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Diffusive intertwining of two fluid phases in chemically patterned microchannels
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Via a coarse-grained model, we simulate the flow of a pressure driven binary AB fluid through a three-
dimensional microchannel, which is decorated on both top and bottom with distinct A- and B-like patches. The
advection is “frustrated” because A-like patches are placed in the path of the B stream and similarly, B-like
patches are placed in the path of the A fluid. A competition between two factors, the advection caused by the
imposed flow and the interactions between the confined fluids and the patterned substrates, introduces nonlin-
earity into the system. This nonlinear behavior gives rise to a temporally periodic state, where the A and B
fluids are intertwined. In effect, the simple pattern of chemically distinct patches introduces positive feedback,
which is responsible for the instability of the interface separating the injected fluids.
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[. INTRODUCTION systems, namely, driven fluids that flow past chemically het-
erogeneous or patterned surfaces. Such systems can be found

The idea that flowing fluids can intertwine to form in nature[5] and in fabricated devices, where chemical pat-
“braids,” “knots,” or other entanglements has fascinated sci- terning is used, for example, to control the flow and reaction
entists for decades. Such topologically complicated strucef fluids in microfluidic instruments and biosensdi].
tures can occur in high Reynolds number flp&. In this  There have, however, been very few theoretical studies on
paper, we simulate a coarse-grained model for a binary syshe behavior of fluid mixtures that are driven past domains
tem to isolate an example of complex intertwining and tem-with preferential wetting7—9]. Thus, there has been little
porally periodic patterns at low Reynolds number. This be-exploration of the rich dynamical behavior that can occur
havior occurs when parallel streams of two immisciblewhen there is a coupling between advection and selective
fluids, A and B are driven through a three-dimensional mi-interactions with the patterned substrate. From a fundamental
crochannel that is decorated with chemically distinct patchepoint of view, such studies can reveal novel morphological
on both the top and bottom walls. In particular, B-lik& instabilities in these dynamical systefi$§. From a techno-
like) patches are placed in the path of the incomingBA |ogical aspect, the findings can be used to design microflu-
fluid stream. The B-like(A-like) patches preferentially at- jdic and nanofluidic devices, where the solubilization and
tract the B(A) fluid. The competition between the advection yransport of biologically relevant molecules without signifi-
from the imposed flow and the interactions between the consgnt contamination or dispersion are of great importdfge

fined fluid and the patterned substrate introduces nonlinearitys \we show below. our system provides a means of creating
into the reduced dynamical system. We find that this nonlin«-3|ug|iken flow in microchannels, where well-defined A and

earity gives rise to the periodic formation of complex inter- g omains are formed at the outlet periodically in time. Con-

penetrating spatial structures at the center of a microcharjneéequenﬂy’ we believe that this system can be highly useful in
Downstream from the patches, these structures are periodigicrofiuidic applications.

in space and oscillatory in time, and may be regarded as
traveling waves.

The observed phenomenon happens even in the absence Chemically
of hydrodynamic interactiongi.e., solely with imposed distinct patches
flow). In addition, we take the densities and viscosities of
both the fluids to be equal. Therefore, the instability of the 7 h
fluid interfaces observed here is different from classical fluid | B yt{"gam\ B-like
instabilities (i.e., Rayleigh-Taylor, Kelvin-Helmholtz insta-
bilities, or viscous fingering[2]. 7k Y
We note that this surface pattern of chemical patdkes o ke / h f
Fig. 1) was chosen because it is one of the simplest designs ! : | R
for introducing preferential wetting interactions that could 0 b ')'(0 L ox

perturb the fluid flow in the system. Furthermore, the particu-
lar pattern of an A-like patch next to a B-like region can g, 1. (Color onling Schematic of system. Chemically modi-
readily be fabricated on the micron scale. Through variousied patterns are the same on the top and bottom substrates and
techniques, researchers have in fact produced even moggnsist of A-like and B-like patches. At the inlet of the channel
complicated checkerboard patterns on these length scalgg=0), we have two-stream flow. Dark graplue in the color
[3.,4]. version represents A fluid; light gragyellow in the color version

This specific case is representative of a broader class oépresents B fluid.
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Il. THE MODEL gradient along the channel, apdis a Lagrange multiplier

