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Theory of the viscosity of supercooled liquids and the glass transition: Fragile liquids
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A statistical mechanical theory is presented for viscosity of relatively low molecular weight organic liquids
which are supercooled down to the glass transition temperature. In this theory a relation resembling the
Stokes-Einstein relation between the viscosity and self-diffusion coefficient of supercooled liquids and an
expression for the self-diffusion coefficient are augmented by a suitably constructed semiempirical generic van
der Waals equation of state that makes it possible to calculate the free volume. The theory accounts in excellent
accuracy for viscosities and self-diffusion coefficients of fragile liquids over the entire range of temperature
experimentally investigated. According to the theory, vitrification occurs when the free volume available for
translational molecular motion falls below a critical value.
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INTRODUCTION tion is increasingly violated, and it becomes apparent that
there should be an alternative to it to account for the experi-
Glassy substances have been known for four millenniamental data on the temperature dependence of the viscosity
The modern scientific studyl] of glassy states traces back, of supercooled liquids.
at least, to several decades. Despite the long history of the A few years ago we have derivg8] by using a method of
subject matter and the importance of glasses in science anbnequilibrium statistical mechanics a relation betwegn
technology there are numerous aspects which have been dgng D, which resembles the SE relation but with the factor
fying a satisfactory understandirig], especially from the 5T depending on density and temperature in sharp con-
viewpoint of statistical mechanics. Among them are theyaqt 1o the SE relation, which predicts it to be a constant.

transport properties of supercooled liquids, such as the Vispyg re|ation derived does not require the diffusing particle to
cosity and diffusion coefficients, which characteristically p . ¢ - cize much larger than the molecules of the medium in

f:viz:?detr?:mf;sls‘ltrgrr?;triznoierrrr]]ager:g}cjuqrevsi?h:)hu?c ;ysstgm COOdntrast to the SE relation. The proportionality factor in
9 P & Y C}uestion is given in terms of the intermolecular interaction

zation. Glass transition phenomena in general remain a maj . . . .
b g 1%rce and the pair correlation function. Therefore it can be

challenge in modern physical sciend&s. - :
The viscosity of supercooled liquids has been inVestigate&alculated by means of statistical mechanics as accurately as
esired from the knowledge of intermolecular force and the

with regard to the temperature dependence by employing the=>"=- " " ) . i X
Stokes-Einstein relation. This relation was originally derivedPir distribution function. The SE-like relation mentioned
for a macroscopic spherical particle drifting in a viscous con-V@s found to be excellent in accountln'g fqr the'VISCOSIty data
tinuous medium by Stokd#] and later by Einsteifi5] who of simple[9] as well as moleculdrl0] liquids with regards
combined Stokes’ hydrodynamic result with his Brownianto their density and temperature dependence, provided that
motion theory result for diffusion to obtain the well-known the self-diffusion coefficient is suitably supplied either em-
relation between the viscosity of the medium and the dif- pirically or through computer simulation methods.

fusion coefficientD of the particle, In this paper we adopt the same method for supercooled
liquids and develop a relation of viscosity and self-diffusion
kT coefficient, which is calculated according to the modified
T 370D @ free volume theory[11] of diffusion. In the modified free

volume theory the self-diffusion coefficient is given in terms
Here kg is the Boltzmann constanT, is the absolute tem- of the pair correlation function, which appears in the generic
perature, andy is the diameter of the particle. This relation, van der Waal§GvdW) equation of stat¢12] for pressure.
called the Stokes-Einstei$E) relation and valid for a mac- Therefore, the viscosity and the self-diffusion coefficient of
roscopic size particle, saysD/T is a constant independent supercooled liquids can be calculated, either if the pair cor-
of the density of the medium and temperature. It is found taelation function is available or if the GvdW equation of state
be useful[6] even if the particle is comparable in size to theis available by some means, for example, empirically.
molecules of the medium for many molecular liquids, al- Transport data of supercooled liquids are vexingly diverse
though there are also equally many exceptipfisor which  and appear rather complex, displaying a varying temperature
it does not work so well. Nevertheless, it has been applied tdependence from material to material. AndéiB] has intro-
interpret the viscosity data of supercooled liquids and foundluced the notion of fragility of supercooled liquids and has
to be useful if the temperature is well above the glass tranthus brought a degree of order to the complex situation. The
sition temperature. However, as the temperature is gradualiheory developed here will be shown to account for the ex-
lowered toward the glass transition temperature the SE relgserimental data, especially, for “fragile” glass forming lig-
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uids with a single set of expressions for the viscosity, self- 6(x)=0 for x<O
diffusion coefficient, and GvdW equation of state.
This paper is organized as follows. In Sec. Il the theory of =1 for x>0.

