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Theoretical model for the discrete flexoelectric effect and a description for the sequence
of intermediate smectic phases with increasing periodicity
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A general phenomenological description and a simple molecular model is proposed for the “discrete”
flexoelectric effect in tilted smectic liquid crystal phases. This effect defines a polarization in a smectic layer
induced by a difference of director orientations in the two smectic layers adjacent to it. It is shown that the
“discrete” flexoelectric effect is determined by electrostatic dipole-quadrupole interaction between positionally
correlated molecules located in adjacent smectic layers, while the corresponding dipole-dipole interaction is
responsible for a coupling between polarization vectors in neighboring layers. It is shown that a simple
phenomenological model of a ferrielectric smectic liquid crystal, which has recently been proposed in the
literature, can be used to describe the whole sequence of intermediate chiral €iqutimses with increasing
periods, and to determine the nonplanar structure of each phase without additional assumptions. In this se-
guence the phases with three- and four-layer periodicities have the same structure, as observed in the experi-
ment. The theory predicts also the structure of intermediate phases with longer periods that have not been
studied experimentally so far. The structures of intermediate phases with periodicities of up to nine layers are
presented together with the phase diagrams, and a relationship between molecular chirality and the three-
dimensional structure of intermediate phases is discussed. It is considered also how the coupling between the
spontaneous polarization determined by molecular chirality and the induced polarization determined by the
discrete flexoelectric effect stabilizes the nonplanar structure of intermediate phases.
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[. INTRODUCTION electric field. Recently a number of experimental studies
have revealed that chiral smec@¢ liquid crystals exhibit a
Ferroelectric smectic liquid crystals are unique materialssequence of intermediate ferrielectric phases with modula-
where the spontaneous polarization is determined by molecuion periods of more than two layers in a temperature interval
lar chirality. In the chiral smecti€* phase the polarization between ferroelectric and antiferroelectric &fh- phases.
is induced by a tilt of the director with respect to the smecticThe most commonly observed intermediate phases are
layer normal. The direction of both tilt and polarization can Sm-Cr,;; and SmEg,, phases that exhibit three- and four-
be switched by an external electric field. About 14 yr ago itlayer superstructures, respectively, with a uniform tilt angle
was shown experimentallfl] that similar materials may [12-15. Very recently the detailed structure of these phases
also exhibit the anticlinic antiferroelectric smec@g phase, has been investigated with ellipsomefiy,17], the resonant
where both polarization and direction of the tilt alternate inx-ray scattering techniquefl8,19, and optical rotatory
sign from layer to layer. The transition between synclinic andoower techniquél5,2Q. In contrast to the earlier qualitative
anticlinic smectic phases is of the first order, and accordingnodels, the actual structure of S8y, and SmEg,, phases
to the experimental daf@,3] the synclinic smecti€ phase is not flat and, at the same time, it is different from the
is always the higher temperature phase. The only exceptionniaxial “clock” model [21,22. In fact, each intermediate
is the anticlinic smecticl phase that also possesses thephase is characterized by a unique set of azimuthal angles
hexatic order{4—6]. It should be noted that the anticlinic {¢;} that specify different azimuthal orientations of the di-
structure itself is not related to molecular chirality becauseector in each smectic layer inside the unit crystallographic
the anticlinic smecticC, phase is observed in racemic mix- cell. The structure of the unit cell appears to be chiral, and it
tures[7—9] and even in some nonchiral compourd§,11]. is known that intermediate phases disappear in racemic mix-
Chirality results in the appearance of the spontaneous polatures. One thus concludes that their origin should be directly
ization in each smectic layer in the direction perpendicular taelated to molecular chirality.
the local tilt plane. In addition, the chiral smect@ phase Transition between the ferroelectric Sbf- and the anti-
is characterized by a helical structure with optical wave-ferroelectric SmE) phases can theoretically be described by
length. One notes also that the energy barrier between theontinuum theory 23,24 or by simple discrete phenomeno-
synclinic and the anticlinic phases is relatively low, and thelogical models that explicitly take into consideration cou-
corresponding phase transition can be induced by a moderapding between director orientations in different layers
[21,17. Phases with more complex structure can be de-
scribed phenomenologically using a number of additional or-
*URL: http://polly.phys.msu.ruf emel/ der parameter$25] or by using more advanced discrete
"Electronic address: osipov@maths.strath.ac.uk models which take into consideration various couplings be-
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tween nearest neighbor and next-nearest-neighbor smeciitterest in their structurf29]. It should be noted that in the
layers, as recently proposed by Cepic and co-workerpresent paper we consider only intermediate phases which
[26,27. In particular, Lormarj25] presented a possible four- may exist between the S@* and the Snc; phase, i.e.,
layer phase that corresponds to that observed later in thsufficiently far from the SnE* —SmA transition point. In
experiment. Cepiet al.[27] have described the structure of this domain the tilt angle of the director is sufficiently large
intermediate phases with three- and four-layer periodicitieand weakly temperature dependent. For simplicity, it is as-
using some approximation based on the experiment, and preumed to be constant in the present theory. This means that
sented a phase diagram that includes also the smé&gtic the present approach cannot be used to describe the structure
phase. Another model of the three- and four-layer phases has the SmC* phase which is observed directly below the
recently been proposed by Huang and co-work@8. An  Sm-A* phase. In the Sni&* phase the tilt angle is small and
important feature of the model proposed by Cepic and codepends strongly on the temperature.
workers[26,27] is the new term essentially describing the  The structure of particular intermediate phases in chiral
effect that we propose here to call the “discrete” flexoelec-smecticC* is intimately related to the more general problem
tric effect in order to distinguish it from the conventional of the microscopic origin of the whole sequence of phases
flexoelectricity. The discrete flexoelectric effect results in thewith increasing periodicity. In the early studies of antiferro-
appearance of an induced polarization in a smectic layeglectric liquid crystals it has been assumed that the interme-
provided the two adjacent layers differ in their director ori- diate phases represent the so-called “devil’s staircase.” It has
entation. This effect appears to be very important in the stabeen predicted theoretically for two types of Ising models
bilization of the intermediate phases. In the general case th{80-37. The first one is a three-dimension&D) Ising
additional polarization is not parallel to the spontaneous pomodel with competing nearest- and next-nearest-neighbor
larization of the chiral layer, and thus a minimum of the total coupling[30]. This model, however, can hardly be applied to
electrostatic energy may correspond to nonzero azimuthahijral smecticsC* because it contains no chiral interaction
angles between the directors in neighboring layers. Onend will therefore predict the same phases for chiral and
notes that in Ref§26,27] no derivation of the corresponding nonchiral liquid crystals, which strongly contradicts the ex-
formulas for the induced polarization has been given and aperiment. It is also important that intermolecular interactions
important difference with the conventional continuous flexo-in liquid crystals cannot be adequately modeled by the Ising
electric effect has not been discussed. In this paper wgjamiltonian having a different symmetry and different ori-
present a general phenomenological description of the dissntational dependence. The second, one-dimensional Ising
crete flexoelectricity that manifests itself only in tilted smec-model with long-range repulsive interactifdil,32, is much
tic phases where the director undergoes finite rotations frorgjoser to the actual structure of smedfidiquid crystals. In
layer to layer. We derive a more general expression for thene first approximation the direction of tilt in a smectic layer
induced polarization that is reduced to that considered byan be specified by an Ising-like variable that will now rep-
Cepic and co-worker26,27] after some simplifications. A resent a collective property. Then the long-range interaction
molecular model of the discrete flexoelectric effect based Ooitan be interpreted as a Coup"ng between director orienta-
electrostatic dipole-quadrupole interactions between moltions in distant smectic layers. This long-range interaction,
ecules in adjacent smectic layers is also proposed. We thespecifying the existence of the “devil's staircase,” should be
show that essentially the same free energy of a tilted smectighiral in nature because intermediate phases must disappear
liquid crystal as that proposed by Cepic and co-workersn nonchiral smectic liquid crystals. In addition, the initial
[26,27] (but without direct coupling between next-nearest-|sing model should be replaced by a more realistic planar
neighbor layerscan be used to predict the whole sequencéotator model to account for a continuous rotation of the
of distinct intermediate phases with different periods thatdirector about the smectic layer normal. One notes, however,
may exist between the synclinic smec@C phase and the that the existence of a devil's staircase in such a model with
anticlinic smecticCy phase, and to describe their structurecontinuous rotation has not been proved theoretically yet. In
using direct minimization of the free energy without qualita- general terms the relevance of this simple model for ferro-
tive assumptions based on actual experimental results. In thigectric and antiferroelectric smect€* liquid crystals is
sequence the phases with three- and four-layer periodicitiasow reduced to the problem of finding an appropriate long-
have qualitatively the same structure, as observed in the exange coupling between smectic layers determined by mo-
periment(and the same as obtained in R&7]). The theory lecular chirality. It has been shown that a long-range repul-
predicts also the nonplanar structure of intermediate phaseson in ferroelectric smectic€* may be determined by an
with longer periods, up to the period of nine smectic layersinteraction between thermally excited fluctuations of the
One notes that up to five different intermediate phasespontaneous polarizatidi3]. The corresponding coupling
were observed about 10 yrs ago by Fukuda and co-workersonstant is proportional to the square of equilibrium polar-
[7,12]. During the past decade the structure of the two mosization, and therefore the interactions disappear in nonchiral
stable subphases (SB8f,; and SmEf,,) has been exten- systems. Direct estimates of the coupling constant, however,
sively studied experimentally, as discussed above, and it haadicate that such an interaction should be much weaker than
been confirmed that these phases are characterized by theypical coupling between neighboring layers, and therefore
periods of three and four layers, respectively. Other intermethe intermediate phases should be stable only within a tem-
diate phases, observed in Rgf2] have not been investi- perature interval that is much smaller than that observed in
gated in detail so far, but recently there has been a renewdtle experimenf16,18,19.
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In this paper, we do not take into consideration any directomplex phenomenon because polarization may be induced
long-range interactions and even no direct interactions beboth by gradients of the director and by appropriate layer
tween nonadjacent smectic layers. At the same time, an efieformations, or by a combination of both deformations.
fective long-range coupling between director orientations inThus, in the general case there are many contributions to the
different smectic layers emerges after averaging of the totdlexoelectric polarization that have been considered by Dahl
free energy over polarizations in all layers. This effectiveand Lagerwall[39] and by De Gennes and Prd&4]. It is
coupling is determined by a combination of spontaneous poknown, however, that in the smectphase there exists one
larization, discrete flexoelectric effect and an initial direct“easy” deformation of the director that can readily be caused
polarization coupling between adjacent layers, and stabilizeky a moderate electric field or by boundary conditions. This
the intermediate phases with large periods. is a twist deformation that corresponds to a rotation of the

