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Effects of cross correlation on the relaxation time of a bistable system
driven by cross-correlated noise
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We study the effects of correlations between additive and multiplicative noise on relaxation time in a bistable
system driven by cross-correlated noise. Using the projection-operator method, we derived an analytic expres-
sion for the relaxation tim& . of the system, which is the function of additive) and multiplicative(D) noise
intensities, correlation intensity of noise, and correlation time of noise. After introducing a noise intensity
ratio and a dimensionless parameReD/«, and then performing numerical computations, we find the
following: (i) For the case oR<1, the relaxation timél; increases aR increases(ii) For the cases oR
=1, there is a one-peak structure on heR plot and the effects of cross-correlated noise on the relaxation
time are very notabldliii) For the case oR<1, T, almost does not change with bathand =, and for the
cases oR=1, T. decreases as increases, howevél, increases as increases\ and 7 play opposite roles
in T., i.e.,\ enhances the fluctuation decay of dynamical variable7asldws down the fluctuation decay of
dynamical variable.

DOI: 10.1103/PhysReVE.68.051102 PACS nuni)er05.40—a, 02.50-r

[. INTRODUCTION stochastic differential equatiofl4] and by a projector-
operator techniqugl5]. The study of the relaxation time of
In most of the previous works, noise forces that arethe system under the influence of cross-correlated noise has
present simultaneously in the stochastic systems were usfot been reported. Because the presence of cross-correlated
ally treated as random variables uncorrelated with each othefoise changes the dynamics of the sysf@m17, it is pre-
However, noises in some stochastic processes may havedigted that there may exist some new cross-correlated effects
common origin and thus can be correlafdg?]. Also Ma-  On the relaxation time of the system.
dureira et al. pointed out that fluctuations in some of the  The objective of this paper is to discuss the effects of
model parameters lead to noise contributions of both additiv§°'élations between additive and multiplicative noises on

and multiplicative character, and are also not independe e rel'c_lxatlon time of the b|st_gble_sy§tem. In Sec. I, the
3], properties of stationary probability distribution of the system

The effects of correlations between additive and muItipIi-V.Vas discus;ed and the analytic expression of the rglaxation
t*me for a bistable system coupled to correlated noises was

fr? “VE. r][ol)sle, elt?ertp T a sttat|oner11ry stak';e oron dd);nanzlcds' ?Igiierived by means of the projection-operator method. In Sec.
e bistable potential system, have been widely studieg, ", et conclusion is given.

[2-12]. It is proved that the transform of the stationary prob-

ability density from unimodal to bimodal is strongly influ- ., "1,\r craioNARY PROBABILITY DISTRIBUTION

enced by both corrglatlon |nte_nS|ty apd correlation time of AND THE RELAXATION TIME

cross_—porrelated noise, and this can mdupe reentrant phase OF THE BISTABLE SYSTEM

transition[4,6—8. The presence of correlations between ad-

ditive and multiplicative noise can bring about a giant sup- To calculate the relaxation time of a bistable system by
pression of the active ratg3,9]. The fluctuation-induced Mmeans of the projection-operator method, we need the sta-
transport exists as a noise correlation effdci]. The corre-  tionary probability distribution(SPD of the system. First,
lation strength of cross-correlated noises plays very imporwe derive SPD of the system and then calculate the relax-
tant roles in the mean first-passage time of the bistable sygfion time of the system.

tem driven by cross-correlated noisgkl]; so does the

correlation time between additive and multiplicative noise A. The stationary probability distribution
[12]. of the bistable system

The correlation functions and the associated relaxation cgnsjder a conventional symmetric bistable system driven

time are used as a dynamic characterization of the steady, ¢ross-correlated noise. Its Langevin equation reads
state fluctuations in nonequilibrium syst¢@8]. Early inves-

tigations of the characteristic behavior of the relaxation time dx 5

were limited to the case of uncorrelated noise, for example, qi XX EXEW+ (), (1)

the relaxation time was calculated both for the white and

nonwhite noise cases by means of a numerical simulation Qfjhere £(t) and 7(t) are Gaussian white noise with zero
mean, and

