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Theoretical model for the discrete flexoelectric effect and a description for the sequence
of intermediate smectic phases with increasing periodicity
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A general phenomenological description and a simple molecular model is proposed for the ‘‘discrete’’
flexoelectric effect in tilted smectic liquid crystal phases. This effect defines a polarization in a smectic layer
induced by a difference of director orientations in the two smectic layers adjacent to it. It is shown that the
‘‘discrete’’ flexoelectric effect is determined by electrostatic dipole-quadrupole interaction between positionally
correlated molecules located in adjacent smectic layers, while the corresponding dipole-dipole interaction is
responsible for a coupling between polarization vectors in neighboring layers. It is shown that a simple
phenomenological model of a ferrielectric smectic liquid crystal, which has recently been proposed in the
literature, can be used to describe the whole sequence of intermediate chiral smecticC* phases with increasing
periods, and to determine the nonplanar structure of each phase without additional assumptions. In this se-
quence the phases with three- and four-layer periodicities have the same structure, as observed in the experi-
ment. The theory predicts also the structure of intermediate phases with longer periods that have not been
studied experimentally so far. The structures of intermediate phases with periodicities of up to nine layers are
presented together with the phase diagrams, and a relationship between molecular chirality and the three-
dimensional structure of intermediate phases is discussed. It is considered also how the coupling between the
spontaneous polarization determined by molecular chirality and the induced polarization determined by the
discrete flexoelectric effect stabilizes the nonplanar structure of intermediate phases.
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I. INTRODUCTION

Ferroelectric smectic liquid crystals are unique mater
where the spontaneous polarization is determined by mol
lar chirality. In the chiral smecticC* phase the polarization
is induced by a tilt of the director with respect to the smec
layer normal. The direction of both tilt and polarization c
be switched by an external electric field. About 14 yr ago
was shown experimentally@1# that similar materials may
also exhibit the anticlinic antiferroelectric smecticCA phase,
where both polarization and direction of the tilt alternate
sign from layer to layer. The transition between synclinic a
anticlinic smectic phases is of the first order, and accord
to the experimental data@2,3# the synclinic smecticC phase
is always the higher temperature phase. The only excep
is the anticlinic smecticI phase that also possesses
hexatic order@4–6#. It should be noted that the anticlini
structure itself is not related to molecular chirality becau
the anticlinic smecticCA phase is observed in racemic mi
tures@7–9# and even in some nonchiral compounds@10,11#.
Chirality results in the appearance of the spontaneous po
ization in each smectic layer in the direction perpendicula
the local tilt plane. In addition, the chiral smecticCA* phase
is characterized by a helical structure with optical wav
length. One notes also that the energy barrier between
synclinic and the anticlinic phases is relatively low, and t
corresponding phase transition can be induced by a mode
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electric field. Recently a number of experimental stud
have revealed that chiral smecticC* liquid crystals exhibit a
sequence of intermediate ferrielectric phases with mod
tion periods of more than two layers in a temperature inter
between ferroelectric and antiferroelectric Sm-C* phases.
The most commonly observed intermediate phases
Sm-CFI1 and Sm-CFI2 phases that exhibit three- and fou
layer superstructures, respectively, with a uniform tilt an
@12–15#. Very recently the detailed structure of these pha
has been investigated with ellipsometry@16,17#, the resonant
x-ray scattering techniques@18,19#, and optical rotatory
power technique@15,20#. In contrast to the earlier qualitativ
models, the actual structure of Sm-CFI1 and Sm-CFI2 phases
is not flat and, at the same time, it is different from t
uniaxial ‘‘clock’’ model @21,22#. In fact, each intermediate
phase is characterized by a unique set of azimuthal an
$w i% that specify different azimuthal orientations of the d
rector in each smectic layer inside the unit crystallograp
cell. The structure of the unit cell appears to be chiral, an
is known that intermediate phases disappear in racemic m
tures. One thus concludes that their origin should be dire
related to molecular chirality.

Transition between the ferroelectric Sm-C* and the anti-
ferroelectric Sm-CA* phases can theoretically be described
continuum theory@23,24# or by simple discrete phenomeno
logical models that explicitly take into consideration co
pling between director orientations in different laye
@21,17#. Phases with more complex structure can be
scribed phenomenologically using a number of additional
der parameters@25# or by using more advanced discre
models which take into consideration various couplings
©2003 The American Physical Society03-1
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tween nearest neighbor and next-nearest-neighbor sm
layers, as recently proposed by Cepic and co-work
@26,27#. In particular, Lorman@25# presented a possible fou
layer phase that corresponds to that observed later in
experiment. Cepicet al. @27# have described the structure
intermediate phases with three- and four-layer periodici
using some approximation based on the experiment, and
sented a phase diagram that includes also the smecticCa*
phase. Another model of the three- and four-layer phases
recently been proposed by Huang and co-workers@28#. An
important feature of the model proposed by Cepic and
workers @26,27# is the new term essentially describing th
effect that we propose here to call the ‘‘discrete’’ flexoele
tric effect in order to distinguish it from the convention
flexoelectricity. The discrete flexoelectric effect results in t
appearance of an induced polarization in a smectic la
provided the two adjacent layers differ in their director o
entation. This effect appears to be very important in the
bilization of the intermediate phases. In the general case
additional polarization is not parallel to the spontaneous
larization of the chiral layer, and thus a minimum of the to
electrostatic energy may correspond to nonzero azimu
angles between the directors in neighboring layers. O
notes that in Refs.@26,27# no derivation of the correspondin
formulas for the induced polarization has been given and
important difference with the conventional continuous flex
electric effect has not been discussed. In this paper
present a general phenomenological description of the
crete flexoelectricity that manifests itself only in tilted sme
tic phases where the director undergoes finite rotations f
layer to layer. We derive a more general expression for
induced polarization that is reduced to that considered
Cepic and co-workers@26,27# after some simplifications. A
molecular model of the discrete flexoelectric effect based
electrostatic dipole-quadrupole interactions between m
ecules in adjacent smectic layers is also proposed. We
show that essentially the same free energy of a tilted sme
liquid crystal as that proposed by Cepic and co-work
@26,27# ~but without direct coupling between next-neare
neighbor layers! can be used to predict the whole sequen
of distinct intermediate phases with different periods t
may exist between the synclinic smecticC* phase and the
anticlinic smecticCA* phase, and to describe their structu
using direct minimization of the free energy without qualit
tive assumptions based on actual experimental results. In
sequence the phases with three- and four-layer periodic
have qualitatively the same structure, as observed in the
periment~and the same as obtained in Ref.@27#!. The theory
predicts also the nonplanar structure of intermediate ph
with longer periods, up to the period of nine smectic laye

One notes that up to five different intermediate pha
were observed about 10 yrs ago by Fukuda and co-wor
@7,12#. During the past decade the structure of the two m
stable subphases (Sm-CFI1* and Sm-CFI2* ) has been exten
sively studied experimentally, as discussed above, and it
been confirmed that these phases are characterized b
periods of three and four layers, respectively. Other interm
diate phases, observed in Ref.@12# have not been investi
gated in detail so far, but recently there has been a rene
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interest in their structure@29#. It should be noted that in the
present paper we consider only intermediate phases w
may exist between the Sm-C* and the Sm-CA* phase, i.e.,
sufficiently far from the Sm-C* –Sm-A transition point. In
this domain the tilt angle of the director is sufficiently larg
and weakly temperature dependent. For simplicity, it is
sumed to be constant in the present theory. This means
the present approach cannot be used to describe the stru
of the Sm-Ca* phase which is observed directly below th
Sm-A* phase. In the Sm-Ca* phase the tilt angle is small an
depends strongly on the temperature.