This paper is arranged as follows. In Sec. Il we discusglirector about the smectic layer normal. Thus, if the smectic
the concept of the discrete flexoelectric effect and the rellayers are not deformed and the director is assumed to be
evant symmetry aspects. We derive a general expression fbowmogeneous in the layer plane, the flexoelectric polariza-
the induced polarization and show how it is reduced to theion in the SmE* phase is described by a single term
one considered in Ref27]. In Sec. Il we propose a simple [36,37. Using the notations of Ref40] such polarization
molecular theory of the discrete flexoeffect based on the diean be expressed as
polar interactions between molecules in neighboring layers.

In Sec. IV we show how the free energy proposed by Cepic p(C) _ —rotgzg‘a—‘p @)
and co-workerg26,27] can be minimized directly by com- f iz’

bination of analytical and numerical methods to reveal the

sequence of intermediate phases with increasing periodicityvhere thez axis is parallel to the layer norm,, angle
Finally, in Sec. V we discuss the results and present several(z) specifies the azimuthal orientation of the director &nd
phase diagrams with detailed structure of six different interis the pseudovector order parameter of the smeZthase
mediate phases. introduced by Pikin and co-workef87,38:

&z)=(n-ko) [nxKo]. (€]
Il. DISCRETE FLEXOELECTRIC EFFECT IN SMECTIC
C* PHASES The direction of the flexoelectric polarizatid¥® is deter-

At the beginning of this section we briefly discuss somemined by the vector order paramei{z) that is parallel to

well-known results of the existing phenomenological theory!n€ l0calC, symmetry axis, while the absolute value of the

of the conventional flexoelectric effect in nematic and smecPolarization is proportional to the gradient of the azimuthal
tic liquid crystals in order to stress the difference from thenglede/ iz.

discrete flexoelectric effect that is considered in detail below, 't 1S also r‘]"’e" krr]]own that in every layer of ;chg chiral
In the general case the conventional flexoelectric effect ipMECUCC™ phase there exists a spontaneous polarization

liquid crystals manifests itself in the appearance of polarizathat is also parallel to the loc&l, axis[37,38 i.e.,
Ps=—x¢Cs& (4)

tion proportional to the gradients of the director. It is well

known [34] that in the nematic phase it is possible to com-

pose two independent polar vectors using the nematic ordefghere y is the dielectric susceptibility and the coefficient

ing tensorn,ng—1/34,4, wheren is the nematic director, s 5 pseudoscalar determined by molecular chirality. In addi-
and the gradient vectdv =d/dr. As a result the flexoelec- tjon, the ferroelectric SnG* phase possesses a macroscopic

tric polarization is given by the following expression: helical structure, i.e., there exists a spontaneous orientational
" deformation. This spontaneous deformation gives rise to the
PiV=esn(V-n)—e,(n-V)n, (1) flexoelectric polarization according to E¢(R) [37,38. As a

result, each smectiC* layer in the bulk possesses a nonzero

which was originally given by Meyel35]. From the sym- polarization that is a sum of the spontaneous polarizgdpn
metry point of view, Eq.(1) indicates that both splay and and the flexoelectric on€).
bend deformations of the director field reduce the point sym- One notes that in the Si@* phase the flexoelectric po-
metry of the nematic phase creating a local polar directionlarization is parallel to the spontaneous one, and therefore
which can be associated with a local polarization. From thdlexoelectricity does not effect the structure of the phase in a
molecular point of view this means that steric molecular di-qualitative way. At the same time, the role of flexoelectricity
poles, associated with a polar molecular shape, will be ormay be completely different in intermediate smec@d
dered in the nematic phases subjected to splay or bend dphases where the director undergoes finite rotations from
formation[35]. If the molecules also possess electric dipolesjayer to layer within a periodl16,18,19. In such a structure
the polar ordering will result in a local induced polarization. the point symmetry of a layer will be dramatically reduced,

It is well known that flexoelectric effect also exists in and additional polarization appears in some direction within
tilted smectic liquid crystals. Conventional flexoelectricity in the smectic layer. Thus it is possible to generalize the con-
the SmE phase was first described theoretically by Pikincept of conventional flexoelectricity to take these effects into
and co-workerg§36—38. One notes that in the general caseconsideration. In the general case polarization may be in-
the flexoelectricity in smectic liquid crystals appears to be aduced not only by a gradual change of the director orienta-
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ing invariants that contribute to the free energy of a smectic
® Ny ook layer in an intermediate phase:

