Withy ., , 4, background, analogous to the jellium model used in

crystallized counterions are presumably affected by the Coudiscussions of electron-electron interactions in a migta).

LPme?/Reigy: and S.hOU|dt’ mtpﬂnmple, re.ﬂ(iﬁt these_S!lr)tgutlﬁrl-m this Appendix, we evaluate the corrections to this approxi-
Ies. at1s moré important, NOWEVer, IS the possIbility thaky, 4, by now assuming that the backbone charges are uni-

a sequence of structural transitions in the counterion Iattic‘?orm along the rods The method utilized to evaluate the

aﬁs,lsts t(;]ompcreslsmré to high densmets.OI Ir(;_ Flgt.I 5fwe r1,[ﬁ\/‘<?1lteration in the Coulomb energy that is induced by this re-
shown the Loulomb energy: computed directly Tom theg,onent in the model is a version of the Ewald summation
Ewald sums in the vicinity of the first-order transition rat technique21—23. The quantity we will calculate is the po-

=ra and the continuous transition at=r,. The dashed gy, energy of a charged test rod in the presence of an
curve shows the energy if the lattice were constrained not t%rray of uniformly charged rods, which are assumed to be in

tilt. It is interesting to contemplate whether in some instance;? hexagonal close-packed arrangement. At the end, the test
Nature relieves the strong Coulomb repulsion via structural |4\ i'be moved onto a rod of the lattice. Before doing this,

tran§|t|9ns. we eliminate (“subtract”) the interaction between the test
It is important to note that one cannot argue for structural charge and the rod on which it eventually sits
transitions as theine qua norof polyelectrolyte packaging. Because the rods are uniformly charged in #ftirection,

Specifically, in the packaging of DNA in tail-type bacte- h ial at th di ional | o d
riophages, ATP is known to provide the fuel for a packaging! '€ Potential at the two-dimensional locatiodue to a rod at

motor [8,26]. Order of magnitude estimates suggest that'€ Orgin is given by
~50-60 pN forces generated by this mof@6] suffice to
overcome Coulomb forces and compress a rodlike system to 10 edr 1 [ o
observed densities without benefit of structural transitions. ¢(F)oc_f d’q= _f dt{f eiq-r—qztd2q}.
Of course, in experimental situations other repulsive energies ™ q° mJo
besides Coulomb are also involvgzi7,28. (A1)

The present analysis does not suggest dramatic conse- ) ) o
quences in actin bundling, or in the kinetics of packaging”Ve SPlit thet integration into one from 0 td@ and another
and/or infection in a bacteriophage life cycle. However, affom T to =, whereT is, initially, arbitrary. We suppose that
continuous shearing transition, if realized, should be accomthe distance between nearest-neighbor rods in the close-
panied by strong counterion charge fluctuations, which coul@acked lattice idy,. Given this, we will takeTelf. The
be susceptible to dynamic scattering experiments. The tiltingprimitive vectors for this lattice can be taken to be
estimated to be a few percent at the first-order transition,
could potentially be detected by standard diffraction tech- - -
niques. a=lpx, (A2)

While, strictly speaking, we have shown that a shearing
transition ought to occur in a sufficiently closely packed,
constrained polyelectrolytic system, we have not ruled out a :l_h;( +@§/ (A3)
the possibility that some other transition intercedes, preempt- 272 27
ing this particular rearrangement as the system of rods is
compressed. One would have to consider possibilities foand the volume of the primitive cell for this lattice is
ever larger unit cells in the rod lattice. More importantly, we
can only suggest the possibility that tilting or other structural
transition(s) occur as biologically relevant polyelectrolytic
molecules condense. We hope this work will stimulate fur-

B

UWSZTIh- (A4)
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The corresponding reciprocal lattice vectors are leads to the only term with anly, dependence, going aslip
All other dependences disappear because of cancellations be-
oml 1. tween thel, dependence of th@’s, theR's, andT.
bl:ﬁ X— ﬁy ' (A5) The subtraction in Eq(A9) associated with th&,=0

term is easily carried out, as is the subtraction in the case of
the term associated with a test rod posit'anlirectIy on a