An imposed pressure gradient drives two immiscible flu-that guarantees the incompressibility conditi§nd=0.
ids, A and B, to flow through the microchannel shown in Fig 10 rewrite Egs.(3) and (4) in dimensionless units, we
1. Both the top and bottom of this microchannel are deco—ChozOse a characteristic length scgl@nd a time scaler
rated with adjacent A- and B-like patches; the A-like patch=¢7/aM, which is equal to the diffusion time for order pa-
has a preferential attraction for the A component and likeJ@meter fluctuations through the distangeThe order pa-
wise, the B patch has an affinity for B. Note that at the inlet,”Jameter value is normalized hy. It should be noted that,
the A-like patch is placed in the path of the B fluid, and thenormally, in investigations _of phase_separanon in infinite v_oI-_
B-like patch lies in the path of the A stream. The patches ofMmes, the most appropriate choice for the characteristic
the top and bottom of the channel are identical to, and lie ifength is the thickness of the interfacg, = \x/a [13]. In
registry with, each other. this study, we consider fluids with different interfacial prop-

To characterize the morphology of the fluid, we define argrties while keeping the size of the channel constant; there-
order parametere(f,t)=pa(F,t)— pg(F.t) where p;(F,t) fore, we do not scale length witfy,,; . Rather we choosé as
represents the local number density of m'ecomponentj proportional to the channel width. For convenience, we
=A,B. The thermodynamic behavior of the system is asdntroduce a dimensionless parameker &,/ £2, in terms of
sumed to be described by the free energy functiéivalF, ~ which the interfacial tension is expressed a@s k@3 int
+W¥g, whereFq is the Ginzburg-Landau free energy for a ~go§qa§\/“; [11]. In practice, we control interfacial proper-
binary mixture[10] given by ties by changing. Equationg3) and(4) can now be rewrit-

ten as

Joa b,k
FO:] dif| — - o+ —o*+ = |Vel?|. (1)
2 4 2 Je . = 2
i TUVe=Vopu, )
We consider the fluid to be in the two-phase coexistence
regime @,b,x>0), where the equilibrium order parameter 0
for the A/B phase isppg==*¢eq, Peq=valb. The term

S . ) )
(«/2)|V ¢| repre'zsents'the frge energy cost of forming Order)&/hereH = —VPryél 5 is the dimensionless form of the im-
parameter gradients, in particular, interfaces between the

and B fluid phases. The second term in the free energy fun(p_osed pressure gradient. We assume that the pressure gradi-

tional, ¥4, represents a wall potential that describes the in—ent is applied along the axis, so that only the component

teraction between a fluid element at the pdirgnd the pat- ©f the vectorH is nonzero,H,=H. [Note that in Eqs(5)
terned substrate. Specifically, we tdle] and (6), as well as in the following text, for simplicity, we
’ have used the same symbols for the dimensionless values

I R P I w,@,V,t,0, etc.,, as we used in the dimensional equations
‘I'S=J er ds{zVv(Se Te(N=2(917F, 2 (1)=4)]

The last term in Eq(6) represents the hydrodynamic in-
where the inner integral represents integration over the suféractions, or, in other words, the osmotic force that is due to
strates.V(§) = V=const on the patterns and is zero other-changes in the order parameter distribution. The congant
wise, andr, represents the range of the substrate potential= o¢/D 7\ depends on the fluid propertiéisterfacial ten-
We choosép(S) = g for § on the AB) patches. Through Siono, diffusivity D=aM, and viscosityy) and defines the
Eq. (2), the free energ¥ is reduced when the fluid is A rich importance of hydrodynamic interactions in the system. If
(B rich) near the A-like(B-like) patches. C<1, for example, in the case of high viscosity fluids, it