> P{QU; ¥ KE—Qls VK3 ®
- 7 i i i i—
. ® P "X ke PL QUAQS, G~ Qf, VIS ®

where we have taken into consideration only linear and qua-
® N dratic terms in the tensor order parame@j}; of the layeri.
Nig N\ In the first terms in brackets in Eq¢5) and (6) the unit
vectorky is in the direction from the intermediate layieto
the “upper” layeri+1. The vectork, is coupled with the
(a (b) tensor order parameter of the layer1. The second terms in
Egs. (5) and (6) stem from a coupling between the order
FIG. 1. Polarization in the anticlinic antiferroelectric smectic parameter tensor of the “lower” layer—1 with the unit
Cx phase(a) and in an intermediate phage). vector —kq in the direction from the layer to the layeri
—1. All flexoelectric invariants are nonzero if the tensor

tion (as in the nematic or conventional smedd& phase, Qb in the layeri + 1 is different from the tensa@{; ") in

but also by a discrete irregular change of director orientatiorthe layeri —1. Now the flexoelectric contribution to the total

from one smectic layer to another, as in intermediate smectipolarization of the smectic layércan be obtained by mini-

phases. Recently a simple term describing the onset of suchmaization of the part of the free energy that is composed of

polarization was included in the free energy proposed bynvariants (5) and (6) and the standard dielectric term

Cepic and co-workerf26,27). We propose to call this type 1/2 (x; 1).sPYPY, wherex{) is the local dielectric sus-

of flexoelectricity the “discrete flexoelectric effect” and con- ceptibility tensor of the smectic laydr depending on the

sider both phenomenological and molecular theories of thisrientation of the local director:

effect in detail below. L . . .

Let us first consider the discrete flexoelectric effect from AFr=3(xi agPy P +ctVPO{QS, Y k)~ QU Y Ky}

the general symmetry point of view using Fig. 1. The ideal- 2) (i) (i i+1) 1.0 i-1) 1.0

ized structure of the anticlinic antiferroelectric smed@ Py Qg)ﬁ{Q(ﬁV )kV_ Q(BV )ky}’ @

phase is presented in Fig(al As first discussed by Brand here () andc(® are the flexoelectric coefficients. Mini-
mization of Eq.(7) with respect to polarization yields the

and Cladig41,42, in this phase there exists@ symmetry
axis in the middle of each layer in the direction perpendicuqying expression for the induced discrete flexoelectric
polarization in the layer:

lar to the tilt plane. Thus, any polarization in the middle of
the layer may only be parallel to th®, symmetry axis. This

implies also the flexoelectric polarization determined by a PO=_cM 10 kai—0O .k
weakz dependence of the orientation of the tilt plane. Now, f FXi{Qiriko™ Qi-a kol
let us assume that directors in the two adjacent layers rotate _ng)Xi Qi {Qis1ko—Oi_1 Ko} 8

out of plane of the initial flat structuresee Fig. 1b)]. If the
directorn;, ; in the layeri +1 is different from the director One notes that any tilted smectic layer is biaxial and there-

ni_y in the layeri—1, the symmetry of the intermediate fore the tensorg ()}, andQ')) are also biaxial. They can be
layer i becomes polar, and the resulting flexoelectric polarritten in the following general form:
ization may no longer be parallel to the spontaneous polar-

ization of the layeP; that is still determined by the vectdy X%Z;csaﬁju Ax{ng)ng) — 3 8.5}
[see Fig. Wb)]. This effect is related to the local breaking of o o
symmetry between the directions representeck kgnd — k + Ay {mPmE —wHw}, )

because it is now possible to distinguish between the two _ - o o

adjacent layers characterized by different director orienta-  Q%k=S{n{)n® -3 5,54+ D{mMP M —ww},

tions. Thus, symmetry arguments indicate that if a tilted (10
smectic layer is sandwiched between two other tilted layers _ ) )
with different director orientations, a flexoelectric polariza- Where we have assumed that the layers differ only in their
tion should appear in the intermediate layer. The direction oflirector orientation. Here the unit vectey is parallel to the
such a polarization is not specified by any symmetry elevector order parametef; and the unit vectomLw; and
ments because the symmetry of the layer is very low. It ian; L n;. In Eq. (9) x is the average dielectric susceptibility,
interesting to note also that the discrete flexoelectric effect if y is the susceptibility anisotropy, amdy, is the transverse

a nonlocal effect and is determined by the space symmetry afnisotropy of the susceptibility is the scalar nematic order
the system. By contrast, the conventional flexoelectric effecparameter an® is the corresponding biaxial order param-
is local, and thus the flexoelectric polarization is coupled toeter.

the gradients of the director at the same point. Taking this The general expression for the induced flexoelectric po-
difference into account it is possible to compose the follow-larization can be obtained by substitution of E@.and(10)
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into Eq. (8). The resulting expression, however, can be sim- '

plified if one takes into account that biaxiality of a tilted (i+1)
smectic layer is generally weak. In this casg, <Ay and Qap
D<S, and thus all tensors can be expressed in terms of the , M1
local directorn; . One then obtains the following expression !
for the flexoelectric polarization: i
. - 0]
P =—cf{(ni 1 ko) Ny 1= (M1 ko) Ny} u Jup
~ [ i
=@ mi{(ni 1 ko) (Mg 1) — (M1 Ko) (i1 1)}, I
(11) | |
o o (i-1)
wherec{V=c{? y andc!?=Ay c{V+cl® (y+Ax). Equa- Qup .
tion (11) can be simplified further if one assumes that the tilt \ Hi1

angled is approximately the same for all smectic layers in an
intermediate phase. Them;Ky)=cos# for all i, and Eq.
(11) can be rewritten as

FIG. 2. Molecular model for the discrete flexoelectric effect in
tilted smectics.
(i) — _"R(1) =N _¢(2) I(n. )
i CrCOSHiM 1~ Mg} = CrCOSO (M1 1) only simple couplings between the vectq and the order-
—(ni_1n)}, (12 ing tensorsQ{ ;" and Q{; . It is possible to compose
higher order contributions that will have the same symmetry
where cog=(n;, 1 ko) =(n; ko) =(n; 1 ko). It should be 55 Eq (5) and(6). This means that a theory of the discrete
noted that the approximation of the constant tilt angle mayjoyoeffect cannot be derived completely on the phenomeno-
not be appropriate in the smect@; phase where the tilt |ggical ground. It is important to consider some molecular
angle is small and may depend on the azimuthal orientatiofyodels that may provide one with a deeper insight into the
of the director in each layer. effect. In the following section we consider such a simple
One notes also that the first term in E#j2) has the same  molecular model that enables one to derive an expression for

form as the one used by Cepic and co-work@@&27 with-  the flexoelectric polarization similar to E¢L2).
out derivation. The theory presented in this section and in the

following one reveals the origin of this term. The corre-
sponding part of the flexoelectric polarization is always par-
allel to the smectic layer because it is proportional to the

differenceAn;.;=n;.;—n;_; between the director orienta-  Discrete flexoelectric effect should be determined by
tions in the two layers adjacent to the layeBy contrast, the  some polar interactions between molecules in neighboring
second term in Eq(12) contains also a contribution to the |ayers. In this paper we take into consideration electrostatic
flexoelectric polarization that is perpendicular to the smectigiipole-dipole and dipole-quadrupole interactions. We con-
layer: sider a simple model of a smectliquid crystal composed
_ - of rigid molecules possessing permanent transverse dipoles
PV=~c{? cogo (An;.om). (13)  and permanent quadrupolésee Fig. 2 For simplicity we

consider the case of perfect nematic and smectic order. In

Thusg)ne clonqlu?r(]es ;hat ‘?. unit f?rl: o1|° an |nterme<|j|ate Pﬁadsfﬁis simple case the long molecular axes are parallel to the
May be polar in the direction ot the layer normal proviaed, ., directorn; in the layeri, and the orientation of a short

the normal components of the polarization from d'ﬁeremmolecular axis, i.e., of the transverse dipplg, is specified

layers do not cancel each other. T i
: by the angle). Then the average polarization in the layer
If the directorn weakly depends omon a large scal@hat an be ex%sepssed as verage p y

corresponds to conventional S@f or SmC} phasg, the
director in the layei =1 can approximately be expressed as

