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Diffusive intertwining of two fluid phases in chemically patterned microchannels
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Via a coarse-grained model, we simulate the flow of a pressure driven binary AB fluid through a three-
dimensional microchannel, which is decorated on both top and bottom with distinct A- and B-like patches. The
advection is ‘‘frustrated’’ because A-like patches are placed in the path of the B stream and similarly, B-like
patches are placed in the path of the A fluid. A competition between two factors, the advection caused by the
imposed flow and the interactions between the confined fluids and the patterned substrates, introduces nonlin-
earity into the system. This nonlinear behavior gives rise to a temporally periodic state, where the A and B
fluids are intertwined. In effect, the simple pattern of chemically distinct patches introduces positive feedback,
which is responsible for the instability of the interface separating the injected fluids.
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I. INTRODUCTION

The idea that flowing fluids can intertwine to form
‘‘braids,’’ ‘‘knots,’’ or other entanglements has fascinated s
entists for decades. Such topologically complicated str
tures can occur in high Reynolds number flow@1#. In this
paper, we simulate a coarse-grained model for a binary
tem to isolate an example of complex intertwining and te
porally periodic patterns at low Reynolds number. This b
havior occurs when parallel streams of two immiscib
fluids, A and B are driven through a three-dimensional m
crochannel that is decorated with chemically distinct patc
on both the top and bottom walls. In particular, B-like~A-
like! patches are placed in the path of the incoming A~B!
fluid stream. The B-like~A-like! patches preferentially at
tract the B~A! fluid. The competition between the advectio
from the imposed flow and the interactions between the c
fined fluid and the patterned substrate introduces nonlinea
into the reduced dynamical system. We find that this non
earity gives rise to the periodic formation of complex inte
penetrating spatial structures at the center of a microchan
Downstream from the patches, these structures are per
in space and oscillatory in time, and may be regarded
traveling waves.

The observed phenomenon happens even in the abs
of hydrodynamic interactions~i.e., solely with imposed
flow!. In addition, we take the densities and viscosities
both the fluids to be equal. Therefore, the instability of t
fluid interfaces observed here is different from classical fl
instabilities ~i.e., Rayleigh-Taylor, Kelvin-Helmholtz insta
bilities, or viscous fingering! @2#.

We note that this surface pattern of chemical patches~see
Fig. 1! was chosen because it is one of the simplest des
for introducing preferential wetting interactions that cou
perturb the fluid flow in the system. Furthermore, the parti
lar pattern of an A-like patch next to a B-like region ca
readily be fabricated on the micron scale. Through vario
techniques, researchers have in fact produced even m
complicated checkerboard patterns on these length sc
@3,4#.

This specific case is representative of a broader clas
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systems, namely, driven fluids that flow past chemically h
erogeneous or patterned surfaces. Such systems can be
in nature@5# and in fabricated devices, where chemical p
terning is used, for example, to control the flow and react
of fluids in microfluidic instruments and biosensors@6#.
There have, however, been very few theoretical studies
the behavior of fluid mixtures that are driven past doma
with preferential wetting@7–9#. Thus, there has been littl
exploration of the rich dynamical behavior that can occ
when there is a coupling between advection and selec
interactions with the patterned substrate. From a fundame
point of view, such studies can reveal novel morphologi
instabilities in these dynamical systems@9#. From a techno-
logical aspect, the findings can be used to design micro
idic and nanofluidic devices, where the solubilization a
transport of biologically relevant molecules without signi
cant contamination or dispersion are of great importance@5#.
As we show below, our system provides a means of crea
‘‘sluglike’’ flow in microchannels, where well-defined A an
B domains are formed at the outlet periodically in time. Co
sequently, we believe that this system can be highly usefu
microfluidic applications.

FIG. 1. ~Color online! Schematic of system. Chemically mod
fied patterns are the same on the top and bottom substrates
consist of A-like and B-like patches. At the inlet of the chann
(x50), we have two-stream flow. Dark gray~blue in the color
version! represents A fluid; light gray~yellow in the color version!
represents B fluid.
©2003 The American Physical Society05-1
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II. THE MODEL

An imposed pressure gradient drives two immiscible fl
ids, A and B, to flow through the microchannel shown in F
1. Both the top and bottom of this microchannel are de
rated with adjacent A- and B-like patches; the A-like pat
has a preferential attraction for the A component and li
wise, the B patch has an affinity for B. Note that at the inl
the A-like patch is placed in the path of the B fluid, and t
B-like patch lies in the path of the A stream. The patches
the top and bottom of the channel are identical to, and lie
registry with, each other.