The evolution of the order parameter for this system ismay be possible to neglect hydrodynamic interactions. In this

taken to be described by the Cahn-Hillard equaﬁm,la: case, there is no backflow in the System, and the VeIOCiW
along thex axis, u,, has an undistorted Poiseuille profile that

dg _ is a solution ofV2u,+H=0. In this paper, we only consider

E+G-V¢=MV2M, 3 situations where we can neglect hydrodynamic interactions
and setC equal to zero. We have, in fact, carried out calcu-

lations for moderate values €f (C<20) for the fixed value

where u= 6F/ 8¢ is a chemical potential andl is the mo- _ 5 N s
bility of the order parameter, taken to be constant. The ve!—| =6x10"" and found qualitatively similar results to those

locity field U obeys the Navier-Stokes equation in the Over_reported here. It should be noted, however, thater 20,

damped limit(appropriate for low Reynolds number or cree the distortions of the velocity fiel§due to gradients in the
flow)p[lo]' pprop y P order parametgrare at least an order of magnitude smaller

than the maximum values of the imposed velocities. On the
- - v @ other hand, in bulk systems with no mean flo@=20 is
0=-Vp—VP+7VU+uVe. (4) sufficiently large to modify the scaling behavior of domain
growth from that found strictly without hydrodynamic€ (
Here, n is the shear viscosity of the fluid, taken to be con-=0). For higher values of (i.e., C>20), the observed
stant for both phase&] P is the constant imposed pressure periodic behavior becomes unstable. The results of these

=—Vp+Vai+H+CuVe, (6)
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simulations will be reported in a subsequent paper where Wey)
will discuss in more detail the influence of hydrodynamic
interactions.

The following boundary conditions are imposed on
the walls of the channeldu/dn|ya =0, de/dyly—on=0,
and 9¢(8)/9z|,—op=+k 1 [dS{V(S)[ (") —&(S) 75>
where “+"is taken atz=0 and “—" is taken atz=h. The
last condition arises explicitly from the minimization of free
energy in the presence of the substrate potential. At the entr
of the channel, we have two-stream flow; at the exit, we p)
assume free draining flow, i.ed@/dx|,— =0. For the ve- "
locity field, we assume no-slip boundary conditions on all j . ;
Wa||S [14] 4 e R R

To update the value ap in Eq. (5), we use a cell dynami- -
cal system methofil5]. In the simulations described below,
we initially set the dimensionless parameters of the system tc
the following valuesi, the length of patch, is 20, the simu- s ]
lation box size is 14830%30, and the interaction param- P, 0 Py
eters are (=3, V=0.01[16]. In the graphical output of the
simulations, the A fluid is shown in blue and the B fluid is
shown in yellow.

Ill. RESULTS AND DISCUSSION

Our goal is to analyze the morphology of the fluid as it
flows through the channel shown in Fig. 1. In the discussion
below, we first describe the salient features of the system
highlighting the necessary conditions for observing the oscil-
latory patterns. We then provide a scaling analysis that al-
Itz\;\(/as :jos E[cr)] erelczigzrglctiepr)irsciiesrtlgf ;Jr:‘ ethﬁuliréte;?]‘zn?rt]ré"“irr‘gpf‘)t;‘éa FIG. 2. (Color onling Order parameter distribution at

. =6x10" time steps; H=3x104 1=20, h=30, L=140,
pressure gradient. . . ro=3, V=0.01; (a) A and B fluids are nontransparetib) B fluid

_At the onset of the simulations, two parallel streams ofig transparenttc) A fluid is transparent.
fluid A and B are driven by a constant pressure gradient to
move through this channel. The patches strongly perturb ththe higher velocities, but still lower that,, the morphology
morphology in the channel. The cost in free energy for havis more complicated, but we always observe a time-
ing each component near its respective nonwettable patch isdependent steady state.
sufficiently high that the fluid from the A stream diffuses  For relatively high values of the imposed velociti (
across the channel to the A-like patch and similarly the B>H,=7x10* for the parameters chosen heriae patches
fluid diffuses to the B-like patch. At early times<¢ 10° for also switch the A and B fluid phases, but only near the pat-
all the simulations presented hgréhe initial diffusion to-  terned substrates. The morphology in the center of the chan-
wards the A(B) patches plays the dominant role until the nel (z=h/2,y~h/2) remains almost undisturbed. We observe
thickness of the AB) fluid layer on the appropriate patches a roughly 2<3 checkerboardlike design of A and B fluid
is at least equal to,. For later times, when the @) patches  phases at the outlet of the chanpgmilar to the snapshot of
are covered by an AB) fluid layer of thickness~r,, the the morphology at the right end of the channel in Fig)R
spatiotemporal dynamics are determined by a competitiorhe exact morphology at the outlet is controlled by the value
between advection caused by the imposed pressure gradiestt the imposed pressure gradient, as well as by the fluid
and diffusional relaxation towards the thermodynamic equiproperties and the interaction with the substrates.
librium state(which would be reached in the absence of ad- In both the limiting cases described above, the system
vection [see Fig. 2a)]. exhibits a time-independent steady state. However, for the

