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Effects of cross correlation on the relaxation time of a bistable system
driven by cross-correlated noise
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We study the effects of correlations between additive and multiplicative noise on relaxation time in a bistable
system driven by cross-correlated noise. Using the projection-operator method, we derived an analytic expres-
sion for the relaxation timeTc of the system, which is the function of additive~a! and multiplicative~D! noise
intensities, correlation intensityl of noise, and correlation timet of noise. After introducing a noise intensity
ratio and a dimensionless parameterR5D/a, and then performing numerical computations, we find the
following: ~i! For the case ofR,1, the relaxation timeTc increases asR increases.~ii ! For the cases ofR
>1, there is a one-peak structure on theTc-R plot and the effects of cross-correlated noise on the relaxation
time are very notable.~iii ! For the case ofR,1, Tc almost does not change with bothl andt, and for the
cases ofR>1, Tc decreases asl increases, howeverTc increases ast increases.l andt play opposite roles
in Tc , i.e., l enhances the fluctuation decay of dynamical variable andt slows down the fluctuation decay of
dynamical variable.
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I. INTRODUCTION

In most of the previous works, noise forces that a
present simultaneously in the stochastic systems were
ally treated as random variables uncorrelated with each o
However, noises in some stochastic processes may ha
common origin and thus can be correlated@1,2#. Also Ma-
dureira et al. pointed out that fluctuations in some of th
model parameters lead to noise contributions of both addi
and multiplicative character, and are also not independ
@3#.

The effects of correlations between additive and multip
cative noise, either on a stationary state or on dynamic
the bistable potential system, have been widely stud
@2–12#. It is proved that the transform of the stationary pro
ability density from unimodal to bimodal is strongly influ
enced by both correlation intensity and correlation time
cross-correlated noise, and this can induce reentrant p
transition@4,6–8#. The presence of correlations between a
ditive and multiplicative noise can bring about a giant su
pression of the active rate@3,9#. The fluctuation-induced
transport exists as a noise correlation effect@10#. The corre-
lation strength of cross-correlated noises plays very imp
tant roles in the mean first-passage time of the bistable
tem driven by cross-correlated noises@11#; so does the
correlation time between additive and multiplicative no
@12#.

The correlation functions and the associated relaxa
time are used as a dynamic characterization of the ste
state fluctuations in nonequilibrium system@13#. Early inves-
tigations of the characteristic behavior of the relaxation ti
were limited to the case of uncorrelated noise, for exam
the relaxation time was calculated both for the white a
nonwhite noise cases by means of a numerical simulatio
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stochastic differential equation@14# and by a projector-
operator technique@15#. The study of the relaxation time o
the system under the influence of cross-correlated noise
not been reported. Because the presence of cross-corre
noise changes the dynamics of the system@2–12#, it is pre-
dicted that there may exist some new cross-correlated eff
on the relaxation time of the system.

The objective of this paper is to discuss the effects
correlations between additive and multiplicative noises
the relaxation time of the bistable system. In Sec. II, t
properties of stationary probability distribution of the syste
was discussed and the analytic expression of the relaxa
time for a bistable system coupled to correlated noises
derived by means of the projection-operator method. In S
III, a brief conclusion is given.

II. THE STATIONARY PROBABILITY DISTRIBUTION
AND THE RELAXATION TIME

OF THE BISTABLE SYSTEM

To calculate the relaxation time of a bistable system
means of the projection-operator method, we need the
tionary probability distribution~SPD! of the system. First,
we derive SPD of the system and then calculate the re
ation time of the system.

A. The stationary probability distribution
of the bistable system

Consider a conventional symmetric bistable system dri
by cross-correlated noise. Its Langevin equation reads

dx

dt
5x2x31xj~ t !1h~ t !, ~1!

where j(t) and h(t) are Gaussian white noise with zer
mean, and

^j~ t !j~ t8!&52Dd~ t2t8!, ~2!
©2003 The American Physical Society02-1
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^h~ t !h~ t8!&52ad~ t2t8!. ~3!