To characterize the morphology of the fluid, we define
order parameterw(rW,t)5rA(rW,t)2rB(rW,t) where r i(rW,t)
represents the local number density of theith component,i
5A,B. The thermodynamic behavior of the system is
sumed to be described by the free energy functionalF5F0
1CS , whereF0 is the Ginzburg-Landau free energy for
binary mixture@10# given by

F05E drWF2
a

2
w21

b

4
w41

k

2
u¹W wu2G . ~1!

We consider the fluid to be in the two-phase coexiste
regime (a,b,k.0), where the equilibrium order paramet
for the A/B phase iswA/B56weq , weq5Aa/b. The term
(k/2)u¹W wu2 represents the free energy cost of forming ord
parameter gradients, in particular, interfaces between th
and B fluid phases. The second term in the free energy fu
tional, Cs , represents a wall potential that describes the
teraction between a fluid element at the pointrW and the pat-
terned substrate. Specifically, we take@12#

Cs5E drWE dsW$ 1
2 V~sW !e2urW2sWu/r 0@w~rW !2w̃~sW !#2%, ~2!

where the inner integral represents integration over the s
strates.V(sW)5V5const on the patterns and is zero oth
wise, andr 0 represents the range of the substrate poten
We choosew̃(sW)5wA(B) for sW on the A~B! patches. Through
Eq. ~2!, the free energyF is reduced when the fluid is A rich
~B rich! near the A-like~B-like! patches.

The evolution of the order parameter for this system
taken to be described by the Cahn-Hillard equation@10,13#:

]w

]t
1uW •¹W w5M¹2m, ~3!

wherem5dF/dw is a chemical potential andM is the mo-
bility of the order parameter, taken to be constant. The
locity field uW obeys the Navier-Stokes equation in the ov
damped limit~appropriate for low Reynolds number or cre
flow! @10#:

052¹W p2¹W P1h¹2uW 1m¹W w. ~4!

Here,h is the shear viscosity of the fluid, taken to be co
stant for both phases,¹W P is the constant imposed pressu
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gradient along the channel, andp is a Lagrange multiplier
that guarantees the incompressibility condition,¹W •uW 50.

To rewrite Eqs.~3! and ~4! in dimensionless units, we
choose a characteristic length scalej and a time scalet0
5j2/aM, which is equal to the diffusion time for order pa
rameter fluctuations through the distancej. The order pa-
rameter value is normalized byweq . It should be noted that
normally, in investigations of phase separation in infinite v
umes, the most appropriate choice for the characteri
length is the thickness of the interface,j int5Ak/a @13#. In
this study, we consider fluids with different interfacial pro
erties while keeping the size of the channel constant; th
fore, we do not scale length withj int . Rather we choosej as
proportional to the channel widthh. For convenience, we
introduce a dimensionless parameterk̃5j int

2 /j2, in terms of
which the interfacial tension is expressed ass;kweq

2 /j int

;weq
2 ajAk̃ @11#. In practice, we control interfacial proper

ties by changingk̃. Equations~3! and~4! can now be rewrit-
ten as

]w

]t
1uW •¹W w5¹2m, ~5!

052¹W p1¹2uW 1HW 1Cm¹W w, ~6!

whereHW 52¹W Pt0j/h is the dimensionless form of the im
posed pressure gradient. We assume that the pressure g
ent is applied along thex axis, so that only thex component
of the vectorHW is nonzero,Hx[H. @Note that in Eqs.~5!
and ~6!, as well as in the following text, for simplicity, we
have used the same symbols for the dimensionless va
m,w,¹W ,t,uW , etc., as we used in the dimensional equatio
~1!–~4!.#