Ill. MOLECULAR MODEL FOR THE DISCRETE
FLEXOELECTRIC EFFECT IN TILTED SMECTICS

= U f
Neg~ni=[koXni] d¢ldz, (14) P pJ"l’(nlllzb) i(y) dy, (15

and Eq.(12) is reduced to Eq2) that describes conventional where the orientational distribution functioi (cosy) de-
flexoelectricity in the SmE* phase. pends only ony. In the general case the orientational distri-
One should also note another difference between the comution function can be obtained by minimization of the total
ventional and the discrete flexoelectric effect in sme€tic  free energy of a smectic layer that includes the interaction
liquid crystals. Equationi2) presents a unique expression for with other layers. Using the generalized mean-field approxi-
the conventional flexoelectric polarization that is linear in themation [43] and taking into account dipole-dipole and
gradient of the azimuthal angle. At the same time Egs. dipole-quadrupole interactions between molecules one can
(8)—(12) present only approximate expressions for the diswrite the following expression for the free energy of the
crete flexoelectric polarization obtained taking into accountnonchiral tilted smectic layer with perfect nematic order:
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Fi:;:g)+A|:i , (16) tic layeri determined by polar intermolecular interactions is
. a functional of the orientational distribution functidn( )
where the free energES) contains contributions from all that may be different in different layers. Taking into account
interactions with molecules in the layethat do not depend only interactions between molecules within the same smectic
on the orientation of molecular transverse dipgalespecified layer and in adjacent layers, one can express the free energy
by the angley. The additional free energyF; of the smec- AF; in the following form:

1 . .
AFspkﬂffiw)mfi(w)dwgpﬁfiwl)fi(z/fz) 0141 U h2.0) + Ul 200} 0 s
J'f(lﬁl)fwl('ﬁz) Gii+1(F UG (e, 1) + U™ (1, 1) }d?r | dipy

ffwl)f. 1(02) Qi a(r AU (1,0 1)+ Uil (1,00, 1)}d2r  dipy dipy, (17)

wherer is the intermolecular vector for molecule 1 locatedin Eq. (17) present contributions from dipole-dipole and
in layeri and molecule 2 located in laygr=i ori*=1. Inthe dipole-quadrupole interactions between molecules located in
case of perfect smectic order=k, (j—i) z+r, , wherezis  adjacent smectic layetisandi*+ 1. The last three terms de-
the thickness of a smectic layer and the vectoris a pro-  pend on the direct correlation functions;(r) or g; j+1(r)
jection of the intermolecular vectar on the smectic layer describing positional correlations between molecules within
plane. The dipole-dipole and dipole-quadrupole electrostatithe same layeiror in adjacent layersandi = 1, respectively.
interaction potentials in Eq17) are given by the following Minimization of the free energyl17) yields the following
equations: expression for the orientational distribution function:

Ut (01, 92.1)= (i ,h1) Top(r) p(ng i), (18)

Ugh(#1,12,0)= a1, 601) T (1)U (1)
= oy, 2) Top) (1) Agy (). (19)

27 .
Here u (n;, ) is the permanent dipole of a molecule in the Zi=j exp[—pB U,(\}l)F(zp)} dy (24
layeri andq,g (n;) is the permanent quadrupole tensor of a 0
molecule in the layei. For simplicity we assume that the
molecular quadrupole is uniaxial and therefore it does no%a
depend on the anglg. In this case the average quadrupole () — n |. i P(|)Jr n || Qi+l P('*l)
tensorq,z (n;) may be expressed as follows: P UNE() = sl f) Pl o) {

) o +I"“1P"‘” + 1N ) |';+1q (N 1)
Qg (M) = QonG) Y =3 S}, (20 s iy A2

_ _ gy day(Mi- 1)} (25
where Qg is the molecular quadrupole moment. Finally, the
coupling tensord 4 (r) andT,g, (r) can be written as Here polarizatiorP; is determined by Eq(15) and the ten-
sorsl': J andl’l. are determined as follows:

1
fi(y) =z exl—pB UG}, (23)

where=1/(kg T),

aBy

1 aBy
Tup(N=—V V5>, (21) -
’ or IL;H Tos(r) 0 4(r) d2r, 26)
1
T,s,(N=V, V,V_—, (22
7 ’ o Ilaﬁy JTaﬁy(r)gi,j(rL)der_1 (27)

wherer =|r| is the distance between molecules 1 and 2. The

first term in Eq.(17) is the orientational entropy of the smec- Where the tensor§ 4 (r) and Tz, (r) are determined by
tic layeri that depends only on the orientational distribution EQs.(21) and(22), respectively. In Eq(25) it has been also
function f; (). The second term is a contribution from taken into account that;;, =0 since the functiom; (r, ) is
dipole- dlpole and dipole-quadrupole interactions betweereven inr, . The resting quantmeﬁl andlIJ in Eq. (25
molecules within layei. Finally, the third and fourth terms characterize dipolar interactions and posmonal correlations
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between molecules in layersandj. The direct correlation
functionsg; ;(r, ) in Egs.(26) and(27) are expected to decay
rapidly with the increasing molecular separation. These func-
tions have a strong peak at=0. In this case the quantities

X H{Pi+0i(PyatPi—y)}

+ ¢t (N Ko){Anj1—n; (N Ani.q)}=0, (37)

rays
I ,andly;t

aBr a b
apprOX|mat|on.
i (9i1)
I~ — 2T, (ko). 28
w5 g Tep(ko) (28)
iie1 (Giix1)
II,I l% 23 Taﬁ(ko), (29)
- (9ii+1)
gt~ _TTaBy(ko), (30)
where in correspondence with Eq21) and (22)
Taﬁ( kO) = 5&[3_ 3 kg k%! (31)

Topy(Ko) =3{K 85, + K3 8, 1K) 8,5} — 15K K k‘;(.32)

In Egs.(28)—(30) d is the breadth of a molecule, the thick-

ness of a layez=<{cosé is determined by the tilt anglé
and the length of a molecule, and the average®; ;) and
(gi i+1) are defined as follows:

(0= [ 0uyr o, @

may be estimated in the saddle-point where

AN =N 1—Ni_q, (39
p{(Gii+1) w?
¢=3Qp—— (39)
ke TZ

In Eqg. (37) the inverse dielectric susceptibility tensfvr_l

and the dipolar coupling tensay are determined by the
following expressions:

- XCRI
(Xi Dap=0up=, =5 kB"T = ap (40
by ~p(Gii=) Bt
gl)= ﬁ%%, (41
where
#0= 6,5~ 3K2KS—nl ni+3 (ko) Nl kS, (42)

Equation(37) describes the discrete flexoelectric effect in the
nonchiral tilted smectic, where dipolar interactions between
molecules within the same layer and in adjacent layers are
taken into account explicitly. This expression for the flexo-
electric polarization has the same form as the phenomeno-
logical Eqg.(12). In the present model, however, the flexo-

The tilt angle# is usually very small so that the correlation electric coefficient;, is expressed in terms @f,, i.e., s,
function g; ;(r,) and the minimal distance between mol- = —c;;=—c; wherec; is given by Eq.(39).