A7 . rod, in Eq.(A10). Choosing specifically
b,=—y, (AB)
RET
al?
while the volume of the primitive cell of the reciprocal lat- T= 4—h (A11)
o

tice is given by

with @ an arbitrary constant, one can perform the sums in-

82 dicated above, with the appropriate subtractions. One finds
UBz= =5 (A7)  the following result for the Coulomb sum:
Va3I3
For the integration froni=T to t=c, we make use of the —2.786 08+ 2Inl,,. (A12)

two-dimensional version of the Poisson sum formula:
Note that the above result must be independent of the arbi-
trary constaniz. We are now in a position to include more

f(r)= i 2 J eiék'Ff(F)dzr’ (A8) precisely the effect of the concentration of negative charge
r=R; vws g, on the polyelectrolyte rods. One must multiply the result
(A12) by

where{lfzi} correspond to a hexagonal lattice and where the

Qi range over the reciprocal lattice. We then have for the
contribution of this region ot integration to the potential ol=

U (A13)
energy of a point charge at the locatipn

Ze)2
I_ 1

v

where o is the linear charge density on the rodsjs the

1 L e T valence of the condensed counterions, gne the spacing
Z fdzrf d?qe/ (@t 5 between counterions on the rod. The above multiplication
TOWS Qy q will yield an energy of the rod lattice per unit rod length.

TG T We are thus led to an expression for the contribution of
_ 4_77 e ~kek (A9) the rod-rod interaction to the Coulomb energy; it has a non-
 Uws O Q& ' trivial, but smooth dependence on the separation between

rods. This energy adds as a “background” term to the ener-

The only tricky part here is the term for whicﬁkzo, cor- gies _calc.ulated in the body of thi; paper._A very similar cal-
responding to the smeared-out portion of the distributionculation is used to compute the interaction energy between

This can be handled by a careful subtraction. Because of tHg€ counterion lattice and the uniformly charged rod lattice.
fact thatTocIﬁ and the fact that thék’s g0 asl;z, terms in Both contributions have no effect on the structural transitions

Eqg. (A9) are independent of the spacing between rbgls, discussed in the body of the paper.

The next portion of the integration is from 0 o Here,
we sum directly in real space. We find APPENDIX B: EWALD SUM FOR THE SECOND

AND HIGHER ORDER TERMS IN COUNTERION
DISPLACEMENTS

1 T I
- > f dtj d2qeld--Rg-ta? The result for the energy cost of a distortion of the coun-
R 7N terion lattice follows straightforwardly from the expression
A 1 for the energy of a collection of interacting charges. We start
=> e~ Ir—RiPvaT Z gt (A10) by writing the two-particle interaction energy in terms of its
R Y1 t spatial Fourier transform,

A careful subtraction eliminates the divergent contribution of

term in tkle sum in whichﬁ|=ﬁ The divergence arises when V(F):f dsqv(a)eid.r"
the limitr—0 is taken, corresponding to placing the test rod

on one of the rods in the lattice. One subtracts the standard -
energy associated with the Coulomb interaction between th&hen the positions of the counterions, are expanded in
test rod charge and the rod at the origin. This subtractioierms of displacements from the lattice siteeﬁj). Assum-

(B1)
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ing that those displacements are entirely in zltirection, in 5 5
line with our model in which the counterions are bound to > f( = f d QZ eR0f(Q). (B9)
the charged polyelectrolyte rods, the displacement of the Q Bz
counterion from its equilibrium position on the counterion ) L , )
The sum on the right hand side is over all lattice pomts on
lattice will be equal tozu(R) uj z. Expanding to second
order in theu'’s, we obtain for the energy associated with the real ‘space lattice. One final relationship betweerathe
those distortions, and theb’s is