For relatively low velocities Ki<H;=2.6x10 * for the  intermediate velocity regiorH;<H<H,, we find surpris-
parameters chosen hgréhe fluid mainly mimics the struc- ingly complex periodic behavior. Figure 2 depicts the mor-
ture of the underlying pattern and an imposed flow causephology in the channel at late times filr=3x 10"#; recall
only small distortions in the thermodynamically determinedthat the A fluid is shown in blue and the B fluid is shown in
distribution of . Under these conditions, our chosen patternyellow. Figure 2a) shows the channel as viewed from the
of patches primarily leads to a diffusive switching of the side; in this image, the fluids are opaque and the behavior
A-rich and B-rich regions. In other words, downstream fromseems relatively simple. If, however, we look inside the
the patterned region, the position of the A and B fluid regionschannel and make one of the fluids transpajtve B fluid in
is reversed with respect to that at the inlet of the channel. FoFig. 2(b) and the A fluid in Fig. 2c)], we now see that an
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FIG. 4. (Color onling Order parameter distribution in a channel
FIG. 3. (Color online Order parameter distribution in a channel that is cut by horizontak-y plane at(a) z=25, (b) z=20, (c) z
that is “cut” by vertical x-z plane at(a) y=17, (b) y=15, (¢) y =15. The part of the channel on the top of_ the_ cutting plane is
=14. The part of the channel in front of the cutting plane is trans-transparent. All parameters are the same as in Fig. 2.
parent. The position of the end of the patchexXjs=40. All pa-

rameters are the same as in Fig. 2. down the channel. The value efcan be measured from the

time evolution of the order parameter at any point where

interpenetrating structure is formed, where the A and B fluidoscillation occurgthere is a single frequency that describes
phases are intertwined. the oscillations in time in our systemHowever, it is more

Another way of viewing this structure is by looking at difficult to measure the “wavelengthA. For the case of
cross sections of the system in tkez plane at fixedy, asin ~ small H, this value can be simply measured from the order
Fig. 3, or in thex-y plane at fixedz, as shown in Fig. 4. The parameter distribution along theaxis (downstream from the
amplitude of the oscillations in the direction has a maxi- patterned regionfor y=h/2, z=h/2 (in the center of the
mum value in thex-z plane close to the middle of the chan- channel. For the case of highi, the oscillations have sig-
nel [Figs. 3b) and 3c)] and decreases close to the sidewallsnificant amplitude only close to the top and bottom sub-
[Fig. 3(@]. With respect to the-y plane, the amplitude of strates; the amplitude in the center of the channel (
the wave in they direction has a maximum value at some ~h/2, z=h/2) is very small. Therefore, for each valuetéf
fixed distance from the substrafdsg. 4(b)] and decreases at it is reasonable to measure the spatial period along the line in
distances closer to the substriféy. 4(a)] and in the middle thex direction where the oscillations are well established and
of the channe[Fig. 4(c)]. the amplitude has the maximum value, namely, in the middle

If we examine the morphology as a function of time, we of the channel=y,=h/2—1 at the some distanc&, from
observe another unexpected feature of this system. Thige top or the bottom substrate. Specifically, we measure the
structure oscillates in time, so that the waves in Figs. 3 and 4patial period\ from the order parameter distribution along
or the “holes” in Figs. 2b) and Zc) are seen to travel down the dashed line in Fig.(8).
the channel. The technologically most interesting case is the
one shown in Fig. 3, where the moving waves can be re® ;

b) ©) d)
garded as sluglike flow. Here, the effect of the patches ha: 30
been to switch two horizontal, parallel fluid streams to a -
stream of alternating, essentially vertical slabs of A and B .
phases near the center of the channel. The morphology at tt -
outlet of the same channel evolves as shown in Fig. 5. The o ‘