ecules weakly depend on the orientation of the vectarin

From Eq.(37) it also follows that polarization in each

this case the minimal side-by-side distance is approximateljayer is not parallel to the smectic layer plane. However,

equal to the diameter of a molecule This was also taken
into account in Eq.28). Finally, the mean-field potential
U{)=(¢) can be written in the form

p UG <¢>=—<Zg;;> 5 P.+<g'z' D (PP
160,801 ki, (34

whereT and Iii are the following second rank tensors:

TaﬁETaB (kO)r (35)

RO=n{*DnG D —n{~Dnl{~D), (36)

and wherey;=pu (n;,¢). Substituting Eq.(34) into Egs.
(23) and (24), and then into Eq(15), and expanding the

exponent in the expression for the distribution function in

contribution to the polarization that is proportional to the first
power of the small parameter diris parallel to the smectic
layer plane. Neglecting the other terms in E3jf), which are
proportional to higher powers of séh one obtains the closed
set of equations for the polarizatiof’s that are parallel to
the smectic layers:

Pi+g(Pi+l+ Pi—l)+X Cf COSGAnii]_%O, (43)
where the inverse dielectric susceptibiljfy * and the dipo-
lar coupling coefficienty are determined by the following
expressions:

S P(gi,i>M2
X =

1-——, 44
4kg T d® 49
P(giiilﬂbz
=y— 45
9=x 2kg TZ 49

powers of polarizatiorP,, one obtains the following set of and the flexoelectric coefficient; is given by Eq.(39).

equations:

These three parameters depend on positional correlation
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functions g;; and g; j+1, wWhich are not calculated in this ¢;_;;=¢;— ¢;_; between the tilt planes of the neighboring
paper. In the rest of the paper they will be treated as pheayers. In the first approximatiof24]
nomenological constants.
FO—E ()~ "
IV. THE SEQUENCE OF INTERMEDIATE PHASES i = Fol0) aT* {COS@i—1i+COS@ 11}
WITH DIFFERENT PERIODS

—B{codg;_1j+cogg; 1}, (49)

A. Free energy of intermediate phases
In the framework of the discrete modgl7,21] one can whereAT=T-T*, andT* has the meaning of the transition
write the total free energy of an intermediate tilted smectictemperature between the synclinic and anticlinic smeCtic
phase in the following general form: phases in the absence of any intermediate phases. The ex-

plicit expressions for the coefficien and B have been
obtained in Ref[44] in the framework of a molecular model.

One notes thaa~ sinfg andB~ sin*g in the case of sma.

Finally, the free energFo (0) is the same for all layers and
depends on the homogeneous tilt angle

One notes that the free ener@p)—(49) is very similar to
that used by Cepic and co-workdi26,27] although in Eq.
(47) the discrete flexoeffect is described by a more general
expression. If one neglects the second flexoelectric term in
Eq. (47), the total polarization of a smectic layer will always
be parallel to the layer plan@ee discussion in Sec.)llin

this case the anisotropy of the tensqrs; andG,; can be
(47 neglected(because the dielectric anisotropy in the plane of
the layers is expected to be smalhd the total free energy of

where we have taken into account only quadratic terms in tha tilted smectic phase can be rewritten essentially in the same
polarization. The first two terms in Ed47) describe the form as proposed by Cepic and co-workg2§,27:
dielectric energy of the smectic layer and the coupling be-
tween polarization vectors in neighboring layers. One notes
that the anisotropy of the dielectric susceptibility tenger
and the polarization coupling tensé=x; *-g; may be im-
portant if both components of the induced flexoelectric po-
larization (i.e., parallel and perpendicular to the smectic
layern are taken into consideration as discussed in Sec. Il.
The dimensionless parametgr characterizing the relative
strength of the coupling in the neighboring layers, is ex-
pected to be smaller than 1. The second term in Q)
describes the coupling between the polarizatitprand the  where y is the average dielectric susceptibility in the plane
tilt & that is present only in chiral smecti37,38, i.e.,cgis  of the layer and:fzcgl). In Eq. (50) we did not take into
a pseudoscalar vanishing in racemic mixtures. It is wellaccount any direct coupling between next-nearest-neighbor
known that in the absence of any other effects this term givekyers that play an important role in R¢27]. As discussed
rise to the spontaneous polarization of the layerin more detail below, we do not need these additional terms
Pg')z — x Cs & that is perpendicular to the tilt plane. In the to describe the structure of intermediate phases. We also be-
general case, however, the direction of the total polarizatiofieve that such direct coupling should be extremely small due
of a smectic layer is not parallel # because of the discrete to vanishing positional correlations between molecules in
flexoelectric effect described by the last two terms in Eq.nonadjacent layers. One notes also that we do not take into
(47). This effect has been considered in detail in the precedeonsideration chiral interactions between different layers.
ing section. Such interactions are very weak and are important only in

Now let us express the directoy in terms of the tilt angle the description of the macroscopic helical structure that is
0 and the azimuthal angle; : characteristic to all chiral tilted smectic phases. The exis-
tence of such a helicoidal structure with a macroscopic pith
of the order of 1um results only in a very small change of
all angles between adjacent layéby a fraction of degree
where we have assumed that the tilt angle is the same for alh other words, the free energy associated with the macro-
smectic layers. This assumption is supported by the experiscopic helicoidal structure is too small to make any qualita-

N

Fz_Zl {(FO+AF}, (46)

whereN is the total number of smectic layers and the free
energng) does not depend on the polarization. All polar-
ization dependent terms are included\iR; that can be writ-
ten as

AFi=3P-xi " Pi+3(P -Gi-Pi +P -G Pi_y)
+cs(Pi- &) +cf cosd (P Anj.y)

+¢{? cos (Pi-n)(An.p-ny),

N
~ ~AT
F:izl FO(6)_aT_*(Cosﬁoifl,i'*'COS‘Pi,iJrl)
- 1,
—B (cos ¢;_y;+cos ‘Pi,i+1)+ﬁ[Pi +9(Pi Pisyg

+PiPi_1)]+cs(P; &) +cscosd(P Aniq) ¢, (50

n;={sin cosg; ,sinésing; ,cose}, (48)

ment[3]. Now the free energf(?) in Eq. (46), which de-
pends on the relative orientation of the directpr can be
expressed in terms of the angles;,;=¢;+1—¢; and

tive effect on the structure of the unit cell of an intermediate
phase with periodicity of few smectic layers. Thus the struc-
ture of the unit cell and the macroscopic helical structure can
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be described separately. It should be noted, however, thanly incommensurate phase observed in chiral sme€ics
chiral interlayer interactions may be important in the descripis the SmE? phase that is stable in a different temperature
tion of the microscopic structure of the S@j- phase where range and is not considered here, as discussed above. As
the tilt angle may be very small and the corresponding fregliscussed in more detail by Musevich and Skargh@j, the
energy is low. In this paper, however, we do not consider théncommensurate structure of the S3i§-phase is determined
Sm-C* phase. by small values of the elasticity coefficieBtthat is propor-

In Refs.[26,27] the free energy50) (with few additional ~ tional to ¢ at small§. Far from the SmA phase the coeffi-
terms has been used to describe the two intermediate phas&$nt B is expected to be large and thus it is very unlikely
with the periods of three and four layers, respectively, andh@t any incommensurate phase may be stable in that do-
the SmC* phase. In that description the following major main.
approximations have been made. First, the system of simul-
taneous equations for polarizations of all smectic layers,
which appears after minimization of the free energy with We are looking for intermediate phases with different pe-
respect to polarization, has been solved approximately leaviods that may be stable within a relatively narrow tempera-
ing only the quadratic terms in dipolar coupling coefficignt ture interval between Si8* and SmE} phases. In this re-
Second, the qualitative structure of the two intermediategion the tilt angled is assumed to be constant and thus the
phases is taken from actual experimental data thus leavingtal free energy should be minimized with respect to azi-
only one independent angle in each phase, which is themuthal anglesp; and polarization®; of all layers. Minimiz-
determined by minimization of the free energy. Finally, noing the free energy50) with respect to polarizatiof;, one
attempt has been made to consider the stability of intermeobtains the following set of equations fBr:
diate phases with larger periods. In this section we use a P.+g(P_1+P, 1) +xM;=0, (51)
different method of the free energy minimization that enables h
one to go beyond the approximations made in Ref§,27] where
and to describe the whole sequence of intermediate phases Mi=cCs & +Cf cOSE (N1 —Njiy), (52
\g:::clrg:r:]egimfngetggdfnltti{ IitrTi?:t Smn?;y* e:r:ztstéitween the syn and Wheregizc_osa[ni XKg] is the order parametésee Eq.