PIEDY i(qz+QZ>v<ﬁ+é>—sz<é>]iu(&)u(—ax a-bj=2mai. (B10
q Q
(B2 In Eq. (B9) eachQ is of the formm;b;+ m,b,+msbg,
where them;’s take mtegral values from- oo to . Similarly,
where u(q) is the spatial Fourier transform of the lattice e R's are of the formn,a, + n,a,+ Nsas, where then’s
displacementy; : range over all integers as well.
Now, one can clearly write the expression in EB4) in
) . the formf(q) — f(0). Focus onf(q) and write
u(q)=2 uje 'R, (B3)
i

2
Given that the interactions are Coulomb, the sum of inter- (|qz |Zi f (g,+Q,)%e" la+Ql%tg¢. (B11)
est is of the form q+Q
As in Appendix A, the integral over splits into an integral
+ 2 2
(9:+ Q) _ (Q) (B4) from 0 to T and fromT to «, where, in this case, we choose

5 |Q+ad? 5 Q]

where theQ's are displacement vectors on the reciprocal s ™ :B(UWS)ZIS
lattice. The primitive displacement vectors on this lattice are (vgy)?3 A7

51, 52, and 53. The primitive displacement vectors on the
original lattice areﬁl, a,, andég. The relationship between whereg is arbitrary. For the integral fror to «, one finds
theb’s and thea’s is

(B12)

(9,+Q,)* o Bl O

T Jake (B5) g lg+Q®
a;-(axxag) 2 N
_ % pmiendy, s (G QS QD gl
and similarly forb, and bs. The primitive volume in the Ig|? $70 1g+0)2
reciprocal lattice is the volume of the first Brillouin zone,

given by (B13

The Poisson sum formula is applied to the integration

sz=|51' (62><63)|. (B6) overt from O to T. This leads to the following expression:

The primitive volume in the real lattice is the volume of the

/. /.
Wigner-Seitz cell, given by J &0 iz fﬁmgg Boaan
UBzRr JO

UWS:|a1'(a2><a3)|' (B7) Xeid'éaJréth(qz'i‘Qz)zdt]. (814)
Given the relationship between tlés and theb’s, the fol-
lowing holds: The integral in brackets is evaluated by introducing the gen-

erating function
vezvws=(2m)°. (B8)

The_ Poisson sum formula in three dimensions takes the fol- 2 fﬁvwd“” iQ-R—|q+Q|%t+xz: (q+Q)dt (B15)
lowing form: UBz
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creases, tending to zero asymptotically as the aspect ratio

A(I’) becomes large. This latter tendency reflects the weakening of
0.03F the interaction that stabilizes the counterion lattice as the
L distance between the rods grows in comparison to the dis-
0.021 tance between neighboring charges on a rod. In fact, it is not

hard to demonstrate thaf{(r) will decay exponentially as,
the aspect ratio, gets large.
To deal with terms that are third and fourth order in the
T displacement field, the procedure is the same as the one dis-
> 4 6 8 10 cussed above. One is left with lattice sums to perform, and
the Ewald method leads to rapidly converging numerical al-
FIG. 7. The quantityA(r)=2A(r)/(Z?e?*/kgTl,), whereA(r)  gorithms. The results(2.10—(2.13 are obtained. We
is the coefficient ok? in the energy of distortion of the modified fcc find for the coefficients B;—B; in Eg. (2.11), By
lattice, quadratic in the displacement field, as a function of the:(ZZeZ/ZkBTIv)Ek, where
aspect ratior=1/l,. In this plot, thez component of the wave
vector(i of the distortion has been set equal to zero.

0.01¢f

B,=0.143, (B19)
One obtains Eq(B14) from Eq. (B15) by taking the second
derivative with respect ta, and then setting=0. For non-

zeroR, the integral ovef) is taken easily enough. Complet- B,=3(-0.163, (B19)
ing squares, one is left with

B3=0.010. (B20)
ar

1 ﬁv2/35/47r 312 B.a B a2
U_Bzfo w t) e—IR~qe(1/4t)[lR+KZ] dt. (816)