The last term in Eq.~6! represents the hydrodynamic in
teractions, or, in other words, the osmotic force that is due
changes in the order parameter distribution. The constanC
5sj/DhAk̃ depends on the fluid properties~interfacial ten-
sions, diffusivity D5aM, and viscosityh) and defines the
importance of hydrodynamic interactions in the system.
C!1, for example, in the case of high viscosity fluids,
may be possible to neglect hydrodynamic interactions. In
case, there is no backflow in the system, and the velo
along thex axis,ux , has an undistorted Poiseuille profile th
is a solution of¹2ux1H50. In this paper, we only conside
situations where we can neglect hydrodynamic interacti
and setC equal to zero. We have, in fact, carried out calc
lations for moderate values ofC (C,20) for the fixed value
H5631026 and found qualitatively similar results to thos
reported here. It should be noted, however, that forC,20,
the distortions of the velocity field~due to gradients in the
order parameter! are at least an order of magnitude smal
than the maximum values of the imposed velocities. On
other hand, in bulk systems with no mean flow,C'20 is
sufficiently large to modify the scaling behavior of doma
growth from that found strictly without hydrodynamics (C
50). For higher values ofC ~i.e., C.20), the observed
periodic behavior becomes unstable. The results of th
5-2
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DIFFUSIVE INTERTWINING OF TWO FLUID PHASES . . . PHYSICAL REVIEW E 68, 051505 ~2003!
simulations will be reported in a subsequent paper where
will discuss in more detail the influence of hydrodynam
interactions.

The following boundary conditions are imposed
the walls of the channel:]m/]nuwall50, ]w/]yuy50,h50,
and ]w(sW)/]zuz50,h56 k̃21*dsW i$V(sW i)@w(rW)2w̃(sW i)#%urW→sW ,
where ‘‘1’’ is taken atz50 and ‘‘2’’ is taken atz5h. The
last condition arises explicitly from the minimization of fre
energy in the presence of the substrate potential. At the e
of the channel, we have two-stream flow; at the exit,
assume free draining flow, i.e.,]w/]xux5L50. For the ve-
locity field, we assume no-slip boundary conditions on
walls @14#.

To update the value ofw in Eq. ~5!, we use a cell dynami-
cal system method@15#. In the simulations described below
we initially set the dimensionless parameters of the system
the following values:l, the length of patch, is 20, the simu
lation box size is 140330330, and the interaction param
eters arer 053, V50.01 @16#. In the graphical output of the
simulations, the A fluid is shown in blue and the B fluid
shown in yellow.

III. RESULTS AND DISCUSSION

Our goal is to analyze the morphology of the fluid as
flows through the channel shown in Fig. 1. In the discuss
below, we first describe the salient features of the syst
highlighting the necessary conditions for observing the os
latory patterns. We then provide a scaling analysis that
lows us to relate the properties of the interpenetrating st
ture to the characteristics of the fluid and the impos
pressure gradient.

At the onset of the simulations, two parallel streams
fluid A and B are driven by a constant pressure gradien
move through this channel. The patches strongly perturb
morphology in the channel. The cost in free energy for h
ing each component near its respective nonwettable patc
sufficiently high that the fluid from the A stream diffuse
across the channel to the A-like patch and similarly the
fluid diffuses to the B-like patch. At early times (t,103 for
all the simulations presented here!, the initial diffusion to-
wards the A~B! patches plays the dominant role until th
thickness of the A~B! fluid layer on the appropriate patche
is at least equal tor 0. For later times, when the A~B! patches
are covered by an A~B! fluid layer of thickness'r 0, the
spatiotemporal dynamics are determined by a competi
between advection caused by the imposed pressure gra
and diffusional relaxation towards the thermodynamic eq
librium state~which would be reached in the absence of a
vection! @see Fig. 2~a!#.

For relatively low velocities (H!H152.631024 for the
parameters chosen here!, the fluid mainly mimics the struc
ture of the underlying pattern and an imposed flow cau
only small distortions in the thermodynamically determin
distribution ofw. Under these conditions, our chosen patte
of patches primarily leads to a diffusive switching of th
A-rich and B-rich regions. In other words, downstream fro
the patterned region, the position of the A and B fluid regio
is reversed with respect to that at the inlet of the channel.
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the higher velocities, but still lower thanH1, the morphology
is more complicated, but we always observe a tim
independent steady state.

For relatively high values of the imposed velocity (H
@H25731024 for the parameters chosen here!, the patches
also switch the A and B fluid phases, but only near the p
terned substrates. The morphology in the center of the ch
nel (z'h/2,y'h/2) remains almost undisturbed. We obser
a roughly 233 checkerboardlike design of A and B flui
phases at the outlet of the channel@similar to the snapshot o
the morphology at the right end of the channel in Fig. 2~a!#.
The exact morphology at the outlet is controlled by the va
of the imposed pressure gradient, as well as by the fl
properties and the interaction with the substrates.

