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Theory of the viscosity of supercooled liquids and the glass transition: Fragile liquids

Kyunil Rah and Byung Chan Eu
Department of Chemistry and Centre for the Study of Nonequilibrium and Nano Materials, McGill University,

801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6
~Received 23 June 2003; published 24 November 2003!

A statistical mechanical theory is presented for viscosity of relatively low molecular weight organic liquids
which are supercooled down to the glass transition temperature. In this theory a relation resembling the
Stokes-Einstein relation between the viscosity and self-diffusion coefficient of supercooled liquids and an
expression for the self-diffusion coefficient are augmented by a suitably constructed semiempirical generic van
der Waals equation of state that makes it possible to calculate the free volume. The theory accounts in excellent
accuracy for viscosities and self-diffusion coefficients of fragile liquids over the entire range of temperature
experimentally investigated. According to the theory, vitrification occurs when the free volume available for
translational molecular motion falls below a critical value.
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INTRODUCTION

Glassy substances have been known for four millen
The modern scientific study@1# of glassy states traces bac
at least, to several decades. Despite the long history of
subject matter and the importance of glasses in science
technology there are numerous aspects which have bee
fying a satisfactory understanding@2#, especially from the
viewpoint of statistical mechanics. Among them are t
transport properties of supercooled liquids, such as the
cosity and diffusion coefficients, which characteristica
change about 14 orders of magnitude as the system c
toward the glass transition temperatureTg without crystalli-
zation. Glass transition phenomena in general remain a m
challenge in modern physical sciences@3#.

The viscosity of supercooled liquids has been investiga
with regard to the temperature dependence by employing
Stokes-Einstein relation. This relation was originally deriv
for a macroscopic spherical particle drifting in a viscous co
tinuous medium by Stokes@4# and later by Einstein@5# who
combined Stokes’ hydrodynamic result with his Browni
motion theory result for diffusion to obtain the well-know
relation between the viscosityh of the medium and the dif-
fusion coefficientD of the particle,

h5
kBT

3psHD
. ~1!

Here kB is the Boltzmann constant,T is the absolute tem
perature, andsH is the diameter of the particle. This relatio
called the Stokes-Einstein~SE! relation and valid for a mac
roscopic size particle, sayshD/T is a constant independen
of the density of the medium and temperature. It is found
be useful@6# even if the particle is comparable in size to t
molecules of the medium for many molecular liquids,
though there are also equally many exceptions@7# for which
it does not work so well. Nevertheless, it has been applie
interpret the viscosity data of supercooled liquids and fou
to be useful if the temperature is well above the glass tr
sition temperature. However, as the temperature is gradu
lowered toward the glass transition temperature the SE r
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tion is increasingly violated, and it becomes apparent t
there should be an alternative to it to account for the exp
mental data on the temperature dependence of the visc
of supercooled liquids.

A few years ago we have derived@8# by using a method of
nonequilibrium statistical mechanics a relation betweenh
and D, which resembles the SE relation but with the fac
hD/T depending on density and temperature in sharp c
trast to the SE relation, which predicts it to be a consta
The relation derived does not require the diffusing particle
be of a size much larger than the molecules of the medium
contrast to the SE relation. The proportionality factor
question is given in terms of the intermolecular interacti
force and the pair correlation function. Therefore it can
calculated by means of statistical mechanics as accurate
desired from the knowledge of intermolecular force and
pair distribution function. The SE-like relation mentione
was found to be excellent in accounting for the viscosity d
of simple @9# as well as molecular@10# liquids with regards
to their density and temperature dependence, provided
the self-diffusion coefficient is suitably supplied either em
pirically or through computer simulation methods.