Herea andD are the additive and multiplicative noise inte
sities, respectively. The correlation times of the correlatio
betweenj(t) andh(t) are nonzero@6,11,12#. Here, assume

^j~ t !h~ t8!&5^h~ t !j~ t8!&5
lAaD

t
exp@2ut2t8u/t#

→2lAaDd~ t2t8! as t→0, ~4!

wheret is the correlation time of the correlations betwe
j(t) andh(t), andl denotes the strength of correlation b
tweenh(t) andj(t). The potential

V~x!52 1
2 x21 1

4 x4 ~5!

corresponding to Eq.~1! has two stable statesx1521, x2
51, and an unstable statex050. By virtue of the Novikov
theorem@16#, Fox’s approach@17#, and ansatz of Hangg
et al. @18#, the approximate Fokker-Planck equation cor
sponding to Eq.~1! with Eqs.~2!–~4! is obtained@12#:

]P~x,t !

]t
5LFPP~x,t !, ~6!

LFP52
]

]x
f ~x!1

]2

]x2
G~x!, ~7!

where

f ~x!5x2x31Dx1
2lAaD

112t
~8!

and

G~x!5Dx21
2lAaD

112t
x1a. ~9!

Note that this approximate Fokker-Planck equation holds
der the condition 112t.0 for all t @6#. Thus, there is no
restriction ont so that there is not any restriction on all th
parameters treated in this case. The stationary probab
distribution of the system can be obtained from Eq.~6! with
Eqs.~7!–~9!

Pst~x!5NG~x!21/2exp@2U~x!/a# for ulu<1.
~10!

Here the generalized potentialU(x) is
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U~x!52Ex y2y3

Ry21
2l

112t
ARy11

dy

5
b1

AF12S l

112t
D 2GR

arctan

ARx1
l

112t

AF12S l

112t
D 2G

2
2l

~112t!RAR
x1

x2

2R
1b2ln G~x!, ~11!

where

b15
l

~112t!AR
F 12

F S 2l

112t D 2

23G
R

G ,

b25
1

2R
F F S 2l

112t D 2

21G
R

21G . ~12!

N in Eq. ~10! is the normalization constant andR5D/a is
the ratio of noise intensities. It should be pointed out that
correlation timet must be zero when the strengthl of the
correlation between noises is zero, however Eq.~10! is valid
whent50. Then the expectation values of thenth power of
the state variablex are given by

^xn&st5

E
2`

1`

xnPst~x!dx

E
2`

1`

Pst~x!dx

. ~13!

According to the expression SPD@Eq. ~10!# of the system,
the effects of bothl and t on SPD can be studied by th
numerical computation. The SPDs as functions ofl andt are
plotted in Figs. 1~a!–2~c!. Figures 1~a! and 1~b! show that
the largerl is, the sharper one peak of the SPD is along w
another peak disappearing for cases ofR>1. For the case of
R,1, the effect ofl on the SPD is weaker@see Fig. 1~c!#.
That is, for the cases ofR>1, the largerl is, the smaller
fluctuation of the state variablex is. From Figs. 2~a! and
2~b!, one can also see that the smallert is, the sharper one
peak of the SPD is along with another peak disappearing.
the case ofR,1, the effect oft on the SPD is weaker@see
Fig. 2~c!#. That is, for the cases ofR>1, the largert is, the
larger fluctuation of the state variablex is. Therefore, the
mean of the stationary state variable^x&st decreases with
increasingl and increases with increasingt. The effects of
both l and t on ^x&st for the cases ofR>1 are more pro-
nounced than that for the case ofR,1.
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FIG. 1. The stationary probability distributionP(x)st . ~a! D
50.2, a50.1 ~i.e., R.1), andt50.1 are fixed.l takes 0.9, 0.6,
0.3, and 0.~b! D50.1, a50.1 ~i.e., R51), andt50.1 are fixed.l
takes 0.9, 0.6, 0.3, and 0.~c! D50.1, a50.2 ~i.e., R,1), and
t50.1 are fixed.l takes 0.9, 0.6, 0.3, and 0.
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FIG. 2. The stationary probability distributionP(x)st . ~a! D
50.2,a50.1 ~i.e.,R.1), andl50.9 are fixed.t takes 0.7, 0.5, 0.2,
and 0.1.~b! D50.1, a50.1 ~i.e., R51), andl50.9 are fixed.t
takes 0.7, 0.5, 0.2, and 0.1.~c! D50.1, a50.2 ~i.e., R,1), and
l50.9 are fixed.t takes 0.7, 0.5, 0.2, and 0.1.
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B. Relaxation time of the bistable system

The stationary normalized correlation function of the st
variablex is defined by

C~s!5
^dx~ t1s!dx~ t !&st

^~dx!2&st

. ~14!