APPENDIX C: COUNTERION MELTING IS 3D XY

Rescaling the integration variable and taking the requisite As the melting transition is approached from the “coun-

second derivative with respect toyields terion liquid” side, we assume that there is an instability
leading to a modulated counterion charge density on each
rod; then we allow for phase fluctuations. For the counterion

w . 2,2 - -
a2 [ 12g-iR-dg - mRAUBZY 7Rt N t density on each rod, we write
B 1 € € 23 2
Vws

(B17) p(z)=AcogQz+ ¢(z)). (C1)

There is a singular contribution to the total sum from thephase fluctuations disorder the charge-density wave above
term in whichR= 0. However, that term is independentqpf ~ and render the mean charge density on a rod statistically

and is, therefore, canceled when the total expression guith uniform in the “liquid” phase. The interaction between
=0 is subtracted. The nonvanishing contribution is the sungounterions on a single rod will be of the form

over nonzeraR's of the expression in EqB17). To this is

added Eq(B13), and the result ié(ﬁ) defined through Eq. 1 ) )

(B4). Ef Jp(Z)p(X )W(z—2z')dz dZ. (C2
Note that in all the above, the paramefeihas not been

fixed. It is, in fact, left undetermined, and may be set toMaking use of Eq(C1), one obtains terms of the form

speed convergence of the sums. Alternatively, it may be left

as an internal check on the procedure, since the final result

must be independent @. d fd "\(z—7' ; — 21V +i _ /
To see what the sum developed above yields, we split the 2] 4z V(z=2)exdiQ(z=2') +il$(2) = 4z )(]23)

wave vector as follows:q=zQ+k, where the projectiok

lies in thex-y plane. Numerical results are consistent with anyye now go to “center of mass” and “relative” coordinates.
energy quadratic in displacements that is proportiond’to Let

whenQ=0 andk is small. Figure 7 shows the coefficient of

k? in the quadratic energisee Eq(B2] as a function of the

aspect ratiad =1,,/1,,. Note that the coefficient goes through - (Ca)
zero at a value of that is close to 1. This corresponds to the 2
“spinodal instability” lying below the first-order transition at

r~1.1. Near the spinodal the harmonic spectrum takes the

form shown in Eq(2.9). The coefficienA(r) goes through a Z- -z 5
maximum asr increases above this value, and then de- 2

051902-9
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The double integral in EqCJ) is, then, proportional to
f dzf dZV(2)exdiQZ+2i¢p'(2)Z+ - - -]
=fdzf dZV(2)exdiQZ]

X 1+2i¢’(Z)Z+%[2i¢'(Z)Z]2+"'

=f 4Z{v(Q)—2i 6" (2" (Q)+ 2[ ' (2) 0" (Q)}.
(9

Now, let us assume that

v(q)mf dzexdiqz]V(z)dz (C7)

has a minimum ag= Q. Then,v’(Q)=0 andv”(Q)>0.

PHYSICAL REVIEW E68, 051902 (2003

The ¢'’s are subscripted to make it clear that they refer to
different rods. If one assumes that the interactidiis suffi-
ciently short ranged, which seems to be the case even for
unscreened Coulomb interactions because of the sinusoidal
nature of the assumed state, one reveals the essence by re-
placing ¢,(z,) by ¢,(z;), and the integration in EqC8)
becomes

fdzlexp{i[¢l(zl)_¢2(zl)]}
><J Az, W(z;— 25)exd i Q(z1 — 2,)]
:W(Q)f dz; exp{i[ ¢1(21) — ¢2(21) 1}

—>f wW(Q)cog ¢1(21) — ¢a(21)]1dz;.  (CY)

There is thus a contribution to the total energy going as

[[d¢(2)/dz]? dz.

Now consider the interaction between rods. One expecttsz

that there will be terms of the form

J dzlf dz, W(z,— z,)exp{i Q(z,—z,)

+i[ ¢1(z1) — ha(2) 1} (C9

The result of this heuristic derivation is that there are
erms in the energy going 8¢ (z)/dz]? and that there are
also terms going as c6$,(z) — ¢,(2)), where the subscripts
refer to near-neighbor rods. The universality class for the
transition in this model is that of a 3®Y model. That the
model is spatially anisotropic does not influence the univer-
sality class.
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