In both the limiting cases described above, the syst
exhibits a time-independent steady state. However, for
intermediate velocity region,H1<H<H2, we find surpris-
ingly complex periodic behavior. Figure 2 depicts the m
phology in the channel at late times forH5331024; recall
that the A fluid is shown in blue and the B fluid is shown
yellow. Figure 2~a! shows the channel as viewed from th
side; in this image, the fluids are opaque and the beha
seems relatively simple. If, however, we look inside t
channel and make one of the fluids transparent@the B fluid in
Fig. 2~b! and the A fluid in Fig. 2~c!#, we now see that an

FIG. 2. ~Color online! Order parameter distribution a
t563104 time steps; H5331024, l 520, h530, L5140,
r 053, V50.01; ~a! A and B fluids are nontransparent;~b! B fluid
is transparent;~c! A fluid is transparent.
5-3
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KUKSENOK, JASNOW, AND BALAZS PHYSICAL REVIEW E68, 051505 ~2003!
interpenetrating structure is formed, where the A and B fl
phases are intertwined.

Another way of viewing this structure is by looking a
cross sections of the system in thex-z plane at fixedy, as in
Fig. 3, or in thex-y plane at fixedz, as shown in Fig. 4. The
amplitude of the oscillations in thex direction has a maxi-
mum value in thex-z plane close to the middle of the cha
nel @Figs. 3~b! and 3~c!# and decreases close to the sidewa
@Fig. 3~a!#. With respect to thex-y plane, the amplitude o
the wave in they direction has a maximum value at som
fixed distance from the substrates@Fig. 4~b!# and decreases a
distances closer to the substrate@Fig. 4~a!# and in the middle
of the channel@Fig. 4~c!#.

If we examine the morphology as a function of time, w
observe another unexpected feature of this system.
structure oscillates in time, so that the waves in Figs. 3 an
or the ‘‘holes’’ in Figs. 2~b! and 2~c! are seen to travel down
the channel. The technologically most interesting case is
one shown in Fig. 3, where the moving waves can be
garded as sluglike flow. Here, the effect of the patches
been to switch two horizontal, parallel fluid streams to
stream of alternating, essentially vertical slabs of A and
phases near the center of the channel. The morphology a
outlet of the same channel evolves as shown in Fig. 5.
snapshots in this figure are taken over half of the temp
period; during the second half of the period, the syst
evolves from the morphology in Fig. 5~d! back to the mor-
phology in Fig. 5~a!.

To characterize the observed behavior, we measure
temporal periodt and the spatial periodl along thex axis

y

a)

b)

c)

X0=40

30

0

17

0

15

30

0

0

30

14

0 140

z

x

Z0Z 0

Z0

FIG. 3. ~Color online! Order parameter distribution in a chann
that is ‘‘cut’’ by vertical x-z plane at~a! y517, ~b! y515, ~c! y
514. The part of the channel in front of the cutting plane is tra
parent. The position of the end of the patches isX0540. All pa-
rameters are the same as in Fig. 2.
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down the channel. The value oft can be measured from th
time evolution of the order parameter at any point whe
oscillation occurs~there is a single frequency that describ
the oscillations in time in our system!. However, it is more
difficult to measure the ‘‘wavelength’’l. For the case of
small H, this value can be simply measured from the ord
parameter distribution along thex axis~downstream from the
patterned region! for y5h/2, z5h/2 ~in the center of the
channel!. For the case of highH, the oscillations have sig
nificant amplitude only close to the top and bottom su
strates; the amplitude in the center of the channely
'h/2, z'h/2) is very small. Therefore, for each value ofH,
it is reasonable to measure the spatial period along the lin
thex direction where the oscillations are well established a
the amplitude has the maximum value, namely, in the mid
of the channely5y05h/221 at the some distanceZ̃0 from
the top or the bottom substrate. Specifically, we measure
spatial periodl from the order parameter distribution alon
the dashed line in Fig. 3~c!.

