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Self-similarity in random collision processes
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Kinetics of collision processes with linear mixing rules are investigated analytically. The velocity distribu-
tion becomes self-similar in the long-time limit and the similarity functions have algebraic or stretched expo-
nential tails. The characteristic exponents are roots of transcendental equations and vary continuously with the
mixing parameters. In the presence of conservation laws, the velocity distributions become universal.
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Collision processes underlie fundamental phenomend@his Boltzmann equation is termed the Maxwell model in
such as heat transport in ga$é$and mixing in fluid flows  kinetic theory(the constant collision rate is set to unift7].

[2]. Conservation of mass, momentum, and energy implieThe quadratic integrand in EQ) reflects the binary nature
Maxwellian velocity statistic§3]. However, there are physi- of the collision process and the gain term reflects the colli-
cal systems such as granular meldidand atomic collisions  sion rule (1). The number density is conserved by Eg),

[5] where energy or even momentui®] is not conserved. [dvP(v,t)=1.

The reason may be that only a subset of the system is con- The convolution structure of the evolution equation sug-
sidered, that not all degrees of freedom are measiivest  gests the Fourier transfor(k,t)=fdve'**P(v,t). This
dimensional2D) imaging of 3D systemisor that acoustic or quantity obeys the nonlinear and nonlocal equation

other excitations are ignored. Non-Maxwellian velocity sta-
tistics are found in granular gasgg, colloids[8], and laser
cooling[9].

Random collision processes are a framework for studying
the role of conservation laws, and demonstrate how anomaFhis closed equation is amenable to analytical treatment.
lous velocity statistics emerge when conservation laws ardloments  of the  velocity distribution, Mp(t)
relaxed[10—13. Motivated by this, we consider binary col- = [dvv"P(v,t), obey a closed hierarchy of equatidris]
lision processes witlarbitrary linear collision rules. While
in the long-time limit velocity distributions are generically _
self-similar, there is a wide spectrum of possible behaviors. ﬁM“JF)‘”M”:mE:l (m) P "M M- m @
The velocity distributions are characterized by algebraic or
stretched exponential tails and the corresponding exponenigith the shorthand notation,=1—p"—q". These equa-
depend sensitively on the collision parameters. Interestinglytions are solved recursively withl o(t)=1.
when there is energy or momentum conservation, the behav- We are interested in the long-time limit and we seek simi-

%F(k,t)%—F(k,t):F(pk,t)F(qk,t). 3)

n—1

ior is universal. larity solutions of the form
Consider the most general linear collision law in one di-
mension: when a particle of velocity, collides with a par- P(v,t)—e®(ve®), ast—ox. (5)

ticle of velocity u,, the postcollision velocities are ) ) o
Equivalently, the Fourier transform has the similarity form

F(k,t)—f(ke™ ). This function satisfies
U12=PULt Uy, (1)
—azf'(2)+f(z2)=1(p2)f(qz). (6)
with p and g the mixing parameters. Special cases include o . .
elastic collisions p=0, q=1), inelastic collisions g+ T'he similarity funct!on may include both a regular and a
=1), the granules modelpt-g<1) [6], the Kac Model Singular (nonanalyti¢ component f(2) =fef(2) + fsing(2)

21 ¢2=1) [14], inelastic L —0, g<1) [15], with fefz)=2,[(iz)"/n!]f,. Normalization setsfo=1.
;Fr)]d actljditio)n [p:]qri)afllg]. orenz gasp( a<1) [19] The leading smalf= behavior of the singular component,

Further, we consider perfectly random dynamics: two rand sind(2) ~2", reflects an algebraic tail of the velocity distri-

domly chosen particles collide according to Efj. The nor- ~ Pution

malized velocity distributiorP(v,t) obeys d(w)~w L, )

d as w—oo. Substituting the leading singular behavior
Ep(v,t)ZJ J du;duP(uy,t)P(uy,t) f(z)— 1~2z" into the governing equatiof) yields a relation
between the scaling parameterand the mixing parameters
X[6(v—pu—qup)—dé(v—uy]. (2 pandq,
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FIG. 2. The phase diagram for type-Il scaling.
FIG. 1. The phase diagram for type-I scaling. Shown are equi-

contours as a function of the mixing parameters. varies continuously as a function of the mixing parameters
and it vanishesy—0, whenp—0 orgq—0.
a=v I\,. (8) The curve pIn(e/p)+qlin(e/q)=1, marking the casev