In this paper we adopt the same method for supercoo
liquids and develop a relation of viscosity and self-diffusi
coefficient, which is calculated according to the modifi
free volume theory@11# of diffusion. In the modified free
volume theory the self-diffusion coefficient is given in term
of the pair correlation function, which appears in the gene
van der Waals~GvdW! equation of state@12# for pressure.
Therefore, the viscosity and the self-diffusion coefficient
supercooled liquids can be calculated, either if the pair c
relation function is available or if the GvdW equation of sta
is available by some means, for example, empirically.

Transport data of supercooled liquids are vexingly dive
and appear rather complex, displaying a varying tempera
dependence from material to material. Angell@13# has intro-
duced the notion of fragility of supercooled liquids and h
thus brought a degree of order to the complex situation. T
theory developed here will be shown to account for the
perimental data, especially, for ‘‘fragile’’ glass forming liq
©2003 The American Physical Society04-1
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uids with a single set of expressions for the viscosity, s
diffusion coefficient, and GvdW equation of state.

This paper is organized as follows. In Sec. II the theory
viscosity will be developed for supercooled liquids on t
basis of the theory previously developed for simple liquids
the normal states by employing a square well~SW! potential
model. A square well potential is assumed for the sake o
analytic formula for the viscosity, which facilitates furthe
development of the theory, which otherwise would not ha
been possible. Given the complex problem of supercoo
liquids and vitrification, there is a great advantage to hav
analytic formulas for the transport coefficients, but once
things are better understood one may employ a continu
potential model, such as the Lennard-Jones potential, w
can be implemented by a numerical method from the out
In Sec. III the result for the self-diffusion coefficient in th
modified free volume theory is presented. Since the modi
free volume theory has been already reported in the litera
this section is a brief review dedicated to the basic not
and the definitions of important quantities.

The self-diffusion coefficient in the modified free volum
theory requires the GvdW parameters@12# and, especially,
the one related to the excluded volume. This is the quan
necessary to calculate the transport coefficients, but, if
liquid is deeply supercooled, not readily calculable by me
of computer simulation methods for the technical reason
cussed later at the appropriate stage. Therefore a semie
ical model appears to be the only option for us to take
construction of a semiempirical model for the GvdW para
eter of fragile liquids will be discussed in detail in Sec. I
Then equipped with all the mathematical tools necessary
the transport coefficients we calculate the viscosities
self-diffusion coefficients of typical fragile supercooled li
uids and compare the results with experimental data av
able in the literature in Sec. V. Concluding remarks are giv
in Sec. VI.

RELATION OF VISCOSITY TO SELF-DIFFUSION
COEFFICIENT

By employing a method of nonequilibrium statistical m
chanics the viscosity of a spherical fluid can be shown@8# to
be given by the expression

h5hk~T!1
r2

6D
v~r,T!, ~2!

wherehk is the kinetic part,D is the self-diffusion coeffi-
cient, and

v~r,T!5
2p

15E0

`

drr 5u8~r !g~r !u~j2r !. ~3!

Here r is the relative distance between two molecul
u8(r )5du(r )/dr denotes the derivative of the intermolec
lar potentialu(r ), g(r ;r,T) is the equilibrium pair correla-
tion function, andu(x) is the Heaviside step function define
by
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u~x!50 for x,0

51 for x.0.

The parameterj takes into account@8,9# thefinitenessof the
range of density fluctuations around the molecule of att
tion. The kinetic parthk of viscosity is given by the
Chapman-Enskog~CE! formula for the viscosity of a dilute
gas and is independent of density. SinceD also tends to the
CE self-diffusion coefficient@14# asr→0 the viscosity for-
mula in Eq.~2! tends to the CE viscosity for the dilute flui
in the limit of r→0. On the other hand, asr increases, the
second term in Eq.~2!, namely, the potential energy depe
dent term, becomes dominant in the liquid density regime
fact, as the density increaseshk becomes so negligible com
pared to the second term that it is a very good approxima
to simply drophk in the liquid density regime. Thus we hav
for the liquid viscosity the formula

h5
r2

6D
v~r,T!. ~4!

This will be the starting point for the derivation of the vis
cosity formula used for supercooled liquids in this work.