-

a)

b)

c)

z

0

25

0

20

0

15

30

FIG. 4. ~Color online! Order parameter distribution in a chann
that is cut by horizontalx-y plane at~a! z525, ~b! z520, ~c! z
515. The part of the channel on the top of the cutting plane
transparent. All parameters are the same as in Fig. 2.

FIG. 5. ~Color online! Morphology at the outlet of the micro
channel for the simulation box shown in Figs. 3 and 4 but taken
different time steps:~a! t550 100, ~b! t550 400, ~c! t550 500,
and ~d! t550 800.
5-4
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To defineZ̃0, first we locate the position of A/B interface
Z(x,y), as the point~s! in z where the order paramete
changes sign at fixedx and y. Specifically, we measure th
position of the interface along the line located at the end
the patches and in the center of the channel along they axis
@solid white line in Fig. 3~c!#. In the simulation box, this
position is denoted asZ05Z(X0 ,y0) , whereX0 is the posi-
tion of the end of the patch@see Fig. 3~c!#. As can be seen
from the morphology snapshots in Fig. 3, we have two A
interfaces atx5X0 ,y'h/2; the positions of these interface
at fixed times are shown by white circles in Fig. 3~c!. For
simplicity, we assume that the valueZ0 is the distance from
the bottom substrate to the nearest A/B interface; note
the distance from either the top or bottom substrate to
nearest interface is the same. The actual value ofZ0 is con-
trolled by a competition between diffusion and advection d
to the imposed velocity field.

As the intertwined structure is formed at the end of t
patches, the value ofZ0 oscillates above and below its tim
average valueZ̃0. In the other words, if we examine th
evolution of morphology shown in Fig. 3~c!, we see the A/B
interfaces~or white circles! oscillate up and down along th
solid line. The actual time evolution ofZ0 is shown in Fig.
6~a!. The dashed line in Fig. 6~a! shows the value ofZ̃0 for
the above case. BothZ0 and the peak-to-peak amplitude
the oscillationsdZ0 @Fig. 6~a!# depend on the imposed pre
sure gradientH. We measure the period in timet from the
data for the time evolution ofZ0 shown in Fig. 6~a!. We
measure the spatial periodl at the fixed time step from the
order parameter distributionw(x,y0 ,Z̃0) in the middle of the
channel y5y0 at the distanceZ̃0 from the substrates a
shown in Fig. 6~b!.

As noted above, the spatiotemporal patterns that
formed in the channel depend on the magnitude of the
posed velocity. To explicitly illustrate this point, we show th
structures for two different values ofH ~that are within the

a)

b)

τ

λ

ϕ

t, time

x

0Z

5

11

9

7

0Zδ
0

~
Z

FIG. 6. ~a! Evolution of Z0 in time. ~b! Order parameter distri-
bution alongx axis aty514, z59 at the timet563104 time steps.
All parameters are the same as in Fig. 2.
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range H1<H<H2); the results capture the two differen
types of behavior that we observed in these studies. For r
tively high velocities, as depicted in Fig. 7~a!, the interpen-
etrating structures are formed near the top and the bot
substrates, but the morphology in the middle of the chan
remains almost undisturbed. In one set of simulations,
removed the patches on the top substrate. In this case
observe an intertwined structure that is similar to the one
Fig. 7~a!, but the pattern only appears near the bottom~pat-
terned! surface@Fig. 7~b!#.

For lower H, when the maximum value ofZ0 becomes
comparable withh/2 ~see Fig. 1!, the structure that is formed
close to the bottom substrate connects with the structure
is formed close to the top substrate@Fig. 7~c!#. As alluded to
above, the flow down the middle of the channel now exhib
a sequential pattern of A/B/A/B . . . ‘‘columns.’’ To create
this type of flow, it is necessary to have patches on both
top and bottom substrates of the channel.@If we have patches
only on the bottom substrate, see Fig. 7~d!, the spatio-
temporal patterns will be similar to the ones observed,
example, in Fig. 7~b!.#

In this essentially nonlinear, three-dimensional, finite-s
problem, the stability analysis and the task of determin

c)

y
30
14

0

0

0

0
14

14

14

30

30

30

d)

b)

a)