The structure of particular intermediate phases in ch
smecticC* is intimately related to the more general proble
of the microscopic origin of the whole sequence of pha
with increasing periodicity. In the early studies of antiferr
electric liquid crystals it has been assumed that the inter
diate phases represent the so-called ‘‘devil’s staircase.’’ It
been predicted theoretically for two types of Ising mod
@30–32#. The first one is a three-dimensional~3D! Ising
model with competing nearest- and next-nearest-neigh
coupling@30#. This model, however, can hardly be applied
chiral smecticsC* because it contains no chiral interactio
and will therefore predict the same phases for chiral a
nonchiral liquid crystals, which strongly contradicts the e
periment. It is also important that intermolecular interactio
in liquid crystals cannot be adequately modeled by the Is
Hamiltonian having a different symmetry and different o
entational dependence. The second, one-dimensional I
model with long-range repulsive interaction@31,32#, is much
closer to the actual structure of smecticC liquid crystals. In
the first approximation the direction of tilt in a smectic lay
can be specified by an Ising-like variable that will now re
resent a collective property. Then the long-range interac
can be interpreted as a coupling between director orie
tions in distant smectic layers. This long-range interacti
specifying the existence of the ‘‘devil’s staircase,’’ should
chiral in nature because intermediate phases must disap
in nonchiral smectic liquid crystals. In addition, the initi
Ising model should be replaced by a more realistic pla
rotator model to account for a continuous rotation of t
director about the smectic layer normal. One notes, howe
that the existence of a devil’s staircase in such a model w
continuous rotation has not been proved theoretically yet
general terms the relevance of this simple model for fer
electric and antiferroelectric smecticC* liquid crystals is
now reduced to the problem of finding an appropriate lon
range coupling between smectic layers determined by
lecular chirality. It has been shown that a long-range rep
sion in ferroelectric smecticsC* may be determined by an
interaction between thermally excited fluctuations of t
spontaneous polarization@33#. The corresponding coupling
constant is proportional to the square of equilibrium pol
ization, and therefore the interactions disappear in nonch
systems. Direct estimates of the coupling constant, howe
indicate that such an interaction should be much weaker t
a typical coupling between neighboring layers, and theref
the intermediate phases should be stable only within a t
perature interval that is much smaller than that observed
the experiment@16,18,19#.
3-2
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THEORETICAL MODEL FOR THE DISCRETE . . . PHYSICAL REVIEW E 68, 051703 ~2003!
In this paper, we do not take into consideration any dir
long-range interactions and even no direct interactions
tween nonadjacent smectic layers. At the same time, an
fective long-range coupling between director orientations
different smectic layers emerges after averaging of the t
free energy over polarizations in all layers. This effecti
coupling is determined by a combination of spontaneous
larization, discrete flexoelectric effect and an initial dire
polarization coupling between adjacent layers, and stabil
the intermediate phases with large periods.

This paper is arranged as follows. In Sec. II we disc
the concept of the discrete flexoelectric effect and the
evant symmetry aspects. We derive a general expressio
the induced polarization and show how it is reduced to
one considered in Ref.@27#. In Sec. III we propose a simpl
molecular theory of the discrete flexoeffect based on the
polar interactions between molecules in neighboring lay
In Sec. IV we show how the free energy proposed by Ce
and co-workers@26,27# can be minimized directly by com
bination of analytical and numerical methods to reveal
sequence of intermediate phases with increasing periodi
Finally, in Sec. V we discuss the results and present sev
phase diagrams with detailed structure of six different int
mediate phases.

II. DISCRETE FLEXOELECTRIC EFFECT IN SMECTIC
C* PHASES

At the beginning of this section we briefly discuss som
well-known results of the existing phenomenological theo
of the conventional flexoelectric effect in nematic and sm
tic liquid crystals in order to stress the difference from t
discrete flexoelectric effect that is considered in detail bel
In the general case the conventional flexoelectric effec
liquid crystals manifests itself in the appearance of polari
tion proportional to the gradients of the director. It is we
known @34# that in the nematic phase it is possible to co
pose two independent polar vectors using the nematic or
ing tensornanb21/3dab , wheren is the nematic director
and the gradient vector“[]/] r . As a result the flexoelec
tric polarization is given by the following expression:

Pf
(N)5es n ~“•n!2eb ~n•“ ! n, ~1!

which was originally given by Meyer@35#. From the sym-
metry point of view, Eq.~1! indicates that both splay an
bend deformations of the director field reduce the point sy
metry of the nematic phase creating a local polar directi
which can be associated with a local polarization. From
molecular point of view this means that steric molecular
poles, associated with a polar molecular shape, will be
dered in the nematic phases subjected to splay or bend
formation@35#. If the molecules also possess electric dipol
the polar ordering will result in a local induced polarizatio

It is well known that flexoelectric effect also exists
tilted smectic liquid crystals. Conventional flexoelectricity
the Sm-C phase was first described theoretically by Pik
and co-workers@36–38#. One notes that in the general ca
the flexoelectricity in smectic liquid crystals appears to b
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complex phenomenon because polarization may be indu
both by gradients of the director and by appropriate la
deformations, or by a combination of both deformation
Thus, in the general case there are many contributions to
flexoelectric polarization that have been considered by D
and Lagerwall@39# and by De Gennes and Prost@34#. It is
known, however, that in the smecticC phase there exists on
‘‘easy’’ deformation of the director that can readily be caus
by a moderate electric field or by boundary conditions. T
is a twist deformation that corresponds to a rotation of
director about the smectic layer normal. Thus, if the sme
layers are not deformed and the director is assumed to
homogeneous in the layer plane, the flexoelectric polar
tion in the Sm-C* phase is described by a single ter
@36,37#. Using the notations of Ref.@40# such polarization
can be expressed as

Pf
(C);2rotj5j

]w

]z
, ~2!

where thez axis is parallel to the layer normalk0, angle
w(z) specifies the azimuthal orientation of the director anj
is the pseudovector order parameter of the smecticC phase
introduced by Pikin and co-workers@37,38#:

j~z![~n•k0! @n3k0#. ~3!

The direction of the flexoelectric polarizationPf
(C) is deter-

mined by the vector order parameterj(z) that is parallel to
the localC2 symmetry axis, while the absolute value of th
polarization is proportional to the gradient of the azimuth
angle]w/]z.

It is also well known that in every layer of the chira
smecticC* phase there exists a spontaneous polarizationPs
that is also parallel to the localC2 axis @37,38# i.e.,

Ps52x cs j, ~4!

wherex is the dielectric susceptibility and the coefficientcs
is a pseudoscalar determined by molecular chirality. In ad
tion, the ferroelectric Sm-C* phase possesses a macrosco
helical structure, i.e., there exists a spontaneous orientati
deformation. This spontaneous deformation gives rise to
flexoelectric polarization according to Eq.~3! @37,38#. As a
result, each smecticC* layer in the bulk possesses a nonze
polarization that is a sum of the spontaneous polarization~4!
and the flexoelectric one~2!.

One notes that in the Sm-C* phase the flexoelectric po
larization is parallel to the spontaneous one, and there
flexoelectricity does not effect the structure of the phase i
qualitative way. At the same time, the role of flexoelectric
may be completely different in intermediate smecticC*
phases where the director undergoes finite rotations f
layer to layer within a period@16,18,19#. In such a structure
the point symmetry of a layer will be dramatically reduce
and additional polarization appears in some direction wit
the smectic layer. Thus it is possible to generalize the c
cept of conventional flexoelectricity to take these effects i
consideration. In the general case polarization may be
duced not only by a gradual change of the director orien
3-3
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A. V. EMELYANENKO AND M. A. OSIPOV PHYSICAL REVIEW E 68, 051703 ~2003!
tion ~as in the nematic or conventional smecticC* phase!,
but also by a discrete irregular change of director orienta
from one smectic layer to another, as in intermediate sme
phases. Recently a simple term describing the onset of su
polarization was included in the free energy proposed
Cepic and co-workers@26,27#. We propose to call this type
of flexoelectricity the ‘‘discrete flexoelectric effect’’ and con
sider both phenomenological and molecular theories of
effect in detail below.