For the sake of deriving an analytic formula we assume
SW potential to represent the intermolecular interactio
namely,

u~r !5uh~r !1ua~r !,

where

uh~r !5` for r ,s

50 for r .s,

ua~r !50 for r ,s

52« for s,r ,ls

50 for r .ls,

with s denoting the size~molecular diameter! parameter, and
« andls the depth and width of the potential well, respe
tively.

By introducing the cavity function

y~r ;r,T!5exp@bu~r !#g~r ;r,T!, ~5!

whereb[1/kBT, and performing integration overr we ob-
tain

v~r,T!5
2ps5

15b
$~eb«21!@l5y~ls!u~j2ls!2y~s1!#

2y~s2!%. ~6!

Here the first term on the right is the contribution from t
well of the potential, and the second term is the contribut
from the hard core. We find that the cavity functiony(s1)
5y(s10) in the first term should be distinguished from th
cavity function y(s2)5y(s20) in the second term with
4-2
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regard to their relation to the correlation function. We defi
the cavity functionyh(r ) by yh(r )5exp@buh(r)#g(r). The
cavity functiony(s1) is attributed mainly toua(r ), but it is
approximated byy(s1).exp(2b«)yh(s), whereas we ap-
proximate y(s2) by y(s2).yh(s). The cavity function
yh(s) is then related to the GvdW parameter associated w
the excluded volume and will be calculated by means of
~20! below; see Eqs.~19! and ~20! below for the role of the
cavity functions in the present theory.

Since the density fluctuation rangej is not well defined
and has a distribution, it is appropriate to introduce the d
tribution functionP(j) for j. Since the range ofj must be
from 0 to ` the distribution functionP(j) is normalized as
follows:

E
0

`

djP~j!51. ~7!

Then averaging the expression forv(r,T) in Eq. ~6! of the
distribution ofj we obtain

v~r,T!5
2ps5yh~s!

15b
S~r,T!, ~8!

where

S~r,T!5l5Q~r,T!~eb«21!
y~ls!

yh~s!
2~22e2b«!, ~9!

with Q(r,T) defined by

Q~r,T!5E
0

`

P~j!u~j2ls!dj5E
ls

`

P~j!dj. ~10!

The quantityQ(r,T), which is the mean value ofu(j
2ls), is clearly 0<Q<1. It is a factor contributing to
v(r,T), which is essentially related to the force per unit ar
exerted by the molecules beyond the distancels to the mol-
ecule of attention. It is simply the probability ofj being
larger thanls. The larger theQ, the larger and more sprea
out the effective range of density fluctuations. In particu
Q50 means that the density fluctuations around the m
ecule of attention are completely confined within the ran
of radiusj.ls. For the distribution functionP(j) the fol-
lowing stretched exponential form is postulated to hold:

P~j!5
u~j2s!

gz~r,T! S j

s D g21

expH 2z~r,T!F S j

s D g

21G J ,

~11!

wherez(r,T) generally depends on bothT andr, andg is
an exponent. The step functionu(j2s) is inserted becaus
there is no density fluctuation possible ifj,s. It then fol-
lows from Eq.~10!,

Q~r,T!5exp@2z~r,T!~lg21!#. ~12!

Because there is as yet no statistical mechanical theory
P(j), the associated parameters are treated empiricall
the present work. However, it turns out that, as will
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shown,S.0.7 almost invariably for many liquids, and th
almost universal constancy ofS removes the necessity of a
explicit empirical treatment ofQ. This constancy ofS, in
fact, provides a way to estimateQ(r,T) backward andP(j)
by using Eq.~9!, and from the information it is possible t
extract the average size of ‘‘clusters’’ formed, if any, arou
the molecule of attention, as the system supercools tow
the glass transition temperature. This aspect ofQ(r,T) in
relation with h seems potentially useful for learning abo
the structure of supercooled liquids near the glass transi
temperature by examining their transport data. We defer
study to the future.