*Electronic address: kmdcmei@public.km.yn.cn (E()E(t"))=2Ds(t—t'), (2
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(n()n(t'))=2ad(t—t"). 3) N y—y®
Ux)=-— f 2>\ dy
Herea andD are the additive and multiplicative noise inten- Ry*+ \/§y+ 1
sities, respectively. The correlation times of the correlations 1+27
betweené(t) and n(t) are nonzerd6,11,13. Here, assume A
B VRt 1+2
7-
AvaD = ! arctan
(€7t )=(n(D&1")= ——exd ~[t=t'|/7] N \2 N \2
_2\JaDs(t—t') as 7—0, (4) 1+27 1+27
2\ x?
where 7 is the correlation time of the correlations between - —\/—XJF ﬁﬂezln G(x), (13)
&(t) and 5(t), and\ denotes the strength of correlation be- (1+27)RVR
tween#(t) and&(t). The potential
where
V(x)=—3x"+3x* (5 on |2 ,
_ A 1+27)
corresponding to Eq(l) has two stable stateg=—1, x, B1= 1- R ,
=1, and an unstable staxtg=0. By virtue of the Novikov (1+27)R
theorem[16], Fox’s approacH17], and ansatz of Hanggi
et al. [18], the approximate Fokker-Planck equation corre- 2\ |2
sponding to Eq(1) with Egs.(2)—(4) is obtained 12]: 1 1127 1
B=5r| 7w 1| (12)
dP(x,t)
=LepP(x,1), (6) . . L .
at N in Eq. (10) is the normalization constant afti=D/« is

where

and

(92
X)+ —ZG(X),
X

Lep=— ﬁ_xf(

2\\aD
=x—x3+Dx+
f(X)=x—x>+Dx 152,
2\ aD
=Dx°+ +a.
G(x)=Dx 1+27X @

()

)

9

the ratio of noise intensities. It should be pointed out that the
correlation timer must be zero when the strengthof the
correlation between noises is zero, however @6) is valid
when 7=0. Then the expectation values of thth power of

the state variable are given by

+ oo

f ) X"Pg(Xx)dx

(XM= (13)

J’MPS[(x)dx |

— o0

According to the expression SHEq. (10)] of the system,
the effects of botth and » on SPD can be studied by the
numerical computation. The SPDs as functions ahd r are
plotted in Figs. 1a)—2(c). Figures 1a) and Xb) show that
the larger\ is, the sharper one peak of the SPD is along with
another peak disappearing for casefefl. For the case of

Note that this approximate Fokker-Planck equation holds unR<1, the effect of on the SPD is weakdsee Fig. 1c)].
der the condition 3+27>0 for all 7 [6]. Thus, there is no That is, for the cases dR=1, the larger\ is, the smaller
restriction onr so that there is not any restriction on all the fluctuation of the state variable is. From Figs. 2a) and
parameters treated in this case. The stationary probabilit§(b), one can also see that the smalteis, the sharper one
distribution of the system can be obtained from Ej.with

Egs.(7)—(9)

Ps(X)=NG(x) Y2exd —U(x)/a] for

Here the generalized potentidl(x) is

(10

peak of the SPD is along with another peak disappearing. For
the case oR<1, the effect ofr on the SPD is weakdisee

Fig. 2(c)]. That is, for the cases ®=1, the largerris, the
larger fluctuation of the state variableis. Therefore, the
mean of the stationary state varialle)s, decreases with
increasing\ and increases with increasing The effects of
both A and 7 on (x), for the cases oR=1 are more pro-
nounced than that for the caseR& 1.
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FIG. 1. The stationary probability distributioR(x);. (8 D FIG. 2. The stationary probability distributioR(x)s,. (& D
=0.2, «=0.1 (i.e.,, R>1), and7=0.1 are fixed\ takes 0.9, 0.6, =0.2a=0.1(i.e.,R>1), and\=0.9 are fixedrtakes 0.7, 0.5, 0.2,
0.3, and 0(b) D=0.1,a=0.1(i.e.,R=1), and7=0.1 are fixed\ and 0.1.(b) D=0.1, =0.1 (i.e.,, R=1), and\=0.9 are fixed.r
takes 0.9, 0.6, 0.3, and @c) D=0.1, «=0.2 (i.e., R<1), and takes 0.7, 0.5, 0.2, and 0.lc) D=0.1, «=0.2 (i.e.,, R<1), and
7=0.1 are fixed\ takes 0.9, 0.6, 0.3, and 0. N=0.9 are fixeds takes 0.7, 0.5, 0.2, and 0.1.
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B. Relaxation time of the bistable system