Let us first consider the discrete flexoelectric effect fro
the general symmetry point of view using Fig. 1. The ide
ized structure of the anticlinic antiferroelectric smecticCA*
phase is presented in Fig. 1~a!. As first discussed by Brand
and Cladis@41,42#, in this phase there exists aC2 symmetry
axis in the middle of each layer in the direction perpendi
lar to the tilt plane. Thus, any polarization in the middle
the layer may only be parallel to theC2 symmetry axis. This
implies also the flexoelectric polarization determined by
weakz dependence of the orientation of the tilt plane. No
let us assume that directors in the two adjacent layers ro
out of plane of the initial flat structure@see Fig. 1~b!#. If the
directorni 11 in the layeri 11 is different from the director
ni 21 in the layer i 21, the symmetry of the intermediat
layer i becomes polar, and the resulting flexoelectric po
ization may no longer be parallel to the spontaneous po
ization of the layerPs that is still determined by the vectorji
@see Fig. 1~b!#. This effect is related to the local breaking
symmetry between the directions represented byk and 2k
because it is now possible to distinguish between the
adjacent layers characterized by different director orien
tions. Thus, symmetry arguments indicate that if a tilt
smectic layer is sandwiched between two other tilted lay
with different director orientations, a flexoelectric polariz
tion should appear in the intermediate layer. The direction
such a polarization is not specified by any symmetry e
ments because the symmetry of the layer is very low. I
interesting to note also that the discrete flexoelectric effec
a nonlocal effect and is determined by the space symmetr
the system. By contrast, the conventional flexoelectric ef
is local, and thus the flexoelectric polarization is coupled
the gradients of the director at the same point. Taking
difference into account it is possible to compose the follo

Ps

n i+1

n i-1

n i

Pf

(b)

n i+1

n i-1

n i Ps

(a)

FIG. 1. Polarization in the anticlinic antiferroelectric smec
CA* phase~a! and in an intermediate phase~b!.
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ing invariants that contribute to the free energy of a sme
layer in an intermediate phase:

Pa
( i )$Qab

( i 11) kb
02Qab

( i 21) kb
0%, ~5!

Pa
( i ) Qab

( i ) $Qbg
( i 11) kg

02Qbg
( i 21) kg

0%, ~6!

where we have taken into consideration only linear and q
dratic terms in the tensor order parameterQab

( i ) of the layeri.
In the first terms in brackets in Eqs.~5! and ~6! the unit
vectork0 is in the direction from the intermediate layeri to
the ‘‘upper’’ layer i 11. The vectork0 is coupled with the
tensor order parameter of the layeri 11. The second terms in
Eqs. ~5! and ~6! stem from a coupling between the ord
parameter tensor of the ‘‘lower’’ layeri 21 with the unit
vector 2k0 in the direction from the layeri to the layeri
21. All flexoelectric invariants are nonzero if the tens
Qab

( i 11) in the layeri 11 is different from the tensorQab
( i 21) in

the layeri 21. Now the flexoelectric contribution to the tota
polarization of the smectic layeri can be obtained by mini-
mization of the part of the free energy that is composed
invariants ~5! and ~6! and the standard dielectric term
1/2 (x i

21)abPa
( i )Pb

( i ) , wherexab
( i ) is the local dielectric sus-

ceptibility tensor of the smectic layeri depending on the
orientation of the local director:

DF f5
1
2 ~x i

21!abPa
( i ) Pb

( i )1cf
(1)Pa

( i )$Qab
( i 11) kb

02Qab
( i 21) kb

0%

1cf
(2)Pa

( i ) Qab
( i ) $Qbg

( i 11) kg
02Qbg

( i 21) kg
0%, ~7!

wherecf
(1) and cf

(2) are the flexoelectric coefficients. Mini
mization of Eq.~7! with respect to polarization yields th
following expression for the induced discrete flexoelect
polarization in the layeri:

Pf
( i )52cf

(1)x̂ i $Q̂i 11 k02Q̂i 21 k0%

2cf
(2)x̂ i Q̂i $Q̂i 11 k02Q̂i 21 k0%. ~8!

One notes that any tilted smectic layer is biaxial and the
fore the tensorsxab

( i ) andQab
( i ) are also biaxial. They can b

written in the following general form:

xab
( i ) 5x̄ dab1Dx$na

( i )nb
( i )2 1

3 dab%

1Dx'$ma
( i )mb

( i )2wa
( i )wb

( i )%, ~9!

Qab
( i ) 5S$na

( i )nb
( i )2 1

3 dab%1D$ma
( i )mb

( i )2wa
( i )wb

( i )%,
~10!

where we have assumed that the layers differ only in th
director orientation. Here the unit vectorwi is parallel to the
vector order parameterji and the unit vectormi'wi and
mi'ni . In Eq. ~9! x̄ is the average dielectric susceptibilit
Dx is the susceptibility anisotropy, andDx' is the transverse
anisotropy of the susceptibility.S is the scalar nematic orde
parameter andD is the corresponding biaxial order param
eter.

The general expression for the induced flexoelectric
larization can be obtained by substitution of Eqs.~9! and~10!
3-4
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THEORETICAL MODEL FOR THE DISCRETE . . . PHYSICAL REVIEW E 68, 051703 ~2003!
into Eq. ~8!. The resulting expression, however, can be s
plified if one takes into account that biaxiality of a tilte
smectic layer is generally weak. In this caseDx'!Dx and
D!S, and thus all tensors can be expressed in terms of
local directorni . One then obtains the following expressio
for the flexoelectric polarization:

Pf
( i )52 c̃f

(1)$~ni 11 k0! ni 112~ni 21 k0! ni 21%

2 c̃f
(2) ni$~ni 11 k0! ~ni 11 ni !2~ni 21 k0! ~ni 21 ni !%,

~11!

wherec̃f
(1)[cf

(1) x̄ and c̃f
(2)[Dx cf

(1)1cf
(2) (x̄1Dx). Equa-

tion ~11! can be simplified further if one assumes that the
angleu is approximately the same for all smectic layers in
intermediate phase. Then (ni k0)5cosu for all i, and Eq.
~11! can be rewritten as

Pf
( i )52 c̃f

(1)cosu$ni 112ni 21%2 c̃f
(2)cosu ni$~ni 11 ni !

2~ni 21 ni !%, ~12!

where cosu5(ni 11 k0)5(ni k0)5(ni 21 k0). It should be
noted that the approximation of the constant tilt angle m
not be appropriate in the smecticCa* phase where the til
angle is small and may depend on the azimuthal orienta
of the director in each layer.

One notes also that the first term in Eq.~12! has the same
form as the one used by Cepic and co-workers@26,27# with-
out derivation. The theory presented in this section and in
following one reveals the origin of this term. The corr
sponding part of the flexoelectric polarization is always p
allel to the smectic layeri because it is proportional to th
differenceDni 61[ni 112ni 21 between the director orienta
tions in the two layers adjacent to the layeri. By contrast, the
second term in Eq.~12! contains also a contribution to th
flexoelectric polarization that is perpendicular to the sme
layer:

Pi
( i )52 c̃f

(2) cos2u ~Dni 61 ni !. ~13!

Thus one concludes that a unit cell of an intermediate ph
may be polar in the direction of the layer normal provid
the normal components of the polarization from differe
layers do not cancel each other.

If the directorn weakly depends onz on a large scale~that
corresponds to conventional Sm-C* or Sm-CA* phase!, the
director in the layeri 61 can approximately be expressed

ni 61'ni6@k03ni # ]w/]z, ~14!

and Eq.~12! is reduced to Eq.~2! that describes conventiona
flexoelectricity in the Sm-C* phase.

One should also note another difference between the
ventional and the discrete flexoelectric effect in smecticC*
liquid crystals. Equation~2! presents a unique expression f
the conventional flexoelectric polarization that is linear in t
gradient of the azimuthal anglew. At the same time Eqs
~8!–~12! present only approximate expressions for the d
crete flexoelectric polarization obtained taking into acco
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only simple couplings between the vectork0 and the order-
ing tensorsQab

( i 11) and Qab
( i 21) . It is possible to compose

higher order contributions that will have the same symme
as Eq.~5! and ~6!. This means that a theory of the discre
flexoeffect cannot be derived completely on the phenome
logical ground. It is important to consider some molecu
models that may provide one with a deeper insight into
effect. In the following section we consider such a simp
molecular model that enables one to derive an expression
the flexoelectric polarization similar to Eq.~12!.