FIG. 7. ~Color online! Order parameter distribution in a chann
that is cut by verticalx-z plane aty514. ~a! H5631024, patches
are on the top and bottom;~b! H5631024, patches are on the
bottom only;~c! H5331024, patches are on the top and bottom
~d! H5331024, patches are on the bottom only.
5-5
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analytically the frequencies corresponding to the oscillati
in space and time is difficult. However, we propose sim
scaling arguments that can help in elucidating the physic
the observed phenomena and also in predicting the com
spatiotemporal behavior. We begin with an analysis of
evolution in time of the A/B interface inside the pattern
region. Specifically, at the distance approximatelyZ̃0 from
each substrate at the chosen probe point at the end o
patches@at thex5X0 ,y5h/2 as shown on Fig. 3~c!#, a rela-
tively wide interface between the four fluid streams A/B/A
is formed. The free energy favors the formation of large
~B! domains on the A-like~B-like! patches, or, in othe
words, a high value ofZ0. ~For example,Z0 takes its maxi-
mum value,h/2, at low velocities, where the fluid mimic
the underlying patterns!. Higher imposed velocities lead t
lower values ofZ0; this value is limited from below byr 0,
the range of the interaction with the substrate. The pat
formation described above happens at intermediate ve
ties, wherer 0,Z̃0,h/2.

The initiation of the pattern formation happens appro
mately at the distanceZ̃0 from the bottom~and at the same
distance from the top substrate, simultaneously! as follows.
First, the A~B! domains grow at the A-like~B-like! patches,
and thus fluid phases are switched from their original pa
At the end of the patches, and in the middle of the chan
~at y5h/2), the tops of the A~B! domains extend into the
bulk. The ‘‘tops’’ of these domains are in the path of th
highest imposed velocity~since this is Poiseuille flow!.
Eventually, the A~B! tops are advected along by the impos
velocity and simultaneously diffuse back towards the mai
~B! stream. Thus, the structures from both streams bec
intertwined as shown in Figs. 2–4.

Competition between the diffusive growth of the top r
gion of an A~B! domain at the end of the patches and a
vection of this formation by an imposed velocity along t
channel determines the spatial and temporal periods. We
sume that the characteristic velocity that advects the struc
along the channel is proportional to the velocity taken in
middle of the channel (y'h/2) and at the distanceZ̃0 from
the substrate. Therefore we can relate the spatial and tem
ral periods asl/t;u(Z̃0). Taking the effective radius of the
top region of an A~B! domain to be proportional to th
spatial period and assuming diffusive growth of this regio
we can estimate the temporal period ast;l3/s @10#. Thus,
the oscillations can be described by the two parameters:

t;l/u~ Z̃0!; l;As/u~ Z̃0!. ~7!

In these estimates,Z̃0 still remains an unknown variabl
that can be estimated from the following simple argume
The characteristic time that is needed for fluid A to diffuse
the A-like patch, which is covered with an A layer of heig
Z̃0, is proportional toZ̃0

2 @17#. In order for this fluid to dif-
fuse to the compatible domain, the advection time of a fl
element through the patterned region should be equal t
greater than the diffusion time estimated above. Recal
that l is the length of the patch, this condition can be writt
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as l /u(Z̃0);Z̃0
2, which gives a rough estimate of the stead

state value ofZ̃0. These estimates can strictly be used only
r 0!Z̃0!h/2. For smallerZ̃0, we should explicitly include
the effective interaction with the substrate in the estimate;
higher Z̃0, one should consider changes in the characteri
diffusive length. Taking the functional dependence of the
locity u(Z̃0)'H(hZ̃02Z̃0

2)/3.3 from the Poiseuille flow

@18#, we can estimate the value ofu(Z̃0) from the equation

HZ̃0
2~hZ̃02Z̃0

2!; l . ~8!

SinceZ̃0!h ~whereh is the height of the channel!, for sim-
plicity we can neglectZ̃0

2 in the formula above and find

Z̃0;S l

HhD 1/3

. ~9!

To test these scaling arguments, we carried out a spe
series of simulations. In the first set, we ran the simulatio
for different values ofH and measured the value ofZ̃0, as
well as the spatial and temporal periods. In Fig. 8~a!, we plot
the simulation results forZ̃0 ~solid line with filled circles! for
fixed values ofl and k̃, and the results calculated using E
~9! ~dashed curve!. Note that the available dynamic range
small since the observed phenomena occur in a relativ
narrow parameter region. Due to this fact, an accurate v
fication of the scaling predictions from the simulation resu
is difficult if not impossible. However, we can compare t
simulation results with the above estimates, taking reas
able numerical fitting parameters.We can see good agreem
of the simulation results with the estimates for higher valu
of H and a noticeable discrepancy at lower values ofH, as
expected for the larger values ofZ̃0. Also in qualitative
agreement with the above arguments,Z̃0 remains roughly
constant as we change the interfacial tension~by changing
the value ofk̃). Figure 8~b! shows this behavior for two
fixed values ofH.