viscosity will be developed for supercooled liquids on the
basis of the theory previously developed for simple liquids in
the normal states by employing a square W8WW) potential

The parameteg takes into accour8,9] the finiteneswof the
range of density fluctuations around the molecule of atten-

model. A square well potential is assumed for the sake of afion- The kinetic partz, of viscosity is given by the
analytic formula for the viscosity, which facilitates further ©haPman-Ensko¢CE) formula for the viscosity of a dilute

development of the theory, which otherwise would not haved@S and is independent of density. Sifiz@lso tends to the
been possible. Given the complex problem of supercoole&E Self-diffusion coefficienf14] asp—0 the viscosity for-
liquids and vitrification, there is a great advantage to havind"t/& in EQ.(2) tends to the CE viscosity for the dilute fluid
analytic formulas for the transport coefficients, but once thdn the limit of p—0. On the other hand, gsincreases, the
things are better understood one may employ a continuou&econd term in Eq(2), namely, the potential energy depen-
potential model, such as the Lennard-Jones potential, whicHeNt t€rm, becomes dominant in the liquid density regime. In
can be implemented by a numerical method from the outsefaCt; @s the density increasgg becomes so negligible com-

In Sec. IIl the result for the self-diffusion coefficient in the Paréd to the second term that it is a very good approximation
modified free volume theory is presented. Since the modified® SIMPly dropz, in the liquid density regime. Thus we have
free volume theory has been already reported in the literaturto! the liquid viscosity the formula

this section is a brief review dedicated to the basic notion 5
and the definitions of important quantities. 9= p—w(p,T). (4)
The self-diffusion coefficient in the modified free volume 6D

theory requires the GvdW parametgd®] and, especially,
the one related to the excluded volume. This is the quantit
necessary to calculate the transport coefficients, but, if thé
liquid is deeply supercooled, not readily calculable by meangS
of computer simulation methods for the technical reason dis*
cussed later at the appropriate stage. Therefore a semiempﬂ@mely'

ical model appears to be the only option for us to take. A u(r)=up(r)+ugy(r)
construction of a semiempirical model for the GvdW param- anr
eter of fragile liquids will be discussed in detail in Sec. IV. \yhere

Then equipped with all the mathematical tools necessary for

))'his will be the starting point for the derivation of the vis-
osity formula used for supercooled liquids in this work.
For the sake of deriving an analytic formula we assume an
W potential to represent the intermolecular interactions,

the transport coefficients we calculate the viscosities and up(ry=e for r<o
self-diffusion coefficients of typical fragile supercooled lig-

uids and compare the results with experimental data avail- =0 for r>o,
able in the literature in Sec. V. Concluding remarks are given

in Sec. VI. ug(ry=0 for r<o

=—¢g for o<r<ico
RELATION OF VISCOSITY TO SELF-DIFFUSION
COEFFICIENT

By employing a method of nonequilibrium statistical me- with o denoting the sizémolecular diametemparameter, and
chanics the viscosity of a spherical fluid can be sh¢@jto & andAo the depth and width of the potential well, respec-
be given by the expression tively.

By introducing the cavity function

=0 for r>N\o,

2
n=ndT)+ g w(p,T), @ Y(rip,T)=exd Bu()]g(rip.T), ©)

where B=1/kgT, and performing integration overwe ob-
where 7, is the kinetic partD is the self-diffusion coeffi- tain

cient, and .
2
. o(p.T)= Teg (&~ DINY (N0 86\ 0) (o))
wlpT)= T | drtwmanaE-n. @
15Jo —y(o )} (6)