It describes the fluctuation decay of a dynamical varia
dx5x2^x&st in the stationary state. In terms of the adjoi
operatorLFP

1 of Eq. ~7!, dx(t1s) can be expressed as

dx~ t1s!5exp~LFP
1 s!dx~ t !. ~15!

Thus one can rewrite Eq.~14!, and get the associated Lapla
transform

C̃~v!5E
0

`

dsexp~2vs!C~s!

5
1

^~dx!2&st
K dx

1

v2LFP
1

dxL
st

. ~16!

The fluctuation decay of the dynamical variable also can
represented by the relaxation timeTc , and it is defined by

Tc5E
0

1`

C~ t !dt ~17!

and

Tc5C̃~0!. ~18!

From the correlation function, one can derive the relaxat
time. In order to deal with the Laplace resolvent (s2L1) in
Eq. ~16!, by virtue of the projection-operator method used
Fujisaka and Grossmann@19#, one has the following contin
ued fraction expression:

C̃~v!5
1

v1g01
h1

v1g11
h2

v1g21•••

, ~19!

where

g i52
^dxiL

1dxi&st

^~dxi !
2&st

, ~20a!

h i52
^~dxi !

2&st

^~dxi 21!2&st

, ~20b!

dxi 115Qi 11L1dxi , ~20c!

starting withdx05dx andQ051. The operatorQi is deter-
mined by

Pi 215Qi 212Qi5
dxi 21

^~dxi 21!2&st

~dxi 21u, ~20d!
05110
e

e

e

n

where the operator (dxi u acting on an arbitrary function o
state variable,w(x), means the scalar product

(dxi uw~x!5^„dxiw~x!…&st5E dxPst~x!dxiw~x!.

~20e!

In other words, the projection operatorPi projectsw(x) onto
the subspace associated with the variabledxi . The projector
Qi projects onto the space orthogonal to the space contai
dxi . The basic idea behind the method used to lead a c
tinued fraction expansion~19! is to identify dxi as a slow
variable inQi space and it slaves the remaining fast variab
@15#.

After manipulating the zeroth-order approximation of t
relaxation timeTc , by settingh150, it is given by

Tc5g0
215

^~dx!2&st

^G~x!&st
. ~21!

The zeroth approximation~21! of Tc obtained by truncating
Eq. ~19! is in agreement with that by virtue of th
Stratonovich-like ansatz@20#. Obviously, the zeroth approxi
mation ~21! is the relaxation time when the memory kerne

K~v!52
h1

v1g11
h2

v1g21•••

~22!

is completely neglected. Fujisaka and Grossmann@19#
pointed out that earlier experience with the Duffing oscilla
or with the laser fluctuations has shown that the effects
higher orders of memory are not significant. Settingh250,
the first-order approximation ofTc reads

Tc5Fg01
h1

g1
G21

, ~23!

where

h15
^G~x! f 8~x!&st

^~dx!2&st

1g0
2 ,

g152
^G~x!@ f 8~x!#2&st

h1^~dx!2&st

1
g0

3

h1
22g0 . ~24!

Using Eqs.~8!–~13! and ~24!, we have

g05
D^x2&st1a

^~dx!2&st

1
2lADa^x&st

~112t!^~dx!2&st

,

h15g0~g025D22!2
3k1

^~dx!2&st

,

2-4
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g15
g0

312~11D !g0
22g0k2

h1

2
9k3

h1^~dx!2&st

22g022~11D !, ~25!

where

k15a^x2&st1
DlADa

112t
^x&st1aF2DS l

112t D 2

2D21G ,
k2571D2152D145a18,

k3510DaS l

112t D 2

^x2&st1
l

112t
ADa~9D223a15D !

3^x&st1D2aF13S l

112t D 2

24G24a~D1a!1k1 .

~26!

Above results fall back to Eqs.~2.29!–~2.31! presented in
Ref. @15# by takingl50 anda50.