III. MOLECULAR MODEL FOR THE DISCRETE
FLEXOELECTRIC EFFECT IN TILTED SMECTICS

Discrete flexoelectric effect should be determined
some polar interactions between molecules in neighbo
layers. In this paper we take into consideration electrost
dipole-dipole and dipole-quadrupole interactions. We co
sider a simple model of a smecticC liquid crystal composed
of rigid molecules possessing permanent transverse dip
and permanent quadrupoles~see Fig. 2!. For simplicity we
consider the case of perfect nematic and smectic orde
this simple case the long molecular axes are parallel to
local directorni in the layeri, and the orientation of a shor
molecular axis, i.e., of the transverse dipolemi , is specified
by the anglec. Then the average polarization in the layei
can be expressed as

Pi5r E m~ni ,c! f i~c! dc, ~15!

where the orientational distribution functionf i (cosc) de-
pends only onc. In the general case the orientational dist
bution function can be obtained by minimization of the to
free energy of a smectic layer that includes the interact
with other layers. Using the generalized mean-field appro
mation @43# and taking into account dipole-dipole an
dipole-quadrupole interactions between molecules one
write the following expression for the free energy of th
nonchiral tilted smectic layer with perfect nematic order:

µµµµ i+1

µµµµ i-1

µµµµ i
qαβ

(i)

qαβ
(i+1)

qαβ
(i-1)

FIG. 2. Molecular model for the discrete flexoelectric effect
tilted smectics.
3-5
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Fi5F0
( i )1DFi , ~16!

where the free energyF0
( i ) contains contributions from al

interactions with molecules in the layeri that do not depend
on the orientation of molecular transverse dipolemi specified
by the anglec. The additional free energyDFi of the smec-
ed

at

e
f a
e
no
le

he

h
c-
on

e

05170
tic layer i determined by polar intermolecular interactions
a functional of the orientational distribution functionf i (c)
that may be different in different layers. Taking into accou
only interactions between molecules within the same sme
layer and in adjacent layers, one can express the free en
DFi in the following form:
DFi5r kB T E f i~c!lnf i~c! dc1
1

2
r2E f i~c1! f i~c2! gi ,i~r'!$Udd

i ,i ~c1 ,c2 ,r !1Udq
i ,i ~c1 ,c2 ,r !% d2r' dc1 dc2

1
1

2
r2E f i~c1! f i 11~c2! gi ,i 11~r'!$Udd

i ,i 11~c1 ,c2 ,r !1Udq
i ,i 11~c1 ,c2 ,r !%d2r' dc1 dc2

1
1

2
r2E f i~c1! f i 21~c2! gi ,i 21~r'!$Udd

i ,i 21~c1 ,c2 ,r !1Udq
i ,i 21~c1 ,c2 ,r !%d2r' dc1 dc2 , ~17!
d
d in
-

hin

ons
wherer is the intermolecular vector for molecule 1 locat
in layer i and molecule 2 located in layerj 5 i or i 61. In the
case of perfect smectic orderr5k0 ( j 2 i ) z1r' , wherez is
the thickness of a smectic layer and the vectorr' is a pro-
jection of the intermolecular vectorr on the smectic layer
plane. The dipole-dipole and dipole-quadrupole electrost
interaction potentials in Eq.~17! are given by the following
equations:

Udd
i , j ~c1 ,c2 ,r ![ma~ni ,c1! Tab~r ! mb~nj ,c2!, ~18!

Udq
i , j ~c1 ,c2 ,r ![ma~ni ,c1!Tabg~r !qbg~nj !

2ma~nj ,c2!Tabg~r ! qbg~ni !. ~19!

Herem (ni ,c) is the permanent dipole of a molecule in th
layer i andqab (ni) is the permanent quadrupole tensor o
molecule in the layeri. For simplicity we assume that th
molecular quadrupole is uniaxial and therefore it does
depend on the anglec. In this case the average quadrupo
tensorqab (ni) may be expressed as follows:

qab ~ni !5Q0$na
( i ) nb

( i )2 1
3 dab%, ~20!

whereQ0 is the molecular quadrupole moment. Finally, t
coupling tensorsTab (r ) andTabg (r ) can be written as

Tab~r ![2“a“b

1

r
, ~21!

Tabg~r ![“a“b “g

1

r
, ~22!

wherer[ur u is the distance between molecules 1 and 2. T
first term in Eq.~17! is the orientational entropy of the sme
tic layer i that depends only on the orientational distributi
function f i (c). The second term is a contribution from
dipole-dipole and dipole-quadrupole interactions betwe
molecules within layeri. Finally, the third and fourth terms
ic

t

e

n

in Eq. ~17! present contributions from dipole-dipole an
dipole-quadrupole interactions between molecules locate
adjacent smectic layersi and i 61. The last three terms de
pend on the direct correlation functionsgi ,i(r ) or gi ,i 61(r )
describing positional correlations between molecules wit
the same layeri or in adjacent layersi andi 61, respectively.
Minimization of the free energy~17! yields the following
expression for the orientational distribution function:

f i~c!5
1

Zi
exp$2rb UMF

( i ) ~c!%, ~23!

whereb[1/(kB T),

Zi5E
0

2p

exp$2rb UMF
( i ) ~c!% dc ~24!

and

r UMF
( i ) ~c!5ma~ni ,c! I ab

i ,i Pb
( i )1ma~ni ,c! $I ab

i ,i 11 Pb
( i 11)

1I ab
i ,i 21 Pb

( i 21)%1ma~ni ,c! $I abg
i ,i 11 qbg~ni 11!

1I abg
i ,i 21 qbg~ni 21!%. ~25!

Here polarizationPi is determined by Eq.~15! and the ten-
sorsI ab

i , j and I abg
i , j are determined as follows:

I ab
i , j [E Tab~r ! gi , j~r'! d2r' , ~26!

I abg
i , j [E Tabg~r ! gi , j~r'! d2r' , ~27!

where the tensorsTab (r ) and Tabg (r ) are determined by
Eqs.~21! and~22!, respectively. In Eq.~25! it has been also
taken into account thatI abg

i ,i 50 since the functiongi ,i(r') is
even inr' . The resting quantitiesI ab

i , j and I abg
i , j in Eq. ~25!

characterize dipolar interactions and positional correlati
3-6
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between molecules in layersi and j. The direct correlation
functionsgi , j (r') in Eqs.~26! and~27! are expected to deca
rapidly with the increasing molecular separation. These fu
tions have a strong peak atr'50. In this case the quantitie
I ab

i ,i , I ab
i ,i 61 , andI abg

i ,i 61 may be estimated in the saddle-poi
approximation:

I ab
i ,i '2

^gi ,i&

2 d3
Tab~k0!, ~28!

I ab
i ,i 61'

^gi ,i 61&

z3
Tab~k0!, ~29!

I abg
i ,i 61'6

^gi ,i 61&

z4
Tabg~k0!, ~30!

where in correspondence with Eqs.~21! and ~22!

Tab~k0!5dab23 ka
0 kb

0 , ~31!

Tabg~k0!53 $ka
0 dbg1kb

0 dag1kg
0 dab%215ka

0 kb
0 kg

0 .
~32!

In Eqs. ~28!–~30! d is the breadth of a molecule, the thick
ness of a layerz[,cosu is determined by the tilt angleu
and the length of a molecule,, and the averageŝgi ,i& and
^gi ,i 61& are defined as follows:

^gi , j&[E gi , j~r'! d2r' . ~33!

The tilt angleu is usually very small so that the correlatio
function gi ,i(r') and the minimal distance between mo
ecules weakly depend on the orientation of the vectorr' . In
this case the minimal side-by-side distance is approxima
equal to the diameter of a moleculed. This was also taken
into account in Eq.~28!. Finally, the mean-field potentia
UMF

( i ) (c) can be written in the form

r UMF
( i ) ~c!52

^gi ,i&

2 d3
mi T̂ Pi1

^gi ,i 61&

z3
mi T̂ ~Pi 111Pi 21!

16 Q0

^gi ,i 61&

z4
mi R̂i k0 , ~34!

whereT̂ and R̂i are the following second rank tensors:

Tab[Tab ~k0!, ~35!