Here r is the relative distance between two molecules,Here the first term on the right is the contribution from the
u’(r)=du(r)/dr denotes the derivative of the intermolecu- well of the potential, and the second term is the contribution
lar potentialu(r), g(r;p,T) is the equilibrium pair correla- from the hard core. We find that the cavity functigfo*)

tion function, andd(x) is the Heaviside step function defined =y(o+0) in the first term should be distinguished from the
by cavity functiony(o~)=y(o—0) in the second term with
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regard to their relation to the correlation function. We defineshown,S=0.7 almost invariably for many liquids, and this
the cavity functiony,(r) by yn(r)=exdBuy(r)]g(r). The almost universal constancy &removes the necessity of an
cavity functiony(o*) is attributed mainly tai,(r), butitis  explicit empirical treatment of. This constancy of5, in
approximated byy(o*)=exp(—Be)y (o), whereas we ap- fact, provides a way to estima@(p,T) backward andP(¢&)
proximatey(o~) by y(o )=yn(o). The cavity function by using Eq.(9), and from the information it is possible to
yr(o) is then related to the GvdW parameter associated witlextract the average size of “clusters” formed, if any, around
the excluded volume and will be calculated by means of Eqthe molecule of attention, as the system supercools towards
(20) below; see Eqs(19) and(20) below for the role of the the glass transition temperature. This aspec®dp,T) in
cavity functions in the present theory. relation with » seems potentially useful for learning about

Since the density fluctuation rangeis not well defined the structure of supercooled liquids near the glass transition
and has a distribution, it is appropriate to introduce the distemperature by examining their transport data. We defer its
tribution functionP(£) for £. Since the range of must be  study to the future.

from O to« the distribution functiorP(£) is normalized as Collecting the results regarding the viscosity—self-
follows: diffusion coefficient relation we have the expression
% mo kg T ) 0.770°kgT )
Jo déP(é)=1. (7 1="25n P Yn@)S(p.T)=—2=5—p"Yn(0).
(13
Then averaging the expression fe(p,T) in Eq. (6) of the
distribution of ¢ we obtain This relation resembles the SE relation, but significantly dif-
fers from it because of the density and temperature depen-
27w0°yL(0) dent coefficient, which makes a crucial difference in ac-
w(p,T)= TS(P’T)' (8) counting for the temperature and density dependence of the
viscosity of supercooled liquids, as will be shown.
where
(Ao) SELF-DIFFUSION COEFFICIENT
g
S(p, T)=\°0(p,T) (e~ 1));(—0)—(2—8_[38), 9 The viscosity formula(13) suggests that, apart from the
n factors related t®, the viscosity of supercooled liquids can
with @(p,T) defined by be calculated if the self-diffusion coefficient is known. One
way of calculating the self-diffusion coefficient is to use the
* * free volume theory of Cohen and Turnbdb], which yields
®(P1T): Jl) P(§)0(§—)\U)d§= Jhgp(g)dg (10) D in the form
The quantity@)(p,T), Which.is the mean val_ue .019(5 D=gUa(p)ex;< _ai)' (14)
—\o), is clearly 0<®=<1. It is a factor contributing to Ut

o(p,T), which is essentially related to the force per unit area . , , .
exerted by the molecules beyond the distanceto the mol-  Whereg is a geometric factor(p) is roughly the diameter
ecule of attention. It is simply the probability &f being  of the cage created in the liquid, is the gas kinetic speed,
larger than\ o. The larger thed, the larger and more spread v* is a critical volume just large enough to allow another
out the effective range of density fluctuations. In particular,molecule to move in as a void is created by a molecule on
®=0 means that the density fluctuations around the molleaving its positiony; is the free volume, and is a param-
ecule of attention are completely confined within the rangeeter of O(1). The self-diffusion coefficient in the Cohen-
of radiusé=\o. For the distribution functioiP(¢) the fol- ~ Turnbull free volume theory is physically transparent and
lowing stretched exponential form is postulated to hold: ~ reasonable except for poorly determined parameters and the
free volume that is difficult to calculate by means of statis-
0(é—o) | & 3 tical mechanics. Close examination of the formula in Eq.
- vl(p, Do o (14) suggests that* may be taken as the molecular volume
vo=ma°l6 and the factogua(p) in essence may be inter-

. preted as the mean free path theory expression for diffusion.
where{(p,T) generally depends on bothandp, andy is  Thjs interpretation immediately suggests that the factor may
an exponent. The step functigi{{— o) is inserted because g expressed as the CE self-diffusion coefficfadi of hard
there is no density fluctuation possibleé& o. It then fol- spheres of diameter,
lows from Eq.(10),
O(p,T)=exd — £(p, I\~ 1)]. (12 gUa(p)=Do=— /2 15
8pg2 ¥ mm