In the next series of simulations, we measure the dep
dence ofZ̃0 on the length of the patch for two fixed values
H @solid lines in Fig. 8~c!#. The dashed curves show th
estimates using Eq.~9! @with the same value of the singl
fitting parameter that was used in Fig. 8~a!#. Thus, our as-
sumptions prove to be fairly reasonable and Eq.~9! seems to
capture the scaling behavior forZ̃0 for the range of param-
eters considered here.

Using Eqs.~6! and~9!, and takingu(Z̃0)'HhZ̃0/3.3, we
can estimate the full dependence of both the spatial and t
poral periods on the system parameters:

l;
s1/2

h1/3l 1/6H1/3
; t;

s1/2

hl1/2H
~ ‘‘high H’’ !. ~10!

Figure 9~a! shows the dependence of the temporal period
the system’s oscillations on the imposed pressure grad
For relatively high velocities, there is an indication that t
temporal period decays ast;H21, according to Eq.~10!.
5-6



io
n

Eq

es

for
-

ve-
l is

lts;

orm

as

DIFFUSIVE INTERTWINING OF TWO FLUID PHASES . . . PHYSICAL REVIEW E 68, 051505 ~2003!
For the lower values of H, we see a significant deviat
from H21 behavior. The solid curve with the filled circles i
Fig. 9~b! shows the spatial period along thex direction, l,
measured from the simulations at different values ofH.
Again, the above estimates of the spatial period from

FIG. 8. ~Color online! Dependence ofZ̃0 on ~a! H for fixed k̃
50.5, l 520; ~b! k̃ for fixed H5331024 ~curve with circles! and
H5631024 ~curve with squares!, l 520; ~c! l for fixed H53
31024 ~curve with circles! andH5631024 ~curve with squares!,
k̃50.5. Other parameters are the same as in Fig. 2.
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~10! are expected to apply only for relatively high valu
of H.

The reason for the deviation from the above estimates
low values ofH is as follows. The amplitude of the oscilla
tions of Z0 increases with decreasingH; thus, the maximum
value ofZ0 is close toh/2. In this case, the structures from
the top and bottom merge. Therefore, the characteristic
locity that corresponds to the advection along the channe
no longer simply associated withZ̃0, and is approximately
equal to the velocity in the center of the channel,uh/2
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4 
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1.2/H
1/3

FIG. 9. ~Color online! ~a! Dependence of temporal periodt on
H. Solid curve with the filled circles represent simulation resu
dashed curve is an asymptotic form at highH, t'0.32/H; dotted
curve is an asymptotic form at lowH, t'0.007/H3/2. ~b! Depen-
dence of spatial periodl on H. Solid curve with the filled circles
represent simulation results; dashed curve is an asymptotic f
for l at high H, l'1.2/H1/3; dotted curve is an asymptotic form
for l at low H, l'0.35/H1/2. All other parameters are the same
in Fig. 2.
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5umax'Hh2/13 @18#. Thus, usingumax instead of theu(Z̃0)
in Eq. ~6! leads to the following scaling estimates of perio
for low H:

l;
s1/2

hH1/2
; t;

s1/2

h3H3/2
~‘‘low H’’ !. ~11!

Using Eq. ~11!, we plotted the dotted curves in Fig. 9
which show the asymptotic behavior for lower values ofH.
The important qualitative feature of Eq.~11! is that the spa-
tial and temporal periods do not depend on the length of
patchl for low H. However, the value ofH where the cross-
over from the low-H regime@described by Eq.~11!# to the
high-H @see Eq.~10!# occurs depends onl. As we decreaseH
further, or try to extend the simulation results~Fig. 9! to the
region of still lowerH, H<H1, we also observe oscillation
consistent with the scaling behavior of Eq.~11! at early
times, but eventually these oscillations become unstable
dicating that the periodic state becomes unstable below
estimate ofH1.