Rab
( i ) [na

( i 11) nb
( i 11)2na

( i 21) nb
( i 21) , ~36!

and wheremi[m (ni ,c). Substituting Eq.~34! into Eqs.
~23! and ~24!, and then into Eq.~15!, and expanding the
exponent in the expression for the distribution function
powers of polarizationPi , one obtains the following set o
equations:
05170
c-

ly

x̂i
21$Pi1ĝi~Pi¿11PiÀ1!%

1cf ~ni k0!$Dni 612ni ~ni Dni 61!%50, ~37!

where

Dni 61[ni 112ni 21 , ~38!

cf[3 Q0

r ^gi ,i 61& m2

kB T z4
. ~39!

In Eq. ~37! the inverse dielectric susceptibility tensorx̂i
21

and the dipolar coupling tensorĝi are determined by the
following expressions:

~x i
21!ab[dab2

r ^gi ,i& m2

4 kB T d3
¸ab

( i ) , ~40!

gab
( i ) [ x̂

r ^gi ,i 61& m2

2 kB T z3
¸ab

( i ) , ~41!

where

¸ab
( i ) [dab23 ka

0 kb
02na

i nb
i 13 ~ni k0! na

i kb
0 . ~42!

Equation~37! describes the discrete flexoelectric effect in t
nonchiral tilted smectic, where dipolar interactions betwe
molecules within the same layer and in adjacent layers
taken into account explicitly. This expression for the flex
electric polarization has the same form as the phenome
logical Eq. ~12!. In the present model, however, the flex
electric coefficientcf 2 is expressed in terms ofcf 1, i.e., cf 2
52cf 152cf wherecf is given by Eq.~39!.

From Eq. ~37! it also follows that polarization in each
layer is not parallel to the smectic layer plane. Howev
contribution to the polarization that is proportional to the fi
power of the small parameter sinu is parallel to the smectic
layer plane. Neglecting the other terms in Eq.~37!, which are
proportional to higher powers of sinu, one obtains the closed
set of equations for the polarizationsPi that are parallel to
the smectic layers:

Pi1g~Pi¿11PiÀ1!1x cf cosu Dni 61'0, ~43!

where the inverse dielectric susceptibilityx21 and the dipo-
lar coupling coefficientg are determined by the following
expressions:

x21[12
r ^gi ,i& m2

4 kB T d3
, ~44!

g[x
r ^gi ,i 61& m2

2 kB T z3
, ~45!

and the flexoelectric coefficientcf is given by Eq. ~39!.
These three parameters depend on positional correla
3-7
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functions gi ,i and gi ,i 61, which are not calculated in thi
paper. In the rest of the paper they will be treated as p
nomenological constants.

IV. THE SEQUENCE OF INTERMEDIATE PHASES
WITH DIFFERENT PERIODS

A. Free energy of intermediate phases

In the framework of the discrete model@17,21# one can
write the total free energy of an intermediate tilted smec
phase in the following general form:

F5(
i 51

N

$Fi
(0)1DFi%, ~46!

whereN is the total number of smectic layers and the fr
energyF0

( i ) does not depend on the polarization. All pola
ization dependent terms are included inDFi that can be writ-
ten as

DFi5
1
2 Pi•x̂i

21
• Pi1

1
2 ~Pi •Ĝi•Pi 111Pi •Ĝi•Pi 21!

1cs ~Pi•ji !1cf
(1) cosu ~Pi•Dni 61!

1cf
(2) cosu ~Pi•ni !~Dni 61•ni !, ~47!

where we have taken into account only quadratic terms in
polarization. The first two terms in Eq.~47! describe the
dielectric energy of the smectic layer and the coupling
tween polarization vectors in neighboring layers. One no
that the anisotropy of the dielectric susceptibility tensorx̂i

and the polarization coupling tensorĜ[x̂i
21

•ĝi may be im-
portant if both components of the induced flexoelectric p
larization ~i.e., parallel and perpendicular to the smec
layer! are taken into consideration as discussed in Sec
The dimensionless parameterg, characterizing the relative
strength of the coupling in the neighboring layers, is e
pected to be smaller than 1. The second term in Eq.~47!
describes the coupling between the polarizationPi and the
tilt ji that is present only in chiral smectics@37,38#, i.e.,cs is
a pseudoscalar vanishing in racemic mixtures. It is w
known that in the absence of any other effects this term g
rise to the spontaneous polarization of the lay
Ps

( i )52x cs ji that is perpendicular to the tilt plane. In th
general case, however, the direction of the total polariza
of a smectic layer is not parallel toji because of the discret
flexoelectric effect described by the last two terms in E
~47!. This effect has been considered in detail in the prec
ing section.

Now let us express the directorni in terms of the tilt angle
u and the azimuthal anglew i :

ni5$sinu cosw i ,sinu sinw i ,cosu%, ~48!

where we have assumed that the tilt angle is the same fo
smectic layers. This assumption is supported by the exp
ment @3#. Now the free energyFi

(0) in Eq. ~46!, which de-
pends on the relative orientation of the directorni , can be
expressed in terms of the anglesw i ,i 11[w i 112w i and
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w i 21,i[w i2w i 21 between the tilt planes of the neighborin
layers. In the first approximation@24#

Fi
(0)5F̃0~u!2ã

DT

T*
$cosw i 21,i1cosw i ,i 11%

2B̃ $cos2w i 21,i1cos2w i ,i 11%, ~49!

whereDT[T2T* , andT* has the meaning of the transitio
temperature between the synclinic and anticlinic smecticC
phases in the absence of any intermediate phases. The
plicit expressions for the coefficientsã and B̃ have been
obtained in Ref.@44# in the framework of a molecular mode
One notes thatã;sin2u andB̃;sin4u in the case of smallu.
Finally, the free energyF̃0 (u) is the same for all layers an
depends on the homogeneous tilt angleu.

One notes that the free energy~46!–~49! is very similar to
that used by Cepic and co-workers@26,27# although in Eq.
~47! the discrete flexoeffect is described by a more gene
expression. If one neglects the second flexoelectric term
Eq. ~47!, the total polarization of a smectic layer will alway
be parallel to the layer plane~see discussion in Sec. II!. In
this case the anisotropy of the tensorsxab andGab can be
neglected~because the dielectric anisotropy in the plane
the layers is expected to be small! and the total free energy o
a tilted smectic phase can be rewritten essentially in the s
form as proposed by Cepic and co-workers@26,27#:

F5(
i 51

N H F̃0 ~u!2ã
DT

T*
~cosw i 21,i1cosw i ,i 11!

2B̃ ~cos2 w i 21,i1cos2 w i ,i 11!1
1

2 x
@Pi

21g~Pi Pi 11

1Pi Pi 21!#1cs ~Pi ji !1cf cosu~Pi Dni 61!J , ~50!

wherex is the average dielectric susceptibility in the pla
of the layer andcf[cf

(1) . In Eq. ~50! we did not take into
account any direct coupling between next-nearest-neigh
layers that play an important role in Ref.@27#. As discussed
in more detail below, we do not need these additional ter
to describe the structure of intermediate phases. We also
lieve that such direct coupling should be extremely small d
to vanishing positional correlations between molecules
nonadjacent layers. One notes also that we do not take
consideration chiral interactions between different laye
Such interactions are very weak and are important only
the description of the macroscopic helical structure tha
characteristic to all chiral tilted smectic phases. The ex
tence of such a helicoidal structure with a macroscopic p
of the order of 1mm results only in a very small change o
all angles between adjacent layers~by a fraction of degree!.
In other words, the free energy associated with the mac
scopic helicoidal structure is too small to make any qual
tive effect on the structure of the unit cell of an intermedia
phase with periodicity of few smectic layers. Thus the stru
ture of the unit cell and the macroscopic helical structure
3-8
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be described separately. It should be noted, however,
chiral interlayer interactions may be important in the desc
tion of the microscopic structure of the Sm-Ca* phase where
the tilt angle may be very small and the corresponding f
energy is low. In this paper, however, we do not consider
Sm-Ca* phase.