; . A ' (3)]. One can simplify Eq(47) for the free energAF; using

First, we present analytical solutions for the system oqu. (51):
equations for polarizations of all layers, which is valid for ' 1
any finite total number of layers. As shown below, the AFi=3PiM;. (53
higher-order coefficients in these solutions are given by rex

currence relations. An exact minimization of the free energy(51) can be obtained for any finite number of smectic layers

with respect to po'a'f‘za“f’“ results_, in an effec_:tive Iong-rar_lgqn the whole system and/or for any fixed number of layers in
coupling between different smectic layers with the COUp“ngthe unit cell of an infinite periodic intermediate phase. Thus,

strength decreasing with the i””ef"‘smg distance .between ﬂl‘&t us consider the intermediate phase with the period of
layers. One notes that an approximation made in Rzf]

. . . . I . F fl 2n+1 i
results in a cutoff of this effective long-range coupling. At ayers. For any odd number of layers 2n one obtains

. . P the following expression for polarization of an arbitrary layer
the same time, the long-range interlayer coupling is Very\ vithin the period:

important for the stability of the whole sequence of interme-

B. Minimization procedure

nalytical solutions for the set of simultaneous equations

diate phases described in this paper. A sequence of similar n

phases with increasing periods, known as the devil's stair- P21 = — X Son+1iMit 2 (—9)*Sp(0-19+1
case, has been found in frustrated Ising systems with long- F2n+1 k=1

range interactiong31,32. After minimization of the free en-

ergy with respect to polarization we consider an intermediate X (M + Mi+k)}- (54)
phase with a period of smectic layers and determine its

structure by direct numerical minimization of the free en- o )
ergy. The phase diagrams are obtained by comparing the fréere the coefficients, ands, can be calculated analyti-
energies of all structures with different periods up to thecally for any fixed value ok using the following relations:

period of nine layers. In this procedure we assume that

angles between tilt planes of adjacent layers are relatively =1+2g,

small, i.e., sing;j+1~¢; 1. This approximation works quali- rs=1+g-2g?

tatively well up to the anglegp~ m/4, and for structures ’

under consideration can only lead to some small quantitative re=1+g—392-2¢°,

mistakes. It should be noted that the minimization method (55)
used in this paper cannot be applied to describe incommen- r,=1+g—-49°-3¢g3+2g*

surate phases that are aperiodic. However, there is neither

experimental nor theoretical evidence for the existence of re=1+g-5g°-4¢g3+59g*+2¢g°

any incommensurate phases in the corresponding tempera-
ture range, i.e., between S8t and SmE} phases. The
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s$;1=1,
ss=1+g,
ss=1+9-¢%
s;=1+g—-29¢°-¢°,

Se=1+g—-3g°-2g3+g*,

Slightly different solutions can also be obtained for any even

(56)

valuet=2n:
X n—1
PEv=— "5, Mi+ 2, (~9)'s, (M-t Misy)
2n -
1
E( g) SO(MI n+M|+n) (57)
where
r,=r,=1-4g2
r651_592+4g4|
(58
re=1-6g2+8g*
SQEZ, 52511
3451_2 92.
(59
5551_3921

sg=1—49g%+2g%

Substituting Egs(54) and (57) into Eq. (53), and then into

PHYSICAL REVIEW E 68, 051703 (2003

given by Eq.(49), one obtains the following expression for
the total free energy of the intermediate phase with the pe-
riod of t layers:

F—Fo) 1, .
=— S x{c3fo+
Nsitzg)  2Xicsfoteite

X _
_TZ 2 {Cs] I+Cff(2)}COS<P|]

t-1 t-1
+2050f12 > M sing;
ti=o j=i+1
AT 1
-B— 2 coSg; 1~ a T* E COS®i i+1,

t i<h
(62

where a=2a/sir(2 6), B=2B/sird(26), the coefficients
() andf{?) are determined by expressions

f(kl)Efk—l—fkﬂl

(63

fP=2f,—f_o—frso,

and where the coefficients, (k=0,1,...1t—1) are deter-
mined by Eq.(61), f,=f,, fi ,=f,, f_=f,_, andf_,
=f,_,. The anglesp;; in Eq. (62) are defined asp;j=¢;

— ¢; . Equation(62) describes the free energy of an interme-
diate tilted chiral phase with an arbitrary periodicttyThe
last two terms in Eq(62) describe direct coupling between
director orientations in neighboring layers. The other terms
in Eq. (62 appear after the minimization of the initial free
energy with respect to polarizations of all smectic layers.

Eqg. (46), one obtains the following expression for the polar-One notes that in the present model only interactions be-
ization contribution to free energy of the intermediate phasdween neighboring smectic layers are taken into account. At

with the period oft layers:

1t 1 Xt
F/N== 2 FO- 2

where

9) St—2k

(— if k=0---[t/2],

(—g)t*k? if k=([t/2]+1)- -
t

and where the coefficientg ands, are determined by Egs.

141
ZtZ'ogo fkMiMi,y, (60

(61)

(55) and (56) for t=2n+1 or by Eqgs.(58) and (59) for t

=2n, respectively. In both casé¢$/2]=n. Substituting Eq.

(52) for M, into Eq. (60) and adding the free enerdy®)

the same time, one can readily see from ER) that an
effective coupling between any two layers within the period
of the structure appears after a minimization of the free en-
ergy with respect to polarization. This effect is rather typical
for systems with several interacting thermodynamic param-
eters. The strength of such effective coupling between distant
layersi andj can be estimated to decay g%*”, whereg

<1 is the dimensionless dipolar coupling coefficient for
neighboring layers. Thus, one concludes that there exists an
effective long-range coupling between director orientations
in different smectic layers determined by direct dipolar inter-
action between adjacent layers.

Finally it should be noted that only the last term in the
free energy(62) is assumed to be temperature dependent. It
vanishes a=T*. The system undergoes a transition from
the synclinic to the anticlinic smect{¢ phase at the tempera-
ture T=T* if molecular chirality and the discrete flexoeffect
are not taken into account. At the same time, in the presence
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of these two effects this simple temperature variation is suf- i1
ficient to generate the whole sequence of nonplanar interme-  ¢;=>, > {c2f,_,+c?f(? Jcosed+2B
diate phases that are stable in the vicinityTof T*. n=0k=j+1

Now the free energy62) should be minimized with re-
spect to all anglesp; that specify director orientations in

smectic layers =0,1,...1—1 within the periodt of the  Equationg(67) are solved for any particular sequencendf,
intermediate phase. It is more convenient to minimize theynq results are substituted back into the free enéay The

free energy(Gﬁ) with reepecthto tdhe dilffecre”nce?ij takti1ngf latter is then minimized with respect t to determine the
Into account the constraints that directly follow irom the aCtoptimal structure. One notes that the solution is unique in

that the given phase has a periodtddyers: this approximation, and therefore one finds a unique struc-
k—1 t—2 ture of the intermediate phase with fixed periodt dhyers.
Pr= z Ot Q1 =27— Z o 1. (69) Finally, the free energies of phases with different periods are
i=n i=0 compared with each other to select the one that corresponds
to a global minimum at a given temperature for a particular