variablex is defined by

(8X(t+8) SX(D))r
C = . 14
N TE e 49

PHYSICAL REVIEW E 68, 051102 (2003

(96900~ (%900~ | AXPU0) X000
(208

where the operatordy;| acting on an arbitrary function of
The stationary normalized correlation function of the state>tate variableg(x), means the scalar product

It describes the fluctuation decay of a dynamical variabldn other words, the projection operater projectse(x) onto
Sx=x—(X)g in the stationary state. In terms of the adjoint the subspace associated with the variablg. The projector
Q; projects onto the space orthogonal to the space containing
oX; . The basic idea behind the method used to lead a con-
tinued fraction expansiofl9) is to identify 6x; as a slow
variable inQ; space and it slaves the remaining fast variables

operatorlL / of Eq. (7), ox(t+s) can be expressed as

OX(t+s) =exp(Lss) 8X(t). (15

Thus one can rewrite E14), and get the associated Laplace

transform

Clw)= f:dsexp( —ws)C(s)

= ! <5X ! 5X> (16)
<(5X)2>st w_LIJ:rP st.

The fluctuation decay of the dynamical variable also can b(g

represented by the relaxation tiriig, and it is defined by
+
Tc:j C(t)dt 17
0

and

T.=C(0). (18

time. In order to deal with the Laplace resolveat(L ") in

Fujisaka and Grossmar9], one has the following contin-

ued fraction expression:

~ 1
Clw)= : (19
o+ yy+ 71 .
2
where
<5Xi|-+5xi>st
e — (20a
7 <(5Xi)2>st
<(5Xi)2>st
i —— (20b)
7 ((8%i-1)Yst
X+ 1=Qi11L T 8%, (200

starting withdxy= 6x andQy=1. The operato; is deter-
mined by

OXj -1

(x4, (200
(5% D7 d

Pi_1=Qi-1—Qi=

[15].

After manipulating the zeroth-order approximation of the

relaxation timeT., by settingn,=0, it is given by

L (0%

Te= %0 =Gy

(21)

The zeroth approximatiof21) of T, obtained by truncating

g. (19 is in agreement with that by virtue of the
tratonovich-like ansat20]. Obviously, the zeroth approxi-

mation (21) is the relaxation time when the memory kernel

71

"
ot y,+---

K(w)=—

(22

is completely neglected. Fujisaka and Grossmdaif]

From the correlation function, one can derive the relaxatiorPointed out that earlier experience with the Duffing oscillator
or with the laser fluctuations has shown that the effects of

Eq. (16), by virtue of the projection-operator method used byhigher orders of memory are not significant. Settipg=0,

the first-order approximation of; reads

-1

7
Yot -
0 Y1

T.=

where

_<G(X)f’(x)>st+ 2

0.
(GO (0 P)e . 70
== 2y,
T (0he m P
Using Eqgs.(8)—(13) and (24), we have
_D<X2>st+a 27\@<X>st
T (0D (1 2n((02)
— (705D —2)— L
71~ Yo Yo <(5X)2>st,
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FIG. 3. The relaxation tim& vs R for A\=0 and7=0. D takes
0.3, 0.2, and 0.1.
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FIG. 4. The relaxation tim& vs R for D=0.1 andr=0. \ takes

0.1, 0.2, 0.3, and 0.6.