In Refs.@26,27# the free energy~50! ~with few additional
terms! has been used to describe the two intermediate ph
with the periods of three and four layers, respectively, a
the Sm-Ca* phase. In that description the following majo
approximations have been made. First, the system of sim
taneous equations for polarizations of all smectic laye
which appears after minimization of the free energy w
respect to polarization, has been solved approximately le
ing only the quadratic terms in dipolar coupling coefficientg.
Second, the qualitative structure of the two intermedi
phases is taken from actual experimental data thus lea
only one independent angle in each phase, which is t
determined by minimization of the free energy. Finally,
attempt has been made to consider the stability of inter
diate phases with larger periods. In this section we us
different method of the free energy minimization that enab
one to go beyond the approximations made in Refs.@26,27#
and to describe the whole sequence of intermediate ph
with increasing periodicity that may exist between the s
clinic Sm-C* and the anticlinic Sm-CA* phases.

First, we present analytical solutions for the system
equations for polarizations of all layers, which is valid f
any finite total number of layers. As shown below, t
higher-order coefficients in these solutions are given by
currence relations. An exact minimization of the free ene
with respect to polarization results in an effective long-ran
coupling between different smectic layers with the coupl
strength decreasing with the increasing distance between
layers. One notes that an approximation made in Ref.@26#
results in a cutoff of this effective long-range coupling.
the same time, the long-range interlayer coupling is v
important for the stability of the whole sequence of interm
diate phases described in this paper. A sequence of sim
phases with increasing periods, known as the devil’s st
case, has been found in frustrated Ising systems with lo
range interactions@31,32#. After minimization of the free en-
ergy with respect to polarization we consider an intermed
phase with a period oft smectic layers and determine i
structure by direct numerical minimization of the free e
ergy. The phase diagrams are obtained by comparing the
energies of all structures with different periods up to t
period of nine layers. In this procedure we assume t
angles between tilt planes of adjacent layers are relativ
small, i.e., sinwi,i11'wi,i11. This approximation works quali
tatively well up to the anglesw;p/4, and for structures
under consideration can only lead to some small quantita
mistakes. It should be noted that the minimization meth
used in this paper cannot be applied to describe incomm
surate phases that are aperiodic. However, there is ne
experimental nor theoretical evidence for the existence
any incommensurate phases in the corresponding temp
ture range, i.e., between Sm-C* and Sm-CA* phases. The
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only incommensurate phase observed in chiral smecticsC*
is the Sm-Ca* phase that is stable in a different temperatu
range and is not considered here, as discussed above
discussed in more detail by Musevich and Skarabot@17#, the
incommensurate structure of the Sm-Ca* phase is determined
by small values of the elasticity coefficientB that is propor-
tional to u at smallu. Far from the Sm-A phase the coeffi-
cient B is expected to be large and thus it is very unlike
that any incommensurate phase may be stable in that
main.

B. Minimization procedure

We are looking for intermediate phases with different p
riods that may be stable within a relatively narrow tempe
ture interval between Sm-C* and Sm-CA* phases. In this re-
gion the tilt angleu is assumed to be constant and thus
total free energy should be minimized with respect to a
muthal anglesw i and polarizationsPi of all layers. Minimiz-
ing the free energy~50! with respect to polarizationPi , one
obtains the following set of equations forPi :

Pi1g ~Pi 211Pi 11!1x M i50, ~51!

where

M i[cs ji1cf cosu ~ni 112ni 21!, ~52!

and whereji[cosu @ni3k0# is the order parameter@see Eq.
~3!#. One can simplify Eq.~47! for the free energyDFi using
Eq. ~51!:

DFi5
1
2 Pi M i . ~53!

Analytical solutions for the set of simultaneous equatio
~51! can be obtained for any finite number of smectic lay
in the whole system and/or for any fixed number of layers
the unit cell of an infinite periodic intermediate phase. Th
let us consider the intermediate phase with the periodt
layers. For any odd number of layerst52n11 one obtains
the following expression for polarization of an arbitrary lay
i within the period:

Pi
(2n11)52

x

r 2n11
Fs2n11M i1 (

k51

n

~2g!ks2(n2k)11

3~M i 2k1M i 1k!G , ~54!

where the coefficientsr k and sk can be calculated analyti
cally for any fixed value ofk using the following relations:

r 1[112 g,

r 3[11g22 g2,

r 5[11g23 g222 g3,
~55!

r 7[11g24 g223 g312 g4,

r 9[11g25 g224 g315 g412 g5,

. . .
3-9
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s1[1,

s3[11g,

s5[11g2g2,
~56!

s7[11g22 g22g3,

s9[11g23 g222 g31g4,

Slightly different solutions can also be obtained for any ev
value t52n:

Pi
(2n)52

x

r
2n

Fs
2n

M i1 (
k51

n21

~2g!ks
2(n2k)

~M i 2k1M i 1k!

1
1

2
~2g!ns0 ~M i 2n1M i 1n!G , ~57!

where

r 25r 4[124 g2,

r 6[125 g214 g4,
~58!

r 8[126 g218 g4,

. . .

s0[2, s2[1,

s4[122 g2,
~59!

s6[123 g2,

s8[124 g212 g4,

Substituting Eqs.~54! and ~57! into Eq. ~53!, and then into
Eq. ~46!, one obtains the following expression for the pola
ization contribution to free energy of the intermediate ph
with the period oft layers:

Ft /N5
1

t (
i 50

t21

Fi
(0)2

x

2 t (i 50

t21

(
k50

t21

f k M i M i 1k , ~60!

where

f k[H ~2g!k
st22k

r t
if k50•••@ t/2#,

~2g! t2k
s2k2t

r t
if k5~@ t/2#11!•••~ t21!,

~61!

and where the coefficientsr k andsk are determined by Eqs
~55! and ~56! for t52 n11 or by Eqs.~58! and ~59! for t
52n, respectively. In both cases@ t/2#5n. Substituting Eq.
~52! for M i into Eq. ~60! and adding the free energyFi

(0)
05170
n

-
e

given by Eq.~49!, one obtains the following expression fo
the total free energy of the intermediate phase with the
riod of t layers:

Ft2F̃0~u!

N sin2~2 u!
52

1

2
x$cs

2f 01cf
2f 0

(2)%

2
x

t (
i 50

t21

(
j 5 i 11

t21

$cs
2f j 2 i1cf

2f j 2 i
(2) %cosw i j

12 cs cf

x

t (
i 50

t21

(
j 5 i 11

t21

f j 2 i
(1) sinw i j

2B
1

t (
i 50

t21

cos2w i ,i 112a
DT

T*

1

t (
i 50

t21

cosw i ,i 11 ,

~62!

where a[2ã/sin2(2u), B[2 B̃/sin2(2u), the coefficients
f k

(1) and f k
(2) are determined by expressions

f k
(1)[ f k212 f k11 ,

~63!

f k
(2)[2 f k2 f k222 f k12 ,

and where the coefficientsf k (k50,1, . . . ,t21) are deter-
mined by Eq.~61!, f t[ f 0 , f t11[ f 1 , f 21[ f t21 and f 22
[ f t22. The anglesw i j in Eq. ~62! are defined asw i j [w j
2w i . Equation~62! describes the free energy of an interm
diate tilted chiral phase with an arbitrary periodicityt. The
last two terms in Eq.~62! describe direct coupling betwee
director orientations in neighboring layers. The other ter
in Eq. ~62! appear after the minimization of the initial fre
energy with respect to polarizations of all smectic laye
One notes that in the present model only interactions
tween neighboring smectic layers are taken into account
the same time, one can readily see from Eq.~62! that an
effective coupling between any two layers within the peri
of the structure appears after a minimization of the free
ergy with respect to polarization. This effect is rather typic
for systems with several interacting thermodynamic para
eters. The strength of such effective coupling between dis
layers i and j can be estimated to decay asgu j 2 i u, whereg
,1 is the dimensionless dipolar coupling coefficient f
neighboring layers. Thus, one concludes that there exist
effective long-range coupling between director orientatio
in different smectic layers determined by direct dipolar int
action between adjacent layers.

Finally it should be noted that only the last term in th
free energy~62! is assumed to be temperature dependen
vanishes atT5T* . The system undergoes a transition fro
the synclinic to the anticlinic smecticC phase at the tempera
tureT5T* if molecular chirality and the discrete flexoeffe
are not taken into account. At the same time, in the prese
3-10
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of these two effects this simple temperature variation is s
ficient to generate the whole sequence of nonplanar inter
diate phases that are stable in the vicinity ofT5T* .