=1, separates two kinds of behavior. Wher1 the first
There are two types of scaling solutions, depending on thenoment characterizes the velocity distribution. In the
average initial velocityM(0): type-I scaling[ M 1(0)+ 0] complementary case, the typical velocity does not follow
and type-Il scaling M1(0)=0]. Note that the system is not from the(intege) moment behavior. This dichotomy is remi-
Galilean invariant because momentum is not necessarily miscent of similarity solutions of the first and second kind
conserved quantity. [19]. Interestingly, extremum selection determines the typical
Type-l scaling.The first moment varies exponentially velocity and thereby the velocity distribution when<1.
with time, M;=e ™!, according to the rate equation Extremum selection similarly governs the speed and the
(d/dt)M;+X;M,=0 (its initial value can be set to unity shape of nonlinear waves in reaction-diffusion problems
The small wave-number behavior of the regular componenii20,21]. Indeed, in terms of the variable d#n the similarity

of the Fourier transform is thereforg(k,t)=1+ike . solution (5) is nothing but a travelling waveP(Inv,t)
When v>1, this component dominates over the smgularH&)(lnvﬁ_at)

component. Thereford(z)=1+iz and the scaling param- Type-ll scaling.When the average initial velocity van-

eter isa=A;. Whenv<1, the singular component domi- o040 initial variance can be set to unity. From the mo-

'rl]'ﬁteerséci);/z tshz(r;r%l#]a(r);) ng’sz&i‘se dp:r:rr::;mg?;oa?:\gg?ds: ment equationg4), the variance varies exponentially with
P P P 9 time, M,(t)=e 2, The small-wave-number behavior

ing to the “dispersion” curve8). This curve has a maximum F(k.t)=1— tk?e 2t dominates wheny>2 and conse-

a=(d/dv)\, at v given byv(d/dv)\, =X, . We argue that quently, the second moment characterizes the velocity distri-

Y. P the behavior as above and the scaling parameter is

typical wave numbere®'. The scaling parameter is there-
fore

I 1+ | ! <2
Y In— v n—, eSS
P p a q

1 1
v _ v _ <
o p Inp +q Inq, v<1 © a 1 . (10
_(1_p —q )1 v=2.

1-p—q, v=1. 2
The exponent characterizing the algebraic tails is the root The exponenw characterizing the algebraic tails is the root
of the transcendental equatid® with « given by Eq.(9). of the transcendental equatipri In(e/p*)+q” In(e/g”)=1 for
Explicitly, the equations ar@” In(e/p”)+q”In(e/g)=1 and  »<2 and 1-p”"—q"=(v/2)(1—p>—q?) for v=2 (Fig. 2.
1-p"—qg”"=v(1-p—q) for v<1 and v=1, respectively It diverges in the vicinity of the curvep=1, q=1, and
(Fig. 1). p?+qg?=1. Inside this regionS, the similarity solution

Algebraic tails exist as long as the exponenis finite.  f(z) is regular and the velocity distributioh(w) has sharp

The exponent diverges;—, in the limiting casesp+q tails. Generally, similarity solutions are symmetric, as
=1, p=1, andg=1, defining the triangular regio8 (Fig. f(z2)=f(—2).
1). In this domain, the singular component disappears and The diverging exponent indicates that the large velocity
the scaling functiorf(z) is analytic. Moreover, the velocity tail is a stretched exponential, rather than algebraic, in the
distribution®(w) has sharp tails and all of its moments areregion S Indeed, the Fourier transforif{z) ~exp(—2z*) for
finite. Outside the regioB, the exponent is always finite. It  largez is compatible with the governing equatié®) when
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FIG. 3. Self-similarity in type-I scaling. Shown ®(w) versus FIG. 4. Self-similarity in type-Il scaling. Shown iB(w) versus
wfor the cas@=q=0.4 («=0.2). In the inset, the tail is compared  for the casep=q=0.6 («=0.14). The inset compares the tail
with the theoretical predictiom=4.886 36. with the theoretical predictiom=6.669 37.

Au=0. (D G(k,t)=1/F(k,t) reduces the(local) Ricatti equation(3)

Steepest descent yields a stretched exponential behavior into [d/dt]G(k,t)+ G(k,t)=1. The Fourier transform reads
F(k,t)={1+[Fo k)~ 1]} with Fo(k)=F(k,t=0).

D (w)~exp(—w?), (12) Indeed, the small-wave-number behavior of the initial distri-
with y=[/(—1)] for w—o. As was the case for the Pution Fo(k) dictates the asymptotic behavior. When
exponentv, u is a root of a transcendental equation andM1(0)=1, type-I scaling occurs, with the similarity solution
consequently, the exponene=1 varies continuously with [(2)=[1—iz] ~andd(w)=e"* for w>0. WhenM,(0)
the mixing parameters. Its minimal value=1 is attained 0 type-ll ZSC?I'ng occurs, with_the similarity solution
along the region boundaries=1 and q=1. The tail is [(@=[1+32°]"" and &(w)=(1/V2)exp(-y2|w|). One
Gaussian,y=2, along the type-ll boundary,=0 and the Can verify that these similarity solutions sat|.sfy E6) with
exponent divergesy—, along the type-l boundary, a=1 and 1/2 for type | and type I, respect!vely. _
—0. Kac Model (p?>+qg?=1). For type-Il scaling, energy is