Collecting the results regarding the viscosity–se
diffusion coefficient relation we have the expression

h5
ps5kBT

45D
r2yh~s!S~r,T!.

0.7ps5kBT

45D
r2yh~s!.

~13!

This relation resembles the SE relation, but significantly d
fers from it because of the density and temperature dep
dent coefficient, which makes a crucial difference in a
counting for the temperature and density dependence of
viscosity of supercooled liquids, as will be shown.

SELF-DIFFUSION COEFFICIENT

The viscosity formula~13! suggests that, apart from th
factors related toQ, the viscosity of supercooled liquids ca
be calculated if the self-diffusion coefficient is known. On
way of calculating the self-diffusion coefficient is to use t
free volume theory of Cohen and Turnbull@15#, which yields
D in the form

D5gūa~r!expS 2a
v*

v f
D , ~14!

whereg is a geometric factor,a(r) is roughly the diameter
of the cage created in the liquid,ū is the gas kinetic speed
v* is a critical volume just large enough to allow anoth
molecule to move in as a void is created by a molecule
leaving its position,v f is the free volume, anda is a param-
eter of O(1). The self-diffusion coefficient in the Cohen
Turnbull free volume theory is physically transparent a
reasonable except for poorly determined parameters and
free volume that is difficult to calculate by means of stat
tical mechanics. Close examination of the formula in E
~14! suggests thatv* may be taken as the molecular volum

v05ps3/6 and the factorgūa(r) in essence may be inter
preted as the mean free path theory expression for diffus
This interpretation immediately suggests that the factor m
be expressed as the CE self-diffusion coefficient@14# of hard
spheres of diameters,

gūa~r![D05
3

8rs2
AkBT

pm
, ~15!

wherem is the molecular mass. It is reasonable to assum
hard sphere model because hard repulsive interactions a
4-3
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operation for the particles packed in close proximity to ea
other in liquids. This leaves only one adjustable parame
a, which is in practice found to be about unity. We w
therefore takea51 in this work. There now remains th
question of free volume. The success of the free volu
theory of diffusion hinges upon how free volume is calc
lated. Unfortunately, free volume is a delusive quant
which has defied a definitive statistical mechanical repres
tation and is consequently difficult to calculate accurately
a definite form in the statistical mechanics of liquids since
was originally introduced by van der Waals.

We have shown@12# that if there exist attractive and re
pulsive parts in the intermolecular potential energy or fo
the virial form of the equation of state can be rearranged
form resembling the van der Waals equation of state,

~p1Ar2!~12Br!5rkBT, ~16!

whereA and B are density and temperature dependent
rameters which have rigorous statistical mechanical re
sentations, as will be shown shortly for the particular case
the SW potential. This form of equation of state is called
GvdW equation of state. The parametersA andB are called
the GvdW parameters. The parameterA is related to the at-
tractive potential energy, andB to the repulsive potentia
energy. ThereforeB is a measure of excluded volume of th
fluid. This GvdW equation of state therefore allows the na
ral definition of free volume@12#,

v f5v@12B~r,T!r#, ~17!

wherev51/r. In this manner, in our previous papers@16–
18# on diffusion we have been able to modify the free v
ume theory formula of the Cohen-Turnbull theory for t
self-diffusion coefficientD of liquids into the form

D5
3

8rs2
AkBT

pm
expS 2

v0r

12Br D , ~18!

which is now made completely statistical mechanical
causeB can be calculated rigorously by means of statisti
mechanics. In the SW potential model introduced earlier,
GvdW parametersA(r,T) andB(r,T) are given by the sta
tistical mechanical expressions@12#

A* 5
A

«v0
5

4

«b
~eb«21!@l3y~ls!2y~s1!#, ~19!

B* 5
B

v0
5

4yh~s!