0 30

y

shapshots in this figure are taken over half of the tempora

period; during the second half of the period, the system

evolves from the morphology in Fig.(& back to the mor- FIG. 5. (Color online Morphology at the outlet of the micro-

phology in Fig. %a). channel for the simulation box shown in Figs. 3 and 4 but taken at
To characterize the observed behavior, we measure thdifferent time steps(a) t=50 100, (b) t=50 400, (c) t=50 500,

temporal periodr and the spatial period along thex axis  and(d) t=50800.
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FIG. 6. (a) Evolution of Z, in time. (b) Order parameter distri-
bution alongx axis aty=14,z=9 at the timet=6x 10" time steps.
All parameters are the same as in Fig. 2.

To defineZ,, first we locate the position of A/B interface,
Z(x,y), as the poir(s) in z where the order parameter d)
changes sign at fixed andy. Specifically, we measure the
position of the interface along the line located at the end of
the patches and in the center of the channel alony tvds
[solid white line in Fig. 8c)]. In the simulation box, this
position is denoted a&y,=Z(Xg,Yq) , WhereXg is the posi-
tion of the end of the patcfsee Fig. &)]. As can be seen
from the morphology snapshots n .F'g' 3, we haye two A/B FIG. 7. (Color onling Order parameter distribution in a channel
|nte.rfaces_ ak=Xy,y~h/2; the positions of thesz_a interfaces ..t is cut by verticak-z plane aty=14. (&) H=6x10"*, patches
a_t flxgd_ times are shown by white C|_rcles in FigeB For e on the top and bottonb) H=6x10"*, patches are on the
simplicity, we assume that the val is the distance from pottom only;(c) H=3x 10", patches are on the top and bottom;
the bottom substrate to the nearest A/B interface; note that) H=3x 104, patches are on the bottom only.
the distance from either the top or bottom substrate to the
nearest interface is the same. The actual valug,df con- rangeH;<H=H,); the results capture the two different
trolled by a competition between diffusion and advection dudypes of behavior that we observed in these studies. For rela-
to the imposed velocity field. tively high velocities, as depicted in Fig(&/, the interpen-

As the intertwined structure is formed at the end of theetrating structures are formed near the top and the bottom
patches, the value af, oscillates above and below its time substrates, but the morphology in the middle of the channel
average valu&,. In the other words, if we examine the rémains almost undisturbed. In one set of simulations, we
evolution of morphology shown in Fig(&, we see the A/B  fémoved the patches on the top substrate. In this case, we

interfaces(or white circles oscillate up and down along the ©Observe an intertwined structure that is similar to the one in
solid line. The actual time evolution d, is shown in Fig. Fig- 7(&, but the pattern only appears near the bot{ge-

6(a). The dashed line in Fig.(8) shows the value o, for te”;i? i)l:,\rlzcs[':\;\?ﬁ;(]bga{e maximum value @ becomes
the above case. Both, and the peak-to-peak amplitude of : 0

the oscillationssZ, [Fig. 6a)] depend on the imposed pres- comparable witth/2 (see Fig. 1, the structure that is formed
. o close to the bottom substrate connects with the structure that
sure gradienH. We measure the period in timefrom the

. ; A is formed close to the top substrdfég. 7(c)]. As alluded to
?na;gsfuor; t,:;]z ts";;ciaelvg(laurgl;)dnaftzﬁeSf?xoevéntime':sl?épsfa?érxvtehe above, the flow down the middle of the channel now exhibits
o - ] a sequential pattern of A/B/B/... “columns.” To create
order parameter distributiop(x,yo,Zo) in the middle of the  this type of flow, it is necessary to have patches on both the
channely=y, at the distanceZ, from the substrates as top and bottom substrates of the chanfiée have patches
shown in Fig. @b). only on the bottom substrate, see Figd)7 the spatio-
As noted above, the spatiotemporal patterns that areemporal patterns will be similar to the ones observed, for
formed in the channel depend on the magnitude of the imexample, in Fig. ®).]
posed velocity. To explicitly illustrate this point, we show the  In this essentially nonlinear, three-dimensional, finite-size
structures for two different values &f (that are within the problem, the stability analysis and the task of determining
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analytically the frequencies corresponding to the oscillationgls”u(zo)Mzg, which gives a rough estimate of the steady-