When there are correlations between the additive and the
multiplicative noise(i.e., \#0) in the system]. as a func-

N 71 tion of R is not monotonicT. increases aR increases for
smaller values oR, however for larger values @, T. de-
9k3 creases af increases. There is one peak structure on the
— 5 2% 2(1+D), 29 1R plot (see Fig. 4 The peak position off, moves to
7]1<(5X) >st c - €

smaller values oR when values ofA increase and; de-

where creases ak increases. For the case of smalRibehavior of
T. is the same as that in the case\ef0. For a case of larger

, DA JDa 2 R, \ plays an important role iITC. .
k1= a(X >St+m<x)st+a 2D| 155, b1}, T. as a function ofR for different values ofr (i.e., 7

=0,0.1,0.2,0.3) are plotted in Fig. 5, which also shows that
T. increases aR increases for smaller values Bf but for
larger values oR, T decreases &R increases. There is also
a one-peak structure on the.-R plot. However the peak

kp=T71D?+52D + 450+ 8,

A 2 Y .
_ 2 a2 position of T, moves to larger values & when values ofr
Ks=1Da 1+27 st 1+27 Da(9D"~3a+5D) increase and . increases as increases.
) T. as a function of\ for the three cases @R (i.e., R
X (X)s+ D2a| 13 Tia —4|—4a(D+a)+ . >1,R=1, andR<1) are plotted in Fig. 6, which clearly
(26) 20

Above results fall back to Eqg2.29—(2.31) presented in
Ref.[15] by takingA=0 anda=0.

Making use of the expressiof&qgs. (23)—(26)] of the
relaxation time, the effects of bothand 7 on the relaxation
time of the system can be analyzed by the numerical calcu-
lation. The results of the numerical calculation of the relax- —° 10f
ation timeT, as a function oR, \, andr are plotted in Figs.
3-7, respectively. All quantities plotted are dimensionless as
those in Ref[12].

When there is correlation between the additive and the
multiplicative noise(i.e., A=0) in the systemT increases
monotonously withR, which is shown in Fig. 3. The multi-
plicative noise always slows down the fluctuation decay of 0
dynamical variablex when there is no correlation between 0 R
the additive and the multiplicative noise. This behavior is in
agreement with that of Hernandet al. [15] and the simu-
lation result in Ref[14].

151

FIG. 5. The relaxation timd vs R for D=0.1 and\A=0.3. 7
takes 0.3, 0.2, 0.1, and O.
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FIG. 6. The relaxation tim& vs \ for 7=0.1. R=1 (D=« FIG. 7. The relaxation tim& vs 7 for A=0.9. R=1 (D=«
=0.1),R<1 (D=0.124=0.2, andR>1 (D=0.22=0.1). =0.1),R<1 (D=0.14=0.2, andR>1 (D=0.2,4=0.1).

shows thatT,. decreases as increases for the cases Bf  Second, the analytic expression for the relaxation time of the
=1, however for the case dR<1, T. almost does not system is derived by the projection-operator method. Making
change a3 increases. use of the expression of the relaxation time, the effects of
T. as a function ofr for the three cases dR (i.e., R  both\ andr on the relaxation time of the system have been
>1R=1, andR<1) are plotted in Fig. 7. From Fig. 7, one analyzed for three cases &f The behavior oT for the case
can also clearly see thdi. increases as increases for the of R<1 and for the cases &t=1 are very different. For the
cases ofR=1, however for the case dR<1, T. almost case ofR<1, T, increases aR increases and for the cases
does not change asincreases. of R=1, there is one peak structure on thg R plot. The
Because effects of both and 7 on (x), for the cases of effects of both\ and~ on T, for the cases oR=1 are more
R=1 are more pronounced than that for the cas®«afl, pronounced than that for the caseR¥ 1. For the case of
the effects of both\ and 7 on T, for the cases oR=1 are = R<1, T, almost does not change with bottand r, and for
more pronounced than that for the caséRef 1. The behav- the cases oR=1, T. decreases as increases, howevér,
ior of T, changing with both\ and 7 are different for the increases as increases\ and 7 play opposite roles i,

cases oR=1 and the case dR<1. i.e., A\ enhances the fluctuation decay of dynamical variable
and 7 slows down the fluctuation decay of the dynamical
lll. CONCLUSIONS variable.
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