In order to test the estimates further, we plotted the
pendence of both the spatial and temporal periods on
value of k̃ ~the dimensionless interfacial tension in o
model iss;Ak̃) for two different values ofH in Fig. 10.
One value (H5631024) is taken in the region of highH
@solid curves with squares in Figs. 10~a! and 10~b!# and the
other (H5331024) is taken from the region of lowH @solid
curves with circles in Figs. 10~a! and 10~b!#. For the larger
value of H, the estimates from Eq.~10! are consistent with
the simulation results~see dashed-dotted lines in Fig. 10!,
and correspondingly, we used estimates from Eq.~11! for the
case ofH5331024. It is encouraging that the simulation
indicate roughly the samek̃ dependence in the ‘‘lowH ’’ and
‘‘high H ’’ regimes.

Though not shown here, we also find from the simulatio
that the dependence of the spatial and temporal per
on the patch lengths agrees with Eqs.~10! for the highH
region. In the lowH region, the spatial and temporal perio
do not depend on the patch length, as consistent with
~11!.

Thus, Eq.~10! allows us to estimate relatively accurate
the spatial and temporal periods in the case of relatively h
velocities, where the traveling waves that occur near the
and the bottom substrate are separated by a relatively un
torted two-stream flow in the middle of the channel. For t
low velocities, where the traveling wave disturbances fr
the top and the bottom merge, both the spatial and temp
periods increase more rapidly with decrease inH, according
to Eq. ~11!. In both situations, the established intertwinin
structures travel down the channel with the phase velo
l/t.

IV. CONCLUSIONS

The simulations show oscillatory pattern formation as t
immiscible fluids A and B flow through a microchannel th
contains chemically distinct patches on the top and bot
substrates. The patches are designed to have a prefer
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attraction to the A or B fluid. The A-like~B-like! patch is
placed in the path of the B~A! fluid. The observed spa
tiotemporal patterns fall onto two distinct categories, exh
iting different scaling behavior as we change system par
eters. For relatively high velocities, oscillatory structures
formed near the top and the bottom substrates, but the m
phology in the middle of the channel remains almost und

FIG. 10. ~Color online! ~a! Dependence of the temporal periodt
on k̃. Solid curve with the filled circles represents simulation r
sults forH5331024; dashed curve represents an asymptotic fo
for this case,t'1553k̃1/4. Solid curve with the filled squares rep
resents simulation results forH5631024; dashed-dotted curve
represents an asymptotic form,t'635k̃1/4. ~b! Dependence of the
spatial periodl on k̃. Solid curve with the filled circles represen
simulation results forH5331024; dashed curve represents a
asymptotic form for this case,l'22k̃1/4. Solid curve with the filled
squares represents simulation results forH5631024; dashed-
dotted curve represents an asymptotic form,l'17k̃1/4. All others
parameters are the same as in Fig. 2.
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turbed. The same oscillations occur if we have patches o
on the top or the bottom substrate. The periods in time
space decrease with increases inH as t;1/H and l
;1/H1/3, respectively.

For the region of relatively low velocities, the structur
that are formed close to the top and bottom substrate g
large enough to become entangled with one another. In
case, the flow down the channel may be regarded as slug
flow, where two parallel fluid streams are switched to t
sequential A/B/A/B . . . streams. To create this type of flow
it is necessary to have patches on both the top and bo
substrates of the channel. In this case, the periods in time
space show a more rapid increase with decreasingH, namely,
ast;1/H3/2 andl;1/H1/2, respectively.

We also estimated the dependence of spatial and temp
periods on the length of the patches and on the interfa
tension between fluids. Thus, it is possible to control
oscillations by changing the imposed pressure gradientH for
the fluid with the chosen interfacial properties.
d
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The simple design of the chemically modified patch
proposed here can be used to redirect the flow of fluids
microchannels, switching the two parallel A/B streams
B/A streams for low values of the imposed velocities.
addition, the pattern can be used to generate sluglike fl
from the two parallel streams. We find that the complex b
havior in such a relatively simple system arises from
competition between advection and thermodynamica
driven diffusion as an imposed flow drives fluids to mo
over the patches on the substrates. This concept can be
ploited to design surface patterns that will yield new dynam
cal behavior@9# and can be useful in controlling the mixin
of binary fluids@7,8# or the motion of droplets in microflu-
idic devices.
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