Self-similarity holds whether the typical velocity shrinks cOnserved, but onlpn average sinceX,=0. In this case,
or grows with time, i.e., regardless whetheiis positive or ~ the velocity distribution ~approaches a steady state,
negative. For type-I scaling the velocities shrigkow) with ~ @=0. Equation(3) has the solutiorf (z) = exp(~Z/2) and
time whenk,>0 (\;<0) and similarly for type-Il scaling. the  velocity —distribution —is = Maxwellian, ®(w)
Asymptotically, sufficiently small moments of the veloc- = (27) exp-w2). For type-l scaling, energy is not
ity distribution are governed by the typical velocity. Other- conserved and the velocity distribution is no longer univer-
wise, the moment behavior follows from the hierarchy ofSal- However, it still exhibits a Gaussian tail.

evolution equation$4), Inelastic Maxwell mode(p+q=1). For inelastic colli-
sions, the total momentum is conservad=0. Using the
exp(—nat), n<v Galilean transformatiomw —v —M4(0), theinitial momen-

"Tlexg =), n>v. (13 tum can be set to zero and so the behavior is always of type

Il. The exponentv=3 is the root of the equation,
Sufficiently small moments of the velocity distribution ex- =(»/2)\,. In this particular case, an explicit solution can be
hibit ordinary scaling behavior while sufficiently large mo- found f(z)=(1+|z|)e % or ®(w)=(2/7)(1+w?) 2 [10].
ments exhibit multiscaling asymptotic behavif22]. By Interestingly, when there is a conservation lésither mo-
multiscaling, we refer to moment ratios such M§/M2’2 mentum or energy the similarity solution is independent of
that diverge asymptotically. the mixing parameters.

Extensive numerical simulations confirm the theoretical Lorentz gas(p=0). This case corresponds to inelastic
findings. In the simulations, randomly chosen pairs of par<collisions with massive scatterers. The evolution equation is
ticles undergo the collision procegd). The number of par- linear, (@/dt)P(v,t)+P(v,t)=q *P(vq 1,t). It is useful
ticles was 10 and the velocity distributions were obtained to consider the stochastic process the velocity undergoes
from an average over ten independent realizations. Represer-vq—uvg?— - - -. The number of collisions is distributed
tative simulation results corresponding to flat initial distribu- according to a Poisson distribution with mean equal to time
tions with support if 0:1] and[ —1:1] are shown in Figs. 3 Therefore, the velocity distributiof23] is
and 4, respectively.

There are a number of special cases worth highlighting. =
Addition (p=q=1). This integrable case nicely demon- Pv,t)=e" 1>, — _po(i)_ (14)
strates how similarity solutions emerge. The transformation n=o Nl gn q"
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In other words, the variable Inis Poisson distributed with quadrant. Type-Il scaling occurs in the other three quadrants,
mean equal td Ing, so a finite number of standard devia- regardless oM ,(0).
tions away from the mean tnis Gaussian distributed. Thus, =~ We tacitly assumed that all moments are finite initially.
the tail of the distribution is log-normal, P(v) Consider initial distributions with a leading sméllbehavior
~exd —(Inv)%(2tIng)]. In the limit v—0, no similarity so-  Of the type I-Fo(k) ~k*°, competing withf 5iny(z) ~2". The
lutions emerge and all moments of the velocity distributioninitial conditions govern the asymptotic behavior when
exhibit multiscalingM ,(t) = M ,(0)exp(-\t). We conclude ~ ¥o<v and thusa=w, "\, . This generalization of the pre-
that the linear collision procesd) is an effective mixing vious results applies for both type-l scalingo&1) and
mechanism. No matter how small either of the mixing pa-type-ll scaling ¢o=2).
rameters is, eventually, the binary collision process alters the In closing, random and linear mixing results in self-
nature of the velocity distribution. In other words, nonlinear-Similar velocity distributions. Nonlinearity is responsible for
ity provides the mechanism for the self-similar behavior. ~ this scaling and extremum selection may govern the behav-
The usual physical particle collision region is associated®'- The velocity distributions have either algebraic or expo-
with O0<p+qg<1 [6] and restitution coefficient nentlgl tails, W|th nor)trlwal characteristic exponents. Every
0=qg—p=1. Other applications may involve valuesménd possible a_llgebralc tail and every faste_:r than exponer_mal de-
q outside this region. We implicitly assumed that the mixingcay constitutes the spectrum of behaviors. Conservation laws

parameters are positivg (q=0) but the behavior easily ex- 5:3%; Vf/rhugr']al rr10|sei,c:IS tS:ﬂ;E&?{E’;E;ZEUU%? r?li)%)trennifbrﬁm_
tends to the other three quadrants in g plane. Consider phy q 9y

the first two momentdV (t) =M (0)exp(=A4t) and M,(t) are conserved.

=[M,(0)—cM3(0)]e *2'+cM3(0)e~ ! with c We thank Paul Krapivsky for useful discussions. This re-
=(2pQg)/(A2—2\4). The first moment governs the second search was supported by the Department of Energy through
moment M,~M?) when\,>2\,, i.e., in the circular do- Contract Nos. W-7405-ENG-36E.B.N) and DE-FGO3-
main (p—1)%+(gq—1)2<1, which is entirely contained in 86ER13606(K.L.), and by the NSF through Contract No.
the first quadrant. Thus, type-I scaling occurs only in the firsPHY-0140094(D.b.A.).
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