Now the free energy~62! should be minimized with re-
spect to all anglesw i that specify director orientations i
smectic layersi 50,1, . . . ,t21 within the periodt of the
intermediate phase. It is more convenient to minimize
free energy~62! with respect to the differencesw i j taking
into account the constraints that directly follow from the fa
that the given phase has a period oft layers:

wnk5 (
i 5n

k21

w i ,i 11 , w t21,t52p2(
i 50

t22

w i ,i 11 . ~64!

Then one obtains the following set of equations:

B sin~2 w i ,i 11!1a sinw i ,i 11

1B sinF2 (
j 50

t22

w j , j 11G1a sinF (
j 50

t22

w j , j 11G
1x (

n50

i

(
k5 i 11

t21

$cs
2f k2n1cf

2f k2n
(2) %sinwnk

12 cs cf x (
n50

i

(
k5 i 11

t21

f k2n
(1) coswnk50, ~65!

where i 50,1, . . . ,t22. In this paper we assume that inte
mediate phases may be non-planar, but the actual struc
does not deviate strongly from the corresponding planar p
totype. This assumption is in accordance with experime
data@16,18,19#. In this case the angleswnk may be split into
two parts:

wnk5 (
i 5n

k21

a i
01 (

i 5n

k21

Da i , ~66!

where the anglesa i
0[w i ,i 11

0 may be equal to 0 orp only ~i.
e., they specify the corresponding planar structure!, while the
anglesDa i[Dw i ,i 11 are assumed to be relatively small~i.e.,
sinDai'Dai). Then Eq.~65! may be linearized with respec
to Da i :

(
j 50

t22

ci j Da j5qi , ~67!

where

qi[22 cs cf (
n50

i

(
k5 i 11

t21

f k2n
(1) coswnk

0 ,

ci j [ (
n50

j

(
k5 i 11

t21

$cs
2 f k2n1cf

2 f k2n
(2) %coswnk

0 12 B

1a cosa t21
0 if j 50,1, . . . , i 21;

ci j [4 B1a~cosa i
01cosa t21

0 ! if j 5 i ; ~68!
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ci j [ (
n50

i

(
k5 j 11

t21

$cs
2 f k2n1cf

2 f k2n
(2) %coswnk

0 12 B

1a cosa t21
0 if j 5 i 11, . . . ,t22. ~69!

Equations~67! are solved for any particular sequence ofa i
0 ,

and results are substituted back into the free energy~62!. The
latter is then minimized with respect toa i

0 to determine the
optimal structure. One notes that the solution is unique
this approximation, and therefore one finds a unique str
ture of the intermediate phase with fixed period oft layers.
Finally, the free energies of phases with different periods
compared with each other to select the one that correspo
to a global minimum at a given temperature for a particu
choice of the model parameters. We have performed the
responding numerical calculations for all values oft up to t
59. The resulting structures of the intermediate phases
the phase diagrams are presented and discussed in the
lowing section.

V. RESULTS AND DISCUSSION

The structures of the intermediate phases with the per
of 4, 3, 8, 5, 7, and 9 layers that have been obtained
minimization of the free energy~62! are presented in Fig. 3
One notes that the structures with three- and four-layer p
odicities correspond to experimental findings@16,18,19# in-
cluding the order of layers with different director orientatio
within the period, and to the theoretical results of Cepicet al.
@27#. From the quantitative point of view the major discre
ancy is in the three-layer phase where the angleDw12 is
smaller than the corresponding experimental value. It sho
be noted, however, that the angle in the three-layer phase
been determined experimentally for only one compound@16#
by the ellipsometry method that is less precise than the re
nant x-ray scattering method@18,19#. The resonant x-ray
scattering method has only been used to specify the struc
of the four-layer phase. On the other hand, new prelimin
experimental data@29# indicate that the angleDw12 in the
three-layer phase may be significantly smaller than the va
obtained in Ref.@16#. In any case more experimental data f
different compounds are required to clarify this point. It
also desirable to investigate the structure of the three-la
phase by the resonant x-ray scattering method. As mentio
above, several other intermediate phases have been obs
experimentally, but their structure has never been studie
detail. In this paper we predict the possible structures of n
intermediate phases with the periods of 5 , 7, 8, and 9smec-
tic layers that are presented in Fig. 3. The structure w
six-layer periodicity is not presented here because this ph
appears to be unstable at least in the context of this sim
model.

It is interesting to note that the structures of all interm
diate phases presented in Fig. 3 possess a certain symm
that is visible if the structures are viewed along the sme
layer normal. In fact, the tilt directions in different layers a
antisymmetric with respect to the middle of the period. Th
property defines the chirality of these structures. It can
shown that the corresponding symmetry is contained alre
3-11
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FIG. 3. Structure of the intermediate phases with the periods of 4, 3, 8, 5, 7, and 9 layers.
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in the general Eq.~62! for the free energy of an intermedia
phase with periodicity oft layers. For example, the free en
ergy F3 of the three-layer phase can be expressed as

F32F̃0 ~u!

N sin2~2 u!
52x H 1

2
cs

2f 0
(3)1cf

2~ f 0
(3)2 f 1

(3)!J
2J1

(3) ~cosa11cosa21cosa3!

1J2
(3)~sina11sina21sina3!

2 1
3 B~cos2a11cos2a21cos2a3!, ~70!

where only two angles are independent becausea11a2

1a352 p. The coefficientsJ1
(3) and J2

(3) in Eq. ~70! are
expressed as

J1
(3)[

x

3
$cs

2f 1
(3)2cf

2~ f 0
(3)2 f 1

(3)!%1
a

3

DT

T*
,

~71!

J2
(3)[

2 x

3
cs cf~ f 0

(3)2 f 1
(3)!,

where

f 0
(3)[

11g

11g22 g2
, f 1

(3)[2
g

11g22 g2
. ~72!
05170
One can readily see that the free energy~70! is symmetric
with respect to the interchange of any two angles from
set $a1 , a2 , a2%, i.e., it is invariant under the transforma
tions a1�a2 , a2�a3 and a1�a3. Thus, the free energy
~70! should have three equivalent minima. The first one c
responds toa15a2, the second one toa25a3, and the third
one to a15a3. All these minima correspond to the sam
structure with different enumeration of layers. If, for e
ample, a25a3, the minimization of the free energy~70!
results in the following expression fora1:

a1
(3)'2

4 J2
(3)

2 B1J1
(3)

. ~73!

Likewise, the free energyF4 of the four-layer phase can b
expressed as

F42F̃0~u!

N sin2~2 u!
52xH 1

2
cs

2f 0
(4)1cf

2J 2J1
(4) ~cosa11cosa2

1cosa31cosa4!1J2
(4) ~sina11sina2

1sina31sina4!2J3
(4) $cos~a11a2!

1cos~a31a4!%2 1
4 B ~cos2a11cos2a2

1cos2a31cos2a4!, ~74!
3-12
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where only three angles are independent becausea11a2

1a31a452p. The coefficientsJ1
(4) , J2

(4) , andJ3
(4) in Eq.

~74! are expressed as

J1
(4)[

x

4
cs

2f 1
(4)1

a

4

DT

T*
, J2

(4)[
x

2
cs cf ,

J3
(4)[

x

4
$cs

2f 2
(4)22 cf

2%, ~75!

where

f 0
(4)[

122 g2

124 g2
, f 1

(4)[2
g

124 g2
,

f 2
(4)[

2 g2

124 g2
. ~76!

One can see that the free energy~74! is invariant under the
simultaneous transformationsa1�a3 and a2�a4. Thus,
the minimum of the free energy~74! should correspond to
the casea15a3 anda25a45p2a1. Then minimization of
the free energy~74! results in the following expression fo
a1:

a1
(4)'22

J2
(4)

B
52x

cs cf

B
. ~77!

It follows from Eq. ~77! that the azimuthal anglea1
(4) speci-

fying the direction of the tilt in the four-layer phase does n
depend on the dipolar coupling coefficientg. This is deter-
mined by the special symmetry of the four-layer phase.
contrast, the azimuthal angles in other intermediate pha
increase with the increasing parameterg @see, for example
Eq. ~73! for the azimuthal angle in the three-layer phas#.
Only one azimuthal angle appears to be independent in
phases with three- and four-layer structures.