Y

P(¢) -1

y—1
exp( —{(p,T)

Because there is as yet no statistical mechanical theory for
P(¢), the associated parameters are treated empirically iwvherem is the molecular mass. It is reasonable to assume a
the present work. However, it turns out that, as will behard sphere model because hard repulsive interactions are in
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operation for the particles packed in close proximity to eachfor the cavity functiony,(o) or B for liquids. Although they
other in liquids. This leaves only one adjustable parametegan pe calculated accurately for ordinary liquids by computer
a, which is in practice found to be about unity. We will sjmylation methods, for deeply supercooled liquids even the
therefore takea=1 in this work. There now remains the computer simulation methods are difficult to implement to a
question of free volume. The success of the free volumgjesirable accuracy because of technical limitations involved,
theory of diffusion hinges upon how free volume is calcu-gych as the limited simulation time-(10~7 s) and the lower

lated. Unfortunately, free volume is a delusive quantity,nound of the detectable self-diffusion coefficient being too
which has defied a definitive statistical mechanical represenarge compared with the experimental value, which is

tation and is consequently difficult to calculate accurately in_10-18 cp2 51 at the glass transition temperature. These

a definite form in the statistical mechanics of liquids since itjjmjtations conspire to yield rather inaccurate simulation re-

was originally introduced by van der Waals. sults for transport coefficients. For this reason it is necessary
We have showii12] that if there exist attractive and re- 5 gevise an alternative. We take a semiempirical approach

pulsive parts in the intermolecular potential energy or forceyng construct a model fd, which will then be validated in
the virial form of the equation of state can be rearranged to @omparison with experiment.

form resembling the van der Waals equation of state, It is also intriguing to note that, if E20) is made use of,
the viscosity given by the second line of Ed.3) can be

2 —_ =
(PFAp*)(1=Bp)=pksT, (16) expressed in the form
where A and B are density and temperature dependent pa-
rameters which have rigorous statistical mechanical repre- _ 0.7kgTB*¢?
sentations, as will be shown shortly for the particular case of n= 57D (1—B* $) ' (21)

the SW potential. This form of equation of state is called the
GvdW equation of state. The parameté&randB are called
the GvdW parameters. The paramefeis related to the at-
tractive potential energy, anB to the repulsive potential
energy. Therefor® is a measure of excluded volume of the
fluid. This GvdW equation of state therefore allows the natu
ral definition of free volumég12],

vi=v[1=B(p,T)p], (17)

wherev = 1/p. In this manner, in our previous papédikt— o )
18] on diffusion we have been able to modify the free vol- Becauseyn(o) cannot be efficiently simulated for a
ume theory formula of the Cohen-Turnbull theory for the deeply supercooled system, we look for a semiempirical way

which allows us to compute the viscosity from the informa-
tion onD, T, ¢, and the empirical density and temperature
dependence 0B, if the GvdW equation of state is empiri-
cally known for the supercooled liquids. In any case, the
‘viscosity is computed by using the model #8F (4,T) de-
veloped below.

A MODEL FOR THE GvdW PARAMETER B

self-diffusion coefficienD of liquids into the form of calculating it. For the SW potential model adopted for this
work the cavity functiory,(o) gets contributions from both
3 kgT L{ vop the hard core and the attractive well part of the potential, and
D= \/——exp —
2 1-Bp)’ X
8po® T MM P are closely packed. Therefoyg (o) may be written as fol-
which is now made completely statistical mechanical be-IOWS:

(18)  the hard core part is the major contribution when particles
causeB can be calculated rigorously by means of statistical

mechanics. In the SW potential model introduced earlier, the Yn(0) =Yhs(0)+ SYh, (22)
GvdW parameters(p,T) andB(p,T) are given by the sta- _ ) ) _
tistical mechanical expressiofis2] whgreyhs(a) is the ca_lwty function _of the hard sphert_a fluid
of diametero and 8y, is the correction tyy¢(o) that arises
L A 4 ge 3 . from the attractive part of the potential. Wheregas(o) is
At =—-= E(e —“D[Ny(Ao)=y(eT)], (19  temperature independent, the correction téym is tempera-
0 ture and density dependent. For this reason, althayyghs
B Ay, (o) generally small in magnitude at high temperatures, it is in-
B*f=—=—"7—"— (200  dispensable, and plays a crucial role, in accounting for the