114fyh~s!
, ~20!

where f5v0r is the packing fraction. These are rigoro
statistical mechanical representations ofA and B, although
for an SW potential. Therefore by Eq.~20! we now have a
rigorous statistical mechanical representation of free volu
which can be calculated as precisely as the cavity functi

Thus the transport coefficientsD andh can be calculated
by means of statistical mechanics if formulas~18! and ~13!
are employed together with the information either onyh(s)
or onB. Unfortunately, there is no analytical theory availab
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for the cavity functionyh(s) or B for liquids. Although they
can be calculated accurately for ordinary liquids by compu
simulation methods, for deeply supercooled liquids even
computer simulation methods are difficult to implement to
desirable accuracy because of technical limitations involv
such as the limited simulation time (;1027 s) and the lower
bound of the detectable self-diffusion coefficient being t
large compared with the experimental value, which
;10218 cm2 s21 at the glass transition temperature. The
limitations conspire to yield rather inaccurate simulation
sults for transport coefficients. For this reason it is necess
to devise an alternative. We take a semiempirical appro
and construct a model forB, which will then be validated in
comparison with experiment.

It is also intriguing to note that, if Eq.~20! is made use of,
the viscosity given by the second line of Eq.~13! can be
expressed in the form

h5
0.7kBTB* f2

5psD~12B* f!
, ~21!

which allows us to compute the viscosity from the inform
tion on D, T, f, and the empirical density and temperatu
dependence ofB, if the GvdW equation of state is empiri
cally known for the supercooled liquids. In any case, t
viscosity is computed by using the model forB* (f,T) de-
veloped below.

A MODEL FOR THE GvdW PARAMETER B

Becauseyh(s) cannot be efficiently simulated for
deeply supercooled system, we look for a semiempirical w
of calculating it. For the SW potential model adopted for th
work the cavity functionyh(s) gets contributions from both
the hard core and the attractive well part of the potential, a
the hard core part is the major contribution when partic
are closely packed. Thereforeyh(s) may be written as fol-
lows:

yh~s!5yhs~s!1dyh , ~22!

whereyhs(s) is the cavity function of the hard sphere flu
of diameters anddyh is the correction toyhs(s) that arises
from the attractive part of the potential. Whereasyhs(s) is
temperature independent, the correction termdyh is tempera-
ture and density dependent. For this reason, althoughdyh is
generally small in magnitude at high temperatures, it is
dispensable, and plays a crucial role, in accounting for
behavior of glass forming liquids near the glass transit
temperature. On inserting Eq.~22! into the expression forB*
in Eq. ~20! and expanding indyh we obtain

B* ~f,T!5Bhs* ~f!F11
dyh~f,T!

yhs~114fyhs!
1O~dyh

2!G ,
~23!

whereBhs* (f) is the generic van der Waals parameterB* for
the hard sphere fluid,
4-4
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Bhs* ~f!5
4yhs~s!

114fyhs~s!
.

If the Carnahan-Starling equation of state is used forBhs* we
find the density dependence ofBhs* :

Bhs* ~f!5
2~22f!

11f1f22f3
. ~24!

In a previous work@19# on the generic van der Waals equ
tion of state we have found that on the critical isotherm
quadratic model forB* (f,T),

B* 5Bc* ~11b1x1b2x21bnax
d! ~x5r/rc21!, ~25!

is excellent in accounting for the experimental data of
critical isotherms of argon and methane. In this express
for the quadratic model,b1 andb2 are parameters that can b
uniquely determined in terms of critical paramete
(fc ,Tc ,pc) @20# andBc* , whereBc* is the value ofB* at the
critical point which is determined from the critical param
eters or by simulations forg(r ) at T5Tc andf5fc ; bna is
an adjustable parameter; andd is one of the critical expo-
nents, namely,d.4.30. Therefore by fitting the form fo
B* (f,Tc),

B* ~f,Tc!5Bhs* ~f!S 11
c0

11c1f6D , ~26!

to the quadratic model in Eq.~25! we find the coefficientsc0
andc1:

c052fc
6S 11

6

d1
D , c15d0~11c0fc

6!,

d05
Bc*

Bc
hs

21, d152
11d0

d0
S B1

hs

Bc
hs

2b1D , ~27!

where

Bc
hs5

2~22fc!