Making use of the expressions@Eqs. ~23!–~26!# of the
relaxation time, the effects of bothl andt on the relaxation
time of the system can be analyzed by the numerical ca
lation. The results of the numerical calculation of the rela
ation timeTc as a function ofR, l, andt are plotted in Figs.
3–7, respectively. All quantities plotted are dimensionless
those in Ref.@12#.

When there is correlation between the additive and
multiplicative noise~i.e., l50! in the system,Tc increases
monotonously withR, which is shown in Fig. 3. The multi-
plicative noise always slows down the fluctuation decay
dynamical variablex when there is no correlation betwee
the additive and the multiplicative noise. This behavior is
agreement with that of Hernandezet al. @15# and the simu-
lation result in Ref.@14#.
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FIG. 3. The relaxation timeT vs R for l50 andt50. D takes
0.3 , 0.2, and 0.1.
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When there are correlations between the additive and
multiplicative noise~i.e., lÞ0! in the system,Tc as a func-
tion of R is not monotonic.Tc increases asR increases for
smaller values ofR, however for larger values ofR, Tc de-
creases asR increases. There is one peak structure on
Tc-R plot ~see Fig. 4!. The peak position ofTc moves to
smaller values ofR when values ofl increase andTc de-
creases asl increases. For the case of smallerR, behavior of
Tc is the same as that in the case ofl50. For a case of large
R, l plays an important role inTc .

Tc as a function ofR for different values oft ~i.e., t
50,0.1,0.2,0.3) are plotted in Fig. 5, which also shows t
Tc increases asR increases for smaller values ofR, but for
larger values ofR, Tc decreases asR increases. There is als
a one-peak structure on theTc-R plot. However the peak
position ofTc moves to larger values ofR when values oft
increase andTc increases ast increases.

Tc as a function ofl for the three cases ofR ~i.e., R
.1, R51, andR,1) are plotted in Fig. 6, which clearly
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FIG. 4. The relaxation timeT vs R for D50.1 andt50. l takes
0.1, 0.2, 0.3, and 0.6.
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FIG. 5. The relaxation timeT vs R for D50.1 andl50.3. t
takes 0.3, 0.2, 0.1, and 0.
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shows thatTc decreases asl increases for the cases ofR
>1, however for the case ofR,1, Tc almost does not
change asl increases.

Tc as a function oft for the three cases ofR ~i.e., R
.1,R51, andR,1) are plotted in Fig. 7. From Fig. 7, on
can also clearly see thatTc increases ast increases for the
cases ofR>1, however for the case ofR,1, Tc almost
does not change ast increases.

Because effects of bothl andt on ^x&st for the cases of
R>1 are more pronounced than that for the case ofR,1,
the effects of bothl andt on Tc for the cases ofR>1 are
more pronounced than that for the case ofR,1. The behav-
ior of Tc changing with bothl and t are different for the
cases ofR>1 and the case ofR,1.

III. CONCLUSIONS

In this paper, we have studied the effects of both the c
relation intensityl and the correlation timet between addi-
tive and multiplicative noise on the relaxation time of a co
ventional bistable system driven by cross-correlated no
First, we discussed effects of bothl andt on the mean of the
stationary state variablêx&st of the system for three cases
R. The effects of bothl and t on ^x&st for the cases ofR
>1 are more pronounced than that for the case ofR,1.
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FIG. 6. The relaxation timeT vs l for t50.1. R51 (D5a
50.1), R,1 (D50.1,a50.2!, andR.1 (D50.2,a50.1!.
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Second, the analytic expression for the relaxation time of
system is derived by the projection-operator method. Mak
use of the expression of the relaxation time, the effects
both l andt on the relaxation time of the system have be
analyzed for three cases ofR. The behavior ofTc for the case
of R,1 and for the cases ofR>1 are very different. For the
case ofR,1, Tc increases asR increases and for the case
of R>1, there is one peak structure on theTc-R plot. The
effects of bothl andt on Tc for the cases ofR>1 are more
pronounced than that for the case ofR,1. For the case of
R,1, Tc almost does not change with bothl andt, and for
the cases ofR>1, Tc decreases asl increases, howeverTc
increases ast increases.l and t play opposite roles inTc ,
i.e., l enhances the fluctuation decay of dynamical varia
and t slows down the fluctuation decay of the dynamic
variable.
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