vo 1+4yn(o) behavior of glass forming liquids near the glass transition
where ¢=uvyp is the packing fraction. These are rigorous emperature. On inserting E@2) into the expression fd8*
statistical mechanical representationsfofind B, although i Eg. (20) and expanding idy, we obtain
for an SW potential. Therefore by ERO) we now have a

rigorous statistical mechanical representation of free volume, % _p* oyn(¢,T) 2
which can be calculated as precisely as the cavity function. B (¢, T)=Bhl )| 1+ Yhe(1+4dYhs) TO(%h) .
Thus the transport coefficiens and » can be calculated (23

by means of statistical mechanics if formulds) and (13)
are employed together with the information eitheryg/io) whereB} () is the generic van der Waals parameBé&rfor
or onB. Unfortunately, there is no analytical theory availablethe hard sphere fluid,
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4yhs( o)

ns( )= T gynao)

If the Carnahan-Starling equation of state is usedBfrwe
find the density dependence Bf.:

22— ¢)

1+ ¢+ p?— > 9

B;s( b)=

In a previous worK19] on the generic van der Waals equa-
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Ty

®\/ 1
EXT—g T—

f(T)="fo(T) p<®f> with  ©®=430K,
ex T_c T_g -1
(30
with fo(T),
fo(T)=6(T—T,) +tanf u(T4/T)"], (31)

tion of state we have found that on the critical isotherm thewhere,u and 9 denote material dependent parameters. The

quadratic model foB* (¢,T),

B* = B: (1+byx+ b2X2+ bnaxﬁ) (x=plpc—1), (29

parameter value fo® in Eq. (30) is determined by fitting
Eqg. (29 to B* calculated by means of Monte CarliC)

simulations in the supercritical regime. The value @ris

is excellent in accounting for the experimental data of thefound almost independent of the species considered and is
critical isotherms of argon and methane. In this expressioithus almost universal. The fidelity of the temperature depen-
for the quadratic modeh, andb, are parameters that can be dence off (T) has been successfully checked against the MC

uniquely determined in terms of critical
(¢¢,Te,pe) [20] andBY , whereBy is the value oB* at the

parameterssimulation results in the supercritical regime, as shown in a

previous papef18]. In the present work on supercooled lig-

critical point which is determined from the critical param- uids we assume that the mathematical form takerf @) in

eters or by simulations fay(r) atT=T. and¢= ¢.; b, IS
an adjustable parameter; aiddis one of the critical expo-
nents, namely,6=4.30. Therefore by fitting the form for

B*(.To),

* —R* —CO
B*(¢,Te) Bhs(¢>)(l+ i ¢6), (26)

C1

to the quadratic model in E425) we find the coefficients,
andcy:

, C1=do(1+Coepd),

6 6
Coz_d)c 1+d_1

BS

=—=
BC

hs
B1

1+d,
_ o

do , d= dy

bl) ’ (27)

where

gre__ 2(2=¢0)
© 1t gt i

e 2¢o(3+T4¢.—Thi+247)
Bi=— 2_ .32
(1+ dot d2— )

(28

For the temperature dependenceBdf(4,T) away from
the critical isotherm we look foB* in the form

Co

B*(¢,T)=Bi() : (29

1+ — ¢6f(T)

C1

Here the functiorf(T), describing thel dependence d8*,
is expressed by a function of scaled temperaly£T in the
form

Eqg. (30) remains valid in the temperature range of super-
cooled liquids. We verify this assumption with comparison
with experimental data on the viscosity and self-diffusion
coefficient of fragile supercooled liquids in the following.

The potential parameters are required, in particular, to
computeB} , for example, by means of MC simulations.
They are determined within the accuracy of the potential
model employed, from the experimental second virial coef-
ficient data. Experimental daf21] for the second virial co-
efficient B,(T) were fitted to the expression for the SW po-
tential,

Bo(T)=(2ma3/3){1—(\3—1)[exp(Be)— 1]}, (32
in order to determine the SW potential parameters
[o (nm),skgl (K),A] as follows: for toluene these are
(0.516,888,1.24). For lack of the second virial coefficient
data onO-terphenyl(OTP) and salol their size parameters
are determined by using = 0.48, whereg, is the packing
fraction of the supercooled liquid &t,. The By computed
from MC simulations performed with the aforementioned
potential parameter sets is found to be 5.46.