11fc1fc
22fc

3
,

B1
hs52

2fc~314fc27fc
212fc

3!

~11fc1fc
22fc

3!2
. ~28!

For the temperature dependence ofB* (f,T) away from
the critical isotherm we look forB* in the form

B* ~f,T!5Bhs* ~f!F11
c0

11c1f6
f ~T!G . ~29!

Here the functionf (T), describing theT dependence ofB* ,
is expressed by a function of scaled temperatureTg /T in the
form
05120
e

e
n

f ~T!5 f 0~T!

expS Q̂

Tg
ATg

T
D 21

expS Q̂

Tc
A T

Tg
D 21

with Q̂.430 K,

~30!

with f 0(T),

f 0~T!5u~T2Tc!1tanh@m~Tg /T!q#, ~31!

wherem and q denote material dependent parameters. T
parameter value forQ̂ in Eq. ~30! is determined by fitting
Eq. ~29! to B* calculated by means of Monte Carlo~MC!

simulations in the supercritical regime. The value forQ̂ is
found almost independent of the species considered an
thus almost universal. The fidelity of the temperature dep
dence off (T) has been successfully checked against the
simulation results in the supercritical regime, as shown i
previous paper@18#. In the present work on supercooled liq
uids we assume that the mathematical form taken forf (T) in
Eq. ~30! remains valid in the temperature range of sup
cooled liquids. We verify this assumption with comparis
with experimental data on the viscosity and self-diffusi
coefficient of fragile supercooled liquids in the following.

The potential parameters are required, in particular,
computeBc* , for example, by means of MC simulation
They are determined within the accuracy of the poten
model employed, from the experimental second virial co
ficient data. Experimental data@21# for the second virial co-
efficient B2(T) were fitted to the expression for the SW p
tential,

B2~T!5~2ps3/3!$12~l321!@exp~b«!21#%, ~32!

in order to determine the SW potential paramet
@s (nm),«kB

21 (K),l# as follows: for toluene these ar
(0.516,888,1.24). For lack of the second virial coefficie
data onO-terphenyl~OTP! and salol their size paramete
are determined by usingfg50.48, wherefg is the packing
fraction of the supercooled liquid atTg . The Bc* computed
from MC simulations performed with the aforemention
potential parameter sets is found to be 5.46.

Oncec0 andc1 are known, the glass transition temper
tureTg can be consistently determined within the framewo
of the present theory by solving Eq.~13! iteratively for the
temperature at which the viscosity becomes 1012 Pa s, as is
conventionally defined as the kinetic glass transition te
perature. In this way, we have predictedTg , as indicated in
the figure for toluene withc0 and c1 determined from the
quadratic model@18,19#; the predictions agree well with th
experiment@22#. Note thatf 0→1 asT tends toTg . It is also
noteworthy thatTg depends, although weakly, on the gla
transition densityrg . For instance, an increase of density
1% atTg brings about a decrease ofTg by about 0.5 K owing
to the corresponding decrease in viscosity, and this can
inferred from Eq.~29!. This tendency is consistent with th
phenomenon that a faster cooling leads to glass transitio
4-5
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a higherTg but at a lowerrg . In the higherT regime, how-
ever, the viscosity increases with increasingr.