+acosal , if j=i+1,...t-2. (69)

Then one obtains the following set of equations: choice of the model parameters. We have performed the cor-
) . responding numerical calculations for all valuest afp tot
BSIN2 ¢ii41)+asing .y =9. The resulting structures of the intermediate phases and

t-2 t-2 the phase diagrams are presented and discussed in the fol-
+Bsin 2 >, ¢jj+1|+asin > @)1 lowing section.

i=0 i=0

iot-1 V. RESULTS AND DISCUSSION
2 2£(2) Vo

X ,ZO k;rl {Csfiont Cifin sinen The structures of the intermediate phases with the periods

of 4, 3, 8, 5, 7, and 9 layers that have been obtained by
(1) minimization of the free energ{62) are presented in Fig. 3.
+2CsCrx z,o k;ﬂ fiZncosen=0, (65  One notes that the structures with three- and four-layer peri-
odicities correspond to experimental findings$,18,19 in-
wherei=0,1, ... t—2. In this paper we assume that inter- cluding the order of layers with different director orientations

mediate phases may be non-planar, but the actual structuféthin the period, and to the theoretical results of Cegtial.
does not deviate strongly from the corresponding planar pro27]- From the quantitative point of view the major discrep-
totype. This assumption is in accordance with experimenta®ncy is in the three-layer phase where the angle,, is

data[16,18,19. In this case the angles,, may be splitinto Smaller than the corresponding experimental value. It should
two parts: be noted, however, that the angle in the three-layer phase has

been determined experimentally for only one compolulré]

k-1 k-1 by the ellipsometry method that is less precise than the reso-
o= al+ > Ay, (66) nant x-ray scattering methofll8,19. The resonant x-ray
=n =n scattering method has only been used to specify the structure
of the four-layer phase. On the other hand, new preliminary
experimental dat§29] indicate that the angl@& ¢4, in the
three-layer phase may be significantly smaller than the value
obtained in Ref[16]. In any case more experimental data for
different compounds are required to clarify this point. It is

i t—1

where the anglea= ¢?; . ; may be equal to 0 ofr only (i.
e., they specify the corresponding planar strugtusile the
anglesAa;=A¢; ;;; are assumed to be relatively smale.,
sinAa;~A«;). Then Eq.(65) may be linearized with respect

0 Aa: also desirable to investigate the structure of the three-layer
t—2 phase by the resonant x-ray scattering method. As mentioned
- . above, several other intermediate phases have been observed
> cjAaej=q |, (67) _ . SET
j=0 experimentally, but their structure has never been studied in

detail. In this paper we predict the possible structures of new
where intermediate phases with the periodsg 7, 8, and mec-
tic layers that are presented in Fig. 3. The structure with

L six-layer periodicity is not presented here because this phase

=_ (1) 0 . "
9i=—2CsCy n§=:0 k;ﬂ fi=n COS@ny, appears to be unstable at least in the context of this simple
model.
t—1 It is interesting to note that the structures of all interme-

i

{c§ fk—n+C% f(k@n}005¢2k+2 B diate ph_aees presented in Fig. 3 possess a certain symmetry
+1 that is visible if the structures are viewed along the smectic

layer normal. In fact, the tilt directions in different layers are

0 . s . .
tacosey, if j=01,....1-1; antisymmetric with respect to the middle of the period. This
0 0 S property defines the chirality of these structures. It can be
cj=4B+a(cosa; tcosay 1) if j=i; (68  shown that the corresponding symmetry is contained already
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FIG. 3. Structure of the intermediate phases with the periods of 4, 3, 8, 5, 7, and 9 layers.

in the general Eq(62) for the free energy of an intermediate One can readily see that the free ene(@9) is symmetric
phase with periodicity of layers. For example, the free en- with respect to the interchange of any two angles from the

ergy F5 of the three-layer phase can be expressed as set{aq, as, @y}, i.e., itis invariant under the transforma-
tions a1 = @y, ar= a3 and a;= a3. Thus, the free energy
Fs—Fo(0) L o 2 @) (70) should have three equivalent minima. The first one cor-
NST(ZG)_ -X ECsfo +ci(fo’'—f17) responds tar; = a,, the second one ta,= a3, and the third

one to a;=a3. All these minima correspond to the same
structure with different enumeration of layers. If, for ex-
ample, @,= a3, the minimization of the free energ§r0)
results in the following expression faer;:

—J® (cosa; + cosa,+ cosas)

+ J(23)(sin atSina,+sinas)

— 1 B(coga, +coa,+ cofas), (70) 3)
P~ — L (73
where only two angles are independent because a. 2B+37%
+a3=2 7. The coefficients){* and J$¥) in Eq. (70) are
expressed as Likewise, the free energ, of the four-layer phase can be
expressed as
aAT
=Xt 1)+ 32T,
3 3T Fa—Fo(0) 1
(71) N4T(020) = —X[§c§f§,4)+ cft — I (cosay+cosa,
si
Jgs)EZ_XCSCf(fgs)_f(ls)), " _
3 +c0oSag+cosa,) + I8 (sina; +sina,
where +sinag+sinay)—J$ {cod a; + ay)
) 1+g o g +cog az+ ay)}— 5 B(cofa; +cofa,
1+g-2g 1+g-2g +cofas+cofay), (74
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where only three angles are independent becausea, 064
+ ag+ ay=2m. The coefficients)(¥), 3V, andJ$¥ in Eq. ' —
(74) are expressed as T —
044 smck —
g X 2 2T g X ¢ n 9 —
1 4°s 1 4 T* ’ 2 2 S ’ % 7
S 5
£ o027 8
@)= X (o2¢(4)_p o2 - 3
J3=7 {csfy’—2cf}, (75 3 4 Smc*
0.0
where ]
) |
f((34): 1729 , f(14)—— g , 0.2
1-4 92 1-4 gz T T T T T T T T T T T
0.6 0.4 0.2 0.0 0.2 0.4
29> T
= 2 - (76)
1-4g FIG. 4. Deviations of independent azimuthal angles in the inter-

mediate phases from their values in the prototype flat structure in
the case y|csc¢|/B=0.12, |ci/cd=1 and g=0.3. Here T

=a AT/B T* is the dimensionless temperature, and numbers indi-
cate the periodicities of the intermediate phases.

One can see that the free enek@y) is invariant under the
simultaneous transformations; = a3 and a,=a,. Thus,
the minimum of the free energ§r4) should correspond to
the casey;= a3 anda,= a,= m— @,. Then minimization of
the free energy74) results in the following expression for (see Fig. 4 As already mentioned, the maximum anglgin
@y the four-layer phase is independent of the dipolar coupding
between neighboring layers. In other intermediate phases it
_ (77)  9rows with the increasing (see Fig. 5. _
B There are only four independent dimensionless param-
) ) . eters @AT/BT*), (xcsci/B), ci/cs, andg in the free
It follows from Eq. (77) that the azimuthal angle;" speci-  gnergy(62) that determine the phase diagram of the system.
fying the direction of the tilt in the four-layer phase does ”OtOnIy the parametera AT/B T*) is temperature dependent.
dgpend on the dipplar coupling coefficiemt This is deter-  5na can see from Eq77) that the parameter(c, c;/B),
mined by the special symmetry of the four-layer phase. Bygegcribing the relative strength of the polarization contribu-

contrast, the azimuthal angles in other intermediate phasgg), s related to the azimuthal angle in the four-layer phase,
increase with the increasing paramegeirsee, for example,

Eq. (73) for the azimuthal angle in the three-layer phlase -
Only one azimuthal angle appears to be independent in the
phases with three- and four-layer structures.