Oncecgy andc, are known, the glass transition tempera-
ture T, can be consistently determined within the framework
of the present theory by solving EQL3) iteratively for the
temperature at which the viscosity become$?Ra s, as is
conventionally defined as the kinetic glass transition tem-
perature. In this way, we have predictég, as indicated in
the figure for toluene wittcy and c; determined from the
guadratic mode[18,19; the predictions agree well with the
experimen{22]. Note thatf,— 1 asT tends toT. It is also
noteworthy thatT, depends, although weakly, on the glass
transition density . For instance, an increase of density by
1% atTy brings about a decrease Bf by about 0.5 K owing
to the corresponding decrease in viscosity, and this can be
inferred from Eq.(29). This tendency is consistent with the
phenomenon that a faster cooling leads to glass transition at
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121 4 Toluene (T =117 K)
i ¢ 121 o1p (T =240 K)

log, [n(Pas)]
log, [In(Pas)]

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tgfl'

0.5 0.6 0.7 TT 0.8 0.9 1.0
FIG. 1. Viscosity of toluene at 1 atm. The curves are calculated 9
from the present theory, namely, E¢$3) and(18), where the solid FIG. 2. Viscosity of OTP at 1 atm. The solid curve is computed
curve is computed with Eq33), whereas the broken curve is with from Eq. (13) with S=0.70, whereas the symbols are for the ex-
S=0.70. The symbols[{ [23] and ® [24]) are for the experimen- perimental datal{l [27], ¢ [28], A [29], and® [30]). An empiri-

tal data. As tgp(T) at 1 atm, an empirical formul@3] is used. The ¢4 equatiorj27] is used forp(T) at 1 atm. The parameters used are
inset is for the self-diffusion coefficient of toluene, where the curve ;o 680 nm, c,=1, c,(¢.)¢=0.0473, T,=240 K, and fo(T)

is calculated in Ref[18] from Egs.(18), (29), and (30) with c, =tanH4.6(T,,/T)].
=0.791, cy(¢)°=0.185 ~ Ty=117K, and fo(T) g
=tani4.5(T,/T)*], whereas the symbols are the df2&,26] for

; . by the broken curve in Fig. 1. Moreover, use®£0.70 for
D measured by a nuclear magnetic resonance technique.

other glass forming substances is tested to be sufficiently
satisfactory, as shown in Figs. 2 and 3. We note énga,T)

for toluene tends to- 103 asTg is approached, and it im-
plies that an average cluster size nélyy, namely, %
=2\o is estimated to be about 1.6 nm.

COMPARISON WITH EXPERIMENT Figure 2 shows the viscosity profile for OTP as a canoni-

We can now calculate the viscosity of supercooled quuidscal fragile_glass former. The viscosity profile qalculated fro_m
from Egs.(13) and(18) by assuming that the formula f&* Eqg. (13) with S=0.70 compares excellently with the experi-
still holds in the lowT regime down tdl 4. In Fig. 1, we thus

a higherT, but at a lowerpy . In the higherT regime, how-
ever, the viscosity increases with increaspmg

have calculated the viscosity profile for toluene in the tem- 4
perature range frori=3T, down toT, and have compared OTP (T =240 K)
it with the available experimental dafa3,24. The associ-
atedy,(o) is computed by equating Eq20) to Eq. (29), gl
whereasy(A o) involved in Eq.(9) is evaluated from Egs.
(16) and (19) by settingp=1 atm. As to the parameter ~, 10 |
{(p,T) appearing in the expression fér(p,T) in Eq. (12 e
we express it in the form = 127
T T\? S 14 |
{p,T)=(\"— 1)_1&)(?@1) 1_51(1—_) , 8
g 16 |
where {; and {, are adjustable parameters determined em-
pirically. With this form we have 18 1
2 . . . .
(p,T):exp[ — 50(E) 1— él(l) “ ' (33 205 0.6 0.7 0.8 0.9 1.0
T T, T/T
By choosingf,=7.1 and¢,=0.016 we have computed the g, 3. self-diffusion coefficients ab-terphenyl at 1 atm. The
solid curve for the viscosity in Fig. 1 with E¢33). solid curve is predicted by using Eq4.8) and (29) with u=4.6