COMPARISON WITH EXPERIMENT

We can now calculate the viscosity of supercooled liqu
from Eqs.~13! and~18! by assuming that the formula forB*
still holds in the lowT regime down toTg . In Fig. 1, we thus
have calculated the viscosity profile for toluene in the te
perature range fromT53Tg down toTg and have compared
it with the available experimental data@23,24#. The associ-
ated yh(s) is computed by equating Eq.~20! to Eq. ~29!,
whereasy(ls) involved in Eq.~9! is evaluated from Eqs
~16! and ~19! by setting p51 atm. As to the paramete
z(r,T) appearing in the expression forQ(r,T) in Eq. ~12!
we express it in the form

z~r,T!5~lg21!21z0S Tg

T D F12z1S T

Tg
D 2G ,

wherez1 and z0 are adjustable parameters determined e
pirically. With this form we have

Q~r,T!5expH 2z0S Tg

T D F12z1S T

Tg
D 2G J . ~33!

By choosingz057.1 andz150.016 we have computed th
solid curve for the viscosity in Fig. 1 with Eq.~33!.

We have noticed that the resultantS(r,T) in Eq. ~9! re-
mains virtually constant in the temperature and density ra
investigated. This has prompted us to replaceS with a con-
stant, namely,S50.70, which turns out to perform well fo
all the liquids examined. The result so calculated is deno
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FIG. 1. Viscosity of toluene at 1 atm. The curves are calcula
from the present theory, namely, Eqs.~13! and~18!, where the solid
curve is computed with Eq.~33!, whereas the broken curve is wit
S50.70. The symbols (h @23# andd @24#! are for the experimen-
tal data. As tor(T) at 1 atm, an empirical formula@23# is used. The
inset is for the self-diffusion coefficient of toluene, where the cu
is calculated in Ref.@18# from Eqs. ~18!, ~29!, and ~30! with c0

50.791, c1(fc)
650.185, Tg5117 K, and f 0(T)

5tanh@4.5(Tg /T)4#, whereas the symbols are the data@25,26# for
D measured by a nuclear magnetic resonance technique.
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by the broken curve in Fig. 1. Moreover, use ofS50.70 for
other glass forming substances is tested to be sufficien
satisfactory, as shown in Figs. 2 and 3. We note thatQ(r,T)
for toluene tends to;1023 asTg is approached, and it im-
plies that an average cluster size nearTg , namely, 2j
.2ls is estimated to be about 1.6 nm.

Figure 2 shows the viscosity profile for OTP as a canon
cal fragile glass former. The viscosity profile calculated from
Eq. ~13! with S50.70 compares excellently with the experi-

d
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FIG. 2. Viscosity of OTP at 1 atm. The solid curve is computed
from Eq. ~13! with S50.70, whereas the symbols are for the ex
perimental data (h @27#, l @28#, n @29#, andd @30#!. An empiri-
cal equation@27# is used forr(T) at 1 atm. The parameters used are
s50.680 nm, c051, c1(fc)

650.0473, Tg5240 K, and f 0(T)
5tanh@4.6(Tg /T)7#.
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FIG. 3. Self-diffusion coefficients ofo-terphenyl at 1 atm. The
solid curve is predicted by using Eqs.~18! and ~29! with m54.6
andq57. The symbols are for the experimental data forD of OTP:
s from Ref. @31# and j from Ref. @32#. Various tracer diffusion
coefficients in OTP are also shown, wherex are for the experimen-
tal data forDt of TTI @32#, 3 for ACR @32#, and * for anthracene
@33#, respectively. See the text for the abbreviations.
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mental data@27–30#, supporting the reliability of the presen
theory. The self-diffusion coefficientD predicted@18# from
Eq. ~18! and shown in Fig. 3 is also in good agreement w
the experimental data down to the lower limit atT.1.2Tg of
the measurements forD. It is noteworthy that asT is lowered
to below T.1.15Tg , the self-diffusion coefficient~solid
curve! ‘‘decouples’’ from the tracer diffusion coefficientsDt
in OTP of TTI @2,28-bis~4,4-dimethylthiolan-3-one!# (n),
ACR (7,7a-dihydro-2,4,7,7,7a-penta-methylbenz
@b#-furan-5,6-dicarboxylic anhydride! (*), and anthracene
(3). The deviation ofDt from D shown in the figure is
beyond the experimental error bounds. The possible origi
such discrepancy, which reaches a factor of;102, espe-
cially, near Tg , was discussed in Ref.@18# based on the
explicit relation @17,35# derived for D and Dt , where the
average cluster size was estimated to be about 2 nm.