In a similar way, the free energies of the other interme
ate phases in Fig. 3 are symmetric with respect to the in
change of some azimuthal angles. As a result, only two
muthal angles are independent in the phases with period
eight and five layers, three angles are independent in
phase with period of seven layers, and four angles are in
pendent in the phase with period of nine layers. The str
tures of all intermediate phases are essentially nonflat,
tilt planes in different smectic layers are not parallel to ea
other. On the other hand, the deviation from the prototy
flat structure is not too large and, as a result, the pha
appear to be strongly biaxial. The biaxiality can be quali
tively characterized by the anglesDa i . If one neglects a
deviation from the flat structure, each intermediate phas
Fig. 3 can be described as a sequence of synclinic and
clinic pairs of neighboring layers. One notes that only o
unique synclinic pair is present in the unit cell of each int
mediate phase, and thus the phases with large period
semble more and more the anticlinic smecticC phase. At the
same time, the maximum deviation from the prototype
structureDa15a1 increases with the increasing periodicityt
05170
t

y
es

he

i-
r-
i-
of

he
e-
c-
.,

h
e
es
-

in
ti-

e
-
re-

t

~see Fig. 4!. As already mentioned, the maximum anglea1 in
the four-layer phase is independent of the dipolar coupling
between neighboring layers. In other intermediate phase
grows with the increasingg ~see Fig. 5!.

There are only four independent dimensionless para
eters (a DT/B T* ), (x cs cf /B), cf /cs , and g in the free
energy~62! that determine the phase diagram of the syste
Only the parameter (a DT/B T* ) is temperature dependen
One can see from Eq.~77! that the parameter (x cs cf /B),
describing the relative strength of the polarization contrib
tion, is related to the azimuthal angle in the four-layer pha
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FIG. 4. Deviations of independent azimuthal angles in the in
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the case xucs cf u/B50.12, ucf /csu51 and g50.3. Here T̃
[a DT/B T* is the dimensionless temperature, and numbers in
cate the periodicities of the intermediate phases.
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and therefore it cannot vary significantly. The parame
cf /cs describes the relation between flexoelectric and sp
taneous polarizations. The$g,T̃% phase diagram is presente
in Fig. 6, whereT̃[a DT/B T* is the dimensionless tem
perature. The coefficientg depends on the positional corre
lations between molecules in neighboring layers and is
pected to be significantly smaller than 1. From Eqs.~61!–
~63! it follows that in the caseg50 the only four-layer
intermediate phase is possible. In the realistic range og
;0.1–0.2 ~see Fig. 6! the smecticC* material exhibits a
sequence of intermediate phases with the decreasing
perature intervals confined between the synclinic Sm-C* and
the anticlinic Sm-CA* phases. With the decreasing tempe
ture the system undergoes a transition from the Sm-C* phase
to the intermediate phase with the period of four layers. T
periodicity and the structure of this phase correspond to
experimentally determined structure of the so-cal
Sm-CFI2* phase. With the decreasing temperature the sys
undergoes a transition from the four-layer intermediate ph
to the three-layer one. The structure of this phase co
sponds to that of the so-called Sm-CFI1* phase. This sequenc
of phases is actually observed in the experiment@16,18,19#.
At slightly lower temperatures the system exhibits the int
mediate phases with periods of 8, 5, 7, and 9 layers.
small values ofg the stability ranges of these phases a
smaller than those of the three- and four-layer phases
follows from the phase diagram~see Fig. 6! that intermediate
phases with periods larger than four layers are becom
more stable with the increasing coefficientg. Thus, these
phases are more likely to be observed in smectic mate
with strong positional correlations between molecules in
jacent layers. Such correlations may be determined by s
specific interactions between various groups in the molec
tails, and it may be interesting to synthesize new sme
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FIG. 6. Phase diagram in the casex ucs cf u/B50.12 and

ucf /csu51. HereT̃[a DT/B T* is the dimensionless temperatur
and numbers indicate the periods of the intermediate phases.
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materials with such properties. The phase diagram of sme
C* materials with very large coefficientg50.4 is presented
in Fig. 7. In this case the stability range of some intermedi
phases with large periods can be even larger than that o
three- and four-layer phases. One notes that these stabl
termediate phases appear only if the flexoelectric coeffic
cf is sufficiently large, i.e. the flexoelectric polarization is
the same order or larger than the spontaneous polarizatio
should be noted, however, that the difference in free ene
between intermediate phases decreases with the increa
period, and it may be difficult to locate the correspondi
transition points. In real systems such phases may also
suppressed by various factors including, in particular, surf
effects. The structure of intermediate phases has been stu
experimentally in thin free-standing smectic films@16,18,19#
where the influence of boundaries is known to be very i
portant @45,46#. Moreover, the detailed diagram of a th
film, in principle, may depend on the number of smec
layers in the film. If the total number of layers is sufficient
small and is not a multiple of the period of an intermedia
phase, the remaining few layers may play a role of a stro
surface defect, and the phase may be suppressed compl
This effect is expected to be more important for phases w
large periods, and, thus, such phases should be more e
observed in thicker films.

In the framework of this model the particular structure
intermediate phases is determined by a coupling between
spontaneous polarizationPs and the flexoelectric polarization
Pf . In the general case these two components of the t
polarization are not parallel. Then the coupling betweenPs
andPf gives rise to an effective torque that results in a no
zero angle between tilt planes in adjacent layers. The co
sponding contribution to the free energy is proportional
both parameterscs and cf . It is important to note that all
intermediate phases disappear ifcf50 ~see Fig. 7!, because

-0.8 -0.4 0.0 0.4 0.8 1.2

0.125

0.25

0.5

1

2

4

8

*

~

SmCA

9

7

5

8
3

4

SmC*|c
f
/

c s|

T

FIG. 7. Phase diagram in the casex ucs cf u/B50.12 andg

50.4. HereT̃[a DT/B T* is the dimensionless temperature, a
numbers indicate the periods of the intermediate phases in term
layer thickness.
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in this case the effective free energy Eq.~62! contains only
contributions proportional tocs

2 f j 2 i and therefore alternat
in sign from layer to layer. Such contributions may on
stabilize the anticlinic structure. Thus, the existence of b
flexoelectric polarizationPf and the spontaneous polarizatio
Ps is essential for the stability and structure of intermedi
phases. In real systems intermediate phases disappe
racemates@7#. Thus, the two enantiomers should exhibit t
same intermediate phases with structures that are the m
images of each other. This conclusion can be verified exp
mentally. In general, one concludes that the chiral struc
of intermediate phases is directly determined by molecu
chirality and is not a result of a chiral symmetry breaking

Finally, one notes that according to the results of
theory of the discrete flexoelectric effect, presented in S
II and III, all intermediate phases should possess an a
tional polarization in the direction perpendicular to smec
layers. This polarization is expected to be small ifu!1, and
thus it has not been taken into account in the calculation
the structure of intermediate phases. However, this polar
tion can always be taken into consideration as a secon
effect, and its role will be studied in detail in a forthcomin
publication.

One concludes that a sequence of polar and tilted in
mediate smectic phases with realistic structure can be
A

i,

an

o,

e

k-

.
s.

a-
I.

ra
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scribed theoretically without taking into account any dire
interactions between nonadjacent smectic layers. In the
approximation it is sufficient to take into consideration t
discrete flexoelectric effect, discussed in Sec. II, the spo
neous polarization of each layer that is related to molecu
chirality, and the coupling between polarizations of neig
boring layers. As discussed above, the macroscopic he
structure of intermediate phases can be described separ
taking also into account weak chiral interactions betwe
adjacent layers that do not significantly affect the structure
a unit cell. At the same time, the approach used in this pa
is limited to a temperature range far away from t
Sm-C–Sm-A transition point where the tilt angle is sma
and cannot be approximated as a constant. Thus the pre
theory cannot be used to describe the Sm-Ca* phase or any
other incommensurate phases that, in principle, may exis
the domain of small tilt anglesu.
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