In space and time is difficult. quever,_ We propose S'mple?tate value oZ,. These estimates can strictly be used only if
scaling arguments that can help in elucidating the physics of ~ ~ L
the observed phenomena and also in predicting the compldy<Zo<h/2. For smallerZ,, we should explicitly include

spatiotemporal behavior. We begin with an analysis of thdhe effgctive interaction with the substrate in the estimate; for
evolution in time of the A/B interface inside the patternedhigherZ,, one should consider changes in the characteristic
region. Specifically, at the distance approximat?;[yfrom diffusive I~ength. Ta~k|ng~the functional dependence of the ve-
each substrate at the chosen probe point at the end of thecity u(Zg)~H(hZ,—Z5)/3.3 from the Poiseuille flow
patcheqat thex=X,,y=h/2 as shown on Fig.(8)], arela- [18], we can estimate the value 0fZ,) from the equation
tively wide interface between the four fluid streams A/B/A/B

is formed. The free energy favors the formation of large A HZ3(hZo—2Z3)~1. (8)

(B) domains on the A-like(B-like) patches, or, in other

words, a high value oZ,. (For exampleZ, takes its maxi- ~ SinceZ,<h (whereh is the height of the channelfor sim-
mum value,h/2, at low velocities, where the fluid mimics plicity we can neglec?? in the formula above and find

the underlying patterns Higher imposed velocities lead to

lower values ofZ; this value is limited from below by, - |\

the range of the interaction with the substrate. The pattern Zo~ Hh 9
formation described above happens at intermediate veloci-

ties, wherer ,<Zy<h/2. To test these scaling arguments, we carried out a specific

The initiation of the pattern formation happens approxi-series of simulations. In the first set, we ran the simulations

mately at the distancg, from the bottom(and at the same for different values ofH and measured the value @f, as
distance from the top substrate, simultaneously follows.  well as the spatial and temporal periods. In Fig)8we plot
First, the A(B) domains grow at the A-likéB-like) patches, the simulation results fdZ, (solid line with filled circles for
and thus fluid phases are switched from their original pathfixed values ofl and%, and the results calculated using Eq.
At the end of the patches, and in the middle of the channelg) (gashed curve Note that the available dynamic range is
(at y=h/2), the tops of the AB) domains extend into the sma]| since the observed phenomena occur in a relatively
bulk. The “tops” of these domains are in the path of the narrow parameter region. Due to this fact, an accurate veri-
highest imposed velocitysince this is Poiseuille flow fication of the scaling predictions from the simulation results
Eventually, the AB) tops are advected along by the imposedis gifficult if not impossible. However, we can compare the
velocity and simultaneously diffuse back towards the main Asimylation results with the above estimates, taking reason-
(B) stream. Thus, the structures from both streams becomgyle numerical fitting parameters.We can see good agreement
intertwined as shown in Figs. 2—4. of the simulation results with the estimates for higher values
~ Competition between the diffusive growth of the top re-of H and a noticeable discrepancy at lower valuesips
gion of an A(B) domain at the end of the patches and ad'expected for the larger values @,. Also in qualitative

vection of this formation by an imposed velocity along the _ ~ )
channel determines the spatial and temporal periods. We a@dreement with the above arguments, remains roughly

sume that the characteristic velocity that advects the structuigPStant as we change the interfacial tendiioy changing
along the channel is proportional to the velocity taken in then€ value ofx). Figure &b) shows this behavior for two

middle of the channely(=h/2) and at the distancg, from fixed values ofH.

. In the next series of simulations, we measure the depen-
the substrate. Therefore we can relate the spatial and tempg— & the lenath of th tch for two fixed val p
ral periods as\/7~u(Z,). Taking the effective radius of the ence 0lco on e 'engin ot the paich for wo Tixed values o

' . ) H [solid lines in Fig. &)]. The dashed curves show the
top region of an A(B) do_mam_ to .be proport|onal_ to the estimates using Eq9) [with the same value of the single
spatial pen_od and assuming dlffu§|ve gro;/vth of this reglon'fitting parameter that was used in Figag. Thus, our as-
we can estimate the tempora_l periodzasi*/o [10]. Thus, . sumptions prove to be fairly reasonable and &g .seems to
the oscillations can be described by the two parameters: i S
capture the scaling behavior fdp for the range of param-