Figure 4 shows the viscosity of salol calculated from E
~13! with S50.70 in comparison with the experimen
@29,30#. Theyh(s) computed from Eq.~29! is shown~inset!
to give an idea of howyh(s) behaves as the system supe
cools towards the glass transition temperature, and it imp
that molecules tend to get more closely packed asTg is ap-
proached. Such a phenomenon is not observed at high

0.4  0.5  0.6  0.7  0.8  0.9  1.0
4

 
2

 
0
 
2
 
4
 
6
 
8
 

10
 

12
 

T
g
/T

lo
g 10

[η
(P

a 
s)

]

0.4 0.5 0.6 0.7 0.8 0.9 1.0

5
 

15
 

25
 

35
 

T
g
/T

y h(σ
)

Salol (T
g
=231 K) 

FIG. 4. Viscosity of salol at 1 atm. The solid curve is comput
from Eq. ~13! with S50.70, whereas the symbols are for the e
perimental data (n @29# ands @30#!. The thermal expansion coef
ficient @29# for salol, ap57.9531024, is used for r(T)
5rmexp@ap(Tm2T)#, whererm51.26 g/cm3 at Tm5315 K. In the
inset the dashed curve is foryh(s) computed from Eqs.~20! and
~29! with s50.621 nm,c051, c1(fg)650.133, Tg5231 K, and
f 0(T)5tanh@4.0(Tg /T)7#, wherefg70.482 is the packing fraction
at Tg . The liquid-vapor critical temperatureTc5714 K is assumed
in the absence of the information.
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peratures even if the density is the same asrg . Clustering
tendency estimated in terms ofyh(s) appears to be larger
especially, nearTg , roughly by 2–3 times, than the case f
hard sphere fluids@34#. This feature is attributed to the pres
ence of attractive forces that are absent in hard sphere
similar trend ofyh(s) is observed also for the cases of tol
ene and OTP.

By using the SE relation for a diffusing particle with hy
drodynamic radiusr H5sH/2 and Eq.~13! we find the ratio
of the diametersR[s/sH5(42/25)f2yh(s) for which S
50.7 is used. It is noticeable that, depending onT andr, the
ratio R varies, for example, by about 25 times as frag
liquids ~such as those considered in this work! supercool
from 3Tg to Tg . Therefore this ratio is indicative of the
defect of the SE relation in the sense that thehD/T of the SE
relation is independent ofT andr, and we see the source o
the so called decoupling of diffusion from viscosity observ
and discussed in the literature. In contrast, Eq.~13! does not
have such a deficiency becauseR depends onT andr.

CONCLUDING REMARKS

In this paper we have derived a statistical mechanical
pression for the viscosity of supercooled liquids and ha
successfully tested its reliability against the experimen
data for toluene, OTP, and salol. With a pair of statistic
mechanical formulas forh andD and the semiempirical for-
mula for B* we are able to represent the temperature a
density dependence of glass formers considered. Since
are only the glass formers classified as fragile liquids
model constructed forB is not as yet sufficiently comprehen
sive as to cover the whole range of fragility spectrum. Ne
ertheless, it can be inferred from the present theory that
the glassy state is approached, free volume varies with d
sity and temperature and vitrification occurs as the free v
ume available for diffusive motion of molecules falls belo
a critical value. The present model raises the hope tha
more comprehensive model is possible to construct by gle
ing the considerable insights into the complex problem
vitrification provided by the present model. When we are
possession of a computer simulation method that is cap
of accurately handling deeply supercooled liquids the mo
may be disposed of. In the meantime, we believe, it can b
service to us in organizing experimental data on transp
coefficients of fragile supercooled liquids.
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