We have noticed that the resulta®{p,T) in Eq. (9) re-  andg9=7. The symbols are for the experimental datalasf OTP:
mains virtually constant in the temperature and density range) from Ref.[31] and B from Ref.[32]. Various tracer diffusion
investigated. This has prompted us to repl&oeith a con-  coefficients in OTP are also shown, whéreare for the experimen-
stant, namelysS=0.70, which turns out to perform well for tal data forD, of TTI [32], X for ACR [32], and * for anthracene
all the liquids examined. The result so calculated is denote@33], respectively. See the text for the abbreviations.
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peratures even if the density is the samepgs Clustering
tendency estimated in terms gf(o) appears to be larger,
especially, neally, roughly by 2—-3 times, than the case for
hard sphere fluidg34]. This feature is attributed to the pres-
ence of attractive forces that are absent in hard spheres. A
similar trend ofyy(o) is observed also for the cases of tolu-
ene and OTP.

By using the SE relation for a diffusing particle with hy-
drodynamic radius = o/2 and Eq.(13) we find the ratio
of the diametersR=o/oy=(42/25)py, (o) for which S
=0.7 is used. It is noticeable that, dependinglcemdp, the
ratio R varies, for example, by about 25 times as fragile
liquids (such as those considered in this wosupercool
from 3T, to T4. Therefore this ratio is indicative of the
defect of the SE relation in the sense that #i&/T of the SE
relation is independent df andp, and we see the source of
the so called decoupling of diffusion from viscosity observed
and discussed in the literature. In contrast, 8@) does not

from Eq. (13 with S=0.70, whereas the symbols are for the ex- Nave such a deficiency becau8elepends ol andp.
perimental data4 [29] andO [30]). The thermal expansion coef-

ficient [29] for salol, a,=7.95<10"“, is used for p(T)

= pmeXf ap(T—T)], Wherep,,=1.26 glcnt at T,=315 K. In the
inset the dashed curve is fgy (o) computed from Eqs(20) and
(29 with ¢=0.621 nm,co=1, ¢4(¢4)°=0.133, T,=231 K, and
fO(T)=tani[4.0(Tg/T)7], where¢y=0.482 is the packing fraction
atTy. The liquid-vapor critical temperaturg.=714 K is assumed
in the absence of the information.

CONCLUDING REMARKS

In this paper we have derived a statistical mechanical ex-
pression for the viscosity of supercooled liquids and have
successfully tested its reliability against the experimental
data for toluene, OTP, and salol. With a pair of statistical
mechanical formulas fop andD and the semiempirical for-
mula for B* we are able to represent the temperature and

mental datd27-30, supporting the reliability of the present density dependence of glass formers considered. Since they

theory. The self-diffusion coefficier®d predicted[18] from

are only the glass formers classified as fragile liquids the

Eq. (18) and shown in Fig. 3 is also in good agreement withmodel constructed fdB is not as yet sufficiently comprehen-

the experimental data down to the lower limitTat 1.2T of
the measurements f@. It is noteworthy that a3 is lowered
to below T=1.15T,, the self-diffusion coefficient(solid
curve “decouples” from the tracer diffusion coefficien3,
in OTP of TTI [2,2 -bis(4,4-dimethylthiolan-3-ong (A),
(7,7a-dihydro-2,4,7,7,7a-penta-methylbenzo-
[ b]-furan-5,6-dicarboxylic anhydride(*), and anthracene
(X). The deviation ofD; from D shown in the figure is
beyond the experimental error bounds. The possible origin
such discrepancy, which reaches a factor~of(?, espe-
cially, near Ty, was discussed in Ref18] based on the
explicit relation[17,35 derived forD and D,, where the
average cluster size was estimated to be about 2 nm.
Figure 4 shows the viscosity of salol calculated from Eq.
(13) with S=0.70 in comparison with the experiment

ACR

sive as to cover the whole range of fragility spectrum. Nev-
ertheless, it can be inferred from the present theory that, as
the glassy state is approached, free volume varies with den-
sity and temperature and vitrification occurs as the free vol-
ume available for diffusive motion of molecules falls below
a critical value. The present model raises the hope that a
more comprehensive model is possible to construct by glean-
ing the considerable insights into the complex problem of
0\r!itrification provided by the present model. When we are in
possession of a computer simulation method that is capable
of accurately handling deeply supercooled liquids the model
may be disposed of. In the meantime, we believe, it can be of
service to us in organizing experimental data on transport
coefficients of fragile supercooled liquids.
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