- = eters considered here.
T~Mu(Zo);  A~Valu(Z). () Using Eqs.(6) and(9), and takingu(Z,) ~HhZ,/3.3, we
can estimate the full dependence of both the spatial and tem-
In these estimates, still remains an unknown variable poral periods on the system parameters:
that can be estimated from the following simple argument.
The characteristic time that is needed for fluid A to diffuse to o _
the A-like patch, which is covered with an A layer of height A~ h1/3 e 1/3’ ™ h1Y2H

Z,, is proportional taZ2 [17]. In order for this fluid to dif-

fuse to the compatible domain, the advection time of a fluidFigure 9a) shows the dependence of the temporal period of
element through the patterned region should be equal to dhe system’s oscillations on the imposed pressure gradient.
greater than the diffusion time estimated above. Recallindg-or relatively high velocities, there is an indication that the
thatl is the length of the patch, this condition can be writtentemporal period decays as~H !, according to Eq(10).

1/2 0_1/2

(“highH"). (10)
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FIG. 8. (Color onlineé Dependence oF, on (a) H for fixed %
=0.5,1=20; (b) % for fixed H=3x10"* (curve with circle$ and
H=6x10* (curve with squares |=20; (c) | for fixed H=3
X 10~ (curve with circleg andH=6X10"* (curve with squares

k=0.5. Other parameters are the same as in Fig. 2.
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FIG. 9. (Color online (a) Dependence of temporal periadon
H. Solid curve with the filled circles represent simulation results;
dashed curve is an asymptotic form at high 7~0.32H; dotted
curve is an asymptotic form at low, 7~0.007H>2 (b) Depen-
dence of spatial periodl on H. Solid curve with the filled circles
represent simulation results; dashed curve is an asymptotic form
for A at highH, A~1.2HY3; dotted curve is an asymptotic form
for \ at low H, A\~0.35HY2 All other parameters are the same as
in Fig. 2.

(10) are expected to apply only for relatively high values
of H.

The reason for the deviation from the above estimates for
low values ofH is as follows. The amplitude of the oscilla-
tions of Z, increases with decreasirdy thus, the maximum

For the lower values of H, we see a significant deviationvalue ofZ, is close toh/2. In this case, the structures from
from H~* behavior. The solid curve with the filled circles in the top and bottom merge. Therefore, the characteristic ve-

Fig. 9b) shows the spatial period along thedirection, \,

measured from the simulations at different values Hof

locity that corresponds to the advection along the channel is
no longer simply associated wiff,, and is approximately

Again, the above estimates of the spatial period from Egequal to the velocity in the center of the channej,,
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=Upae=H?/13[18]. Thus, usingun,y instead of thai(Z,) @) 2000 ' ' ' ' '
in Eq. (6) leads to the following scaling estimates of periods T
for low H:
1400 = 1
0_1/2 ' 0_1/2 ) ) — —_—
A~ hHl/Z, T~ T (“low H" ). (11 . 1553%1/4
1000 1/4 b
~TTT 635K
Using Eg.(11), we plotted the dotted curves in Fig. 9, 300 1
which show the asymptotic behavior for lower values-bf
The important qualitative feature of E(@L1) is that the spa-
tial and temporal periods do not depend on the length of the 600 .
patchl for low H. However, the value off where the cross- e
over from the lowH regime[described by Eq(11)] to the %=
high-H [see Eq(10)] occurs depends dnAs we decreaskl
further, or try to extend the simulation resu(tSg. 9 to the 4000‘3 04 05 06 - 07 08 09

region of still lowerH, H<H,, we also observe oscillations
consistent with the scaling behavior of E(L1) at early
times, but eventually these oscillations become unstable, in
dicating that the periodic state becomes unstable below ou
estimate ofH ;.

In order to test the estimates further, we plotted the de- 25
pendence of both the spatial and temporal periods on theb)
value of k¥ (the dimensionless interfacial tension in our
model iso~ k) for two different values oH in Fig. 10.