In a similar way, the free energies of the other intermedi-
ate phases in Fig. 3 are symmetric with respect to the inter-
change of some azimuthal angles. As a result, only two azi-®
muthal angles are independent in the phases with periods of@
eight and five layers, three angles are independent in theg 0.4
phase with period of seven layers, and four angles are inde-=
pendent in the phase with period of nine layers. The struc- &
tures of all intermediate phases are essentially nonflat, i.e., 0.2
tilt planes in different smectic layers are not parallel to each
other. On the other hand, the deviation from the prototype
flat structure is not too large and, as a result, the phases SmC*
appear to be strongly biaxial. The biaxiality can be qualita- ]
tively characterized by the anglesqa;. If one neglects a , : , : , : , :
deviation from the flat structure, each intermediate phase in 0.0 0.1 0.2 03 0.4
Fig. 3 can be described as a sequence of synclinic and anti- 9
clinic pairs of neighboring layers. One notes that only one
unique synclinic pair is present in the unit cell of each inter-  FiG. 5. Maximum azimuthal angles describing a deviation of
mediate phase, and thus the phases with large periods rgre intermediate phases from the flat structure in the vicinity of the
semble more and more the anticlinic sme@iphase. At the transition to the lower temperature phase in the case, c|/B
same time, the maximum deviation from the prototype flat=0.12 and|c;/c=1. Numbers indicate the periodicities of the
structureA «; = 4 increases with the increasing periodidity intermediate phases.

J(24) CsCs

B 9= —

0.6 1
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FIG. 7. Phase diagram in the caggcsc¢|/B=0.12 andg

=0.4. HereT=a AT/B T* is the dimensionless temperature, and

|ci/cg|=1. HereT=a AT/B T* is the dimensionless temperature, nympers indicate the periods of the intermediate phases in terms of
and numbers indicate the periods of the intermediate phases.  |ayer thickness.

FIG. 6. Phase diagram in the casg|cscq|//B=0.12 and

and therefore it cannot vary significantly. The paramete,materials with such properties. The phase diagram of smectic
- . - * i i icient= i
¢, /c, describes the relation between flexoelectric and sponC _Mmaterials with very large coefficiet=0.4 is presented

taneous polarizations. TH ﬁ_} hase diaaram is oresented " Fig. 7. In this case the stability range of some intermediate
P - 18, 1y P 9 P phases with large periods can be even larger than that of the

in Fig. 6, whereT=aAT/BT* is the dimensionless tem- hree. and four-layer phases. One notes that these stable in-
perature. The coefficierg depends on the positional corre- termediate phases appear only if the flexoelectric coefficient
lations between molecules in neighboring layers and is exz. is sufficiently large, i.e. the flexoelectric polarization is of
pected to be significantly smaller than 1. From E@)—  he same order or larger than the spontaneous polarization. It
(63) it follows that in the caseg=0 the only four-layer —should be noted, however, that the difference in free energy
intermediate phase is possible. In the realistic rang@ of petween intermediate phases decreases with the increasing
~0.1-0.2(see Fig. 6 the smecticC* material exhibits & period, and it may be difficult to locate the corresponding
sequence of intermediate phases with the decreasing teransition points. In real systems such phases may also be
perature intervals confined between the synclinicGmand  syppressed by various factors including, in particular, surface
the anticlinic SmE} phases. With the decreasing tempera-effects. The structure of intermediate phases has been studied
ture the system undergoes a transition from theGShphase  experimentally in thin free-standing smectic filfri5,18,19

to the intermediate phase with the period of four layers. Theyvhere the influence of boundaries is known to be very im-
periodicity and the structure of this phase correspond to th@ortant [45,46. Moreover, the detailed diagram of a thin
experimentally determined structure of the so-calledfim, in principle, may depend on the number of smectic
Sm<Cg,, phase. With the decreasing temperature the systefayers in the film. If the total number of layers is sufficiently
undergoes a transition from the four-layer intermediate phassmall and is not a multiple of the period of an intermediate
to the three-layer one. The structure of this phase correghase, the remaining few layers may play a role of a strong
sponds to that of the so-called So;, phase. This sequence surface defect, and the phase may be suppressed completely.
of phases is actually observed in the experinjd®;18,19.  This effect is expected to be more important for phases with
At slightly lower temperatures the system exhibits the interdarge periods, and, thus, such phases should be more easily
mediate phases with periods of 8, 5, 7, and 9 layers. Foobserved in thicker films.

small values ofg the stability ranges of these phases are In the framework of this model the particular structure of
smaller than those of the three- and four-layer phases. Ihtermediate phases is determined by a coupling between the
follows from the phase diagrafsee Fig. 6 that intermediate  spontaneous polarizatid?, and the flexoelectric polarization
phases with periods larger than four layers are becomin®;. In the general case these two components of the total
more stable with the increasing coefficiemt Thus, these polarization are not parallel. Then the coupling betw®&gn
phases are more likely to be observed in smectic materialandP; gives rise to an effective torque that results in a non-
with strong positional correlations between molecules in adzero angle between tilt planes in adjacent layers. The corre-
jacent layers. Such correlations may be determined by somsponding contribution to the free energy is proportional to
specific interactions between various groups in the moleculdsoth parameters, and c;. It is important to note that all
tails, and it may be interesting to synthesize new smectiintermediate phases disappeacif=0 (see Fig. 7, because
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in this case the effective free energy E62) contains only  scribed theoretically without taking into account any direct
contributions proportional t@§ f;_i and therefore alternate interactions between nonadjacent smectic layers. In the first
in sign from layer to layer. Such contributions may only approximation it is sufficient to take into consideration the
stabilize the anticlinic structure. Thus, the existence of bothtiscrete flexoelectric effect, discussed in Sec. I, the sponta-
flexoelectric polarizatiof®; and the spontaneous polarization neous polarization of each layer that is related to molecular
P is essential for the stability and structure of intermediatechirality, and the coupling between polarizations of neigh-
phases. In real systems intermediate phases disappear hibring layers. As discussed above, the macroscopic helical
racemate$7]. Thus, the two enantiomers should exhibit the structure of intermediate phases can be described separately
same intermediate phases with structures that are the mirr@siking also into account weak chiral interactions between
images of each other. This conclusion can be verified experadjacent layers that do not significantly affect the structure of
mentally. In general, one concludes that the chiral structure unit cell. At the same time, the approach used in this paper
of intermediate phases is directly determined by moleculars limited to a temperature range far away from the
chirality and is not a result of a chiral symmetry breaking. Sm-C—Sm-A transition point where the tilt angle is small
Finally, one notes that according to the results of theand cannot be approximated as a constant. Thus the present
theory of the discrete flexoelectric effect, presented in Secqheory cannot be used to describe the Sfnphase or any

Il'and 1il, all intermediate phases should possess an addbther incommensurate phases that, in principle, may exist in
tional polarization in the direction perpendicular to smecticthe domain of small tilt angles.

layers. This polarization is expected to be smal€1, and
thus it has not been taken into account in the calculation of
the structure of intermediate phases. However, this polariza-
tion can always be taken into consideration as a secondary
effect, and its role will be studied in detail in a forthcoming  The authors are grateful to A. Fukuda, S. Elston, L. Parry-
publication. Johns, V.L. Lorman, C.C. Huang, J.K. Vij, and V.P. Panov for
One concludes that a sequence of polar and tilted interaseful discussions. The authors gratefully acknowledge the
mediate smectic phases with realistic structure can be deupport of the EPSRC through Grant No. GR/R71023.
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