One value H=6x10*%) is taken in the region of higl

[solid curves with squares in Figs. (@ and 1Q@b)] and the
other H=3x10 %) is taken from the region of low [solid
curves with circles in Figs. 18) and 1@b)]. For the larger
value ofH, the estimates from Eq10) are consistent with 15
the simulation resultgsee dashed-dotted lines in Fig.)10

and correspondingly, we used estimates from(E&d). for the

case ofH=3x10"“. It is encouraging that the simulations
indicate roughly the sanie dependence in the “lowd” and

“high H” regimes.

Though not shown here, we also find from the simulations 10 i ] ; ; i
that the dependence of the spatial and temporal period: 0.3 0.4 0.5 0.6E 07 08 09
on the patch lengths agrees with E¢80) for the highH
region. In the lowH region, the spatial and temporal periods
do not depend on the patch length, as consistent with Eq.

(11). ~ - . ) . ; i
Thus, Eq.(10) allows us to estimate relatively accurately on k. Solid curve with the filled circles represents simulation re-
! ' sults forH=3x10"4; dashed curve represents an asymptotic form

the SP‘?‘“a' and temporal pe_riOds in the case of relatively higl?or this case~ 15534 Solid curve with the filled squares rep-
velocities, where the traveling waves that occur near the top.cois simulation results fdil=6x 10-% dashed-dotted curve
and the bottom substrate are separated by a relatively U”diﬁépresents an asymptotic form-635¢Y4. ’(b) Dependence of the
torted two-stream flow in the middle of the channel. For thegpatial periodh on'z. Solid curve with the filled circles represents
|0W Ve|OCItIeS, Whel'e the tl’ave“ng wave dlStUI’banCES frongimu|ation results forH=3X 1074' dashed curve represents an

’

the top and the bottom merge, both the spatial and temporakymptotic form for this casa,~22%Y4. Solid curve with the filled
periods increase more rapidly with decreasédiraccording  squares represents simulation results For=6x10"4; dashed-
to Eq. (11). In both situations, the established intertwining dotted curve represents an asymptotic fonn: 174, All others
structures travel down the channel with the phase velocityparameters are the same as in Fig. 2.

N 7.

20

FIG. 10. (Color onling (a) Dependence of the temporal peried

attraction to the A or B fluid. The A-likéB-like) patch is
placed in the path of the BA) fluid. The observed spa-
tiotemporal patterns fall onto two distinct categories, exhib-
The simulations show oscillatory pattern formation as twoiting different scaling behavior as we change system param-
immiscible fluids A and B flow through a microchannel that eters. For relatively high velocities, oscillatory structures are
contains chemically distinct patches on the top and bottonformed near the top and the bottom substrates, but the mor-
substrates. The patches are designed to have a preferentidiology in the middle of the channel remains almost undis-

IV. CONCLUSIONS
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turbed. The same oscillations occur if we have patches only The simple design of the chemically modified patches
on the top or the bottom substrate. The periods in time angroposed here can be used to redirect the flow of fluids in
space decrease with increases hh as 7~1/H and A microchannels, switching the two parallel A/B streams to
~1/H3, respectively. B/A streams for low values of the imposed velocities. In
For the region of relatively low velocities, the structures addition, the pattern can be used to generate sluglike flow
that are formed close to the top and bottom substrate grofrom the two parallel streams. We find that the complex be-
large enough to become entangled with one another. In thisavior in such a relatively simple system arises from the
case, the flow down the channel may be regarded as sluglikeompetition between advection and thermodynamically
flow, where two parallel fluid streams are switched to thedriven diffusion as an imposed flow drives fluids to move
sequential A/B/AB . .. streams. To create this type of flow, over the patches on the substrates. This concept can be ex-
it is necessary to have patches on both the top and bottoiloited to design surface patterns that will yield new dynami-
substrates of the channel. In this case, the periods in time armhl behaviol{9] and can be useful in controlling the mixing
space show a more rapid increase with decreadintamely,  of binary fluids[7,8] or the motion of droplets in microflu-
as 7~ 1/H%2 and\ ~1/H2, respectively. idic devices.
We also estimated the dependence of spatial and temporal
periods on the length of the patches and on the interfacial ACKNOWLEDGMENTS
tension between fluids. Thus, it is possible to control the
oscillations by changing the imposed pressure gradiefur The authors acknowledge support from the ONR and
the fluid with the chosen interfacial properties. NSF.
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